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Preface

Networks and network analysis are arguably one of the largest recent growth areas
in the quantitative sciences. Despite roots in social network analysis going back
to the 1930s and roots in graph theory going back centuries, the phenomenal rise
and popularity of the modern field of ‘network science’, as it is sometimes called,
is something that likely could not have been predicted 10–15 years ago. Networks
have permeated everyday life, far beyond the realm of research and methodology,
through now-familiar realities like the Internet, social networks, viral marketing,
and more.

Measurement and data analysis are integral components of network research. As
a result, there is a critical need for all sorts of statistics for network analysis, both
common and sophisticated, ranging from applications, to methodology, to theory.
As with other areas of statistics, there are both descriptive and inferential statistical
techniques available, aimed at addressing a host of network-related tasks, including
basic visualization and characterization of network structure; sampling, modeling,
and inference of network topology; and modeling and prediction of network-indexed
processes, both static and dynamic.

Software for performing many such network-related analyses is now available
in various languages and environments, across different platforms. Not surprisingly,
the R community has been particularly active in the development of software for do-
ing statistical analysis of network data. As of this writing there are already dozens
of contributed R packages devoted to some aspect of network analysis. Together,
these packages address tasks ranging from standard manipulation, visualization, and
characterization of network data (e.g., igraph, network, and sna), to modeling of
networks (e.g., igraph, eigenmodel, ergm, and mixer), to network topology infer-
ence (e.g., glasso and huge). In addition, there is a great deal of analysis that can be
done using tools and functions from the R base package.

In this book we aim to provide an easily accessible introduction to the statistical
analysis of network data, by way of the R programming language. As a result, this
book is not, on the one hand, a detailed manual for using the various R packages en-
countered herein, nor, on the other hand, does it provide exhaustive coverage of the
conceptual and technical foundations of the topic area. Rather, we have attempted
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to strike a balance between the two and, in addition, to do so using a (hopefully!)
optimal level of brevity. Accordingly, we envision the book being used, for example,
by (i) statisticians looking to begin engaging in the statistical analysis of network
data, whether at a research level or in conjunction with a new collaboration, and
hoping to use R as a natural segue, (ii) researchers from other similarly quantitative
fields (e.g., computer science, statistical physics, economics, etc.) working in the
area of complex networks, who seek to get up to speed relatively quickly on how to
do statistical analyses (both familiar and unfamiliar) of network data in R, and (iii)
practitioners in applied areas wishing to get a foothold into how to do a specific type
of analysis relevant to a particular application of interest.

More generally, the book has been written at a level aimed at graduate students
and researchers in quantitative disciplines engaged in the statistical analysis of net-
work data, although advanced undergraduates already comfortable with R should
find much of the book fairly accessible as well. At present, therefore, we antici-
pate the book being of interest to readers not only in statistics, of course, but also
in areas like computational biology, computer science and machine learning, eco-
nomics, neuroscience, quantitative finance, signal processing, statistical physics,
and the quantitative social sciences.

There are a number of people we wish to thank, whose help at various stages
of development and writing is greatly appreciated. Thanks go to the editorial team
at Springer for their enthusiasm in encouraging us to take on this project and for
their feedback along the way and to the students in the course Statistical Analysis
of Network Data (MA703) at Boston University in Fall 2013, for their comments
on many of the earlier chapters. Special thanks are also due to Xinyu Kang, Heather
Shappell, and Yaonan Zhang, who went through the entire first complete draft, care-
fully reading every chapter and testing the code blocks throughout the book. We are
grateful as well to Christophe Ambroise, Alain Barrat, Mark Coates, Suchi Gopal,
Emmanuel Lazega, and Petra Staufer for kindly making available their data. More
broadly, we would like to express our appreciation in general for the countless hours
of effort invested by the developers of the many R packages that we have made use
of throughout the pages of this book. Without their work, the breadth and scope of
our own here would be significantly reduced. Finally, although surely still inade-
quate, we wish to express our deepest gratitude to our respective families for their
love, patience, and support throughout the writing of this book.

All code and data used in this book have been made available in the R package
sand, distributed through the CRAN archive.

Boston, MA, USA Eric D. Kolaczyk
Cambridge, MA, USA Gábor Csárdi
March, 2014
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Chapter 1
Introduction

1.1 Why Networks?

The oft-repeated statement that “we live in a connected world” perhaps best
captures, in its simplicity, why networks have come to hold such interest in re-
cent years. From on-line social networks like Facebook to the World Wide Web and
the Internet itself, we are surrounded by examples of ways in which we interact
with each other. Similarly, we are connected as well at the level of various human
institutions (e.g., governments), processes (e.g., economies), and infrastructures
(e.g., the global airline network). And, of course, humans are surely not unique
in being members of various complex, inter-connected systems. Looking at the
natural world around us, we see a wealth of examples of such systems, from en-
tire eco-systems, to biological food webs, to collections of inter-acting genes or
communicating neurons.

The image of a network—that is, essentially, something resembling a net—is a
natural one to use to capture the notion of elements in a system and their inter-
connectedness. Note, however, that the term ‘network’ seems to be used in a variety
of ways, at various levels of formality. The Oxford English Dictionary, for example,
defines the word network in its most general form simply as “a collection of inter-
connected things.” On the other hand, frequently ‘network’ is used inter-changeably
with the term ‘graph’ since, for mathematical purposes, networks are most com-
monly represented in a formal manner using graphs of various kinds. In an effort to
emphasize the distinction between the general concept and its mathematical formal-
ization, in this book we will use the term ‘network’ in its most general sense above,
and—at the risk of the impression of a slight redundancy—we will sometimes for
emphasis refer to a graph representing such a network as a ‘network graph.’

The seeds of network-based analysis in the sciences, particularly its mathematical
foundation of graph theory, are often placed in the 1735 solution of Euler to the now
famous Königsberg bridge problem, in which he proved that it was impossible to
walk the seven bridges of that city in such a way as to traverse each only once.
Since then, particularly since the mid-1800s onward, these seeds have grown in a

E.D. Kolaczyk and G. Csárdi, Statistical Analysis of Network Data with R, Use R! 65,
DOI 10.1007/978-1-4939-0983-4 1, © Springer Science+Business Media New York 2014
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2 1 Introduction

number of key areas. For example, in mathematics the formal underpinnings were
systematically laid, with König [92] cited as the first key architect. The theory of
electrical circuits has always had a substantial network component, going back to
work of Kirchoff, and similarly the study of molecular structure in chemistry, going
back to Cayley. As the fields of operations research and computer science grew
during the mid-1900s, networks were incorporated in a major fashion in problems
involving transportation, allocation, and the like. And similarly during that time
period, a small subset of sociologists, taking a particularly quantitative view towards
the topic of social structure, began developing the use of networks in characterizing
interactions within social groups.

More recently—starting, perhaps, in the early to mid-1990s—there has been an
explosion of interest in networks and network-based approaches to modeling and
analysis of complex systems. Much of the impetus for this growth derives from
work by researchers in two particular areas of science: statistical physics and com-
puter science. To the former can be attributed a seminal role in encouraging what
has now become a pervasive emphasis across the sciences on understanding how
the interacting behaviors of constituent parts of a whole system lead to collective
behavior and systems-level properties or outcomes. Indeed the term complex system
was coined by statistical physicists, and a network-based perspective has become
central to the analysis of complex systems. To the latter can be attributed much of
the theory and methodology for conceptualizing, storing, manipulating, and doing
computations with networks and related data, particularly in ways that enable effi-
cient handling of the often massive quantities of such data. Moreover, information
networks (e.g, the World Wide Web) and related social media applications (e.g.,
Twitter), the development of which computer scientists have played a key role, are
examples of some of the most studied of complex systems (arguably reflecting our
continued fascination with studying ourselves!).

More broadly, a network-based perspective recently has been found to be useful
in the study of complex systems across a diverse range of application areas. These
areas include computational biology (e.g., studying systems of interacting genes,
proteins, chemical compounds, or organisms), engineering (e.g., establishing how
best to design and deploy a network of sensing devices), finance (e.g., studying the
interplay among, say, the world’s banks as part of the global economy), marketing
(e.g., assessing the extent to which product adoption can be induced as a type of
‘contagion’), neuroscience (e.g., exploring patterns of voltage dynamics in the brain
associated with epileptic seizures), political science (e.g., studying how voting pref-
erences in a group evolve in the face of various internal and external forces), and
public health (e.g., studying the spread of infectious disease in a population, and
how best to control that spread).

In general, two important contributing factors to the phenomenal growth of
interest in networks are (i) an increasing tendency towards a systems-level perspec-
tive in the sciences, away from the reductionism that characterized much of the
previous century, and (ii) an accompanying facility for high-throughput data collec-
tion, storage, and management. The quintessential example is perhaps that of the
changes in biology over the past 10–20 years, during which the complete mapping
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of the human genome, a triumph of computational biology in and of itself, has now
paved the way for fields like systems biology to be pursued aggressively, wherein a
detailed understanding is sought of how the components of the human body, at the
genetic level and higher, work together.

Ultimately, the study of systems such as those just described is accompanied by
measurement and, accordingly, the need for statistical analysis. The focus of this
book is on how to use tools in R to do statistical analysis of network data. More
specifically, we aim to present tools for performing what are arguably a core set of
analyses of measurements that are either of or from a system conceptualized as a
network.

1.2 Types of Network Analysis

Network data are collected daily in a host of different areas. Each area, naturally,
has its own unique questions and problems under study. Nevertheless, from a sta-
tistical perspective, there is a methodological foundation that has emerged, com-
posed of tasks and tools that are each common to some non-trivial subset of research
areas involved with network science. Furthermore, it is possible—and indeed quite
useful—to categorize many of the various tasks faced in the analysis of network
data across different domains according to a statistical taxonomy. It is along the
lines of such a taxonomy that this book is organized, progressing from descriptive
methods to methods of modeling and inference, with the latter conveniently sepa-
rated into two sub-areas, corresponding to the modeling and inference of networks
themselves versus processes on networks. We illustrate with some examples.

1.2.1 Visualizing and Characterizing Networks

Descriptive analysis of data (i.e., as opposed to statistical modeling and inference)
typically is one of the first topics encountered in a standard introductory course in
statistics. Similarly, the visualization and numerical characterization of a network
usually is one of the first steps in network analysis. Indeed, in practice, descriptive
analyses arguably constitute the majority of network analyses published.

Consider the network in Fig. 1.1. Shown is a visualization1 of part of a dataset
on collaborative working relationships among members of a New England law firm,
collected by Lazega [98]. These data were collected for the purpose of studying
cooperation among social actors in an organization, through the exchange of various
types of resources among them. The organization observed was a law firm, consist-
ing of over 70 lawyers (roughly half partners and the other half associates) in three
offices located in three different cities. Relational data reflecting resource exchange

1 The R code for generating this visualization is provided in Chap. 3.
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were collected, and additional attribute information was recorded for each lawyer,
including type of practice, gender, and seniority. See Lazega and Pattison [99] for
additional details.
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Fig. 1.1 Visualization of Lazega’s network of collaborative working relationships among lawyers.
Vertices represent partners and are labeled according to their seniority (with 1 being most senior).
Vertex colors (i.e., red, blue, and yellow) indicate three different office locations, while vertex shape
corresponds to the type of practice [i.e., litigation (circle) and corporate (square)]. Vertex area is
proportional to number of years with the law firm. Edges indicate collaboration between partners.
There are three female partners (i.e., those with seniority labels 27, 29, and 34); the rest are male

The visual summary in Fig. 1.1 manages to combine a number of important
aspects of these data in one diagram. A graph is used to represent the network,
with vertices corresponding to lawyers, and edges, to collaboration between pairs
of lawyers. In addition, differences in vertex color, shape, size, and label are used
to indicate office location, type of practice, years with the law firm, and seniority.
However, this is far from the only manner in which to visualize these data. Decid-
ing how best to do so is itself both an art and science. Furthermore, visualization
is aided here by the fact that the network of lawyers is so small. Suppose instead
our interest lay in a large on-line social network, such as the Facebook network of
people that have ‘friended’ each other. With well over 1 billion active users reported
as of this writing, it is impossible to display this network in an analogous manner,
with every individual user and their friendships evident. A similar statement often
can be made in biology, for example, such as for networks of proteins and their
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affinity for binding or of genes and their regulatory relationships. As a result, the
visualization of large networks is a separate challenge of its own. We will look at
tools for network visualization in Chap. 3.

Characterization of network data through numerical summaries is another
important aspect of descriptive analysis for networks. However, unlike in an int-
roductory statistics course, where the types of summaries encountered typically
are just simple measures of center (e.g., mean, median, etc.) and dispersion (e.g.,
standard deviation, range, etc.) for a set of real numbers, summary measures for
networks necessarily seek to capture characteristics of a graph. For example, for
the lawyer data in Fig. 1.1, it is natural to ask to what extent two lawyers that
both work with a third lawyer are likely to work with each other as well. This
notion corresponds to the social network concept of transitivity and can be captured
numerically through an enumeration of the proportion of vertex triples that form
triangles (i.e., all three vertex pairs are connected by edges), typically summarized
in a so-called clustering coefficient. In this case, the relevant characterization is an
explicit summary of network structure. On the other hand, given the two types of
lawyers represented in these data (i.e., corporate and litigation), it is also natural
to ask to what extent lawyers of each type collaborate with those of same versus
different types. This notion corresponds to another social network concept—that of
assortativity—and can be quantified by a type of correlation statistic (the so-called
assortativity coefficient), in which labels of connected pairs of vertices are com-
pared. In this case, the focus is on an attribute associated with network vertices (i.e.,
lawyer practice) and the network structure plays a comparatively more implicit role.

There are a host of network summaries available, with more being defined reg-
ularly. A variety of such measures are covered in Chap. 4. These range from char-
acterization of properties associated with individual vertices or edges to properties
of subgraphs to properties of the graph as a whole. The trick to employing net-
work characterizations in a useful fashion generally is in matching the question(s) of
interest in an underlying complex system with an appropriate summary measure(s)
of the corresponding network.

1.2.2 Network Modeling and Inference

Beyond asking what an observed network looks like and characterizing its structure,
at a more fundamental level we may be interested in understanding how it may have
arisen. That is, we can conceive of the network as having resulted from some under-
lying processes associated with the complex system of interest to us and ask what
are the essential aspects of these processes. In addition, the actual manner in which
the network was obtained, i.e., the corresponding measurement and construction
process, may well be important to take into consideration. Such concerns provide
the impetus for network modeling and associated tools of statistical inference.

Network modeling has received much attention. Broadly speaking, there are
two classes of network models: mathematical and statistical. By ‘mathematical
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models’ we mean models specified through (typically) simple probabilistic rules
for generating a network, where often the rules are defined in an attempt to capture
a particular mechanism or principle (e.g., ‘the rich get richer’). In contrast, by ‘sta-
tistical models’ we mean models (often probabilistic as well) specified at least in
part with the intention that they be fit to observed data—allowing, for example, the
evaluation of the explanatory power of certain variables on edge formation in the
network—and that the fit be effected and assessed using formal principles of statis-
tical inference. While certainly there is some overlap between these two classes of
models, the relevant literatures nevertheless are largely distinct.

The simplest example of a mathematical network model is one in which edges
are assigned randomly to pairs of vertices based on the result of a collection of
independent and identically distributed coin tosses—one toss for each vertex pair.
Corresponding to a variant of the famous Erdős–Rényi formulation of a random
graph, this model has been studied extensively since the 1960s. Its strength is in
the fact not only that its properties are so well understood (e.g., in terms of how,
for example, cohesive structure emerges as a function of the probability of an edge)
but also in the role it plays as a standard against which to compare other, more
complicated models.

From the statistical perspective, however, such mathematical models generally
are too simple to be a good match to real network data. Nevertheless, they are not
only useful in allowing for formal insight to be gained into how specific mechanisms
of edge formation may affect network structure, but they also are used commonly
in defining null classes of networks against which to assess the ‘significance’ of
structural characteristics found in an observed network. For example, in Fig. 1.1,
the clustering coefficient for the network of lawyer collaboration turns out to be just
slightly less than 0.40. Is this value large or not? It is difficult to say without a frame
of reference. One way of imposing such a frame of reference is to define a simple
but comparable class of networks (e.g., all graphs with the same numbers of vertices
and edges) and look at the distribution of the clustering coefficient across all such
graphs. In the spirit of a permutation test and similar data re-use methods, examining
where our observed value of 0.40 falls within this distribution gives us a sense of
how unusual it is in comparison to values for networks across the specified class.
This approach has been used not only for examining clustering in social networks
but also, for example, in identifying recurring sub-graph patterns (aka ‘motifs’) in
gene regulatory networks and functional connectivity networks in neuroscience. We
will explore the use of mathematical network models for such purposes in Chap. 5.

There are a variety of statistical network models that have been offered in the
literature, many of which parallel well-known model classes in classical statis-
tics. For example, exponential random graph models are analogous to generalized
linear models, being based on an exponential family form. Similarly, latent net-
work models, in specifying that edges may arise at least in part from an unmeasured
(and possibly unknown) variable(s), directly parallel the use of latent variables in
hierarchical modeling. Finally, stochastic block models may be viewed as a form of
mixture model. Nevertheless, importantly, the specification of such models and their
fitting typically are decidedly less standard, given the usually high-dimensional and
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dependent nature of the data. Such models have been used in a variety of settings,
from the modeling of collaborations like that in Lazega’s lawyer network to the pre-
diction of protein pairs likely to have an affinity for physically binding. We will look
at examples of the use of each of these classes of models in Chap. 6.

1.2.3 Network Processes

As objects for representing interactions among elements of a complex system, net-
work graphs are frequently the primary focus of network analysis. On the other
hand, in many contexts it is actually some quantity (or attribute) associated with
each of the elements in the system that ultimately is of most interest. Nevertheless,
in such settings it often is not unreasonable to expect that this quantity be influenced
in an important manner by the interactions among the elements, and hence the net-
work graph may still be relevant for modeling and analysis. More formally, we can
picture a stochastic process as ‘living’ on the network and indexed by the vertices
in the network. A variety of questions regarding such processes can be interpreted
as problems of prediction of either static or dynamic network processes.

Returning to Fig. 1.1, for example, suppose that we do not know the practice
of a particular lawyer. It seems plausible to suspect that lawyers collaborate more
frequently with other lawyers in the same legal practice. If so, knowledge of col-
laboration may be useful in predicting practice. That is, for our lawyer of unknown
practice, we may be able to predict that practice with some accuracy if we know
(i) the vertices that are neighbors of that lawyer in the network graph, and (ii) the
practice of those neighbors.

While in fact this information is known for all lawyers in our data set, in other
contexts we generally are not so fortunate. For example, in on-line social networks
like Facebook, where users can choose privacy settings of various levels of sever-
ity, it can be of interest (e.g., for marketing purposes) to predict user attributes
(e.g., perhaps indicative of consumer preferences) based on that of ‘friends’. Simi-
larly, in biology, traditionally the functional role of proteins (e.g., in the context of
communication within the cell or in controlling cell metabolism) has been estab-
lished through labor-intensive experimental techniques. Because proteins that work
together to effect certain functions often have a higher affinity for physically bind-
ing to each other, the clusters of highly connected proteins in protein–protein int-
eraction networks can be exploited to make computational predictions of protein
function, by propagating information on proteins of known function to their neigh-
bors of unknown function in the graph. We will encounter methods for making such
predictions of static network processes in Chap. 8.

Ultimately, many (most?) of the systems studied from a network-based perspec-
tive are intrinsically dynamic in nature. Not surprisingly, therefore, many processes
defined on networks are more accurately thought of as dynamic, rather than static,
processes. Consider, for example, the context of public health and disease control.
Understanding the spread of a disease (e.g., the H1N1 flu virus) through a population
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can be modeled as the diffusion of a binary dynamic process (indicating infected or
not infected) through a network graph, in which vertices represent individuals, and
edges, contact between individuals. Mathematical modeling (using both determin-
istic and stochastic models) arguably is still the primary tool for modeling such
processes, but network-based statistical models gradually are seeing increased use,
particularly as better and more extensive data on contact networks becomes avail-
able. Another setting in which analogous ideas and models are used—and wherein
it is possible to collected substantially more data—is in modeling the adoption of
new products among consumers (e.g., toward predicting the early adopters of, say,
the next iPhone released). We look briefly at techniques in this emerging area of
modeling and prediction of dynamic network processes in Chap. 8 as well.

In a related direction, we will look at statistical methods for analyzing network
flows in Chap. 9. Referring to the movement of something—materials, people, or
commodities, for example—from origin to destination, flows are a special type
of dynamic process fundamental to transportation networks (e.g., airlines moving
people) and communication networks (e.g., the Internet moving packets of informa-
tion), among others.

Finally, in Chap. 10, we will look briefly at the emerging area of dynamic network
analysis, wherein the network, the process(es) on the network, or indeed both, are
expected to be evolving in time.

1.3 Why Use R for Network Analysis?

Various tools are available for network analysis. Some of these are standalone pro-
grams, like the classic Pajek tool or the newer Gephi, while others are embedded
into a programming environment and are essentially used as a programming library.
Some examples of the latter are NetworkX in Python and igraph in R.

R is rapidly becoming the de facto standard of statistical research, if this has
not happened already. The majority of new statistical developments are immedi-
ately available in R and no other programming languages or software packages.
While network analysis is an interdisciplinary field, it is not an exception from
this trend. Several R extension packages implement one or more network analysis
algorithms or provide general tools for manipulating network data and implement
network algorithms. R supports high quality graphics and virtually any common
graphical file format. R is extensible with currently over 5,000 extension packages,
and this number is growing.

Being a complete programming language, R offers great flexibility for network
research. New network analysis algorithms can be prototyped rapidly by building on
the existing network science extension packages, the most commonly used one of
which is the igraph package. In addition to implementations of classic and recently
published methods of network analysis, igraph provides tools to import, manipu-
late and visualize graphs, and can be used as a platform for new algorithms. It is
currently used in over a hundred other R packages and will be featured often in this
book.
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1.4 About This Book

Our goal in writing this book is to provide an easily accessible introduction to
the statistical analysis of network data, by way of the R programming language.
The book has been written at a level aimed at graduate students and researchers in
quantitative disciplines engaged in the statistical analysis of network data, although
advanced undergraduates already comfortable with R should find the book fairly
accessible as well. At present, therefore, we anticipate the book being of interest to
readers in statistics, of course, but also in areas like computational biology, com-
puter science and machine learning, economics, neuroscience, quantitative finance,
signal processing, statistical physics, and the quantitative social sciences.

The material in this book is organized to flow from descriptive statistical methods
to topics centered on modeling and inference with networks, with the latter sepa-
rated into two sub-areas, corresponding first to the modeling and inference of net-
works themselves, and then, to processes on networks. More specifically, we begin
by covering tools for the manipulation of network data in Chap. 2. The visualization
and characterization of networks is then addressed in Chaps. 3 and 4, respectively.
Next, the topics of mathematical and statistical network modeling are investigated,
in Chaps. 5 and 6, respectively. In Chap. 7 the focus is on the special case of network
modeling wherein the network topology must itself be inferred. Network processes,
both static and dynamic, are addressed in Chap. 8, while network flows are featured
in Chap. 9. Finally, in Chap. 10 a brief look is provided at how the topics of these
earlier chapters are beginning to be extended to the context of dynamic networks.

It is not our intent to provide a comprehensive coverage here of the conceptual
and technical foundations of the statistical analysis of network data. For something
more of that nature, we recommend the book by Kolaczyk [91]. There are also a
number of excellent treatments of network analysis more generally, written from
the perspective of various other fields. These include the book by Newman [118],
from the perspective of statistical physics, and the book by Jackson [81], from the
perspective of economics. The book by Easley and Kleinberg [49], written at an
introductory undergraduate level, provides a particularly accessible treatment of
networks and social behavior. Finally, the book by Wasserman and Faust [144],
although less recent than these others, is still an important resource, particularly
regarding basic tools for characterization and classical network modeling, from a
social network perspective.

On the other hand, neither is this book a complete manual for the various R
packages encountered herein. The reader will want to consult the manuals for these
packages themselves for details omitted from our coverage. In addition, it should
be noted that we assume a basic familiarity with R and the base package. For gen-
eral background on R, particularly for those not already familiar with the software,
there are any number of resources to be had, including the tutorial by Venebles and
Smith [143], the beginner’s guide by Zuur et al. [152], and the book by Crawley [36].

Ultimately, we have attempted to strike a reasonable balance between the con-
cepts and technical background, on the one hand, and software details, on the other.
Accordingly, we envision the book being used, for example, by (i) statisticians
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looking to begin engaging in the statistical analysis of network data, whether at
a research level or in conjunction with a new collaboration, and hoping to use R as
a natural segue; (ii) researchers from other similarly quantitative fields (e.g., com-
puter science, statistical physics, economics, etc.) working in the area of complex
networks, who seek to get up to speed relatively quickly on how to do statistical
analyses (both familiar and unfamiliar) of network data in R, and (iii) practitioners
in applied areas wishing to get a foothold into how to do a specific type of analysis
relevant to a particular application of interest.

1.5 About the R code

The R code in this book requires a number of data sets and R packages. We have
collected the data sets into a standalone R package called sand (i.e., for ‘statistical
analysis of network data’). If the reader aims to run the code while reading the book,
she needs to install this package from CRAN.2 Once installed, the package can then
be used to also install all other R packages required in the code chunks of the book:

#1.1 1 > install.packages("sand")
2 > library(sand)
3 > install_sand_packages()

To avoid the need for constant typing while reading the book, we have extracted
all R code and placed it online, at http://github.com/kolaczyk/sand. We suggest that
the reader open this web page to simply copy-and-paste the code chunks into an R
session. All code is also available in the sand package. In the package manual are
details on how to run the code:

#1.2 1 > ?sand

Note that code chunks are not independent, in that they often rely upon the results
of previous chunks, within the same chapter. On the other hand, code in separate
chapters is meant to be run separately—in fact, restarting R at the beginning of each
chapter is the best way to ensure a clean state to start from. For example, to run the
code in Chap. 3, it is not required (nor recommended) to first run all code in Chaps. 1
and 2, but it is prudent to run any given code block in Chap. 3 only after having run
all other relevant code blocks earlier in the chapter.

In writing this book, we have sought to strike an optimal balance between repro-
ducibility and exposition. It should be possible, for example, for the reader to exactly
reproduce all numerical results presented herein (i.e., summary statistics, estimates,
etc.). In order to ensure this capability, we have set random seeds where neces-
sary (e.g., prior to running methods relying on Markov chain Monte Carlo). The
reader adapting our code for his own purposes will likely, of course, want to use his
own choice of seeds. In contrast, however, we have compromised when it comes to

2 The Comprehensive R Archive Network (CRAN) is a worldwide network of ftp and web servers
from which R code and related materials may be downloaded. See http://cran.r-project.org.
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visualizations. In particular, while the necessary code has been supplied to repeat all
visualizations shown in this book, in most cases we have not attempted to wrap the
main code with all necessary supplemental code (e.g., random seeds, margin set-
tings, space between subplots, etc.) required for exact reproducibility, which would
have come at what we felt was an unacceptable cost of reduction in readability and
general aesthetics.

Given the fact that the R environment in general, and the R packages used in
this book more specifically, can be expected to continue to evolve over time, we
anticipate that we will need to update the online version of the code (and the version
in the sand package) in the future, to make it work with newer versions of R and
with updated packages. Therefore, if the reader finds that the code here in the book
appears to fail, the online version should be most current and working.

On a related note, as can be seen above, the code chunks in the book are num-
bered, by chapter and within each chapter. This convention was adopted mainly to
ensure ease in referencing code chunks from the website and vice versa. Even if we
update the code on the web site, our intention is that the chunk numbers will stay
the same.

In addition to having the most current version of the code chunks, the web page
also includes an issue tracker, for reporting mistakes in the text or the code, and for
general discussion.



Chapter 2
Manipulating Network Data

2.1 Introduction

We have seen that the term ‘network,’ broadly speaking, refers to a collection of
elements and their inter-relations. The mathematical concept of a graph lends preci-
sion to this notion. We will introduce the basic elements of graphs—both undirected
and directed—in Sect. 2.2 and discuss how to generate network graphs, both ‘by
hand’ and from network data of various forms.

As a representation of a complex system, a graph alone (i.e., as merely a col-
lection of vertices and edges) is often insufficient. Rather, there may be additional
information important to the application at hand, in the form of variables that can be
indexed by the vertices (e.g., gender of members of a social network) or the edges
(e.g., average time required to traverse a link in a transportation network). Alterna-
tively, at a coarser level of granularity, it may be convenient to associate vertices
or edges with groups (e.g., all proteins in a protein–protein interaction network that
are involved with a certain type of signaling event in a cell). Indeed, we can imagine
potentially equipping vertices and edges with several variables of interest. Doing
so corresponds to the notion of decorating a network graph, which is discussed in
Sect. 2.3.

Finally, in using graphs to represent network data, a certain level of familiarity
with basic graph theoretic concepts, as well as an ability to assess certain basic
properties of graphs, is essential. We therefore devote Sect. 2.4 to a brief overview
of such concepts and properties, including a quick look at a handful of important
special classes of graphs.

For creating, decorating, and assessing basic properties of network graphs,
igraph is particularly useful.1 A library and R package for network analysis, igraph
contains a set of data types and functions for (relatively!) straightforward implemen-
tation and rapid prototyping of graph algorithms, and allows for the fast handling of

1 Alternatively, there is within the network and sna packages, found in the statnet suite, a similarly
rich set of tools for the manipulation and characterization of network graphs. These packages share
nontrivial overlap with igraph.

E.D. Kolaczyk and G. Csárdi, Statistical Analysis of Network Data with R, Use R! 65,
DOI 10.1007/978-1-4939-0983-4 2, © Springer Science+Business Media New York 2014

13



14 2 Manipulating Network Data

large graphs (e.g., on the order of millions of vertices and edges). As such, its use
will figure heavily in this and the following two chapters (i.e., where the emphasis is
on descriptive methods). The fact that igraph was developed as a research tool and
that its focus originally was to be able to handle large graphs efficiently, means that
its learning curve used to be somewhat steep. Recent versions do not necessarily
flatten the learning curve, but are nevertheless friendlier to the user, once she has
mastered the basics.

2.2 Creating Network Graphs

2.2.1 Undirected and Directed Graphs

Formally, a graph G = (V,E) is a mathematical structure consisting of a set V of
vertices (also commonly called nodes) and a set E of edges (also commonly called
links), where elements of E are unordered pairs {u,v} of distinct vertices u,v ∈ V .
The number of vertices Nv = |V | and the number of edges Ne = |E| are sometimes
called the order and size of the graph G, respectively. Often, and without loss of
generality,2 we will label the vertices simply with the integers 1, . . . ,Nv, and the
edges, analogously.

In igraph there is an ‘igraph’ class for graphs.3 In this section, we will see a
number of ways to create an object of the igraph class in R, and various ways to
extract and summarize the information in that object.

For small, toy graphs, the function graph.formula can be used. For example,

#2.1 1 > library(igraph)
2 > g <- graph.formula(1-2, 1-3, 2-3, 2-4, 3-5, 4-5, 4-6,
3 + 4-7, 5-6, 6-7)

creates a graph object g with Nv = 7 vertices

#2.2 1 > V(g)
2 Vertex sequence:
3 [1] "1" "2" "3" "4" "5" "6" "7"

and Ne = 10 edges

#2.3 1 > E(g)
2 Edge sequence:
3

4 [1] 2 -- 1
5 [2] 3 -- 1
6 [3] 3 -- 2
7 [4] 4 -- 2

2 Technically, a graph G is unique only up to relabellings of its vertices and edges that leave the
structure unchanged. Two graphs that are equivalent in this sense are called isomorphic.
3 The exact representation of ‘igraph’ objects is not visible for the user and is subject to change.
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8 [5] 5 -- 3
9 [6] 5 -- 4
10 [7] 6 -- 4
11 [8] 7 -- 4
12 [9] 6 -- 5
13 [10] 7 -- 6

This same information, in a slightly more compressed format, is recovered easily
using the relevant structure command.

#2.4 1 > str(g)
2 IGRAPH UN-- 7 10 --
3 + attr: name (v/c)
4 + edges (vertex names):
5 1 -- 2, 3
6 2 -- 1, 3, 4
7 3 -- 1, 2, 5
8 4 -- 2, 5, 6, 7
9 5 -- 3, 4, 6
10 6 -- 4, 5, 7
11 7 -- 4, 6

A visual representation of this graph, generated simply through the command4

#2.5 1 > plot(g)

is shown in Fig. 2.1, on the left.
The character U seen accompanying the summary of g above indicates that our

graph is undirected, in that there is no ordering in the vertices defining an edge.
A graph G for which each edge in E has an ordering to its vertices (i.e., so that (u,v)
is distinct from (u,v), for u,v ∈V ) is called a directed graph or digraph. Such edges
are called directed edges or arcs, with the direction of an arc (u,v) read from left to
right, from the tail u to the head v. Note that digraphs may have two arcs between
a pair of vertices, with the vertices playing opposite roles of head and tail for the
respective arcs. In this case, the two arcs are said to be mutual.

Directed edges in graph.formula are indicated using a minus/plus conven-
tion. In Fig. 2.1, on the right, is shown an example of a digraph consisting of three
vertices, with two directed edges and one mutual edge.

#2.6 1 > dg <- graph.formula(1-+2, 1-+3, 2++3)
2 > plot(dg)

We note that in defining both of the graphs above we have used the standard con-
vention of labeling vertices with the numbers 1 through Nv, which is also the default
in igraph. In practice, however, we may already have natural labels, such as the
names of people in a social network, or of genes in a gene regulatory network. Such
labels can be used instead of the default choice by generating the graph with them
explicitly.

4 This is the most basic visualization. We will explore the topic of visualization on its own in more
depth in Chap. 3.
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Fig. 2.1 Left: an undirected graph. Right: a directed graph

#2.7 1 > dg <- graph.formula(Sam-+Mary, Sam-+Tom, Mary++Tom)
2 > str(dg)
3 IGRAPH DN-- 3 4 --
4 + attr: name (v/c)
5 + edges (vertex names):
6 [1] Sam ->Mary Sam ->Tom Mary->Tom Tom ->Mary

Alternatively, vertex labels can be changed from the default after initially creating
the graph, by modifying the name vertex attribute of the graph object.

#2.8 1 > V(dg)$name <- c("Sam", "Mary", "Tom")

2.2.2 Representations for Graphs

Realistically, we do not usually expect to enter a graph by hand, since most net-
works encountered in practice have at least tens of vertices and edges, if not tens of
thousands (or even millions!). Rather, information for constructing a network graph
typically will be stored in a data file. At the most elementary level, there are three
basic formats: adjacency lists, edge lists, and adjacency matrices.

An adjacency list representation of a graph G is simply an array of size Nv,
ordered with respect to the ordering of the vertices in V , each element of which
is a list, where the ith list contains the set of all vertices j for which there is an edge
from i to j. This is the representation usually used by igraph, evident in printing the
output from the structure function str in the examples above.

An edge list is a simple two-column list of all vertex pairs that are joined by an
edge. In igraph, edge lists are used, for example, when printing the edge set E .

#2.9 1 > E(dg)
2 Edge sequence:
3
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4 [1] Sam -> Mary
5 [2] Sam -> Tom
6 [3] Mary -> Tom
7 [4] Tom -> Mary

The function get.edgelist returns an edge list as a two-column R matrix.
Finally, graphs can also be stored in matrix form. The Nv ×Nv adjacency matrix

for a graph G = (V,E), say A, is defined so that

Ai j =

{
1, if {i, j} ∈ E ,
0, otherwise .

(2.1)

In words, A is non-zero for entries whose row-column indices (i, j) correspond to
vertices in G joined by an edge, from i to j, and zero, for those that are not. The
matrix A will be symmetric for undirected graphs.

#2.10 1 > get.adjacency(g)
2 7 x 7 sparse Matrix of class "dgCMatrix"
3 1 2 3 4 5 6 7
4 1 . 1 1 . . . .
5 2 1 . 1 1 . . .
6 3 1 1 . . 1 . .
7 4 . 1 . . 1 1 1
8 5 . . 1 1 . 1 .
9 6 . . . 1 1 . 1

10 7 . . . 1 . 1 .

This last choice of representation is often a natural one, given that matrices are
fundamental data objects in most programming and software environments and that
network graphs frequently are encoded in statistical models through their adjacency
matrices. However, their use with the type of large, sparse networks commonly enc-
ountered in practice can be inefficient, unless coupled with the use of sparse matrix
tools.

In igraph, network data already loaded into R in these specific formats can
be used to generate graphs using the functions graph.adjlist, graph.
edgelist, and graph.adjacency, respectively. For data stored in a file,
the function read.graph can be used. In fact, this latter function not only sup-
ports the three formats discussed above, but also a number of other formats (e.g.,
such as GraphML, Pajek, etc.). Conversely, the function write.graph can be
used to save graphs in various formats.

2.2.3 Operations on Graphs

The graph(s) that we are able to load into R may not be the graph that we ultimately
want. Various operations on the graph(s) we have available may be necessary,
including extracting part of a graph, deleting vertices, adding edges, or even com-
bining multiple graphs.
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The notion of a ‘part’ of a graph is captured through the concept of a subgraph.
A graph H = (VH ,EH) is a subgraph of another graph G = (VG,EG) if VH ⊆ VG

and EH ⊆ EG. Often we are interested in an induced subgraph of a graph G, i.e.,
a subgraph G′ = (V ′,E ′), where V ′ ⊆ V is a prespecified subset of vertices and
E ′ ⊆ E is the collection of edges to be found in G among that subset of vertices. For
example, consider the subgraph of g induced by the first five vertices.

#2.11 1 > h <- induced.subgraph(g, 1:5)
2 > str(h)
3 IGRAPH UN-- 5 6 --
4 + attr: name (v/c)
5 + edges (vertex names):
6 [1] 1--2 1--3 2--3 2--4 3--5 4--5

The inclusion or exclusion of vertices or edges in a graph G = (V,E) can be con-
ceived of as the application of addition or subtraction operators, respectively, to the
sets V and E . For example, the subgraph h generated just above could also have
been created from g by removing the vertices 6 and 7.

#2.12 1 > h <- g - vertices(c(6,7))

Similarly, g can be recovered from h by first adding these two vertices back in, and
then, adding the appropriate edges.

#2.13 1 > h <- h + vertices(c(6,7))
2 > g <- h + edges(c(4,6),c(4,7),c(5,6),c(6,7))

Finally, the basic set-theoretic concepts of union, disjoint union, intersection, dif-
ference, and complement all extend in a natural fashion to graphs. For example, the
union of two graphs, say H1 and H2, is a graph G in which vertices and edges are
included if and only if they are included in at least one of H1 or H2. For example, our
toy graph g may be created through the union of the (induced) subgraph h defined
above and a second appropriately defined subgraph.

#2.14 1 > h1 <- h
2 > h2 <- graph.formula(4-6, 4-7, 5-6, 6-7)
3 > g <- graph.union(h1,h2)

2.3 Decorating Network Graphs

2.3.1 Vertex, Edge, and Graph Attributes

At the heart of a network-based representation of data from a complex system will
be a graph. But frequently there are other relevant data to be had as well. From a
network-centric perspective, these other data can be thought of as attributes, i.e.,
values associated with the corresponding network graph. Equipping a graph with
such attributes is referred to as decorating the graph. Typically, the vertices or edges
of a graph (or both) are decorated with attributes, although the graph as a whole



2.3 Decorating Network Graphs 19

may be decorated as well. In igraph, the elements of graph objects (i.e., particularly
the vertex and edge sequences, and subsets thereof) may be equipped with attributes
simply by using the ‘$’ operator.

Vertex attributes are variables indexed by vertices, and may be of discrete or
continuous type. Instances of the former type include the gender of actors in a social
network, the infection status of computers in an Internet network in the midst of an
on-line virus (e.g., a worm), and a list of biological pathways in which a protein in
a protein–protein interaction network is known to participate, while an example of
the latter type is the voltage potential levels in the brain measured at electrodes in
an electrocorticogram (ECoG) grid. For example, recall that the names of the three
actors in our toy digraph are

#2.15 1 > V(dg)$name
2 [1] "Sam" "Mary" "Tom"

Their gender is added to dg as

#2.16 1 > V(dg)$gender <- c("M","F","M")

Note that the notion of vertex attributes also may be used advantageously to equip
vertices with properties during the course of an analysis, either as input to or output
from calculations within R. For example, this might mean associating the color red
with our vertices

#2.17 1 > V(g)$color <- "red"

to be used in plotting the graph (see Chap. 3). Or it might mean saving the values of
some vertex characteristic we have computed, such as the types of vertex centrality
measures to be introduced in Chap. 4.

Edge attributes similarly are values of variables indexed by adjacent vertex pairs
and, as with vertex attributes, they may be of both discrete or continuous type.
Examples of discrete edge attributes include whether one gene regulates another
in an inhibitory or excitatory fashion, or whether two countries have a friendly or
antagonistic political relationship. Continuous edge attributes, on the other hand,
often represent some measure of the strength of relationship between vertex pairs.
For example, we might equip each edge in a network of email exchanges (with ver-
tices representing email addresses) by the rate at which emails were exchanged over
a given period of time. Or we might define an attribute on edges between adjacent
stations in a subway network (e.g., the Paris metro) to represent the average time
necessary during a given hour of the day for trains to run from one to station to the
next.

Often edge attributes can be thought of usefully, for the purposes of various anal-
yses, as weights. Edge weights generally are non-negative, by convention, and often
are scaled to fall between zero and one. A graph for which the edges are equipped
with weights is referred to as a weighted graph.5

5 More generally, a weighted graph can be defined as a pair (V,E), where V is a set of vertices, as
before, but the elements in E are now non-negative numbers, with one such number for each vertex
pair. Analogously, the adjacency matrix A for a weighted graph is defined such that the entry Ai j

is equal to the corresponding weight for the vertex pair i and j.
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#2.18 1 > is.weighted(g)
2 [1] FALSE
3 > wg <- g
4 > E(wg)$weight <- runif(ecount(wg))
5 > is.weighted(wg)
6 [1] TRUE

As with vertex attributes, edge attributes may also be used to equip edges with prop-
erties to be used in calls to other R functions, such as the plot function.

In principle, a graph itself may be decorated with an attribute, and indeed, it is
possible to equip graph objects with attributes in igraph. The most natural use of
this feature arguably is to equip a graph with relevant background information, such
as a name

#2.19 1 > g$name <- "Toy Graph"

or a seminal data source.

2.3.2 Using Data Frames

Just as network graphs typically are not entered by hand for graphs of any nontrivial
magnitude, but rather are encoded in data frames and files, so too attributes tend to
be similarly encoded. For example, in R, a network graph and all vertex and edge
attributes can be conveniently represented using two data frames, one with vertex
information, and the other, with edge information. Under this approach, the first
column of the vertex data frame contains the vertex names (i.e., either the default
numerical labels or symbolic), while each of the other columns contain the values
of a given vertex attribute. Similarly, the first two columns of the edge data frame
contain an edge list defining the graph, while each of the other columns contain the
values of a given edge attribute.

Consider, for example, the lawyer data set of Lazega [98], introduced in Chap. 1.
Collecting the information on collaborative working relationships, in the form of
an edge list, in the data frame elist.lazega, and the various vertex attribute
variables, in the data frame v.attr.lazega, they may be combined into a single
graph object in igraph as

#2.20 1 > library(sand)
2 > g.lazega <- graph.data.frame(elist.lazega,
3 + directed="FALSE",
4 + vertices=v.attr.lazega)
5 > g.lazega$name <- "Lazega Lawyers"

Our full set of network information on these

#2.21 1 > vcount(g.lazega)
2 [1] 36



2.4 Talking About Graphs 21

lawyers now consists of the

#2.22 1 > ecount(g.lazega)
2 [1] 115

pairs that declared they work together, along with the eight vertex attributes

#2.23 1 > list.vertex.attributes(g.lazega)
2 [1] "name" "Seniority" "Status" "Gender"
3 [5] "Office" "Years" "Age" "Practice"
4 [9] "School"

(in addition to the vertex name).
We will see a variety of ways in the chapters that follow to characterize and

model these network data and others like them.

2.4 Talking About Graphs

2.4.1 Basic Graph Concepts

With the adoption of a graph-based framework for representing relational data in
network analysis we inherit a rich vocabulary for discussing various important con-
cepts related to graphs. We briefly review and demonstrate some of these here, as
they are necessary for doing even the most basic of network analyses.

As defined at the start of this chapter, a graph has no edges for which both ends
connect to a single vertex (called loops) and no pairs of vertices with more than one
edge between them (called multi-edges). An object with either of these properties
is called a multi-graph.6 A graph that is not a multi-graph is called a simple graph,
and its edges are referred to as proper edges.

It is straightforward to determine whether or not a graph is simple. Our toy graph
g is simple.

#2.24 1 > is.simple(g)
2 [1] TRUE

But duplicating the edge between vertices 2 and 3, for instance, yields a multi-graph.

#2.25 1 > mg <- g + edge(2,3)
2 > str(mg)
3 IGRAPH UN-- 7 11 -- Toy Graph
4 + attr: name (g/c), name (v/c), color (v/c)
5 + edges (vertex names):
6 1 -- 2, 3
7 2 -- 1, 3, 3, 4
8 3 -- 1, 2, 2, 5
9 4 -- 2, 5, 6, 7

6 In fact, the igraph data model is more general than described above, and allows for multi-graphs,
with multiple edges between the same pair of vertices and edges from a vertex to itself.
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10 5 -- 3, 4, 6
11 6 -- 4, 5, 7
12 7 -- 4, 6
13 > is.simple(mg)
14 [1] FALSE

Checking whether or not a network graph is simple is a somewhat trivial but nev-
ertheless important preliminary step in doing a typical network analysis, as many
models and methods assume the input graph to be simple or behave differently if it
is not.

Note that it is straightforward, and indeed not uncommon in practice, to trans-
form a multi-graph into a weighted graph, wherein each resulting proper edge is
equipped with a weight equal to the multiplicity of that edge in the original multi-
graph. For example, converting our toy multi-graph mg to a weighted graph results
in a simple graph,

#2.26 1 > E(mg)$weight <- 1
2 > wg2 <- simplify(mg)
3 > is.simple(wg2)
4 [1] TRUE

the edges which match our initial toy graph g,

#2.27 1 > str(wg2)
2 IGRAPH UNW- 7 10 -- Toy Graph
3 + attr: name (g/c), name (v/c), color (v/c),
4 weight (e/n)
5 + edges (vertex names):
6 1 -- 2, 3
7 2 -- 1, 3, 4
8 3 -- 1, 2, 5
9 4 -- 2, 5, 6, 7

10 5 -- 3, 4, 6
11 6 -- 4, 5, 7
12 7 -- 4, 6

but for which the third edge (i.e., connecting vertices 2 and 3) has a weight of 2.

#2.28 1 > E(wg2)$weight
2 [1] 1 1 2 1 1 1 1 1 1 1

Moving beyond such basic concerns regarding the nature of the edges in a graph,
it is necessary to have a language for discussing the connectivity of a graph. The
most basic notion of connectivity is that of adjacency. Two vertices u,v ∈ V are
said to be adjacent if joined by an edge in E . Such vertices are also referred to as
neighbors. For example, the three neighbors of vertex 5 in our toy graph g are

#2.29 1 > neighbors(g, 5)
2 [1] 3 4 6

Similarly, two edges e1,e2 ∈ E are adjacent if joined by a common endpoint in V .
A vertex v∈V is incident on an edge e∈E if v is an endpoint of e. From this follows
the notion of the degree of a vertex v, say dv, defined as the number of edges incident
on v.
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#2.30 1 > degree(g)
2 1 2 3 4 5 6 7
3 2 3 3 4 3 3 2

For digraphs, vertex degree is replaced by in-degree (i.e., din
v ) and out-degree

(i.e., dout
v ), which count the number of edges pointing in towards and out from a

vertex, respectively.

#2.31 1 > degree(dg, mode="in")
2 Sam Mary Tom
3 0 2 2
4 > degree(dg, mode="out")
5 Sam Mary Tom
6 2 1 1

It is also useful to be able to discuss the concept of movement about a graph.
For example, a walk on a graph G, from v0 to vl , is an alternating sequence
{v0,e1,v1,e2, . . . ,vl−1,el ,vl}, where the endpoints of ei are {vi−1,vi}. The length
of this walk is said to be l. Refinements of a walk include trails, which are walks
without repeated edges, and paths, which are trails without repeated vertices. A trail
for which the beginning and ending vertices are the same is called a circuit. Sim-
ilarly, a walk of length at least three, for which the beginning and ending vertices
are the same, but for which all other vertices are distinct from each other, is called
a cycle. Graphs containing no cycles are called acyclic. In a digraph, these notions
generalize naturally. For example, a directed walk from v0 to vl proceeds from tail
to head along arcs between v0 and vl .

A vertex v in a graph G is said to be reachable from another vertex u if there exists
a walk from u to v. The graph G is said to be connected if every vertex is reachable
from every other. A component of a graph is a maximally connected subgraph. That
is, it is a connected subgraph of G for which the addition of any other remaining
vertex in V would ruin the property of connectivity. The toy graph g, for example,
is connected

#2.32 1 > is.connected(g)
2 [1] TRUE

and therefore consists of only a single component

#2.33 1 > clusters(g)
2 $membership
3 [1] 1 1 1 1 1 1 1
4

5 $csize
6 [1] 7
7

8 $no
9 [1] 1

For a digraph, there are two variations of the concept of connectedness. A digraph
G is weakly connected if its underlying graph (i.e., the result of stripping away the
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labels ‘tail’ and ‘head’ from G) is connected. It is called strongly connected if every
vertex v is reachable from every u by a directed walk. The toy graphdg, for example,
is weakly connected but not strongly connected.

#2.34 1 > is.connected(dg, mode="weak")
2 [1] TRUE
3 > is.connected(dg, mode="strong")
4 [1] FALSE

A common notion of distance between vertices on a graph is defined as the length
of the shortest path(s) between the vertices (which we set equal to infinity if no such
path exists). This distance is often referred to as geodesic distance, with ‘geodesic’
being another name for shortest paths. The value of the longest distance in a graph
is called the diameter of the graph. Our toy graph g has diameter

#2.35 1 > diameter(g, weights=NA)
2 [1] 3

Ultimately, the concepts above are only the most basic of graph-theoretic quanti-
ties. There are a wide variety of queries one might make about graphs and quantities
to calculate as a part of doing descriptive network analysis. We cover more of these
in Chap. 4.

2.4.2 Special Types of Graphs

Graphs come in all ‘shapes and sizes,’ as it were, but there are a number of families
of graphs that are commonly encountered in practice. We illustrate this notion with
the examples of four such families shown in Fig. 2.2.

#2.36 1 > g.full <- graph.full(7)
2 > g.ring <- graph.ring(7)
3 > g.tree <- graph.tree(7, children=2, mode="undirected")
4 > g.star <- graph.star(7, mode="undirected")
5 > par(mfrow=c(2, 2))
6 > plot(g.full)
7 > plot(g.ring)
8 > plot(g.tree)
9 > plot(g.star)

A complete graph is a graph where every vertex is joined to every other vertex by
an edge. This concept is perhaps most useful in practice through its role in defining
a clique, which is a complete subgraph. Shown in Fig. 2.2 is a complete graph of
order Nv = 7, meaning that each vertex is connected to all of the other six vertices.

A regular graph is a graph in which every vertex has the same degree. A regular
graph with common degree d is called d-regular. An example of a 2-regular graph
is the ring shown in Fig. 2.2. The standard (infinite) lattice, such as is associated
visually with a checker board, is an example of a 4-regular graph.
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Fig. 2.2 Examples of graphs from four families. Complete (top left); ring (top right); tree (bottom
left); and star (bottom right)

A connected graph with no cycles is called a tree. The disjoint union of such
graphs is called a forest. Trees are of fundamental importance in the analysis of
networks. They serve, for example, as a key data structure in the efficient design
of many computational algorithms. A digraph whose underlying graph is a tree is
called a directed tree. Often such trees have associated with them a special vertex
called a root, which is distinguished by being the only vertex from which there is
a directed path to every other vertex in the graph. Such a graph is called a rooted
tree. A vertex preceding another vertex on a path from the root is called an ancestor,
while a vertex following another vertex is called a descendant. Immediate ances-
tors are called parents, and immediate descendants, children. A vertex without any
children is called a leaf. The distance from the root to the farthest leaf is called the
depth of the tree.

Given a rooted tree of this sort, it is not uncommon to represent it diagrammati-
cally without any indication of its directedness, as this is to be understood from the
definition of the root. Such a representation of a tree is shown in Fig. 2.2. Treating
vertex 1 as the root, this is a tree of depth 2, wherein each vertex (excluding the
leafs) is the ancestor of two descendants.
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A k-star is a special case of a tree, consisting only of one root and k leaves.
Such graphs are useful for conceptualizing a vertex and its immediate neighbors
(ignoring any connectivity among the neighbors). A representation of a 6-star is
given in Fig. 2.2.

An important generalization of the concept of a tree is that of a directed acyclic
graph (i.e., the DAG). A DAG, as its name implies, is a graph that is directed and
that has no directed cycles. However, unlike a directed tree, its underlying graph is
not necessarily a tree, in that replacing the arcs with undirected edges may leave a
graph that contains cycles. Our toy graph dg, for example, is directed but not a DAG

#2.37 1 > is.dag(dg)
2 [1] FALSE

since it contains a mutual edge, hence a 2-cycle. Nevertheless, it is often possible to
still design efficient computational algorithms on DAGs that take advantage of this
near-tree-like structure.

Lastly, a bipartite graph is a graph G = (V,E) such that the vertex set V may
be partitioned into two disjoint sets, say V1 and V2, and each edge in E has one
endpoint in V1 and the other in V2. Such graphs typically are used to represent ‘mem-
bership’ networks, for example, with ‘members’ denoted by vertices in V1, and the
corresponding ‘organizations’, by vertices in V2. For example, they are popular in
studying the relationship between actors and movies, where actors and movies play
the roles of members and organizations, respectively.

#2.38 1 > g.bip <- graph.formula(actor1:actor2:actor3,
2 + movie1:movie2, actor1:actor2 - movie1,
3 + actor2:actor3 - movie2)
4 > V(g.bip)$type <- grepl("ˆmovie", V(g.bip)$name)
5 > str(g.bip, v=T)
6 IGRAPH UN-B 5 4 --
7 + attr: name (v/c), type (v/l)
8 + vertex attributes:
9 name type

10 [1] actor1 FALSE
11 [2] actor2 FALSE
12 [3] actor3 FALSE
13 [4] movie1 TRUE
14 [5] movie2 TRUE
15 + edges (vertex names):
16 [1] actor1--movie1 actor2--movie1 actor2--movie2
17 [4] actor3--movie2

A visualization of g.bip is shown7 in Fig. 2.3.
It is not uncommon to accompany a bipartite graph with at least one of two

possible induced graphs. Specifically, a graph G1 = (V1,E1) may be defined on the
vertex set V1 by assigning an edge to any pair of vertices that both have edges in E
to at least one common vertex in V2. Similarly, a graph G2 may be defined on V2.

7 The R code for generating this visualization is provided in Chap. 3.
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Fig. 2.3 A bipartite network

Each of these graphs is called a projection onto its corresponding vertex subset.
For example, the projection of the actor-movie network g.bip onto its two vertex
subsets yields

#2.39 1 > proj <- bipartite.projection(g.bip)
2 > str(proj[[1]])
3 IGRAPH UNW- 3 2 --
4 + attr: name (v/c), weight (e/n)
5 + edges (vertex names):
6 [1] actor1--actor2 actor2--actor3
7 > str(proj[[2]])
8 IGRAPH UNW- 2 1 --
9 + attr: name (v/c), weight (e/n)

10 + edges (vertex names):
11 [1] movie1--movie2

Within the actor network, actor2 is adjacent to both actor1 and actor3, as
the former actor was in movies with each of the latter actors, although these latter
were not themselves in any movies together, and hence do not share an edge. The
movie network consists simply of a single edge defined by movie1 and movie2,
since these movies had actors in common.
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2.5 Additional Reading

A more thorough introduction to the topic of graph theory may be found in any of
a number of introductory textbooks, such as those by Bollobás [15], Diestel [47], or
Gross and Yellen [67]. Details on graph data structures and algorithms are in many
computer science algorithms texts. See the text by Cormen, Leiserson, Rivest, and
Stein [35], for example.



Chapter 3
Visualizing Network Data

3.1 Introduction

Up until this point, we have spoken only loosely of displaying network graphs,
although we have shown several examples already. Here in this chapter we consider
the problem of display in its own right. Techniques for displaying network graphs
are the focus of the field of graph drawing or graph visualization. Such techniques
typically seek to incorporate a combination of elements from mathematics, human
aesthetics, and algorithms. After a brief characterization of the elements of graph
visualization in Sect. 3.2, we look at a number of ways to lay out a graph, in Sect. 3.3,
followed by some ways to further decorate such layouts, in Sect. 3.4. We also look
quickly at some of the unique challenges posed by the problem of visualizing large
network graphs in Sect. 3.5. Finally, in Sect. 3.6, we describe options for producing
more sophisticated visualizations than those currently possible using R.

3.2 Elements of Graph Visualization

Suppose we have a set of network measurements that have been encoded in a net-
work graph representation G = (V,E), and we now wish to summarize G in a visual
manner. At the heart of the graph visualization problem is the challenge of creat-
ing “geometric representations of . . . combinatorial structures,” [46] using symbols
(e.g., points, circles, squares, etc.) for vertices v ∈ V and smooth curves for edges
e ∈ E . For human consumption it is most convenient, of course, if a graph is drawn1

in two-dimensional space, as opposed to three-dimensional space or on some more
abstract surface. Hence, we will restrict our attention to this setting.

1 Here and throughout we use terms like ‘draw’ only in the colloquial sense, although more formal
mathematical treatments of this topic area exist (e.g., see Chap. 8 of Gross and Yellen [67]) which
attach more specialized understandings to these terms.

E.D. Kolaczyk and G. Csárdi, Statistical Analysis of Network Data with R, Use R! 65,
DOI 10.1007/978-1-4939-0983-4 3, © Springer Science+Business Media New York 2014
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Intuitively, it is not hard to see that there are uncountably many ways that
we could lay down a candidate set of points and curves on paper to represent a
graph G. The important question for any such candidate, however, is whether or not
it adequately communicates the desired relational information in G. While in prin-
ciple this might suggest the drawing of graphs by hand, in practice hand drawings
are only realistic for very small graphs. Generally graphs of nontrivial size must be
drawn, at least in part, using automated methods.

In principle, one could simple lay down the vertices in G in a random fashion
(e.g., uniformly) over a given region and then draw straight lines between those
vertices connected by an edge. Unfortunately, although such drawings are simple
enough to create, they tend to look like little more than a ball of yarn. In order to
facilitate improved automatic drawings of graphs, various specifications or require-
ments have evolved—some firm, and some flexible—which have been formally cat-
egorized as drawing conventions, aesthetics, and constraints. See di Battista, Eades,
Tamassia, and Tollis [46] for a detailed treatment, or Kolaczyk [91, Chap. 3.4] for a
brief summary.

From a practical perspective, drawing conventions, aesthetics, and constraints
effectively serve to define parameters for automatic graph drawing methods, and the
determination of a graph drawing frequently becomes a formal optimization over
some or all of these parameters. Such optimizations typically are difficult to solve
exactly in real time for graphs that are nontrivial in size. Therefore, it is common
to develop computationally efficient algorithms that seek an approximate solution,
often through the use of heuristics and the imposition of priorities among aesthetics.

Within igraph, the plot command calls a variety of such algorithms which,
when applied to a graph object g, allows for the user to produce a fairly rich assort-
ment of graph visualizations. The parameters associated with plot allow for both
the specification of the algorithm to be used and the settings of various conventions,
aesthetics, and constraints allowed for by a given algorithm.

3.3 Graph Layouts

At the heart of graph visualization is the graph layout, i.e., the placement of vertices
and edges in space. There are far too many graph layout methods for us to present a
full survey here. Rather, we discuss a handful of representative examples.

We will illustrate using two network graphs—a 5× 5× 5 lattice

#3.1 1 > library(sand)
2 > g.l <- graph.lattice(c(5, 5, 5))

and a network of ‘web-logs’ or simply ‘blogs’.

#3.2 1 > data(aidsblog)
2 > summary(aidsblog)
3 IGRAPH D--- 146 187 --
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The blog network is a snapshot of the pattern of citation among 146 unique blogs
related to AIDS, patients, and their support networks, collected by Gopal [66] over a
randomly selected three-day period in August 2005. A directed edge from one blog
to another indicates that the former has a link to the latter in their web page (more
specifically, the former refers to the latter in their so-called ‘blogroll’).

Note that both graphs are of roughly the same order (125 and 146 vertices, re-
spectively), although the former has almost twice as many edges as the latter (300
versus 187). The lattice, however, is by definition highly uniform in its connectivity
across vertices, whereas the blog network is not.

The simplest layout is a circular layout, wherein the vertices are arranged (usu-
ally equi-spaced) around the circumference of a circle. The edges are then drawn
across the circle. Circular layouts of the lattice and blog networks are shown in
Fig. 3.1.

#3.3 1 > igraph.options(vertex.size=3, vertex.label=NA,
2 + edge.arrow.size=0.5)
3 > par(mfrow=c(1, 2))
4 > plot(g.l, layout=layout.circle)
5 > title("5x5x5 Lattice")
6 > plot(aidsblog, layout=layout.circle)
7 > title("Blog Network")

5x5x5 Lattice Blog Network

Fig. 3.1 Circular layouts

The visualization of the lattice is much more pleasing to the eye than that of
the blog network, largely due to the low level of edge-crossings through the center
of the circle. Ordering of the vertices around the circle is important with this type
of layout—a random re-ordering of the vertices in the lattice, for example, would
yield a picture much more like that of the blog network. Common vertex orderings
for circular layouts include ordering by degree and grouping by common vertex
attributes.

Often more effective for creating useful drawings are layouts based on exploiting
analogies between the relational structure in graphs and the forces among elements
in physical systems. One approach in this area, and the earliest proposed, is to in-
troduce attractive and repulsive forces by associating vertices with balls and edges
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with springs. If a literal system of balls connected by springs is disrupted, thereby
stretching some of the springs and compressing others, upon being let go it will
return to its natural state. So-called spring-embedder methods of graph drawing de-
fine a notion of force for each vertex in the graph depending, at the very least, on
the positions of pairs of vertices and the distances between them, and seek to iter-
atively update the placement of vertices until a vector of net forces across vertices
converges.

The method of Fruchterman and Reingold [60] is a commonly used example of
this type. Applied to the lattice and blog networks,

#3.4 1 > plot(g.l, layout=layout.fruchterman.reingold)
2 > title("5x5x5 Lattice")
3 > plot(aidsblog, layout=layout.fruchterman.reingold)
4 > title("Blog Network")

as shown in Fig. 3.2, we see that substantially more of the structure inherent to each
network is now visible.

5x5x5 Lattice Blog Network

Fig. 3.2 Layouts using the method of Fruchterman and Reingold

Alternatively, motivated by the fact that it is possible to associate the collection of
forces in spring systems with an overall system energy, another common approach
to generating layouts is that of energy-placement methods. An energy, as a function
of vertex positions, ostensibly is defined using expressions motivated by those found
in physics. A vertex placement is chosen which minimizes the total system energy.
A physical system with minimum energy is typically in its most relaxed state, and
hence the assertion here is that a graph drawn according to similar principles should
be visually appealing.

Methods based on multidimensional scaling (MDS), which have a long history in
the social network literature, are of this type. The method of Kamada and Kawai [85]
is a popular variant. Using this layout,

#3.5 1 > plot(g.l, layout=layout.kamada.kawai)
2 > title("5x5x5 Lattice")
3 > plot(aidsblog, layout=layout.kamada.kawai)
4 > title("Blog Network")
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the resulting visualizations of our lattice and blog networks are similar in spirit to
those obtained using Fruchterman–Reingold. See Fig. 3.3.

5x5x5 Lattice Blog Network

Fig. 3.3 Layouts using the method of Kamada and Kawai

In some cases, network graphs have special structure that it is desirable to accen-
tuate. Trees are one such case. Consider, for example, the visualizations in Fig. 3.4.

#3.6 1 > g.tree <- graph.formula(1-+2,1-+3,1-+4,2-+5,2-+6,2-+7,
2 + 3-+8,3-+9,4-+10)
3 > par(mfrow=c(1, 3))
4 > igraph.options(vertex.size=30, edge.arrow.size=0.5,
5 + vertex.label=NULL)
6 > plot(g.tree, layout=layout.circle)
7 > plot(g.tree, layout=layout.reingold.tilford(g.tree,
8 + circular=T))
9 > plot(g.tree, layout=layout.reingold.tilford)

With the circular layout, it is not obvious that the graph is a tree. However, with
both the radial layout—in which edges radiate outward on concentric circles—and
the layered layout, the structure of the graph is immediately apparent.

Similarly, bipartite graphs often are laid out with the two sets of vertices running
across opposing rows (or down opposing columns)—one type of vertex within each
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Fig. 3.4 Three layouts of the same tree: circular (left), radial (center), and layered (right)
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row (column)—and with edges running between the rows (columns), in a manner
reminiscent of railroad tracks. The visualization shown in Fig. 2.3, for example, is
of this sort.

#3.7 1 > plot(g.bip, layout=-layout.bipartite(g.bip)[,2:1],
2 + vertex.size=30, vertex.shape=ifelse(V(g.bip)$type,
3 + "rectangle", "circle"),
4 + vertex.color=ifelse(V(g.bip)$type, "red", "cyan"))

3.4 Decorating Graph Layouts

While the relative positions of vertices and the placement of edges between them is
clearly important in visualizing network graphs, additional network information—
when available—can be incorporated into visualizations by varying characteristics
like the size, shape, and color of vertices and edges. In particular, such techniques
allow for the visualization of decorated graphs.

Consider, for example, the so-called ‘karate club network’ of Zachary [149].
Nodes represent members of a karate club observed by Zachary for roughly 2 years
during the 1970s, and links connecting two nodes indicate social interactions be-
tween the two corresponding members. This dataset is somewhat unique in that
Zachary had the curious fortune (from a scientific perspective) to witness the club
split into two different clubs during his period of observation, due to a dispute be-
tween the head teacher and an administrator. Attribute information available for this
network includes identification of the head teacher and the administrator, member-
ship in one of the two factions underlying the eventual split, and relative frequency
of interactions between members. While clearly more involved than just issuing a
simple call to plot(), it is nevertheless straightforward to incorporate all of this
information into a visualization of this network.

#3.8 1 > library(igraphdata)
2 > data(karate)
3 > # Reproducible layout
4 > set.seed(42)
5 > l <- layout.kamada.kawai(karate)
6 > # Plot undecorated first.
7 > igraph.options(vertex.size=10)
8 > par(mfrow=c(1,1))
9 > plot(karate, layout=l, vertex.label=V(karate))
10 > # Now decorate, starting with labels.
11 > V(karate)$label <- sub("Actor ", "", V(karate)$name)
12 > # Two leaders get shapes different from club members.
13 > V(karate)$shape <- "circle"
14 > V(karate)[c("Mr Hi", "John A")]$shape <- "rectangle"
15 > # Differentiate two factions by color.
16 > V(karate)[Faction == 1]$color <- "red"
17 > V(karate)[Faction == 2]$color <- "dodgerblue"
18 > # Vertex area proportional to vertex strength
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19 > # (i.e., total weight of incident edges).
20 > V(karate)$size <- 4*sqrt(graph.strength(karate))
21 > V(karate)$size2 <- V(karate)$size * .5
22 > # Weight edges by number of common activities
23 > E(karate)$width <- E(karate)$weight
24 > # Color edges by within/between faction.
25 > F1 <- V(karate)[Faction==1]
26 > F2 <- V(karate)[Faction==2]
27 > E(karate)[ F1 %--% F1 ]$color <- "pink"
28 > E(karate)[ F2 %--% F2 ]$color <- "lightblue"
29 > E(karate)[ F1 %--% F2 ]$color <- "yellow"
30 > # Offset vertex labels for smaller points (default=0).
31 > V(karate)$label.dist <-
32 + ifelse(V(karate)$size >= 10, 0, 0.75)
33 > # Plot decorated graph, using same layout.
34 > plot(karate, layout=l)

The resulting visualization is shown in Fig. 3.5. Also shown, for comparison,
is a visualization using the same layout coordinates (generated according to the
Kamada–Kawai algorithm), but without any decoration. A substantial amount of
additional information is communicated by way of the decorated visualization,
where vertices are sized in proportion to their (weighted) degree, the relative fre-
quency of interactions is shown using edge thickness, a change in vertex shape
indicates the faction leaders, and colors are used to distinguish membership in the
factions as well as edges joining within versus between the same factions.

A similar use of vertex color, shape, and size was used in the visualization of the
Lazega lawyer network in Fig. 1.1. Note that within igraph, supplying the graphical
parameters to the plotting command is an alternative to setting them as vertex and
edge attributes. We demonstrate below.
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#3.9 1 > library(sand)
2 > data(lazega)
3 > # Office location indicated by color.
4 > colbar <- c("red", "dodgerblue", "goldenrod")
5 > v.colors <- colbar[V(lazega)$Office]
6 > # Type of practice indicated by vertex shape.
7 > v.shapes <- c("circle", "square")[V(lazega)$Practice]
8 > # Vertex size proportional to years with firm.
9 > v.size <- 3.5*sqrt(V(lazega)$Years)
10 > # Label vertices according to seniority.
11 > v.label <- V(lazega)$Seniority
12 > # Reproducible layout.
13 > set.seed(42)
14 > l <- layout.fruchterman.reingold(lazega)
15 > plot(lazega, layout=l, vertex.color=v.colors,
16 + vertex.shape=v.shapes, vertex.size=v.size,
17 + vertex.label=v.label)

3.5 Visualizing Large Networks

Despite their sophistication, for all of the methods described so far, the graph draw-
ings will tend to look increasingly cluttered as the number of vertices Nv nears 100 or
so—and simply unintelligible for thousands of vertices or more—due to the finite-
ness of the available space and resolution.

For example, in Fig. 3.6 is shown a visualization of a subnetwork of French po-
litical blogs, extracted from a snapshot of over 1,100 such blogs on a single day
in October of 2006 and classified by the “Observatoire Presidentielle” project as to
political affiliation.2 The network consists of 192 blogs linked by 1,431 edges, the
latter indicating that at least one of the two blogs referenced the other.

#3.10 1 > library(sand)
2 > summary(fblog)
3 IGRAPH UN-- 192 1431 --
4 attr: name (v/c), PolParty (v/c)

Nine political parties are represented among these blogs, and have been included as
vertex attributes.

#3.11 1 > party.names <- sort(unique(V(fblog)$PolParty))
2 > party.names
3 [1] " Cap21" " Commentateurs Analystes"
4 [3] " Les Verts" " liberaux"
5 [5] " Parti Radical de Gauche" " PCF - LCR"
6 [7] " PS" " UDF"
7 [9] " UMP"

2 Original source: http://observatoire-presidentielle.fr/. The subnetwork used here is part of the
mixer package in R. Note that the inherent directionality of blogs are ignored in these data, as the
network graph is undirected.

http://observatoire-presidentielle.fr/
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Fig. 3.6 Visualizations of the French political blog network using layouts generated by the
Kamada–Kawai (left) and DrL (right) algorithms

The visualization shown on the left in Fig. 3.6 was produced using a layout
generated by the standard Kamada–Kawai method.

#3.12 1 > set.seed(42)
2 > l = layout.kamada.kawai(fblog)
3 > party.nums.f <- as.factor(V(fblog)$PolParty)
4 > party.nums <- as.numeric(party.nums.f)
5 > plot(fblog, layout=l, vertex.label=NA,
6 + vertex.color=party.nums, vertex.size=3)

Note that, while it is indeed possible, with a bit of effort and the aid of color indicat-
ing political party affiliation, to distinguish some structure, the plot is nevertheless
rather ‘busy’.

Fortunately, there are layout algorithms designed specifically for the purpose of
visualizing large networks. For example, VxOrd [42], a visualization package pro-
duced by Sandia Labs, is an enhanced version of the spring-embedder methodology.
It attempts to place vertices in clusters on the two-dimensional plane, with the help
of sophisticated optimization methods to more efficiently search the space of possi-
ble graph drawings and a grid that helps reduce computation time from the typical
O(N2

v ) down to O(Nv). In addition, it employs edge-cutting criteria, designed to-
wards producing drawings that balance the detail with which both local and global
structure are shown. VxOrd has been used by Boyack, Klavans, and Börner [21] to
produce a map of the ‘backbone’ of Science, involving over 7,000 vertices (journals)
and 16 million edges (co-citations). See also [91, Chap. 3.5.1] for a short summary
of their analysis.

Another such example is the DrL method [106], which is based on VxOrd and is
implemented in igraph. Applied to the French political blog data
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#3.13 1 > set.seed(42)
2 > l <- layout.drl(fblog)
3 > plot(fblog, layout=l, vertex.size=5, vertex.label=NA,
4 + vertex.color=party.nums)

and shown on the right in Fig. 3.6, we find that the method has clustered blogs in a
way that is strongly influenced by certain of the party affiliations, despite not having
had this information.

When such clustering exists and may be characterized explicitly, either because
it occurs with respect to a measured variable or because it is inferred through so-
called graph partitioning methods,3 it may be useful to coarsen a network graph
prior to visualization, replacing groups of vertices with single meta-vertices. This
is demonstrated on the French political blog data in Fig. 3.7. Having first coarsened
the network, by aggregating edges between groups,

#3.14 1 > fblog.c <- contract.vertices(fblog, party.nums)
2 > E(fblog.c)$weight <- 1
3 > fblog.c <- simplify(fblog.c)

we plot the resulting network.

#3.15 1 > party.size <- as.vector(table(V(fblog)$PolParty))
2 > plot(fblog.c, vertex.size=5*sqrt(party.size),
3 + vertex.label=party.names,
4 + vertex.color=V(fblog.c),
5 + edge.width=sqrt(E(fblog.c)$weight),
6 + vertex.label.dist=1.5, edge.arrow.size=0)

In the resulting visualization, the size of the groups defined by political parties in
the original network, and the numbers of edges between those groups, are reflected
in vertex size and edge thickness, respectively. The relationships among political
parties that was only suggested by the visualizations in Fig. 3.6 is now quite evident.

Alternatively, specific information we desire to be communicated through a net-
work visualization might suggest that only a relevant subgraph(s) be shown. For
example, sometimes it is useful to highlight the structure local to a given vertex,
such as in the so-called egocentric network visualizations commonly used in the
social network literature, which show the vertex, its immediate neighbors, and all
edges among them.

As an illustration, consider again the karate network. Extracting the (first-order)
neighborhoods surrounding each vertex

#3.16 1 > data(karate)
2 > k.nbhds <- graph.neighborhood(karate, order=1)

we see, for example, that the neighborhoods pertaining to the head instructor
(Mr Hi, vertex 1) and administrator (John A, vertex 34) are the largest.

#3.17 1 > sapply(k.nbhds, vcount)
2 [1] 17 10 11 7 4 5 5 5 6 3 4 2 3 6 3 3 3
3 [18] 3 3 4 3 3 3 6 4 4 3 5 4 5 5 7 13 18

3 See Chap. 4.4.
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Fig. 3.7 Visualization of the French political blog network at the level of political parties

Pulling out these two largest subnetworks and plotting them,

#3.18 1 > k.1 <- k.nbhds[[1]]
2 > k.34 <- k.nbhds[[34]]
3 > par(mfrow=c(1,2))
4 > plot(k.1, vertex.label=NA,
5 + vertex.color=c("red", rep("lightblue", 16)))
6 > plot(k.34, vertex.label=NA,
7 + vertex.color=c(rep("lightblue", 17), "red"))

we obtain the visualizations shown in Fig. 3.8. Comparing these plots to that of the
full karate network, as seen in Fig. 3.5, it is clear that these two subnetworks capture
the vast majority of the structure in the full network.

3.6 Using Visualization Tools Outside of R

While using R for visualizing networks has the advantage of a programmatical in-
terface, high quality graphics, and many graphics file formats, the network drawing
itself is somewhat limited. For example, there are relatively few choices available for
node and arrow shapes, and label placement is somewhat awkward, so that avoid-
ing overlapping nodes and labels is not easy. Interactive editing of graph drawings
is even more limited. However, if producing a network visualization of particularly
high quality is a goal, there are certainly other software tools for this job. To close
this chapter, we briefly touch upon some of these options, and discuss how data can
be passed to them from R.
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Fig. 3.8 Two ego-centric views of the karate club network of Fig. 3.5, from the perspectives of
vertices 1 (left) and 34 (right), the authority figures (instructor and administrator, respectively,
shown in red) about which the club ultimately split

Graphviz is a classic graph layout and drawing tool. It is a collection of
standalone command line programs, with a separately developed interface to R, via
the Rgraphviz package. An easy way to use an igraph graph with Graphviz is to
write it to a file in the ‘dot’ file format that is supported by igraph’s write.graph
function.

Pajek is one of the first network analysis and visualization tools. It is a standalone
program for Microsoft Windows environments, and supports interactive visualiza-
tion and editing as well. Pajek has its own file format, that is supported by igraph’s
write.graph and read.graph functions (with some limitations), so transfer-
ring data between R and Pajek is usually easy.

Cytoscape is a modern cross-platform network analysis and visualization tool,
written in Java, specializing in biological networks. It has several layout algorithms
implemented and sophisticated interactive visualization, and it is under active de-
velopment. Cytoscape can read and write the GML file format, also supported by
igraph. In addition, it supports simple tables in text files, which is advantageous if
the graph has many attributes.

Gephi is another standalone cross-platform tool for analysis and visualization of
graphs, with sophisticated interactive editing. It has its own file format called ‘gexf’,
and the rgexf package is able to convert ‘gexf’ to and from igraph graphs.

There are several other tools available, of course. These usually support some of
the file formats R can read and write (e.g. GraphML, GML, CSV, etc.), so network
data can be passed around easily. Visualization of vertex and edge attributes are
sometimes more problematic, however.
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3.7 Additional Reading

An extensive overview of principles and techniques for network graph visualization
may be found in the edited volume of Kaufmann and Wagner [89]. For detailed
development of many of the corresponding algorithms, see the text of di Battista,
Eades, Tamassia, and Tollis [46]. Finally, for classical treatments of the more es-
tablished body of work on the visualization of data in general, see the books by
Tukey [140], Tufte [139], and Cleveland [31, 32].



Chapter 4
Descriptive Analysis of Network Graph
Characteristics

4.1 Introduction

In the study of a given complex system, questions of interest can often be re-phrased
in a useful manner as questions regarding some aspect of the structure or character-
istics of a corresponding network graph. For example, various types of basic social
dynamics can be represented by triplets of vertices with a particular pattern of ties
among them (i.e., triads); questions involving the movement of information or com-
modities usually can be posed in terms of paths on the network graph and flows
along those paths; certain notions of the ‘importance’ of individual system elements
may be captured by measures of how ‘central’ the corresponding vertex is in the net-
work; and the search for ‘communities’ and analogous types of unspecified ‘groups’
within a system frequently may be addressed as a graph partitioning problem.

The structural analysis of network graphs has traditionally been treated primarily
as a descriptive task, as opposed to an inferential task, and the tools commonly used
for such purposes derive largely from areas outside of ‘mainstream’ statistics. For
example, an overwhelming proportion of these tools are naturally graph-theoretic in
nature, and thus have their origins in mathematics and computer science. Similarly,
the field of social network analysis has been another key source, contributing tools
usually aimed—at least originally—at capturing basic aspects of social structure and
dynamics. More recently, the field of physics has also been an important contributor,
with the proposed tools often motivated by analogues in statistical mechanics.

We present in this chapter a brief overview of some of the many such tools avail-
able, starting with summaries of vertex and edge characteristics, in Sect. 4.2, contin-
uing with measures of network cohesion, in Sect. 4.3, and with methods for graph
partitioning (aka ‘community detection’), in Sect. 4.4, and finishing with the topics
of assortativity and mixing, in Sect. 4.5.

E.D. Kolaczyk and G. Csárdi, Statistical Analysis of Network Data with R, Use R! 65,
DOI 10.1007/978-1-4939-0983-4 4, © Springer Science+Business Media New York 2014
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4.2 Vertex and Edge Characteristics

As the fundamental elements of network graphs are their vertices and edges, there
are a number of network characterizations centered upon these. We discuss several
such characterizations here in this section. Our presentation is broken down accord-
ing to (i) those characterizations based upon vertex degrees, and (ii) those seeking
to capture some more general notion of the ‘importance’ of a vertex—typically re-
ferred to as vertex centrality measures. We also discuss the extension of such con-
cepts from vertices to edges.

4.2.1 Vertex Degree

Recall that the degree dv of a vertex v, in a network graph G = (V,E), counts
the number of edges in E incident upon v. Given a network graph G, define fd

to be the fraction of vertices v ∈ V with degree dv = d. The collection { fd}d≥0 is
called the degree distribution of G, and is simply a rescaling of the set of degree
frequencies, formed from the original degree sequence.

The degree distribution for the karate club network is shown in Fig. 4.1, using a
histogram.

#4.1 1 > library(sand)
2 > data(karate)
3 > hist(degree(karate), col="lightblue", xlim=c(0, 50),
4 + xlab="Vertex Degree", ylab="Frequency", main="")

We can see that there are three distinct groups of vertices, as measured by degree.
The two most highly connected vertices correspond to actors 1 and 34 in the net-
work, representing the instructor and administrator about whom the club eventually
split. The next set of vertices consists of actors 2, 3, and also 33. Examination of our
visualization of this network in Fig. 3.5 shows these actors to be among the closest
to actors 1 and 34, respectively.

For weighted networks, a useful generalization of degree is the notion of vertex
strength, which is obtained simply by summing up the weights of edges incident to
a given vertex. The distribution of strength—sometimes called the weighted degree
distribution—is defined in analogy to the ordinary degree distribution. To illustrate,
vertex strength for the karate club network is also shown in Fig. 4.1.

#4.2 1 > hist(graph.strength(karate), col="pink",
2 + xlab="Vertex Strength", ylab="Frequency", main="")

For this network, the range of vertex strength stretches well beyond that of vertex
degree, and the previously observed distinction among the three groups of vertices
is lost. Nevertheless, both histograms arguably communicate important information
about the network.
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Fig. 4.1 Distributions of vertex degree (top) and strength (bottom) for the karate club network

Degree distributions can exhibit a variety of shapes. For a network of interactions
among protein pairs in yeast, for example,

#4.3 1 > library(igraphdata)
2 > data(yeast)

the shape is quite different from that of the karate club. In this case, the distribution
of degrees associated with the

#4.4 1 > ecount(yeast)
2 [1] 11855

edges among

#4.5 1 > vcount(yeast)
2 [1] 2617

vertices is quite heterogeneous, as can be seen from examination of the histogram
in Fig. 4.2.

#4.6 1 > d.yeast <- degree(yeast)
2 > hist(d.yeast,col="blue",
3 + xlab="Degree", ylab="Frequency",
4 + main="Degree Distribution")

In particular, while there is a substantial fraction of vertices of quite low degree, of
an order of magnitude similar to those of the karate network, there are also a non-
trivial number of vertices with degrees at successively higher orders of magnitude.

Given the nature of the decay in this distribution, a log–log scale is more effective
in summarizing the degree information.
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#4.7 1 > dd.yeast <- degree.distribution(yeast)
2 > d <- 1:max(d.yeast)-1
3 > ind <- (dd.yeast != 0)
4 > plot(d[ind], dd.yeast[ind], log="xy", col="blue",
5 + xlab=c("Log-Degree"), ylab=c("Log-Intensity"),
6 + main="Log-Log Degree Distribution")
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Fig. 4.2 Degree distribution for a network of protein–protein interactions in yeast. Left: Original
scale; Right: log–log scale

From the plot on the right in Fig. 4.2 we see that there is a fairly linear decay in the
log-frequency as a function of log-degree. While it is tempting to summarize the rate
of this decay (i.e., the so-called degree exponent) using, for example, a simple linear
regression, more sophisticated methods are preferable here. See [91, Chap. 4.2.1.1].

Beyond the degree distribution itself, it can be interesting to understand the man-
ner in which vertices of different degrees are linked with each other. Useful in as-
sessing this characteristic is the notion of the average degree of the neighbors of a
given vertex. For example, a plot of average neighbor degree versus vertex degree
in the yeast data, as shown in Fig. 4.3, suggests that while there is a tendency for
vertices of higher degrees to link with similar vertices, vertices of lower degree tend
to link with vertices of both lower and higher degrees.

#4.8 1 > a.nn.deg.yeast <- graph.knn(yeast,V(yeast))$knn
2 > plot(d.yeast, a.nn.deg.yeast, log="xy",
3 + col="goldenrod", xlab=c("Log Vertex Degree"),
4 + ylab=c("Log Average Neighbor Degree"))



4.2 Vertex and Edge Characteristics 47

1 2 5 10 20 50 100

1
2

5
20

10
50

10
0

Log-Degree

Lo
g 

A
ve

ra
ge

 N
ei

gh
bo

r 
D

eg
re

e

Fig. 4.3 Average neighbor degree versus vertex degree (log–log scale) for the yeast data

4.2.2 Vertex Centrality

Many questions that might be asked about a vertex in a network graph essentially
seek to understand its ‘importance’ in the network. Which actors in a social network
seem to hold the ‘reins of power’? How authoritative does a particular page in the
World Wide Web seem to be considered? The deletion of which genes in a gene reg-
ulatory network is likely to be lethal to the corresponding organism? How critical
is a given router in an Internet network to the flow of traffic? Measures of central-
ity are designed to quantify such notions of ‘importance’ and thereby facilitate the
answering of such questions.

There are a vast number of different centrality measures that have been proposed
over the years. We have already encountered what is arguably the most widely
used measure of vertex centrality: vertex degree. Here we will focus our discus-
sion primarily around the most common versions of three other classic types of ver-
tex centrality measures—typically termed closeness, betweenness, and eigenvector
centrality, respectively.

Closeness centrality measures attempt to capture the notion that a vertex is ‘cen-
tral’ if it is ‘close’ to many other vertices. The standard approach, introduced by
Sabidussi [127], is to let the centrality vary inversely with a measure of the total
distance of a vertex from all others,

cCl(v) =
1

∑u∈V dist(v,u)
, (4.1)
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where dist(v,u) is the geodesic distance between the vertices u,v ∈ V . Often, for
comparison across graphs and with other centrality measures, this measure is nor-
malized to lie in the interval [0,1], through multiplication by a factor Nv − 1.

Betweenness centrality measures are aimed at summarizing the extent to which a
vertex is located ‘between’ other pairs of vertices. These centralities are based upon
the perspective that ‘importance’ relates to where a vertex is located with respect
to the paths in the network graph. If we picture those paths as the routes by which,
say, communication of some sort or another takes place, vertices that sit on many
paths are likely more critical to the communication process. The most commonly
used betweenness centrality, introduced by Freeman [59], is defined as

cB(v) = ∑
s �=t �=v∈V

σ(s, t|v)
σ(s, t)

, (4.2)

where σ(s, t|v) is the total number of shortest paths between s and t that pass through
v, and σ(s, t) is the total number of shortest paths between s and t (regardless of
whether or not they pass through v). In the event that shortest paths are unique, cB(v)
just counts the number of shortest paths going through v. This centrality measure can
be restricted to the unit interval through division by a factor of (Nv − 1)(Nv − 2)/2.

Finally, other centrality measures are based on notions of ‘status’ or ‘prestige’
or ‘rank.’ That is, they seek to capture the idea that the more central the neighbors
of a vertex are, the more central that vertex itself is. These measures are inherently
implicit in their definition and typically can be expressed in terms of eigenvector
solutions of appropriately defined linear systems of equations. There are many such
eigenvector centrality measures. For example, Bonacich [20], following work of
Katz [88] and others, defined a centrality measure of the form

cEi(v) = α ∑
{u,v}∈E

cEi(u). (4.3)

The vector cEi = (cEi(1), . . . ,cEi(Nv))
T is the solution to the eigenvalue prob-

lem AcEi = α−1cEi, where A is the adjacency matrix for the network graph G.
Bonacich [20] argues that an optimal choice of α−1 is the largest eigenvalue of
A, and hence cEi is the corresponding eigenvector. When G is undirected and con-
nected, the largest eigenvalue of A will be simple and its eigenvector will have
entries that are all nonzero and share the same sign. Convention is to report the ab-
solute values of these entries, which will automatically lie between 0 and 1 by the
orthonormality of eigenvectors.

An intuitively appealing way of displaying vertex centralities (for networks of
small to moderate size) is to use a radial layout, with more central vertices located
closer to the center. The function gplot.target, in the package sna, can be used
for this purpose. For example,
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#4.9 1 > A <- get.adjacency(karate, sparse=FALSE)
2 > library(network)
3 > g <- network::as.network.matrix(A)
4 > library(sna)
5 > sna::gplot.target(g, degree(g), main="Degree",
6 + circ.lab = FALSE, circ.col="skyblue",
7 + usearrows = FALSE,
8 + vertex.col=c("blue", rep("red", 32), "yellow"),
9 + edge.col="darkgray")

produces a visualization of degree centrality for the karate club network, as
shown in Fig. 4.4. The visualizations of the other three centralities shown in
this figure are produced similarly, replacing the argument degree(g) by the
arguments closeness(g), betweenness(g), and evcent(g)$vector,
respectively.1

The plots in Fig. 4.4 illustrate how these four measures of centrality indeed cap-
ture different notions of ‘central’. Note that the relative centralities of the two ar-
guably most important figures in this club—the head teacher and the administrator—
vary with choice of measure, from nearly indistinct under degree centrality to most
distinct under betweenness centrality. Furthermore, under the latter choice of cen-
trality, the other actors in the network appear to be maximally distinct from those
two as well. This last characteristic is a function of the largely star-like nature of
this network, in which relatively few vertices v have shortest paths between pairs of
other vertices s and t passing through v.

Extensions of these centrality measures from undirected to directed graphs are
straightforward. However, in the latter case, there are in addition other useful
options. For example, the HITS algorithm, based on the concept of ‘hubs and
authorities,’ as introduced by Kleinberg [90] in the context of the World Wide
Web, characterizes the importance of so-called hub vertices by how many author-
ity vertices they point to, and so-called authority vertices by how many hubs point
to them. Specifically, given an adjacency matrix A for a directed graph, hubs are
determined according to the eigenvector centrality of the matrix Mhub = AAT , and
authorities, according to that of Mauth = AT A.

Applying these measures to the AIDS blog network indicates, as seen in Fig. 4.5,
that only six of the 146 blogs in this network play the role of a hub, while the vast
majority of the vertices (including some of the hubs) play the role of an authority.

#4.10 1 > l <- layout.kamada.kawai(aidsblog)
2 > plot(aidsblog, layout=l, main="Hubs", vertex.label="",
3 + vertex.size=10 * sqrt(hub.score(aidsblog)$vector))
4 > plot(aidsblog, layout=l, main="Authorities",
5 + vertex.label="", vertex.size=10 *
6 + sqrt(authority.score(aidsblog)$vector))

1 Note that igraph and sna use different formats for storing network data objects. Here we handle
the conversion by first producing an adjacency matrix for the karate club object karate.
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Degree Closeness

Betweenness Eigenvalue

Fig. 4.4 Target plots showing various vertex centralities for the karate club network. The head
teacher and instructor are indicated with blue and yellow, respectively

4.2.3 Characterizing Edges

All of the summary measures discussed so far (i.e., degree and other, more general,
notions of centrality) are for vertices, as it seems to be most common in practice
that questions of importance are in regard to the vertices of a graph. But some ques-
tions are more naturally associated with edges. For example, we might ask which
ties in a social network are most important for the spread of, say, information or
rumors. Edge betweenness centrality—which extends vertex betweenness central-
ity in a straightforward manner, by assigning to each edge a value that reflects the
number of shortest paths traversing that edge—is a natural quantity to use here.
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Hubs Authorities

Fig. 4.5 AIDS blog network with vertex area proportional to hubs and authority centrality
measures

Using edge betweenness with the karate network and examining, for instance,
the edges with the three largest betweenness values

#4.11 1 > eb <- edge.betweenness(karate)
2 > E(karate)[order(eb, decreasing=T)[1:3]]
3 Edge sequence:
4

5 [53] John A -- Actor 20
6 [14] Actor 20 -- Mr Hi
7 [16] Actor 32 -- Mr Hi

we are led to note that actor 20 plays a key role from this perspective in facilitating
the direct flow of information between the head instructor (Mr Hi, vertex 1) and the
administrator (John A, vertex 34).

However, many other vertex centrality measures do not extend as easily. One
way around this problem is to apply vertex centrality measures to the vertices in the
line graph of a network graph G. The line graph of G, say G′ = (V ′,E ′), is obtained
essentially by changing vertices of G to edges, and edges, to vertices, which in
igraph may be accomplished using line.graph. More formally, the vertices v′ ∈
V ′ represent the original edges e ∈ E , and the edges e′ ∈ E ′ indicate that the two
corresponding original edges in G were incident to a common vertex in G. See
Chap. 3 of the edited volume of Brandes and Erlebach [22] for a brief discussion of
this approach.
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4.3 Characterizing Network Cohesion

A great many questions in network analysis boil down to questions involving net-
work cohesion, the extent to which subsets of vertices are cohesive—or ‘stuck
together’—with respect to the relation defining edges in the network graph. Do
friends of a given actor in a social network tend to be friends of one another as
well? What collections of proteins in a cell appear to work closely together? Does
the structure of the pages in the World Wide Web tend to separate with respect to
distinct types of content? What portion of a measured Internet topology would seem
to constitute the ‘backbone’?

There are many ways that we can define network cohesion, depending on the
context of the question being asked. Definitions differ, for example, in scale, ranging
from local (e.g., triads) to global (e.g., giant components), and also in the extent to
which they are specified explicitly (e.g., cliques) versus implicitly (e.g., ‘clusters’
or ‘communities’). In this section we discuss a number of common ways to define
and summarize ‘cohesion’ in a network graph.

4.3.1 Subgraphs and Censuses

One approach to defining network cohesion is through specification of a certain
subgraph(s) of interest. The canonical example of such a subgraph is that of a clique.
Recall that cliques are complete subgraphs and hence are subsets of vertices that are
fully cohesive, in the sense that all vertices within the subset are connected by edges.

A census of cliques of all sizes can provide some sense of a ‘snapshot’ of how
structured a graph is.

#4.12 1 > table(sapply(cliques(karate), length))
2

3 1 2 3 4 5
4 34 78 45 11 2

For the karate network a census of this sort reflects that there are 34 nodes (cliques
of size one) and 78 edges (cliques of size two), followed by 45 triangles (cliques
of size three). The prevalence of the latter are quite evident in the visualizations
we have seen (e.g., Fig. 3.5). We also see that the largest cliques are of size five, of
which there are only two. These two both involve four actors in common, including
actor 1, i.e., the head instructor.

#4.13 1 > cliques(karate)[sapply(cliques(karate), length) == 5]
2 [[1]]
3 [1] 1 2 3 4 8
4

5 [[2]]
6 [1] 1 2 3 4 14

Note that there is some redundancy in this analysis, in that the cliques of larger
sizes necessarily include cliques of smaller sizes. A maximal clique is a clique that
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is not a subset of a larger clique. In the karate network, the two largest cliques
(formally called maximum cliques) are maximal, while, for example, the same can
be said of only two of the 11 cliques of size four.

#4.14 1 > table(sapply(maximal.cliques(karate), length))
2

3 2 3 4 5
4 11 21 2 2

In practice, large cliques are relatively rare, as they necessarily require that a
graph G itself be fairly dense, while real-world networks are often sparse. For ex-
ample, in the network of protein–protein interactions in yeast encountered earlier in
this chapter, despite being roughly two orders of magnitude larger than the karate
network, the size of the largest clique (formally, the clique number) is nevertheless
comparatively small.

#4.15 1 > clique.number(yeast)
2 [1] 23

Various weakened notions of cliques exist. For example, a k-core of a graph G is
a subgraph of G for which all vertex degrees are at least k, and such that no other
subgraph obeying the same condition contains it (i.e., it is maximal in this property).
The notion of cores is particularly popular in visualization, as it provides a way of
decomposing a network into ‘layers’, in the sense of an onion. Such decompositions
can be combined in a particularly effective manner with a radial layout (e.g., using
a target plot). Figure 4.6 shows the karate network represented in this way.

#4.16 1 > cores <- graph.coreness(karate)
2 > sna::gplot.target(g, cores, circ.lab = FALSE,
3 + circ.col="skyblue", usearrows = FALSE,
4 + vertex.col=cores, edge.col="darkgray")
5 > detach("package:network")
6 > detach("package:sna")

See [91, Chap. 3.5.2] for an illustration of the same principles in the context of a
much larger network, representing a nontrivial portion of the router-level logical
topology in the Internet.

Beyond cliques and their variants, there are other classes of subgraphs of com-
mon interest in defining network cohesion. Two fundamental quantities, going back
to early work in social network analysis [74, 43], are dyads and triads. Dyads are
pairs of vertices and, in directed graphs, may take on three possible states: null (no
directed edges), asymmetric (one directed edge), or mutual (two directed edges).
Similarly, triads are triples of vertices and may take on 16 possible states, rang-
ing from the null subgraph to the subgraph in which all three dyads formed by the
vertices in the triad have mutual directed edges.

A census of the possible states of these two classes of subgraphs, i.e., counting
how many times each state is observed in a graph G, can yield insight into the nature
of the connectivity in the graph. For example, in the AIDS blog network, we see that
the vast majority of the dyads are null and, of those that are non-null, almost all are
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Fig. 4.6 Visual representation of the k-core decomposition of the karate network. Vertices of core-
ness one (black), two (red), three (green), and four (blue) are shown at successively smaller dis-
tances from the center, with the same distance for vertices within each core

asymmetric, indicating a decided one-sidedness to the manner in which blogs in this
network reference each other.

#4.17 1 > aidsblog <- simplify(aidsblog)
2 > dyad.census(aidsblog)
3 $mut
4 [1] 3
5

6 $asym
7 [1] 177
8

9 $null
10 [1] 10405

This analysis2 is consistent with the observations from our earlier analysis of hubs
and authorities in this network, as shown in Fig. 4.5.

More generally, we note that a census may in principle be conducted of any sub-
graph(s) of interest. Small connected subgraphs of interest are commonly termed
motifs. The notion of motifs is particularly popular in the study of biological net-
works, where arguments often are made linking such network substructures to bio-
logical function. Examples include subgraphs with a fan-like structure (i.e., multiple

2 Note that we first remove self-loops (of which the original AIDS blog network has three), since
the notion of mutuality is well-defined only for dyads.



4.3 Characterizing Network Cohesion 55

directed edges emanating from a single vertex) and feedforward loops (i.e., three di-
rected edges, among three vertices, of the form {u,v}, {v,w}, and {u,w}). Note that
in large network graphs the enumeration of all occurrences of a given motif can be
quite time consuming. For this reason, sampling methods are sometimes used, with
motif counts estimated from the sample. The igraph function graph.motifs has
this option.

4.3.2 Density and Related Notions of Relative Frequency

The characterizations of network cohesion described so far proceed by first stating
a pre-specified notion of substructure and then looking to see whether it occurs in
a graph G and, if so, where and how often. More generally, the related concept of
relative frequency can be applied in various useful ways.

The density of a graph is the frequency of realized edges relative to potential
edges. For example, in a (undirected) graph G with no self-loops and no multiple
edges, the density of a subgraph H = (VH ,EH) is

den(H) =
|EH |

|VH |(|VH |− 1)/2
. (4.4)

The value of den(H) will lie between zero and one and provides a measure of how
close H is to being a clique. In the case that G is a directed graph, the denominator
in (4.4) is replaced by |VH |(|VH |− 1).

The arguably simple concept of density is made interesting through the freedom
we have in the choice of subgraph H defining (4.4). For instance, taking H = G
yields the density of the overall graph G. Conversely, taking H = Hv to be the set
of neighbors of a vertex v ∈ V , and the edges between them, yields a measure of
density in the immediate neighborhood of v.

Applying these ideas to the karate network, for example, we see that the sub-
graphs corresponding to each of the instructor and the administrator, in union with
their immediate respective neighborhoods—i.e., the ego-centric networks around
vertices 1 and 34—are noticeably more dense than the overall network.

#4.18 1 > ego.instr <- induced.subgraph(karate,
2 + neighborhood(karate, 1, 1)[[1]])
3 > ego.admin <- induced.subgraph(karate,
4 + neighborhood(karate, 1, 34)[[1]])
5 > graph.density(karate)
6 [1] 0.1390374
7 > graph.density(ego.instr)
8 [1] 0.25
9 > graph.density(ego.admin)

10 [1] 0.2091503

This observation is consistent with the disparity in the number of within-versus
between-faction edges in this network, evident in the visualization of Fig. 3.5.
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Relative frequency also is used in defining notions of ‘clustering’ in a graph. For
example, the standard use of the term clustering coefficient typically refers to the
quantity

clT (G) =
3τ�(G)

τ3(G)
, (4.5)

where τ�(G) is the number of triangles in the graph G, and τ3(G), the number of
connected triples (i.e., a subgraph of three vertices connected by two edges, also
sometimes called a 2-star). The value clT (G) is alternatively called the transitivity
of the graph, and is a standard quantity of interest in the social network literature,
where it is also referred to as the ‘fraction of transitive triples.’

Note that clT (G) is a measure of global clustering, summarizing the relative fre-
quency with which connected triples close to form triangles. For example, in the
karate network we see that only about one quarter of the connected triples close in
this manner.

#4.19 1 > transitivity(karate)
2 [1] 0.2556818

The local analogue of this measure can also be of interest. Let τ�(v) denote the
number of triangles in G into which v ∈ V falls, and τ3(v) =

(dv
2

)
, the number of

connected triples in G for which the two edges are both incident to v. The local
clustering coefficient is defined as cl(v) = τ�(v)/τ3(v), for those vertices v with
τ3(v) > 0. In the case of the instructor and administrator of the karate network, for
example, we see that their local clustering is only 50–60 % that of the clustering for
the network as a whole.

#4.20 1 > transitivity(karate, "local", vids=c(1,34))
2 [1] 0.1500000 0.1102941

A concept unique to directed graphs is that of reciprocity, i.e., the extent to
which there is reciprocation among ties in a directed network. There are two main
approaches to capturing this notion, distinguished by whether the unit of interest
in computing relative frequencies is that of dyads or directed edges. In the case
that dyads are used as units, reciprocity is defined to be the number of dyads with
reciprocated (i.e., mutual) directed edges divided by the number of dyads with a
single, unreciprocated edge. Alternatively, reciprocity is defined as the total number
of reciprocated edges divided by the total number of edges.

In the AIDS blog network, the reciprocity is quite low by either definition.

#4.21 1 > reciprocity(aidsblog, mode="default")
2 [1] 0.03278689
3 > reciprocity(aidsblog, mode="ratio")
4 [1] 0.01666667

Recalling our dyad census of the same network, this result is not surprising.
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4.3.3 Connectivity, Cuts, and Flows

A basic question of interest is whether a given graph separates into distinct sub-
graphs. If it does not, we might seek to quantify how close to being able to do so
it is. Intimately related to such issues are questions associated with the flow of ‘in-
formation’ in the graph. In this section, we discuss various ways to quantify such
notions.

Recall that a graph G is said to be connected if every vertex is reachable from
every other (i.e., if for any two vertices, there exists a walk between the two), and
that a connected component of a graph is a maximally connected subgraph. Often
it is the case that one of the connected components in a graph G dominates the
others in magnitude, in that it contains the vast majority of the vertices in G. Such
a component is called, borrowing terminology from random graph theory, the giant
component.

Recall, for example, our network of protein interactions in yeast. The network
graph of 2617 vertices is not connected.

#4.22 1 > is.connected(yeast)
2 [1] FALSE

A census of all connected components within this graph, however, shows that there
clearly is a giant component.

#4.23 1 > comps <- decompose.graph(yeast)
2 > table(sapply(comps, vcount))
3

4 2 3 4 5 6 7 2375
5 63 13 5 6 1 3 1

This single component contains 2375/2617 ≈ 90% of the vertices in the network.
In contrast, none of the other components alone contain even 1%. In practice, often
attention would be restricted to this giant component alone in carrying out further
analysis and modeling.

#4.24 1 > yeast.gc <- decompose.graph(yeast)[[1]]

For example, a celebrated characteristic observed in the giant component of many
real-world networks is the so-called small world property, which refers to the situ-
ation wherein (a) the shortest-path distance between pairs of vertices is generally
quite small, but (b) the clustering is relatively high. In our network of protein–
protein interactions in yeast, we see that the average path length in the giant com-
ponent is barely greater than five

#4.25 1 > average.path.length(yeast.gc)
2 [1] 5.09597

and even the longest of paths is not much bigger.

#4.26 1 > diameter(yeast.gc)
2 [1] 15



58 4 Descriptive Analysis of Network Graph Characteristics

Hence, the shortest-path distance in this network scales more like logNv rather than
Nv, and therefore is considered ‘small’. At the same time, the clustering in this
network is relatively large

#4.27 1 > transitivity(yeast.gc)
2 [1] 0.4686663

indicating that close to 50% of connected triples close to form triangles.
A somewhat more refined notion of connectivity than components derives from

asking whether, if an arbitrary subset of k vertices (edges) is removed from a graph,
the remaining subgraph is connected. The concepts of vertex- and edge-connectivity,
and the related concepts of vertex- and edge-cuts, help to make such notions precise.

A graph G is called k-vertex-connected if (i) the number of vertices Nv > k, and
(ii) the removal of any subset of vertices X ⊂ V of cardinality |X | < k leaves a
subgraph that is connected. Similarly, G is called k-edge-connected if (i) Nv ≥ 2, and
(ii) the removal of any subset of edges Y ⊆ E of cardinality |Y |< k leaves a subgraph
that is connected. The vertex (edge) connectivity of G is the largest integer such that
G is k-vertex- (k-edge-) connected. It can be shown that the vertex connectivity is
bounded above by the edge connectivity, which in turn is bounded above by the
minimum degree dmin among vertices in G.

In the case of the giant component of the yeast network, the vertex and edge
connectivity are both equal to one.

#4.28 1 > vertex.connectivity(yeast.gc)
2 [1] 1
3 > edge.connectivity(yeast.gc)
4 [1] 1

Thus it requires the removal of only a single well-chosen vertex or edge in order to
break this subgraph into additional components.

If the removal of a particular set of vertices (edges) in a graph disconnects the
graph, that set is called a vertex-cut (edge-cut). A single vertex that disconnects
the graph is called a cut vertex, or sometimes an articulation point. Identification
of such vertices can provide a sense of where a network is vulnerable (e.g., in the
sense of an attack, where disconnecting produces undesired consequences, such as
a power outage in an energy network). In the giant component of the yeast network,
almost 15% of the vertices are cut vertices.

#4.29 1 > yeast.cut.vertices <- articulation.points(yeast.gc)
2 > length(yeast.cut.vertices)
3 [1] 350

A fundamental result in graph theory, known as Menger’s theorem, essentially
states that a nontrivial graph G is k-vertex (k-edge) connected if and only if all pairs
of distinct vertices u,v ∈ V can be connected by k vertex-disjoint (edge-disjoint)
paths. This result relates the robustness of a graph in the face of removal of its ver-
tices (edges) to the richness of distinct paths running throughout it. A graph with low
vertex (edge) connectivity therefore can have the paths, and hence any ‘information’
flowing over those paths, disrupted by removing an appropriate choice of a corre-
spondingly small number of vertices (edges). Functions like shortest.paths,
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graph.maxflow, and graph.mincut in igraph can be used to calculate quan-
tities relevant to this connection between cuts and flows.

Most of the concepts introduced above extend to the case of directed graphs in
a straightforward manner. For example, recall that a digraph G is weakly connected
if its underlying graph is connected, and it is called strongly connected if every
vertex v is reachable from every other vertex u by a directed walk. A strongly con-
nected component is a subgraph that is strongly connected. The concept of vertex-
connectivity (edge-connectivity) extends analogously by requiring that the graphs
remaining after removal of vertices (edges) be strongly connected. Similarly, the
notion of cuts and flows remain essentially unchanged, except that now there is a
directionality designated.

Note that the distinction between strong and weak connectivity can be severe for
some digraphs. For example, the AIDS blog network is weakly connected

#4.30 1 > is.connected(aidsblog, mode=c("weak"))
2 [1] TRUE

but not strongly connected.

#4.31 1 > is.connected(aidsblog, mode=c("strong"))
2 [1] FALSE

And while there does exist a strongly connected component within the graph, there
is only one and it has only four vertices.

#4.32 1 > aidsblog.scc <- clusters(aidsblog, mode=c("strong"))
2 > table(aidsblog.scc$csize)
3

4 1 4
5 142 1

4.4 Graph Partitioning

Partitioning—broadly speaking—refers to the segmentation of a set of elements
into ‘natural’ subsets. More formally, a partition C = {C1, . . . ,CK} of a finite set S
is a decomposition of S into K disjoint, nonempty subsets Ck such that ∪K

k=1Ck = S.
In the analysis of network graphs, partitioning is a useful tool for finding, in an
unsupervised fashion, subsets of vertices that demonstrate a ‘cohesiveness’ with
respect to the underlying relational patterns.

A ‘cohesive’ subset of vertices generally is taken to refer to a subset of ver-
tices that (i) are well connected among themselves, and at the same time (ii) are
relatively well separated from the remaining vertices. More formally, graph parti-
tioning algorithms typically seek a partition C = {C1, . . . ,CK} of the vertex set V
of a graph G = (V,E) in such a manner that the sets E(Ck,Ck′) of edges connect-
ing vertices in Ck to vertices in Ck′ are relatively small in size compared to the sets
E(Ck) = E(Ck,Ck) of edges connecting vertices within the Ck.

This problem of graph partitioning is also commonly referred to as commu-
nity detection in the complex networks literature. The development of methods
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for community detection has been—and continues to be—a highly active area of
research. Here we illustrate through the use of two well-established classes of
methods—those based on adaptations of hierarchical clustering and those based on
spectral partitioning. For an extensive survey of this area, see [95].

4.4.1 Hierarchical Clustering

A great many methods for graph partitioning are essentially variations on the more
general concept of hierarchical clustering used in data analysis.3 There are numer-
ous techniques that have been proposed for the general clustering problem, dif-
fering primarily in (i) how they evaluate the quality of proposed clusterings and
(ii) the algorithms by which they seek to optimize that quality. See Jain, Murty,
and Flynn [82], for example. These methods take a greedy approach to searching
the space of all possible partitions C , by iteratively modifying successive candidate
partitions.

Hierarchical methods are classified as either agglomerative, being based on the
successive coarsening of partitions through the process of merging, or divisive, be-
ing based on the successive refinement of partitions through the process of splitting.
At each stage, the current candidate partition is modified in a way that minimizes a
specified measure of cost. In agglomerative methods, the least costly merge of two
previously existing partition elements is executed, whereas in divisive methods, it is
the least costly split of a single existing partition element into two that is executed.

The measure of cost incorporated into a hierarchical clustering method used in
graph partitioning should reflect our sense of what defines a ‘cohesive’ subset of ver-
tices. There are many cost measures that have been proposed. A particularly popular
measure is that of modularity [119]. Let C = {C1, . . . ,CK} be a given candidate par-
tition and define fi j = fi j(C ) to be the fraction of edges in the original network that
connect vertices in Ci with vertices in Cj . The modularity of C is the value

mod(C ) =
K

∑
k=1

[ fkk(C )− f ∗kk ]
2 , (4.6)

where f ∗kk is the expected value of fkk under some model of random edge assignment.
Most commonly, f ∗kk is defined to be fk+ f+k, where fk+ and f+k are the kth row
and column sums of f, the K ×K matrix4 formed by the entries fi j. This choice
corresponds to a model in which a graph is constructed to have the same degree
distribution as G, but with edges otherwise placed at random, without respect to

3 Note that ‘clustering’ as used here, which is standard terminology in the broader data analysis
community, differs from ‘clustering’ as used in Sect. 4.3.2, which arose in the social network com-
munity, in reference to the coefficient clT used to summarize the relative density of triangles among
connected triples.
4 Note that for undirected graphs this matrix will be symmetric, and hence fk+ = f+k; for directed
graphs, however, f can be asymmetric.
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the underlying partition elements dictated by C . Large values of the modularity are
therefore taken to suggest that C captures nontrivial ‘group’ structure, beyond that
expected to occur under the random assignment of edges.

In principle the optimization of the modularity in (4.6) requires a search over all
possible partitions C , which is prohibitively expensive in networks of moderate size
and larger. A fast, greedy approach to optimization has been proposed in [30], in
the form of an agglomerative hierarchical clustering algorithm, and implemented in
igraph as fastgreedy.community. The result of this and related community
detection methods in igraph is to produce an object of the class communities, which
can then serve as input to various other functions.

Applying this method to the karate network,

#4.33 1 > kc <- fastgreedy.community(karate)

we find that the method has declared there to be three communities.

#4.34 1 > length(kc)
2 [1] 3
3 > sizes(kc)
4 Community sizes
5 1 2 3
6 18 11 5

Based on what we know of this network, and examining the community membership

#4.35 1 > membership(kc)
2 Mr Hi Actor 2 Actor 3 Actor 4 Actor 5 Actor 6
3 2 2 2 2 3 3
4 Actor 7 Actor 8 Actor 9 Actor 10 Actor 11 Actor 12
5 3 2 1 1 3 2
6 Actor 13 Actor 14 Actor 15 Actor 16 Actor 17 Actor 18
7 2 2 1 1 3 2
8 Actor 19 Actor 20 Actor 21 Actor 22 Actor 23 Actor 24
9 1 2 1 2 1 1

10 Actor 25 Actor 26 Actor 27 Actor 28 Actor 29 Actor 30
11 1 1 1 1 1 1
12 Actor 31 Actor 32 Actor 33 John A
13 1 1 1 1

it would be reasonable to conjecture that the largest community of 18 members is
centered around the administrator (i.e., John A, vertex ID 34), while the second
largest community of 11 members is centered around the head instructor (i.e., Mr
Hi, vertex ID 1). The visual representation obtained by plotting the network with
these community designations indicated,

#4.36 1 > plot(kc, karate)

as seen on the left in Fig. 4.7, provides further support for this conjecture.
Whether agglomerative or divisive, when used for network graph partitioning,

hierarchical clustering methods actually produce, as the name indicates, an entire
hierarchy of nested partitions of the graph, not just a single partition. These par-
titions can range fully between the two trivial partitions {{v1}, . . . ,{vNv}} and V .
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Agglomerative methods begin with the former of these two, while divisive methods
begin with the latter. The resulting hierarchy typically is represented in the form of
a tree, called a dendrogram.

An example of a dendrogram is shown on the right in Fig. 4.7, for our hierarchical
partitioning of the karate network, using the igraph function dendPlot.
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Fig. 4.7 Left: Partitioning of the karate network obtained from fast agglomerative hierarchical
clustering approximation to optimization of modularity. Right: The corresponding dendrogram for
this partitioning

#4.37 1 > library(ape)
2 > dendPlot(kc, mode="phylo")

The package ape is called to facilitate the mode ‘phylo’ in dendPlot, which uses
tools from the former, designed for display of phylogenetic trees, in rendering the
dendrogram.

4.4.2 Spectral Partitioning

Another common approach to graph partitioning is to exploit results in spectral
graph theory that associate the connectivity of a graph G with the eigen-analysis
of certain matrices. Here we look at one popular approach, based on analysis of the
so-called Laplacian of a graph. For general background on spectral graph theory,
see the monograph by Chung [28].

The graph Laplacian of a graph G, with adjacency matrix A, is a matrix L =
D−A, where D = diag [(dv)] is a diagonal matrix with elements Dvv = dv the entries
of the degree sequence of G. A formal result in spectral graph theory (e.g., [64,
Lemma 13.1.1]) states that a graph G will consist of K connected components if
and only if λ1(L) = · · · = λK(L) = 0 and λK+1(L) > 0, where λ1 ≤ . . . ≤ λNv are
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the (not necessarily distinct) eigenvalues of L, ordered from small to large. Hence,
the number of components in a graph is directly related to the number of non-zero
eigenvalues of the graph Laplacian.

The smallest eigenvalue of L can be shown to be identically equal to zero, with
corresponding eigenvector x1 = (1, . . . ,1)T . Therefore, for example, if we suspect a
graph G to consist of ‘nearly’ K = 2 components, and hence to be a good candidate
for bisection, we might expect λ2(L) to be close to zero. In fact, such expectations
are reasonable, as the value λ2 is closely related to a number of measures of graph
connectivity and structure. In particular, these relationships indicate that the smaller
λ2 the more amenable the graph is to being separated into two subgraphs by severing
a relatively small number of edges between the two. See the survey by Mohar [113]
or, more recently, the volume edited by Brandes and Erlebach [22, Chap. 14].

Fiedler [56], the first to associate λ2 with the connectivity of a graph, suggested
partitioning vertices by separating them according to the sign of their entries in the
corresponding eigenvector x2. The result is to produce two subsets of vertices (a
so-called cut)

S = {v ∈V : x2(v)≥ 0} and S̄ = {v ∈V : x2(v)< 0}. (4.7)

The vector x2 is hence often called the Fiedler vector, and the corresponding eigen-
value λ2, the Fiedler value.

We illustrate using the karate network again. It is straightforward to do the nec-
essary eigen-analysis.

#4.38 1 > k.lap <- graph.laplacian(karate)
2 > eig.anal <- eigen(k.lap)

We plot the eigenvalues of the graph Laplacian in Fig. 4.8

#4.39 1 > plot(eig.anal$values, col="blue",
2 + ylab="Eigenvalues of Graph Laplacian")

and see that (a) there is only one eigenvalue exactly equal to zero (as expected, since
this network is connected) and (b) the second smallest eigenvalue λ2 is quite close
to zero. Extracting the Fiedler vector

#4.40 1 > f.vec <- eig.anal$vectors[, 33]

and plotting the entries of that vector versus actor number,

#4.41 1 > faction <- get.vertex.attribute(karate, "Faction")
2 > f.colors <- as.character(length(faction))
3 > f.colors[faction == 1] <- "red"
4 > f.colors[faction == 2] <- "cyan"
5 > plot(f.vec, pch=16, xlab="Actor Number",
6 + ylab="Fiedler Vector Entry", col=f.colors)
7 > abline(0, 0, lwd=2, col="lightgray")

we find that this spectral method exactly captures the partitioning of the network
indicated by the faction labels.
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In general, of course, we may well expect that a network should be partitioned
into more than just two subgraphs. The method of spectral partitioning just de-
scribed can be applied iteratively, first partitioning a graph into two subgraphs, then
each of those two subgraphs into further subgraphs, and so on. Ideally, however, it is
desirable that such iterations be aimed at optimizing some common objective func-
tion. Newman [117] proposes a method whose technical development parallels that

l

l

l

l

l

l

l

l

l

l

l l

l l

l l
l

l l
l l l l l l l l

l l l l l
l

l

0 5 10 15 20 25 30 35

0
10

20
30

40
50

Index

E
ig

en
va

lu
es

 o
f G

ra
ph

 L
ap

la
ci

an

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

0 5 10 15 20 25 30 35

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2

Actor Number

F
ie

dl
er

 V
ec

to
r 

E
nt

ry

Fig. 4.8 Left: Eigenvalues of the graph Laplacian L for the karate network. Right: The accompa-
nying Fiedler vector and its corresponding partition (indicated by the gray horizontal line). The
two factions in the club (led by the instructor and the administrator, respectively) are indicated in
red and cyan

of the spectral bisection method quite closely, but with a matrix related to modular-
ity playing the role of the Laplacian L. This method is implemented in the function
leading.eigenvector.community in igraph.

4.4.3 Validation of Graph Partitioning

Just as in the general problem of clustering data, the question of validation is im-
portant for graph partitioning—but often nontrivial. It is generally expected, where
cohesive subsets of vertices are present in a network graph, that underlying these
subsets there is some commonality in certain relevant characteristics (or attributes)
of the vertices. For example, proteins found to cluster in a graph of protein inter-
actions often participate in similar biological processes; similarly, actors found to
cluster in a social network may share certain interests.

Graph partitioning may be viewed as a tool for discovering such subsets in the
absence of knowledge of these characteristics. When we do have knowledge of
some externally defined notion of class membership, it can be interesting to compare
and contrast the resulting assignments with those deriving from graph partitioning.
As an illustration, consider our network of protein–protein interactions in yeast.
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These particular yeast data include the assignment of proteins to one of 13 func-
tional classes (including “unknown”, denote by ‘U’).

#4.42 1 > func.class <- get.vertex.attribute(yeast.gc, "Class")
2 > table(func.class)
3 func.class
4 A B C D E F G M O P R T U
5 51 98 122 238 95 171 96 278 171 248 45 240 483

These classes are a way of categorizing the roles of proteins in helping the cell
accomplish various tasks through higher-level cellular processes.

The affinity of proteins to physically bind to each other is known to be directly
related to their participation in common cellular functions. Hence, the external
assignment of proteins to functional classes should correlate, to at least some
extent, with their assignment to ‘communities’ by a reasonable graph partitioning
algorithm. Using the same hierarchical clustering algorithm as in the previous
section, now applied to the (giant component of the) yeast network,

#4.43 1 > yc <- fastgreedy.community(yeast.gc)
2 > c.m <- membership(yc)

a simple two-dimensional table allows us to group proteins according to their
membership under each categorization.

#4.44 1 > table(c.m, func.class, useNA=c("no"))
2 func.class
3 c.m A B C D E F G M O P R T U
4 1 0 0 0 1 3 7 0 6 3 110 2 35 14
5 2 0 2 2 7 1 1 1 4 39 5 0 4 27
6 3 1 9 7 18 4 8 4 20 10 23 8 74 64
7 4 25 11 10 22 72 84 81 168 14 75 16 27 121
8 5 1 7 5 14 0 4 0 2 3 6 1 34 68
9 6 1 24 1 4 1 4 0 7 0 1 0 19 16

10 7 6 18 6 76 7 9 3 7 8 5 1 7 33
11 8 8 12 67 59 1 34 0 19 60 10 7 6 73
12 9 4 1 7 7 2 10 5 3 2 0 3 0 11
13 10 0 0 0 6 0 0 0 2 0 5 0 11 1
14 11 0 9 0 10 1 3 0 0 0 0 0 2 4
15 12 0 1 3 0 0 0 0 6 10 0 0 0 2
16 13 0 1 1 2 0 1 0 0 2 0 0 16 10
17 14 1 0 4 1 0 1 0 0 4 0 1 0 11
18 15 0 1 0 0 0 2 0 2 0 0 1 0 8
19 16 0 1 2 0 0 1 0 0 10 0 0 0 0
20 17 0 0 1 3 0 0 0 2 0 0 0 2 3
21 18 0 0 0 0 3 1 0 9 0 0 1 0 1
22 19 0 1 1 1 0 0 0 0 0 0 0 0 3
23 20 0 0 0 6 0 0 0 1 0 0 0 1 2
24 21 1 0 0 0 0 0 0 0 6 0 0 1 0
25 22 0 0 0 0 0 0 0 1 0 0 0 0 8
26 23 0 0 0 0 0 0 0 4 0 0 0 0 0
27 24 0 0 0 0 0 0 2 2 0 0 0 1 0
28 25 0 0 0 0 0 0 0 5 0 0 0 0 0
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29 26 0 0 1 0 0 0 0 4 0 0 1 0 1
30 27 3 0 4 0 0 1 0 0 0 0 0 0 0
31 28 0 0 0 0 0 0 0 0 0 6 0 0 0
32 29 0 0 0 1 0 0 0 1 0 0 3 0 0
33 30 0 0 0 0 0 0 0 0 0 2 0 0 2
34 31 0 0 0 0 0 0 0 3 0 0 0 0 0

Some of the membership assignments resulting from our algorithm overlap quite
strongly with individual functional classes. For example, 110 of the 182 proteins
in the first community have the functional class “P” (indicating a role in protein
synthesis), which suggests that the first community is largely capturing that class.
On the other hand, the 733 proteins in the fourth community are spread through all
functional classes (including 121 with unknown function), making this community
decidedly less interpretable against this validation set.

4.5 Assortativity and Mixing

Selective linking among vertices, according to a certain characteristic(s), is termed
assortative mixing in the social network literature. Measures that quantify the ex-
tent of assortative mixing in a given network have been referred to as assortativity
coefficients, and are essentially variations on the concept of correlation coefficients.

Note that the vertex characteristics involved can be categorical, ordinal, or con-
tinuous. Consider the categorical case, and suppose that each vertex in a graph G
can be labeled according to one of M categories. The assortativity coefficient in this
setting is defined to be

ra =
∑i fii −∑i fi+ f+i

1−∑i fi+ f+i
, (4.8)

where fi j is the fraction of edges in G that join a vertex in the ith category with a
vertex in the jth category, and fi+ and f+i denote the ith marginal row and column
sums, respectively, of the resulting matrix5 f.

The value ra lies between −1 and 1. It is equal to zero when the mixing in the
graph is no different from that obtained through a random assignment of edges
that preserves the marginal degree distribution (see the related discussion surround-
ing (4.6) above). Similarly, it is equal to one when there is perfect assortative mixing
(i.e., when edges only connect vertices of the same category). However, in the event
that the mixing is perfectly disassortative, in the sense that every edge in the graph
connects vertices of two different categories, the coefficient in (4.8) need not take
the value −1. See [116] for discussion.

Consider again our network of protein–protein interactions in yeast. The fact that
physical binding of proteins is known to be directly relevant to functional classes

5 Note that these quantities are defined in complete analogy to the same quantities that underlie our
definition of modularity.
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suggests that there will frequently be strong assortative mixing in protein–protein
interaction networks with respective to these classes as attributes. For instance, for
the class ‘P’, representing proteins that are known to play a role in protein synthesis,
we see an assortativity coefficient of nearly 0.5.

#4.45 1 > assortativity.nominal(yeast, (V(yeast)$Class=="P")+1,
2 + directed=FALSE)
3 [1] 0.4965229

When the vertex characteristic of interest is continuous, rather than discrete, de-
note by (xe,ye) the values of that characteristic for the vertices joined by an edge
e∈ E . Then a natural candidate for quantifying the assortativity in this characteristic
is just the Pearson correlation coefficient of the pairs (xe,ye),

r =
∑x,y xy( fxy − fx+ f+y)

σxσy
. (4.9)

Here the summation is over all unique observed pairs (x,y), with fxy, fx+, and f+y

defined in analogy to the categorical case, and σx and σy are the standard deviations
corresponding to the distribution of frequencies { fx+} and { f+y}, respectively.

One common use of the assortativity coefficient r in (4.9) is in summarizing
degree–degree correlation of adjacent vertices, when studying network structure.
For the yeast network, we find that the degree correlation is positive and relatively
large.

#4.46 1 > assortativity.degree(yeast)
2 [1] 0.4610798

This observation is consistent with the analysis in Fig. 4.3.

4.6 Additional Reading

The array of tools and techniques available for the description and summary of
structural characteristics of a network graph is quite large and still growing. Here in
this chapter we have contented ourselves simply with presenting material on topics
arguably at the core of this area. The volume edited by Brandes and Erlebach [22]
provides a much more detailed—yet highly readable—presentation of most of the
topics in this chapter, as well a number of others not covered here, from the per-
spective of computer science and applied graph theory. The book by Newman [118]
presents a similarly detailed treatment from the perspective of statistical physics.
Finally, in the literature on social networks, two canonical references are the small
volume by Scott [129] and the much larger volume by Wasserman and Faust [144].



Chapter 5
Mathematical Models for Network Graphs

5.1 Introduction

So far in this book, the emphasis has been almost entirely focused upon methods,
to the exclusion of modeling—methods for constructing network graphs, for vi-
sualizing network graphs, and for characterizing their observed structure. For the
remainder of this book, our focus will shift to the construction and use of models
in the analysis of network data, beginning with this chapter, in which we turn to the
topic of modeling network graphs.

By a model for a network graph we mean effectively a collection

{Pθ (G),G ∈ G : θ ∈Θ } , (5.1)

where G is a collection (or ‘ensemble’) of possible graphs, Pθ is a probability dis-
tribution on G , and θ is a vector of parameters, ranging over possible values in Θ .
When convenient, we may often drop the explicit reference to θ and simply write P
for the probability function.

In practice, network graph models are used for a variety of purposes. These in-
clude the testing for ‘significance’ of a pre-defined characteristic(s) in a given net-
work graph, the study of proposed mechanisms for generating certain commonly
observed properties in real-world networks (such as broad degree distributions or
small-world effects), or the assessment of potential predictive factors of relational
ties.

The richness of network graph modeling derives largely from how we choose
to specify P(·), with methods in the literature ranging from the simple to the com-
plex. It is useful for our purposes to distinguish, broadly speaking, between models
defined more from (i) a mathematical perspective, versus (ii) a statistical perspec-
tive. Those of the former class tend to be simpler in nature and more amendable to
mathematical analysis yet, at the same time, do not always necessarily lend them-
selves well to formal statistical techniques of model fitting and assessment. On the
other hand, those of the latter class typically are designed to be fit to data, but their
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mathematical analysis can be challenging in some cases. Nonetheless, both classes
of network graph models have their uses for analyzing network graph data.

We will examine certain mathematical models for network graphs in this chapter,
and various statistical models, in the following chapter. We consider classical ran-
dom graph models in Sect. 5.2, and more recent generalizations, in Sect. 5.3. In both
cases, these models dictate simply that a graph be drawn uniformly at random from
a collection G , but differ in their specification of G . Other classes of network graph
models are then presented in Sect. 5.4, where the focus is on models designed to
mimic certain observed ‘real-world’ properties, often through the incorporation of
an explicit mechanism(s). Finally, in Sect. 5.5, we look at several examples of ways
in which these various mathematical models for network graphs can be used for
statistical purposes.

5.2 Classical Random Graph Models

The term random graph model typically is used to refer to a model specifying a col-
lection G and a uniform probabilityP(·) over G . Random graph models are arguably
the most well-developed class of network graph models, mathematically speaking.

The classical theory of random graph models, as established in a series of seminal
papers by Erdős and Rényi [50, 51, 52], rests upon a simple model that places equal
probability on all graphs of a given order and size. Specifically, their model specifies
a collection G Nv,Ne of all graphs G = (V,E) with |V |= Nv and |E|= Ne, and assigns

probability P(G) =
(N

Ne

)−1
to each G ∈ G Nv,Ne , where N =

(Nv
2

)
is the total number

of distinct vertex pairs.
A variant of G Nv,Ne , first suggested by Gilbert [63] at approximately the same

time, arguably is seen more often in practice. In this formulation, a collection G Nv,p

is defined to consist of all graphs G of order Nv that may be obtained by assigning
an edge independently to each pair of distinct vertices with probability p ∈ (0,1).
Accordingly, this type of model sometimes is referred to as a Bernoulli random
graph model. When p is an appropriately defined function of Nv, and Ne ∼ pN2

v ,
these two classes of models are essentially equivalent for large Nv.

The function erdos.renyi.game in igraph can be used to simulate classical
random graphs of either type. Figure 5.1 shows a realization of a classical random
graph, based on the choice of Nv = 100 vertices and a probability of p = 0.02 of an
edge between any pair of vertices. Using a circular layout, we can see that the edges
appear to be scattered between vertex pairs in a fairly uniform manner, as expected.

#5.1 1 > library(sand)
2 > set.seed(42)
3 > g.er <- erdos.renyi.game(100, 0.02)
4 > plot(g.er, layout=layout.circle, vertex.label=NA)

Note that random graphs generated in the manner described above need not be
connected.
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Fig. 5.1 Left: A random graph simulated according to an Erdős-Rényi model. Right: The corre-
sponding degree distribution

#5.2 1 > is.connected(g.er)
2 [1] FALSE

Although this particular realization is not connected, it does nevertheless have a
giant component, containing 71 of the 100 vertices. All other components contain
between one and four vertices only.

#5.3 1 > table(sapply(decompose.graph(g.er), vcount))
2

3 1 2 3 4 71
4 15 2 2 1 1

In general, a classical random graph G will with high probability have a giant com-
ponent if p = c/Nv for some c > 1.

Under this same parameterization for p, for c > 0, the degree distribution will
be well-approximated by a Poisson distribution, with mean c, for large Nv. That
this should be true is somewhat easy to see at an intuitive level, since the degree
of any given vertex is distributed as a binomial random variable, with parameters
Nv − 1 and p. The formal proof of this result, however, is nontrivial. The book by
Bollobás [16] is a standard reference for this and other such results.

Indeed, in our simulated random graph, the mean degree is quite close to the
expected value of (100− 1)× 0.02= 1.98.

#5.4 1 > mean(degree(g.er))
2 [1] 1.9

Furthermore, in Fig. 5.1 we see that the degree distribution is quite homogeneous.

#5.5 1 > hist(degree(g.er), col="lightblue",
2 + xlab="Degree", ylab="Frequency", main="")

Other properties of classical random graphs include that there are relatively few
vertices on shortest paths between vertex pairs
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#5.6 1 > average.path.length(g.er)
2 [1] 5.276511
3 > diameter(g.er)
4 [1] 14

and that there is low clustering.

#5.7 1 > transitivity(g.er)
2 [1] 0.01639344

More specifically, under the conditions above, it can be shown that the diameter
varies like O(logNv), and the clustering coefficient, like N−1

v .

5.3 Generalized Random Graph Models

The formulation of Erdős and Rényi can be generalized in a straightforward manner.
Specifically, the basic recipe is to (a) define a collection of graphs G consisting of
all graphs of a fixed order Nv that possess a given characteristic(s), and then (b)
assign equal probability to each of the graphs G ∈ G . In the Erdős-Rényi model, for
example, the common characteristic is simply that the size of the graphs G be equal
to some fixed Ne.

Beyond Erdős-Rényi, the most commonly chosen characteristic is that of a fixed
degree sequence. That is, G is defined to be the collection of all graphs G with
a pre-specified degree sequence, which we will write here as {d(1), . . . ,d(Nv)}, in
ordered form.

The igraph function degree.sequence.game can be used to uniformly
sample random graphs with fixed degree sequence. Suppose, for example, that we
are interested in graphs of Nv = 8 vertices, half of which have degree d = 2, and the
other half, degree d = 3. Two examples of such graphs, drawn uniformly from the
collection of all such graphs, are shown in Fig. 5.2.

#5.8 1 > degs <- c(2,2,2,2,3,3,3,3)
2 > g1 <- degree.sequence.game(degs, method="vl")
3 > g2 <- degree.sequence.game(degs, method="vl")
4 > plot(g1, vertex.label=NA)
5 > plot(g2, vertex.label=NA)

Note that these two graphs do indeed differ, in that they are not isomorphic.1

#5.9 1 > graph.isomorphic(g1, g2)
2 [1] FALSE

For a fixed number of vertices Nv, the collection of random graphs with fixed
degree sequence all have the same number of edges Ne, due to the relation d̄ =
2Ne/Nv, where d̄ is the mean degree of the sequence (d(1), . . . ,d(Nv)).

#5.10 1 > c(ecount(g1), ecount(g2))
2 [1] 10 10

1 Recall that two graphs are said to be isomorphic if they differ only up to relabellings of their
vertices and edges that leave the structure unchanged.
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Fig. 5.2 Two graphs drawn uniformly from the collection of all graphs G with Nv = 8 vertices and
degree sequence (2,2,2,2,3,3,3,3)

Therefore, this collection is strictly contained within the collection of random graphs
G Nv,Ne , with the corresponding number Nv,Ne of vertices and edges. So the addition
of an assumed form for the degree sequence is in this case equivalent to specifying
our model through a conditional distribution on the original collection G Nv,Ne .

On the other hand, it is important to keep in mind that all other characteristics
are free to vary to the extent allowed by the chosen degree sequence. For example,
we can generate a graph with the same degree sequence as our network of protein–
protein interactions in yeast.

#5.11 1 > data(yeast)
2 > degs <- degree(yeast)
3 > fake.yeast <- degree.sequence.game(degs,
4 + method=c("vl"))
5 > all(degree(yeast) == degree(fake.yeast))
6 [1] TRUE

But the original network has twice the diameter of the simulated version

#5.12 1 > diameter(yeast)
2 [1] 15
3 > diameter(fake.yeast)
4 [1] 7

and virtually all of the substantial amount of clustering originally present is now
gone.

#5.13 1 > transitivity(yeast)
2 [1] 0.4686178
3 > transitivity(fake.yeast)
4 [1] 0.03968903

In principle, it is easy to further constrain the definition of the class G , so that ad-
ditional characteristics beyond the degree sequence are fixed. Markov chain Monte
Carlo (MCMC) methods are popular for generating generalized random graphs G
from such collections, where the states visited by the Markov chain are the distinct
graphs G themselves. Snijders [133], Roberts [124], and more recently, McDonald,
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Smith, and Forster [108], for example, offer MCMC algorithms for a number of
different cases, such as where the graphs G are directed and constrained to have
both a fixed pair of in- and out-degree sequences and a fixed number of mutual arcs.
However, the design of such algorithms in general is nontrivial, and development of
the corresponding theory, in turn, which would allow users to verify the assumptions
underlying Markov chain convergence, has tended to lag somewhat behind the pace
of algorithm development.

5.4 Network Graph Models Based on Mechanisms

Arguably one of the more important innovations in modern network graph modeling
is a movement from traditional random graph models, like those in the previous
two sections, to models explicitly designed to mimic certain observed ‘real-world’
properties, often through the incorporation of a simple mechanism(s). Here in this
section we look at two canonical classes of such network graph models.

5.4.1 Small-World Models

Work on modeling of this type received a good deal of its impetus from the seminal
paper of Watts and Strogatz [146] and the ‘small-world’ network model introduced
therein. These authors were intrigued by the fact that many networks in the real
world display high levels of clustering, but small distances between most nodes.
Such behavior cannot be reproduced, for example, by classical random graphs,
since, recall that, while the diameter scales like O(logNv), indicating small dis-
tances between nodes, the clustering coefficient behaves like N−1

v , which suggests
very little clustering.

In order to create a network graph with both of these properties, Watts and Stro-
gatz suggested instead beginning with a graph with lattice structure, and then ran-
domly ‘rewiring’ a small percentage of the edges. More specifically, in this model
we begin with a set of Nv vertices, arranged in a periodic fashion, and join each
vertex to r of its neighbors to each side. Then, for each edge, independently and
with probability p, one end of that edge will be moved to be incident to another
vertex, where that new vertex is chosen uniformly, but with attention to avoid the
construction of loops and multi-edges.

An example of a small-world network graph of this sort can be generated in
igraph using the function watts.strogatz.game.

#5.14 1 > g.ws <- watts.strogatz.game(1, 25, 5, 0.05)
2 > plot(g.ws, layout=layout.circle, vertex.label=NA)

The resulting graph, with Nv = 25 vertices, neighborhoods of size r = 5, and
rewiring probability p = 0.05, is shown in Fig. 5.3.
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Fig. 5.3 Example of a Watts-Strogatz ‘small-world’ network graph

For the lattice alone, which we generate by setting p = 0, there is a substantial
amount of clustering.

#5.15 1 > g.lat100 <- watts.strogatz.game(1, 100, 5, 0)
2 > transitivity(g.lat100)
3 [1] 0.6666667

But the distance between vertices is non-trivial.

#5.16 1 > diameter(g.lat100)
2 [1] 10
3 > average.path.length(g.lat100)
4 [1] 5.454545

The effect of rewiring a relatively small number of edges in a random fashion is to
noticeably reduce the distance between vertices, while still maintaining a similarly
high level of clustering.

#5.17 1 > g.ws100 <- watts.strogatz.game(1, 100, 5, 0.05)
2 > diameter(g.ws100)
3 [1] 4
4 > average.path.length(g.ws100)
5 [1] 2.669091
6 > transitivity(g.ws100)
7 [1] 0.4864154

This effect may be achieved even with very small p. To illustrate, we simulate ac-
cording to a particular Watts-Strogatz small-world network model, with Nv = 1,000
and r = 10, and re-wiring probability p, as p varies over a broad range.
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#5.18 1 > steps <- seq(-4, -0.5, 0.1)
2 > len <- length(steps)
3 > cl <- numeric(len)
4 > apl <- numeric(len)
5 > ntrials <- 100
6 > for (i in (1:len)) {
7 + cltemp <- numeric(ntrials)
8 + apltemp <- numeric(ntrials)
9 + for (j in (1:ntrials)) {

10 + g <- watts.strogatz.game(1, 1000, 10, 10ˆsteps[i])
11 + cltemp[j] <- transitivity(g)
12 + apltemp[j] <- average.path.length(g)
13 + }
14 + cl[i] <- mean(cltemp)
15 + apl[i] <- mean(apltemp)
16 + }

The results shown in Fig. 5.4, where approximate expected values for normalized
versions of average path length and clustering coefficient are plotted, indicate that
over a substantial range of p the network exhibits small average distance while main-
taining a high level of clustering.

#5.19 1 > plot(steps, cl/max(cl), ylim=c(0, 1), lwd=3, type="l",
2 + col="blue", xlab=expression(log[10](p)),
3 + ylab="Clustering and Average Path Length")
4 > lines(steps, apl/max(apl), lwd=3, col="red")
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Fig. 5.4 Plot of the clustering coefficient clT (G) (blue) and average path length (red), as a function
of the rewiring probability p for a Watts-Strogatz small-world model. Results are averages based
on 100 simulation trials
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5.4.2 Preferential Attachment Models

Many networks grow or otherwise evolve in time. The World Wide Web and
scientific citation networks are two obvious examples. Similarly, many biological
networks may be viewed as evolving as well, over appropriately defined time scales.
Much energy has been invested in the development of models that mimic network
growth.

In this arena, typically a simple mechanism(s) is specified for how the network
changes at any given point in time, based on concepts like vertex preference, fitness,
copying, age, and the like. A celebrated example of such a mechanism is that of
preferential attachment, designed to embody the principle that ‘the rich get richer.’
A driving motivation behind the introduction of this particular mechanism was a
desire to reproduce the types of broad degree distributions observed in many large,
real-world networks. Although there were a number of precursors with similar ideas,
it is the work of Barabási and Albert [8] that launched the present-day fascination
with models of this type.2

Barabási and Albert were motivated by the growth of the World Wide Web, not-
ing that often web pages to which many other pages point will tend to accumulate
increasingly greater numbers of links as time goes on. The Barabási-Albert (BA)
model for undirected graphs is formulated as follows. Start with an initial graph

G(0) of N(0)
v vertices and N(0)

e edges. Then, at stage t = 1,2, . . ., the current graph
G(t−1) is modified to create a new graph G(t) by adding a new vertex of degree
m ≥ 1, where the m new edges are attached to m different vertices in G(t−1), and the
probability that the new vertex will be connected to a given vertex v is given by

dv

∑v′∈V dv′
. (5.2)

That is, at each stage, m existing vertices are connected to a new vertex in a manner
preferential to those with higher degrees. After t iterations, the resulting graph G(t)

will have N(t)
v = N(0)

v + t vertices and N(t)
e = N(0)

e + tm edges. And, because of the
tendency towards preferential attachment, intuitively we would expect that a number
of vertices of comparatively high degree should gradually emerge as t increases.

Using the igraph function barabasi.game, we can simulate a BA random
graph of, for example, Nv = 100 vertices, with m = 1 new edges added for each new
vertex.

#5.20 1 > set.seed(42)
2 > g.ba <- barabasi.game(100, directed=FALSE)

A visualization of this graph is shown in Fig. 5.5.

#5.21 1 > plot(g.ba, layout=layout.circle, vertex.label=NA)

2 For an extensive history of power-law models, including their use in network modeling, see
Mitzenmacher [112].
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Fig. 5.5 Left: A random graph simulated according to a Barabási-Albert model. Right: The corre-
sponding degree distribution

Note that the edges are spread among vertex pairs in a decidedly less uniform man-
ner than in the classical random graph we saw in Fig. 5.1. And, in fact, there appear
to be vertices of especially high degree—so-called ‘hub’ vertices.

Examination of the degree distribution (also shown in Fig. 5.5)

#5.22 1 > hist(degree(g.ba), col="lightblue",
2 + xlab="Degree", ylab="Frequency", main="")

confirms this suspicion, and indicates, moreover, that the overall distribution is quite
heterogeneous. Actually, the vast majority of vertices have degree no more than two
in this graph, while, on the other hand, one vertex has a degree of 11.

#5.23 1 > summary(degree(g.ba))
2 Min. 1st Qu. Median Mean 3rd Qu. Max.
3 1.00 1.00 1.00 1.98 2.00 11.00

The most celebrated property of such preferential attachment models is that, in the
limit as t tends to infinity, the graphs G(t) have degree distributions that tend to a
power-law form d−α , with α = 3. See [8, 48, 93, 19]. This behavior is in noted
contrast to the case of classical random graphs.

On the other hand, network graphs generated according to the BA model will
share with their classical counterparts the tendency towards relatively few vertices
on shortest paths between vertex pairs

#5.24 1 > average.path.length(g.ba)
2 [1] 4.923434
3 > diameter(g.ba)
4 [1] 9
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and low clustering.

#5.25 1 > transitivity(g.ba)
2 [1] 0

See [18, 17] for details.

5.5 Assessing Significance of Network Graph Characteristics

As we remarked at the start of this chapter, the network graph models we have
described above generally are too simple for serious statistical modeling with ob-
served networks. Nonetheless, from a statistical hypothesis testing perspective, they
still have a useful role to play in network analysis. Specifically, the network models
introduced in this chapter are frequently used in the assessment of significance of
network graph characteristics.

Suppose that we have a graph derived from observations of some sort, which we
will denote as Gobs here, and that we are interested in some structural characteristic,
say η(·). In many contexts it is natural to ask whether η(Gobs) is ‘significant,’ in
the sense of being somehow unusual or unexpected. Network models of the type we
have considered so far are used in establishing a well-defined frame of reference.
That is, for a given collection of graphs G , the value η(Gobs) is compared to the
collection of values {η(G) : G∈ G }. If η(Gobs) is judged to be extreme with respect
to this collection, then that is taken as evidence that Gobs is unusual in having this
value.

When random graph models are used, it is straightforward to create a formal
reference distribution which, under the accompanying assumption of uniform prob-
ability of elements in G , takes the form

Pη,G (t) =
#{G ∈ G : η(G)≤ t}

|G | . (5.3)

If η(Gobs) is found to be sufficiently unlikely under this distribution, this is taken as
evidence against the hypothesis that Gobs is a uniform draw from G .

This principle lies at the heart of methods aimed at the detection of network
motifs, defined by Alon and colleagues [87, 111] to be small subgraphs occurring
far more frequently in a given network than in comparable random graphs. We refer
the reader to these articles for details. Also see [91, Chap. 6.2].

Here we demonstrate similar use of this principle through two somewhat simpler
examples.

5.5.1 Assessing the Number of Communities in a Network

Recall from Chap. 4.4.1 that our use of hierarchical clustering, through the function
fastgreedy.community, resulted in the discovery of three communities in the
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karate network. We might ask ourselves whether this is in some sense unexpected or
unusual. In defining our frame of reference we will use two choices of G : (i) graphs
of the same order Nv = 34 and size Ne = 78 as the karate network, and (ii) graphs
that obey the further restriction that they have the same degree distribution as the
original.

Monte Carlo methods, using some of the same R functions encountered above,
allow us to quickly generate approximations to the corresponding reference distribu-
tions. In order to do so, we need the order, size, and degree sequence of the original
karate network.

#5.26 1 > data(karate)
2 > nv <- vcount(karate)
3 > ne <- ecount(karate)
4 > degs <- degree(karate)

Over 1000 trials,

#5.27 1 > ntrials <- 1000

we then generate classical random graphs of this same order and size and, for each
one, we use the same community detection algorithm to determine the number of
communities.

#5.28 1 > num.comm.rg <- numeric(ntrials)
2 > for(i in (1:ntrials)){
3 + g.rg <- erdos.renyi.game(nv, ne, type="gnm")
4 + c.rg <- fastgreedy.community(g.rg)
5 + num.comm.rg[i] <- length(c.rg)
6 + }

Similarly, we do the same using generalized random graphs constrained to have the
required degree sequence.

#5.29 1 > num.comm.grg <- numeric(ntrials)
2 > for(i in (1:ntrials)){
3 + g.grg <- degree.sequence.game(degs, method="vl")
4 + c.grg <- fastgreedy.community(g.grg)
5 + num.comm.grg[i] <- length(c.grg)
6 + }

The results may be summarized and compared using side by side bar plots.

#5.30 1 > rslts <- c(num.comm.rg,num.comm.grg)
2 > indx <- c(rep(0, ntrials), rep(1, ntrials))
3 > counts <- table(indx, rslts)/ntrials
4 > barplot(counts, beside=TRUE, col=c("blue", "red"),
5 + xlab="Number of Communities",
6 + ylab="Relative Frequency",
7 + legend=c("Fixed Size", "Fixed Degree Sequence"))

See Fig. 5.6. Clearly the actual number of communities detected in the original
karate network (i.e., three) would be considered unusual from the perspective of
random graphs of both fixed size and fixed degree sequence. Accordingly, we may
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Fig. 5.6 Distribution of number of communities detected for random graphs of the same size (blue)
and degree sequence (red) as the karate network

conclude that there is likely an additional mechanism(s) at work in the actual karate
club, one that goes beyond simply the density and the distribution of social interac-
tions in this network.

5.5.2 Assessing Small World Properties

The notion of small-world networks has been particularly popular in the field of
neuroscience, where numerous authors have presented evidence for arguments that
small-world behavior can be found in various network-based representations of the
brain. See [10] for a review. On the other hand, such claims are not completely
uncontested, with recent work arguing that—in certain contexts—some or all of the
observed behavior may be attributed to aspects of the sampling underlying the data
used to construct such networks (e.g., [14, 61]).

A typical approach to assessing small-world behavior in this area is to compare
the observed clustering coefficient and average (shortest) path length in an observed
network to what might be observed in an appropriately calibrated classical random
graph. Recalling our discussion of small world networks in Sect. 5.4.1, we should
expect under such a comparison—if indeed an observed network exhibits small-
world behavior—that the observed clustering coefficient exceed that of a random
graph, while the average path length remain roughly the same.
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The data set macaque in igraph contains a network of established functional
connections between brain areas understood to be involved with the tactile function
of the visual cortex in macaque monkeys [115].

#5.31 1 > library(igraphdata)
2 > data(macaque)
3 > summary(macaque)
4 IGRAPH DN-- 45 463 --
5 attr: Citation (g/c), Author (g/c), shape (v/c),
6 name (v/c)

It is a directed network of 45 vertices and 463 links.
In order to assess clustering in this network, we use an extension to directed

graphs of the clustering coefficient defined in Chap. 4.3.2, due to [53]. This quan-
tity is defined as the average, over all vertices v, of the vertex-specific clustering
coefficients

cl(v) =

(
A+AT )3

vv

2
[
dtot

v (dtot
v − 1)− 2

(
A2)

vv

] , (5.4)

where A is the adjacency matrix and dtot
v is the total degree (i.e., in-degree plus

out-degree) of vertex v. The calculation of this quantity is accomplished through the
following function.

#5.32 1 > clust.coef.dir <- function(graph) {
2 + A <- as.matrix(get.adjacency(graph))
3 + S <- A + t(A)
4 + deg <- degree(graph, mode=c("total"))
5 + num <- diag(S %*% S %*% S)
6 + denom <- diag(A %*% A)
7 + denom <- 2 * (deg * (deg - 1) - 2 * denom)
8 + cl <- mean(num / denom)
9 + return(cl)

10 + }

Similarly, path lengths are defined in this network only for directed paths.
The steps required to simulate draws of (directed) classical random graphs, and

to assess the clustering and average path length for each, are analogous to those
employed in our example with the karate network just above.

#5.33 1 > ntrials <- 1000
2 > nv <- vcount(macaque)
3 > ne <- ecount(macaque)
4 > cl.rg <- numeric(ntrials)
5 > apl.rg <- numeric(ntrials)
6 > for (i in (1:ntrials)) {
7 + g.rg <- erdos.renyi.game(nv, ne, type="gnm",
8 directed=TRUE)
9 + cl.rg[i] <- clust.coef.dir(g.rg)

10 + apl.rg[i] <- average.path.length(g.rg)
11 + }
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Summarizing the resulting distributions of clustering coefficient

#5.34 1 > summary(cl.rg)
2 Min. 1st Qu. Median Mean 3rd Qu. Max.
3 0.2159 0.2302 0.2340 0.2340 0.2377 0.2548

and average path length

#5.35 1 > summary(apl.rg)
2 Min. 1st Qu. Median Mean 3rd Qu. Max.
3 1.810 1.827 1.833 1.833 1.838 1.858

and comparing against these distributions the values for the macaque network

#5.36 1 > clust.coef.dir(macaque)
2 [1] 0.5501073
3 > average.path.length(macaque)
4 [1] 2.148485

we find that our observed values fall far outside the range typical of these random
graphs.

Therefore, we see that on the one hand there is substantially more clustering in
our network than expected from a random network. On the other hand, however, the
shortest paths between vertex pairs are, on average, also noticeably longer. Hence,
the evidence for small-world behavior in this network is not clear, with the results
suggesting that the network behaves more like a lattice than a classical random
graph.

5.6 Additional Reading

There are a number of books devoted entirely to subsets of the topics in network
graph modeling discussed in this chapter. For example, the volume by Bollobás [16]
is the standard reference for classical random graph theory, while the book of Chung
and Lu [29] contains a unified exposition of numerous formal results on generalized
random graph, network growth, and small-world models. Similarly, many books on
network analysis include such material as well, to varying extents. See, for example,
the book by Newman [118, Sect. IV].



Chapter 6
Statistical Models for Network Graphs

6.1 Introduction

The network models discussed in the previous chapter serve a variety of useful
purposes. Yet for the purpose of statistical model building, they come up short.
Indeed, as Robins and Morris [125] write, “A good [statistical network graph] model
needs to be both estimable from data and a reasonable representation of that data,
to be theoretically plausible about the type of effects that might have produced the
network, and to be amenable to examining which competing effects might be the
best explanation of the data.” None of the models we have seen up until this point
are really intended to meet such criteria.

In contrast, there are a number of other classes of network graph models which
are designed explicitly for use as statistical models. In fact, the three main such
classes of models developed to date closely parallel more familiar statistical mod-
els for non-network datasets. The class of exponential random graph models are
analogous to standard regression models—particularly, generalized linear models.
Similarly, stochastic block models draw their inspiration from mixture models, as
they are, in their most basic form, essentially a mixture of classical random graph
models. Finally, latent network models are a network-based variant of the common
practice of using both observed and unobserved (i.e., latent) variables in modeling
an outcome (i.e., in this case, the presence or absence of network edges).

It is important to note, however, that none of these models are simply direct
implementations of their classical analogues. The adaptation of the latter to network-
based data structures can have nontrivial implications on model specification and
identifiability, model fitting, and the assessment of significance of terms in the model
and model goodness of fit.

In this chapter we explore the basic structure and use of certain canonical exam-
ples of each of these three classes of statistical models for network graphs.

E.D. Kolaczyk and G. Csárdi, Statistical Analysis of Network Data with R, Use R! 65,
DOI 10.1007/978-1-4939-0983-4 6, © Springer Science+Business Media New York 2014
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6.2 Exponential Random Graph Models

Exponential random graph models (ERGMs)1 are designed in direct analogy to the
classical generalized linear models (GLMs). They are formulated in a manner that
is intended to facilitate the adaptation and extension of well-established statisti-
cal principles and methods for the construction, fitting, and comparison of models.
Nevertheless, the appropriate specification and fitting of ERGMs can be decidedly
more subtle than with standard GLMs. Moreover, much of the standard inferential
infrastructure available for GLMs, resting on asymptotic approximations to appro-
priate chi-square distributions, has yet be formally justified in the case of ERGMs.
As a result, while this class of models arguably has substantial potential, in practice
it must be used with some care.

6.2.1 General Formulation

Consider G = (V,E) as a random graph. Let Yi j = Yji be a binary random variable
indicating the presence or absence of an edge e ∈ E between the two vertices i and
j in V . The matrix Y = [Yi j] is thus the (random) adjacency matrix for G. Denote
by y = [yi j] a particular realization of Y. An exponential random graph model is a
model specified in exponential family form2 for the joint distribution of the elements
in Y. The basic specification for an ERGM is a model of the form

Pθ (Y = y) =
(

1
κ

)
exp

{
∑
H

θH gH(y)

}
, (6.2)

where

(i) each H is a configuration, which is defined to be a set of possible edges among
a subset of the vertices in G;

(ii) gH(y) = ∏yi j∈H yi j, and is therefore either one if the configuration H occurs in
y, or zero, otherwise;

1 These models have also been referred to as p∗ models, particularly in the social network litera-
ture, where they are seen as one of the later examples of a series of model classes introduced in
succession over a roughly 20-year period covering the late 1970s, 1980s, and early 1990s. See the
review of Wasserman and Pattison [145], for example. Our use of the term ‘exponential random
graph models’ reflects current practice, which emphasizes the connection of these models with
traditional exponential family models in classical statistics.
2 Recall that an arbitrary (discrete) random vector Z is said to belong to an exponential family if
its probability mass function may be expressed in the form

Pθ (Z = z) = exp
{

θ T g(z)−ψ(θ )
}

, (6.1)

where θ ∈ IRp is a p×1 vector of parameters, g(·) is a p-dimensional function of z, and ψ(θ ) is a
normalization term, ensuring that Pθ (·) sums to one.



6.2 Exponential Random Graph Models 87

(iii) a non-zero value for θH means that the Yi j are dependent for all pairs of vertices
{i, j} in H, conditional upon the rest of the graph; and

(iv) κ = κ(θ ) is a normalization constant,

κ(θ ) = ∑
y

exp

{
∑
H

θH gH(y)

}
. (6.3)

Note that the summation in (6.2) is over all possible configurations H. Importantly,
given a choice of functions gH and their coefficients θH , this implies a certain
(in)dependency structure among the elements in Y, which is, of course, appealing,
given the inherently relational nature of a network. Generally speaking, such struc-
ture typically can be described as specifying that the random variables {Yi j}(i, j)∈A
are independent of {Yi′ j′ }(i′, j′)∈B , conditional on the values of {Yi′′, j′′ }(i′′, j′′)∈C , for
some given index sets A ,B, and C . Conversely, we can begin with a collection
of (in)dependence relations among subsets of elements in Y and try to derive the
induced form of the (gH ,θH) pairs.3

The ERGM framework allows for a number of variations and extensions. For
example, directed versions of ERGMs are also available. In addition, in defining
ERGMs for either undirected or directed graphs, it is straightforward to include, if
desired, information on vertices beyond their connectivity, such as actor attributes
in a social network or known functionalities of proteins in a network of protein
interactions. Given a realization x of a random vector X on the vertices in G, we
simply specify an exponential form for the conditional distribution Pθ (Y= y|X= x)
that involves additional statistics g(·) that are functions of both y and x.

In this section, we will illustrate the construction, fitting, and assessment of
ERGMs using the lazega data set on collaboration among lawyers, introduced
in Chap. 1. Within R, easily the most comprehensive and sophisticated package
for ERGMs is the ergm package, which is part of the statnet suite of packages.4

Since ergm uses the network package to represent network objects, we convert the
igraph object lazega to the format used in statnet, first separating the network
into adjacency matrix and attributes

#6.1 1 > library(sand)
2 > data(lazega)
3 > A <- get.adjacency(lazega)
4 > v.attrs <- get.data.frame(lazega, what="vertices")

and then creating the analogous network object for ergm

#6.2 1 > library(ergm) # Will load package ’network’ as well.
2 > lazega.s <- network::as.network(as.matrix(A),

3 However, it is important to realize that it is not the case that simply any collection of
(in)dependence relations among the elements of Y yields a proper joint distribution on Y. Rather,
certain conditions must be satisfied, as formalized in the celebrated Hammersley-Clifford theorem
(e.g., Besag [12]).
4 The statnet suite is arguably the most sophisticated single collection of R packages for doing
statistical modeling of network graphs, particularly from the perspective of social network analysis.
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3 + directed=FALSE)
4 > network::set.vertex.attribute(lazega.s, "Office",
5 + v.attrs$Office)
6 > network::set.vertex.attribute(lazega.s, "Practice",
7 + v.attrs$Practice)
8 > network::set.vertex.attribute(lazega.s, "Gender",
9 + v.attrs$Gender)
10 > network::set.vertex.attribute(lazega.s, "Seniority",
11 + v.attrs$Seniority)

6.2.2 Specifying a Model

The general formulation just described leaves much flexibility in specifying an
ERGM. We illustrate in the material that follows below, but refer the reader to, for
example, the review article by Robins et al. [126] or the book by Lusher et al. [105]
for a more comprehensive treatment.

We have already seen an example of what is arguably the simplest ERGM, in
the form of the Bernoulli random graph model Chap. 5.2. To see this, suppose we
specify that, for a given pair of vertices, the presence or absence of an edge between
that pair is independent of the status of possible edges between any other pairs of
vertices.5 Then θH = 0 for all configurations H involving three or more vertices.
As a result, the ERGM in (6.2) reduces to

Pθ (Y = y) =
(

1
κ

)
exp

{
∑
i, j

θi jyi j

}
. (6.4)

Furthermore, if we assume that the coefficients θi j are equal to some common
value θ (typically referred to as an assumption of homogeneity across the network),
then (6.4) further simplifies to

Pθ (Y = y) =
(

1
κ

)
exp{θL(y)} , (6.5)

where L(y) = ∑i, j yi j = Ne is the number of edges in the graph. The result is
equivalent to a Bernoulli random graph model, with p = exp(θ )/[1+ exp(θ )] .

To specify models in ergm, we use the function formula and standard R
syntax. For example, model (6.5) may be specified for the network lazega.s as

#6.3 1 > my.ergm.bern <- formula(lazega.s ~ edges)
2 > my.ergm.bern
3 lazega.s ~ edges

in which case the statistic L takes the value

5 That is, for each pair {i, j}, we assume that Yi j is independent of Yi′ , j′ , for any {i′, j′} �= {i, j}.
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#6.4 1 > summary.statistics(my.ergm.bern)
2 edges
3 115

The strength of ERGMs lies in our ability to specify decidedly more nuanced
models than that above. Doing so properly and effectively, however, requires some
thought and care.

To begin, note that the model in (6.5) can be thought of as specifying that the log-
odds of observing a given network G (or, more specifically, its adjacency matrix y) is
simply proportional to the number of edges in the network—arguably the most basic
of network statistics. Traditionally, it has been of interest to also incorporate analo-
gous statistics of higher-order global network structure, such as counts of k-stars,6

say Sk(y), and of triangles, say T (y). Frank and Strauss [58] show that models of
the form

Pθ (Y = y) =
(

1
κ

)
exp

{
Nv−1

∑
k=1

θkSk(y)+θτT (y)

}
(6.6)

are equivalent to a certain limited form of dependence among the edges yi j, in
contrast to the independence specified by the Bernoulli model.7

In using such models, common practice has been to include star counts Sk no
higher than k = 2, or at most k = 3, by setting θ4 = · · ·= θNv−1 = 0. For example,

#6.5 1 > my.ergm <- formula(lazega.s ~ edges + kstar(2)
2 + + kstar(3) + triangle)
3 > summary.statistics(my.ergm)
4 edges kstar2 kstar3 triangle
5 115 926 2681 120

While simpler and, ideally, more interpretable, than the general formulation in (6.6),
experience nevertheless has shown this practice to frequently produce models that
fit quite poorly to real data. Investigation of this phenomena has found it to be inti-
mately related to the issue of model degeneracy.8 See Handcock [68]. Unfortunately,
the alternative—including a sufficiently large number of higher order terms—is
problematic as well, from the perspective of model fitting.

A solution to this dilemma, proposed by Snijders et al. [134], is to impose a
parametric constraint of the form θk ∝ (−1)kλ 2−k upon the star parameters, for all
k ≥ 2, for some λ ≥ 1. This tactic has the effect of combining all of the k-star
statistics Sk(y) in (6.6), for k ≥ 2, into a single alternating k-star statistic of the
form

AKSλ (y) =
Nv−1

∑
k=2

(−1)k Sk(y)
λ k−2 , (6.7)

6 Note that S1(y) = Ne is the number of edges.
7 Formally, Frank and Strauss introduced the notion of Markov dependence for network graph
models, which specifies that two possible edges are dependent whenever they share a vertex, condi-
tional on all other possible edges. A random graph G arising under Markov dependence conditions
is called a Markov graph.
8 In this context the term is used to refer to a probability distribution that places a disproportion-
ately large amount of its mass on a correspondingly small set of outcomes.
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and weighting that statistic by a single parameter θAKS that takes into account the
star effects of all orders simultaneously. One may think of the alternating signs
in (6.7) as allowing the counts of k-stars of successively greater order to balance
each other, rather than simply ballooning (i.e., since more k-stars, for a given k,
means more k′-stars, for k′ < k).

Alternatively, and equivalently if the number of edges is included in the model,
there is the geometrically weighted degree count, defined as

GWDγ(y) =
Nv−1

∑
d=0

e−γdNd(y) , (6.8)

where Nd(y) is the number of vertices of degree d and γ > 0 is related to λ through
the expression γ = log[λ/(λ − 1)]. This approach in a sense attempts to model the
degree distribution, with choice of γ influencing the extent to which higher-degree
vertices are likely to occur in the graph G.

Snijders et al. [134] discuss a number of other similar statistics, including a
generalization of triadic structures based on alternating sums of k-triangles, which
takes the form9

AKTλ (y) = 3T1 +
Nv−2

∑
k=2

(−1)k+1 Tk(y)
λ k−1 . (6.9)

Here Tk is the number of k-triangles, where a k-triangle is defined to be a set of k
individual triangles sharing a common base. A discussion of the type of dependency
properties induced among edges yi j by such statistics can be found in Pattison and
Robins [122].

These three statistics can be used in ergm by specifying terms altkstar,
gwdegree, or gwesp, respectively, in the model. For example,

#6.6 1 > my.ergm <- formula(lazega.s ~ edges
2 + + gwesp(1, fixed=TRUE))
3 > summary.statistics(my.ergm)
4 edges gwesp.fixed.1
5 115.0000 213.1753

Note that all of the model specifications discussed so far involve statistics that
are functions only of the network y (i.e., controlling for endogenous effects). Yet it
is natural to expect that the chance of an edge joining two vertices depends not only
on the status (i.e., presence or absence) of edges between other vertex pairs, but also
on attributes of the vertices themselves (i.e., allowing for assessment of exogenous
effects). For attributes that have been measured, we can incorporate them into the
types of ERGMs we have seen, in the form of additional statistics in the exponential
term in (6.2), with the normalization constant κ modified analogously, according
to (6.3).

9 Hunter [78] offers an equivalent formulation of this definition, in terms of geometrically weighted
counts of the neighbors common to adjacent vertices.
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One natural form for such statistics is

g(y,x) = ∑
1≤i< j≤Nv

yi j h(xi,x j), (6.10)

where h is a symmetric function of xi and x j, and xi (or x j) is the vector of observed
attributes for the ith (or jth) vertex. Intuitively, if h is some measure of ‘similarity’
in attributes, then the statistic in (6.10) assess the total similarity among network
neighbors.

Two common choices of h produce analogues of ‘main effects’ and ‘second-order
effects’ (or similarity or homophily effects) of certain attributes. Main effects, for a
particular attribute x, are defined using a simple additive form:

h(xi,x j) = xi + x j . (6.11)

On the other hand, second-order effects are defined using an indicator for equiva-
lence of the respective attribute between two vertices, i.e.,

h(xi,x j) = I{xi = x j} . (6.12)

Main effects and second-order effects may be incorporated into a model within
ergm using the terms nodemain and nodematch, respectively.

To summarize, the various statistics introduced above have been chosen only
to illustrate the many types of effects that may be captured in modeling network
graphs using ERGMs. In modeling the network lazega.s throughout the rest of
this section, we will draw on the analyses of Hunter and Handcock [79] and Snijders
et al. [134]. In particular, we will specify a model of the form

Pθ ,β (Y = y|X = x) =
(

1
κ(θ ,β )

)
exp

{
θ1 S1(y)+θ2 AKTλ (y)+β T g(y,x)

}
,

(6.13)

where g is a vector of five attribute statistics and β is the corresponding vector of
parameters.

In R, our model is expressed as

#6.7 1 > lazega.ergm <- formula(lazega.s ~ edges
2 + + gwesp(log(3), fixed=TRUE)
3 + + nodemain("Seniority")
4 + + nodemain("Practice")
5 + + match("Practice")
6 + + match("Gender")
7 + + match("Office"))

This specification allows us to control for the density of the network and some
effects of transitivity. In addition, it allows us to assess the effect on the formation
of collaborative ties among lawyers that is had by seniority, the type of practice (i.e.,
corporate or litigation), and commonality of practice, gender, and office location.
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6.2.3 Model Fitting

In standard settings, with independent and identically distributed realizations,
exponential family models like that in (6.1) are generally fit using the method of
maximum likelihood. In the context of the ERGMs in (6.2), the maximum likeli-
hood estimators (MLEs) θ̂H of the parameters θH are well defined, assuming an
appropriately-specified model, but their calculation is non-trivial.

Consider the general definition of an ERGM in (6.2). The MLE for the vector
θ = (θH) is defined as θ̂ = argmaxθ �(θ ), where �(θ ) is the log-likelihood, which
has the particularly simple form common to exponential families,

�(θ ) = θ T g(y)−ψ(θ ) . (6.14)

Here g denotes the vector of functions gH and ψ(θ ) = logκ(θ ). Alternatively,
taking derivatives on each side and using the fact that Eθ [g(Y)] = ∂ψ(θ )/∂θ , the
MLE can also be expressed as the solution to the system of equations

Eθ̂ [g(Y)] = g(y) . (6.15)

Unfortunately, the function ψ(θ ), occurring in both (6.14) and (6.15), cannot be
evaluated explicitly in any but the most trivial of settings, as it involves the summa-

tion in (6.3) over 2(
Nv
2 ) possible choices of y, for each candidate θ . Therefore, it is

necessary to use numerical methods to compute approximate values for θ̂ .
In ergm, models are fit using the function ergm, which implements a version

of Markov chain Monte Carlo maximum likelihood estimation, deriving from the
fundamental work of Geyer and Thompson [62]. See Hunter and Handcock [79], for
example, for additional details and references. Our model in (6.13), for example, is
fit as

#6.8 1 > set.seed(42)
2 > lazega.ergm.fit <- ergm(lazega.ergm)

The analogy between ERGMs and GLMs may be drawn upon in summarizing
and assessing the fit of the former.10 For example, examination of an analysis of
variance (ANOVA) table indicates that there is strong evidence that the variables
used in the model lazega.ergm explain the variation in network connectivity to a
highly nontrivial extent, with a change in deviance of 459 with only seven variables.

#6.9 1 > anova.ergm(lazega.ergm.fit)
2 Analysis of Variance Table
3

4 Model 1: lazega.s ~ edges + gwesp(log(3), fixed = TRUE) +
5 nodemain("Seniority") + nodemain("Practice") +
6 match("Practice") + match("Gender") +

10 We note that the ergm package provides not only summary statistics but also p-values. However,
as mentioned earlier, the theoretical justification for the asymptotic chi-square and F-distributions
used by ergm to compute these values has not been established formally to date. Therefore, our
preference is to interpret these values informally, as additional summary statistics.
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7 match("Office")
8 Df Deviance Resid. Df Resid. Dev Pr(>|Chisq|)
9 NULL 630 0.00
10 Model 1: 7 -458.86 623 458.86 < 2.2e-16
11

12 NULL
13 Model 1: ***
14 ---
15 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Similarly, we can examine the relative contribution of the individual variables in our
model.

#6.10 1 > summary.ergm(lazega.ergm.fit)
2 ==========================
3 Summary of model fit
4 ==========================
5

6 Formula: lazega.s ~ edges + gwesp(log(3), fixed = TRUE) +
7 nodemain("Seniority") + nodemain("Practice") +
8 match("Practice") + match("Gender") +
9 match("Office")

10

11 Iterations: 20
12

13 Monte Carlo MLE Results:
14 Estimate Std. Error MCMC %
15 edges -6.98047 0.72739 0
16 gwesp.fixed.1.09861228866811 0.58967 0.08786 0
17 nodecov.Seniority 0.02442 0.00675 0
18 nodecov.Practice 0.39538 0.11013 0
19 nodematch.Practice 0.76438 0.20055 0
20 nodematch.Gender 0.72110 0.25167 0
21 nodematch.Office 1.16155 0.19498 0
22 p-value
23 edges < 1e-04 ***
24 gwesp.fixed.1.09861228866811 < 1e-04 ***
25 nodecov.Seniority 0.000321 ***
26 nodecov.Practice 0.000357 ***
27 nodematch.Practice 0.000152 ***
28 nodematch.Gender 0.004308 **
29 nodematch.Office < 1e-04 ***
30 ---
31 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
32

33 Null Deviance: 873.4 on 630 degrees of freedom
34 Residual Deviance: 458.9 on 623 degrees of freedom
35

36 AIC: 472.9 BIC: 504 (Smaller is better.)

In order to interpret the coefficients, it is useful to think in terms of the probability
of a given vertex pair having an edge, conditional on the edge status between all
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other pairs. Writing Y(−i j) to be all of the elements of Y except Yi j, the distribution
of Yi j conditional on Y(−i j) is Bernoulli and satisfies the expression

log

[
Pθ (Yi j = 1|Y(−i j) = y(−i j))

Pθ (Yi j = 0|Y(−i j) = y(−i j))

]
= θ T Δi j(y) , (6.16)

where Δi j(y) is the change statistic, denoting the difference between g(y) when
yi j = 1 and when yi j = 0,

So the estimated coefficient of each attribute statistic in this analysis may be
interpreted as a conditional log-odds ratio for cooperation between lawyers. For
example, practicing corporate law, rather than litigation, increases the odds of coop-
eration by a factor of exp(0.3954)≈ 1.485, or nearly 50%. Similarly, being of the
same gender more than doubles the odds of cooperation, since exp(0.7211)≈ 2.057.
In all cases, such statements hold in the sense of ‘all else being equal’ (i.e., given
no change among values of the other statistics). Note too that for all of the variables
but one the coefficient differs from zero by at least one standard error, suggesting
some nontrivial effect of these variables on the formation of network ties.

Similarly, in terms of network structure, the magnitude of the coefficient
θ̂2 ≈ 0.5897 for the alternating k-triangle statistic and the comparatively small
corresponding standard error indicate that there is also evidence for a nontriv-
ial transitivity effect. Note that, given the inclusion of our second-order attribute
statistics in the model, our quantification of this effect naturally controls for basic
homophily on these attributes. So there is likely something other than similarity of
gender, practice, and office at work here—possibly additional attributes we have
not controlled for, or possibly social processes of team formation.

6.2.4 Goodness-of-Fit

In any sort of modeling problem, the best fit chosen from among a class of mod-
els need not necessarily be a good fit to the data if the model class itself does not
contain a sufficiently rich set of models from which to choose. The concept of model
goodness-of-fit is therefore important. But, while this concept is fairly well devel-
oped in standard modeling contexts, such as linear modeling, it is arguably still in
its infancy as far as network graph modeling is concerned.

For ERGMs, the current practice in assessing goodness-of-fit is to first simulate
numerous random graphs from the fitted model and then compare high-level char-
acteristics of these graphs with those of the originally observed graph. Examples of
such characteristics include the distribution of any number of the various summaries
of network structure encountered in Chap. 4, such as degree, centrality, and geodesic
distance. If the characteristics of the observed network graph are too poor of a match
to the typical values arising from realizations of the fitted random graph model, then
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this suggests systematic differences between the specified class of models and the
data, and therefore a lack of goodness-of-fit.11

To assess the goodness-of-fit of our model in (6.13), as fit by ergm, the function
gof in ergm runs the necessary Monte Carlo simulation and calculates comparisons
with the original network graph in terms of the distribution of degree, geodesic
length, and edge-wise shared partners (i.e., the number of neighbors shared by a
pair of vertices defining an edge).

#6.11 1 > gof.lazega.ergm <- gof(lazega.ergm.fit)

The results of these computations may then be plotted,

#6.12 1 > par(mfrow=c(1, 3))
2 > plot(gof.lazega.ergm)

as shown in Fig. 6.1. They indicate that—on these particular characteristics—the fit
of the model is quite good overall.

6.3 Network Block Models

We have seen that the structure of an ERGM closely parallels that of a standard
regression model in statistics. The presence or absence of network edges (i.e., the
Yi j) is taken to be the response variable, while the role of the predictor variables
is played by some combination of network summary statistics (i.e., endogenous
variables) and functions of vertex and edge attributes (i.e., incorporating exogenous
effects). In this section, we examine the class of network block models, which are
instead analogous to classical mixture models.12

Recall that, in our analysis of the network of lawyer collaborations in the previous
section, we used as predictors the sums of indicators that various attributes (e.g.,
practice or gender) were shared between vertex pairs. Importantly, while this choice
may seem sensible from a practical perspective, it also reflects the potential impact
on the formation of network ties of a key principle in social network theory—that
of structural equivalence, i.e., the similarity of network positions and social roles.
See [144, Chap. 9], for example. In general, we may think of vertices in a network
as belonging to classes, and the propensity to establish ties between vertex pairs as
depending on the class membership of the two vertices. With network block models
these concepts are made precise.

11 Goodness-of-fit has been found to be particularly important where ERGMs are concerned, due
in large part to the issue of potential model degeneracy.
12 A random variable X is said to follow a Q-class mixture distribution if its probability density
function is of the form f (x) = ∑Q

q=1 αk fq(x), for class-specific densities fq, where the mixing
weights αq are all non-negative and sum to one.
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Fig. 6.1 Goodness-of-fit plots comparing original Lazega lawyer network and Monte Carlo real-
izations from the model in (6.13), with the parameters obtained by ergm. Comparisons are made
based on the distribution of degree, edge-wise shared partners, and geodesic distance, represented
by box-plots and curves showing 10th and 90th quantiles. Values for the Lazega network itself are
shown with bold solid lines. In the distribution of geodesic distances between pairs, the rightmost
box-plot is separate and corresponds to the proportion of nonreachable pairs

6.3.1 Model Specification

Suppose that each vertex i ∈V of a graph G = (V,E) can belong to one of Q classes,
say C 1, . . . ,C Q. And furthermore, suppose that we know the class label q = q(i) for
each vertex i. A block model for G specifies that each element Yi j of the adjacency
matrix Y is, conditional on the class labels q and r of vertices i and j, respectively,
an independent Bernoulli random variable, with probability πqr. For an undirected
graph, πqr = πrq.

The block model is hence a variant of the Bernoulli random graph model, where
the probabilities of an edge are restricted to be one of only Q2 possible values πqr.
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Furthermore, in analogy to (6.5), this model can be represented in the form of an
ERGM, i.e.,

Pθ (Y = y) =
(

1
κ

)
exp

{
∑
q,r

θqrLqr(y)

}
, (6.17)

where Lqr(y) is the number of edges in the observed graph y connecting pairs of
vertices of classes q and r.

Nevertheless, the assumption that the class membership of vertices is known
or, moreover, that the ‘true’ classes C 1, . . . ,C Q have been correctly specified, is
generally considered untenable in practice. More common, therefore, is the use of
a stochastic block model (SBM) [121]. This model specifies only that there are
Q classes, for some Q, but does not specify the nature of those classes nor the
class membership of the individual vertices. Rather, it dictates simply that the class
membership of each vertex i be determined independently, according to a common
distribution on the set {1, . . . ,Q}.

Formally, let Ziq = 1 if vertex i is of class q, and zero otherwise. Under a
stochastic block model, the vectors Zi = (Zi1, . . . ,ZiQ) are determined indepen-
dently, where P(Ziq = 1) = αq and ∑Q

q=1 αq = 1. Then, conditional on the values
{Zi}, the entries Yi j are again modeled as independent Bernoulli random variables,
with probabilities πqr, as in the non-stochastic block model.

A stochastic block model is thus, effectively, a mixture of classical random graph
models. As such, many of the properties of the random graphs G resulting from this
model may be worked out in terms of the underlying model parameters. See [41], for
example, who refer to this class of models as a ‘mixture model for random graphs’.

Various extensions of the stochastic block model have in turn been proposed,
although we will not pursue them here. For example, the class of mixed-membership
stochastic block models allows vertices to be members of more than one class [2].
Similarly, the class of degree-corrected stochastic block models aims to produce
mixtures of random graphs that have more heterogeneous degree distributions than
the Poisson distribution corresponding to the classical random graph (e.g., [34, 86]).

6.3.2 Model Fitting

A non-stochastic block model can be fit in a straightforward fashion. The only
parameters to be estimated are the edge probabilities πqr, and the maximum like-
lihood estimates—which are natural here—are simply the corresponding empirical
frequencies.

In the case of stochastic block models, both the (now conditional) edge probabil-
ities πqr and the class membership probabilities αq must estimated. While this may
not seem like much of a change over the ordinary block model, the task of model
fitting becomes decidedly more complex in this setting. In order to see why, note
that the log-likelihood for the joint distribution of the adjacency matrix Y and the
class membership vectors {Zi}, i.e., the complete-data log-likelihood, is of the form
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�(y;{zi}) = ∑
i

∑
q

ziq logαq +
1
2 ∑

i�= j
∑
q �=r

ziqz jr logb(yi j;πqr) , (6.18)

where b(y;π) = πy(1−π)1−y. In principle, the likelihood of the observed data is
obtained then by summing the complete-data likelihood over all possible values of
{zi}. Unfortunately, to do so typically is intractable in problems of any real interest.
As a result, computationally intensive methods must be used to produce estimates
based on this likelihood.

The expectation-maximization (EM) algorithm [109] is a natural choice here.
Effectively, given a current estimate of the πqr, expected values of the Zi are com-
puted, conditional on Y = y. These values in turn are used to compute new estimates
of the πqr, using (conditional) maximum likelihood principles. The two steps are
repeated in an alternating fashion, until convergence. But the first (i.e., expecta-
tion) step cannot be done in closed form, which greatly reduces the appeal of the
algorithm.

Instead, a number of methods that approximate or alter the original maximum
likelihood problem have been proposed in the literature. The R package mixer im-
plements a number of these, with the default method being a so-called variational
approach, which optimizes a lower bound on the likelihood of the observed data.

To illustrate, we use the network fblog of French political blogs introduced in
Chap. 3.5. Recall that each blog is annotated as being associated with one of nine
French political parties. Of course, these annotations do not necessarily correspond
to an actual ‘true’ set of class groupings for these blogs, in the sense intended by the
relatively simple form of the stochastic block model. Nevertheless, the context of
the data (i.e., political blogs in the run-up to the French 2007 presidential election),
as well as the various visualizations of this network in Chap. 3.5, suggest that it is
likely the stochastic block model is not an unreasonable approximation to reality in
this case.

Using the function mixer in mixer, a fit to the observed network graph y is
obtained through

#6.13 1 > library(mixer)
2 > setSeed(42)
3 > fblog.sbm <- mixer(as.matrix(get.adjacency(fblog)),
4 + qmin=2, qmax=15)

Note that we have specified only that the total number of classes Q be between 2
and 15. The so-called integration classification likelihood (ICL) criterion is used by
mixer to select the number of classes fit to the network. This criterion is simi-
lar in spirit to various information criteria popular in standard regression modeling
(e.g., Akaike’s information (AIC), Bayesian information (BIC), etc.), but adapted
specifically to clustering problems.

Examining the model output

#6.14 1 > fblog.sbm.output <- getModel(fblog.sbm)
2 > names(fblog.sbm.output)
3 [1] "q" "criterion" "alphas" "Pis"
4 [5] "Taus"
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we see that the network of French blogs has been fit with

#6.15 1 > fblog.sbm.output$q
2 [1] 12

classes, in estimated proportions

#6.16 1 > fblog.sbm.output$alphas
2 [1] 0.15294139 0.13007188 0.12307831 0.05729167
3 [5] 0.13581585 0.03123927 0.09967103 0.09795210
4 [9] 0.01041667 0.02088946 0.12500738 0.01562500

The output from a fitted stochastic block model also allows for the assignment
of vertices to classes. Thus stochastic block models may be used as a model-
based method of graph partitioning, complementing the other methods introduced
in Chap. 4.4. Specifically, as mentioned above in the sketch of the EM algorithm,
in producing estimates of the parameters πqr and αq, algorithms of this type (i.e.,
including the variational approximation used by mixer) necessarily calculate esti-
mates of the expected values of the Zi, conditional on Y = y. That is, they calculate
estimates of the posterior probability of class membership, which may then be used
to determine class assignments.

For example, examining the estimates for the first three vertices in the French
blog network

#6.17 1 > fblog.sbm.output$Taus[, 1:3]
2 [,1] [,2] [,3]
3 [1,] 9.999820e-01 9.162358e-04 9.999910e-01
4 [2,] 1.182601e-05 1.000000e-10 5.169635e-07
5 [3,] 4.702876e-06 9.990596e-01 8.427162e-06
6 [4,] 1.000000e-10 1.000000e-10 1.000000e-10
7 [5,] 1.094414e-06 1.000000e-10 5.707788e-09
8 [6,] 1.000000e-10 1.000000e-10 1.000000e-10
9 [7,] 3.451962e-07 2.418009e-05 4.619964e-08

10 [8,] 1.000000e-10 1.000000e-10 1.000000e-10
11 [9,] 1.000000e-10 1.000000e-10 1.000000e-10
12 [10,] 1.000000e-10 1.000000e-10 1.000000e-10
13 [11,] 4.531089e-09 1.000000e-10 1.000000e-10
14 [12,] 1.000000e-10 1.000000e-10 1.000000e-10

we see that an assignment rule based on the maximum a posteriori criterion would
place the first and third vertices in class 1, and the second, in class 3.

Interestingly, the posterior probability vectors for these three vertices concentrate
their weight quite strongly on the most probable class. This fact is reflected in the
entropy13 values of these vectors

#6.18 1 > my.ent <- function(x) { -sum(x*log(x, 2)) }
2 > apply(fblog.sbm.output$Taus[, 1:3], 2, my.ent)
3 [1] 0.0003319527 0.0109735939 0.0001671334

13 The entropy of a discrete probability distribution p = (p1, . . ., pQ) is defined as H(p) =

−∑Q
q=1 pq log2 pq, with smaller values indicating a distribution concentrated on fewer classes. This

value is bounded above by log2 Q, corresponding to a uniform distribution on {1, . . . ,Q}.
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which are quite small compared to the value

#6.19 1 > log(fblog.sbm.output$q, 2)
2 [1] 3.584963

corresponding to the extreme case of a uniform distribution across the 12 classes.
The same observation seems to hold for the vast majority of the vertices

#6.20 1 > summary(apply(fblog.sbm.output$Taus, 2, my.ent))
2 Min. 1st Qu. Median Mean 3rd Qu.
3 0.0000000 0.0000000 0.0000003 0.0343200 0.0006172
4 Max.
5 1.0100000

6.3.3 Goodness-of-Fit

In assessing the goodness-of-fit of a stochastic block model we could, of course, use
the same types of simulation-based methods we employed in the analysis of ERGMs
(i.e., illustrated in Fig. 6.1). However, the particular form of a stochastic block model
lends itself as well to certain other more model-specific devices. A selection of
summaries produced by the mixer package are displayed in Fig. 6.2.

#6.21 1 > plot(fblog.sbm, classes=as.factor(V(fblog)$PolParty))

We see, for example, that while the fitted model has Q = 12 classes, the integrated
conditional likelihood (ICL) criteria seems to suggest there is some latitude in this
choice, with anywhere from 8 to 12 classes being reasonable. Examination of the
adjacency matrix y, with rows and columns reorganized by the assigned vertex
classes, indicates that there are seven larger classes, and five smaller classes. Fur-
thermore, while it appears that the vertices in some of these classes are primarily
connected with other vertices within their respective classes, among those other
classes in which vertices show a propensity towards inter-class connections there
seems to be, in most cases, a tendency towards connecting selectively with vertices
of only certain other classes.

With respect to the degree distribution, it appears that the distribution
corresponding to the fitted stochastic block model (shown as a blue curve) is
able to describe the observed degree distribution (shown as a yellow histogram)
reasonably well, although the body of the fitted distribution is arguably shifted to
the right somewhat of the observed distribution.

Finally, it is of interest to consider to what extent the graph partitioning induced
by the vertex class assignments matches the grouping of these blogs according to
their political party status. This comparison is summarized in the last plot in Fig. 6.2.
Here the circles, corresponding to the 12 vertex classes, and proportional in size to
the number of blogs assigned to each class, are further broken down according to
the relative proportion of political parties to which the blogs correspond, displayed
in the form of pie charts. Connecting the circles are edges drawn with a thickness in
proportion to the estimated probability that blogs in the two respective groups link
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Fig. 6.2 Various plots summarizing the goodness-of-fit for the stochastic block model analysis of
the French political blog network

to each other (i.e., in proportion to the estimated πqr). Note that this plot may be
contrasted with the coarse-level visualization of the original French blog network
in Fig. 3.7.

A close examination of the pie charts yields, for example, that while the blogs
in most of the 12 classes are quite homogeneous in their political party affiliations,
two of the larger classes have a rather heterogeneous set of affiliations represented.
In addition, two of the political parties (shown in light blue and light green) appear to
be split largely between two classes, one larger and one smaller, while another (blue)
appears to be mainly split among four classes, two larger and two smaller. This
latter observation might suggest that the model has chosen to use too many classes.
Alternatively, it could instead indicate that there is actually splintering within these
political parties.
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6.4 Latent Network Models

From the perspective of statistical modeling, one key innovation underlying stochas-
tic block models and their extensions is the incorporation of latent variables, in
the form of vertex classes. That is, the use of variables that are unobserved but
which play a role in determining the probability that vertex pairs are incident to
each other. The principle of latent variables, common in many other areas of sta-
tistical modeling, has been adopted in a quite general sense with the class of latent
network models. We draw on Hoff [73] in our development of these models below,
and illustrate their usage with the R package eigenmodel, by the same author.

6.4.1 General Formulation

The incorporation of latent variables in network models for a random graph G =
(V,E) can be motivated by results of Hoover [77] and Aldous [4]. Specifically, in
the absence of any covariate information, the assumption of exchangeability14 of the
vertices v ∈V is natural, and from this an argument can be made that each element
Yi j of the adjacency matrix Y can be expressed in the form

Yi j = h(μ ,ui,u j,εi j) , (6.19)

where μ is a constant, the ui are independent and identically distributed latent
variables, the εi j are independent and identically distributed pair-specific effects,
and the function h is symmetric in its second and third arguments. In other words,
under exchangeability, any random adjacency matrix Y can be written as a function
of latent variables.

Given the generality of the expression in (6.19), there are clearly many possible
latent network models we might formulate. If we specify that (i) the εi j are dis-
tributed as standard normal random variables, (ii) the latent variables ui,u j enter
into h only through a symmetric function α(ui,u j), and (iii) the function h is simply
an indicator as to whether or not (i.e., one or zero) its argument is positive, and if in
addition we augment the parameter μ to include a linear combination of pair-specific
covariates, i.e., xT

i jβ , then we arrive at a network version of a so-called probit model.
Under this model, the Yi j are conditionally independent, with distributions

P(Yi j = 1 |Xi j = xi j) = Φ
(
μ + xT

i jβ +α(ui,u j)
)

, (6.20)

where Φ is the cumulative distribution function of a standard normal random
variable.15

14 A set of random variables is said to be exchangeable if their joint distribution is the same for
any ordering.
15 In general, a probit model specifies, for a binary response Y , as a function of covariates x, that
P(Y = 1|X = x) = Φ(xT β ), for some β .
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If we denote the probabilities in (6.20) as pi j, then the conditional model for Y
as a whole takes the form

P(Y = y |X,u1, . . . ,uNv) = ∏
i< j

p
yi j
i j (1− pi j)

1−yi j . (6.21)

That is, conditional on the covariates X and the latent variables u1, . . . ,uNv , this
model for G has the form of a Bernoulli random graph model, with probabilities pi j

specific to each vertex pair i, j. Note that complete specification of the full model
requires that a choice of distribution be made for the latent variables as well. We will
revisit this point later, in Sect. 6.4.3, after first exploring the issue of selecting the
form of the function α(·, ·).

6.4.2 Specifying the Latent Effects

The effect of the latent variables u on the probability of there being an edge between
vertex pairs is largely dictated by the form of the function α(·, ·). There have been
a number of options explored in the literature to date. We remark briefly on three
such options here.

A latent class model—analogous to the stochastic block models of Sect. 6.3—
can be formulated by specifying that the ui take values in the set {1, . . . ,Q}, and
that α(ui,u j) = mui,u j , for a symmetric matrix M = [mq,r] of real-valued entries
mq,r. As remarked previously, the use of latent classes encodes into the model a
notion of the principle of structural equivalence from social network theory.

Alternatively, the principle of homophily (i.e., the tendency of similar individu-
als to associate with each other) suggests an alternative choice, based on the concept
of distance in a latent space. In this formulation, the latent variables ui are simply
vectors (ui1, . . . ,uiQ)

T , of real numbers, interpreted as important but unknown char-
acteristics of vertices that influence whether each establishes edges (e.g., social ties)
with the others, and—importantly—vertices with more similar characteristics are
expected to be more likely to establish an edge. Accordingly, the latent effects are
specified as α(ui,u j) = −|ui − u j|, for some distance metric | · |, and the models
are known as latent distance models.

Hoff [73] has suggested a third approach to specifying latent effects that com-
bines the two approaches above, based on principles of eigen-analysis. Here the
ui are again Q-length random vectors, but the latent effects are given the form
α(ui,u j) = uT

i Λu j, where Λ is a Q×Q diagonal matrix. Recall that the latent vari-
ables u are modeled as independent and identically distributed random vectors from
the same distribution, and hence the correlation between each pair ui and u j is zero.
While this is not the same as linear independence, in a linear algebraic sense, never-
theless it may be interpreted as saying that the ui will be orthogonal ‘in expectation’.
Gathering the ui into a matrix U = [u1, . . . ,uQ], the product UΛUT therefore may
be thought of as being in the spirit of an eigen-decomposition of the matrix of all
pairwise latent effects α(ui,u j). Hoff refers to this model as an ‘eigenmodel’.
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The collection of eigenmodels can be shown to include the collection of latent
class models in a formal sense, in that the set of matrices of latent effects that can
be generated by the latter model is contained within that of the former model. In
addition, there is a similar (albeit weaker) relationship between the collection of
eigenmodels and the collection of latent distance models. As a result, the eigen-
model can be said to generalize both of these classes and, hence, its use allows for
models that incorporate a blending of the principles of both structural equivalence
and homophily. The manner in which the two principles are to be blended can be
determined in a data-driven manner, through the process of model fitting.

6.4.3 Model Fitting

By construction, the latent network model has a hierarchical specification, so a
Bayesian approach to inference is natural here. The package eigenmodel imple-
ments the eigenmodel formulation described above and will be the one with which
we illustrate here.16

The function eigenmodel mcmc in eigenmodel uses Monte Carlo Markov
Chain (MCMC) techniques to simulate from the relevant posterior distributions,
using largely conjugate priors to complete the model specification. Of particular
interest are the parameter β (describing the effects of pair-specific covariates xi j),
the elements of the diagonal matrix Λ (summarizing the relative importance of each
latent vector ui), and the latent vectors themselves. Since the inferred latent vectors
ûi are not orthogonal, it is useful in interpreting model output to use in their place

the eigenvectors of the matrix ÛΛ̂ Û
T

.
The network lazega of collaborations among lawyers allows for demonstration

of a number of the concepts we have discussed so far. Recall that this network
involved 36 lawyers, at three different office locations, involved in two types of
practice (i.e., corporate and litigation).

#6.22 1 > summary(lazega)
2 IGRAPH UN-- 36 115 --
3 attr: name (v/c), Seniority (v/n), Status (v/n),
4 Gender (v/n), Office (v/n), Years (v/n), Age
5 (v/n), Practice (v/n), School (v/n)

We might hypothesize that collaboration in this setting is driven, at least in part, by
similarity of practice, a form of homophily. On the other hand, we could similarly
hypothesize that collaboration is instead driven by shared office location, which
could be interpreted as a proxy for distance. Because the eigenmodel formulation of
latent network models is able to capture aspects of both distance and homophily,
it is interesting to compare the fitted models that we obtain for three different

16 The package latentnet, in the statnet suite of tools, implements other variants of latent network
models, such as latent distance models.
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eigenmodels, specifying (i) no pair-specific covariates, (ii) a covariate for common
practice, and (iii) a covariate for shared office location, respectively.

To fit the model with no pair-specific covariates and a latent eigen-space of Q= 2
dimensions is accomplished as follows.17

#6.23 1 > library(eigenmodel)
2 > set.seed(42)
3 > A <- get.adjacency(lazega, sparse=FALSE)
4 > lazega.leig.fit1 <- eigenmodel_mcmc(A, R=2, S=11000,
5 + burn=10000)

In order to include the effects of common practice, we create an array with that
information

#6.24 1 > same.prac.op <- v.attr.lazega$Practice %o%
2 + v.attr.lazega$Practice
3 > same.prac <- matrix(as.numeric(same.prac.op
4 + %in% c(1, 4, 9)), 36, 36)
5 > same.prac <- array(same.prac,dim=c(36, 36, 1))

and fit the model with this additional argument

#6.25 1 > lazega.leig.fit2 <- eigenmodel_mcmc(A, same.prac, R=2,
2 + S=11000, burn=10000)

Finally, we do similarly for the model that includes information on shared office
locations.

#6.26 1 > same.off.op <- v.attr.lazega$Office %o%
2 + v.attr.lazega$Office
3 > same.off <- matrix(as.numeric(same.off.op %in%
4 + c(1, 4, 9)), 36, 36)
5 > same.off <- array(same.off,dim=c(36, 36, 1))
6 > lazega.leig.fit3 <- eigenmodel_mcmc(A, same.off,
7 + R=2, S=11000, burn=10000)

In order to compare the representation of the network lazega in each of the
underlying two-dimensional latent spaces inferred for these models, we extract the
eigenvectors for each fitted model

#6.27 1 > lat.sp.1 <-
2 + eigen(lazega.leig.fit1$ULU_postmean)$vec[, 1:2]
3 > lat.sp.2 <-
4 + eigen(lazega.leig.fit2$ULU_postmean)$vec[, 1:2]
5 > lat.sp.3 <-
6 + eigen(lazega.leig.fit3$ULU_postmean)$vec[, 1:2]

and plot the network in igraph using these coordinates as the layout.18 For example,

17 The arguments S and burn chosen in our example ask that a ‘burn-in’ of 10,000 iterations be
used to initiate our MCMC sampler, after which the following 1,000 iterations are used to perform
posterior inference.
18 Conventions of vertex color, shape, and label are the same as in Fig. 1.1 in Chap. 1, and are
specified in R in the same manner as seen in Chap. 3.
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#6.28 1 > colbar <- c("red", "dodgerblue", "goldenrod")
2 > v.colors <- colbar[V(lazega)$Office]
3 > v.shapes <- c("circle", "square")[V(lazega)$Practice]
4 > v.size <- 3.5*sqrt(V(lazega)$Years)
5 > v.label <- V(lazega)$Seniority
6 > plot(lazega, layout=lat.sp.1, vertex.color=v.colors,
7 + vertex.shape=v.shapes, vertex.size=v.size,
8 + vertex.label=v.label)

generates the visualization corresponding to the fit without any pair-specific covari-
ates, and those for the other two models are obtained similarly (Fig. 6.3).
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Fig. 6.3 Visualizations of the network of Lazega’s lawyers, with layouts determined according
to the inferred latent eigenvectors in models with no pair-specific covariates (left), a covariate for
common practice (center), and a covariate for shared office location (right)

Examination of these three visualizations indicates that while the first two are
somewhat similar, the third is distinct. In particular, while the lawyers in the first
two visualizations appear to be clustered into two main groups distinguished largely
by common office location (i.e., color), in the third there appears to be only one
main cluster. These observations suggest that common practice explains compar-
atively much less coarse-scale network structure than shared office location. And,
indeed, when shared office location is taken into account, there is decidedly less
structure left to be captured by the latent variables. Comparison of the posterior
means of the elements in Λ̂ for each of these models reinforces these conclusions,
in that for the first two models there is one eigenvalue that clearly dominates the
other, corresponding to the axis on which we obtain a clear separation between the
two groups, whereas for the third model the eigenvalues are comparable in their
magnitude.

#6.29 1 > apply(lazega.leig.fit1$L_postsamp, 2, mean)
2 [1] 0.2603655 1.0384032
3 > apply(lazega.leig.fit2$L_postsamp, 2, mean)
4 [1] 0.9083401 -0.1385321
5 > apply(lazega.leig.fit3$L_postsamp, 2, mean)
6 [1] 0.5970403 0.3112896
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6.4.4 Goodness-of-Fit

Here again, in assessing the goodness-of-fit of a latent network model we could,
of course, use the same types of simulation-based methods we employed in the
analysis of ERGMs (i.e., illustrated in Fig. 6.1). Alternatively, a more global sense
of goodness-of-fit can be obtained by using principles of cross-validation. Specifi-
cally, a common practice in network modeling is to assess the accuracy with which,
in fitting a model to a certain subset of the network, the remaining part of the
network may be predicted. This notion usually is implemented through K-fold cross-
validation, wherein the observed values yi j are partitioned into K subsets (e.g., K = 5
is a standard choice), and the values in those subsets are predicted after training the
same model on each of the complements of those subsets.

For example, consider the model fit above to the data lazega with no pair-
specific covariates. After initiating a permutation of the 36× 35/2 = 630 unique
off-diagonal elements of the symmetric adjacency matrix, and initializing vector-
based representations of the corresponding lower triangular portion of this matrix

#6.30 1 > perm.index <- sample(1:630)
2 > nfolds <- 5
3 > nmiss <- 630/nfolds
4 > Avec <- A[lower.tri(A)]
5 > Avec.pred1 <- numeric(length(Avec))

the process of cross-validation is implemented in the following lines.

#6.31 1 > for(i in seq(1, nfolds)){
2 > # Index of missing values.
3 > miss.index <- seq(((i-1) * nmiss + 1),
4 + (i * nmiss), 1)
5 > A.miss.index <- perm.index[miss.index]
6 >
7 > # Fill a new Atemp appropriately with NA’s.
8 > Avec.temp <- Avec
9 > Avec.temp[A.miss.index] <-

10 + rep("NA", length(A.miss.index))
11 > Avec.temp <- as.numeric(Avec.temp)
12 > Atemp <- matrix(0, 36, 36)
13 > Atemp[lower.tri(Atemp)] <- Avec.temp
14 > Atemp <- Atemp + t(Atemp)
15 >
16 > # Now fit model and predict.
17 > Y <- Atemp
18 >
19 > model1.fit <- eigenmodel_mcmc(Y, R=2,
20 + S=11000, burn=10000)
21 > model1.pred <- model1.fit$Y_postmean
22 > model1.pred.vec <-
23 + model1.pred[lower.tri(model1.pred)]
24 > Avec.pred1[A.miss.index] <-
25 + model1.pred.vec[A.miss.index]
26 > }
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Similarly, we can do the same for the models fit above with pair-specific co-
variates for common practice and shared office location, respectively, yielding, say,
Avec.pred2 and Avec.pred3. The results of the predictions generated under
each of these three models can be assessed by examination of the corresponding
receiver operating characteristic (ROC) curves.19

For example, using the package ROCR, an ROC curve for the predictions based
on our first model are generated as follows.

#6.32 1 > library(ROCR)
2 > pred1 <- prediction(Avec.pred1, Avec)
3 > perf1 <- performance(pred1, "tpr", "fpr")
4 > plot(perf1, col="blue", lwd=3)

The ROC curves for each of our three latent network models for the Lazega lawyer
network are shown in Fig. 6.4. We see that from the perspective of predicting edge
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Fig. 6.4 ROC curves comparing the goodness-of-fit to the Lazega network of lawyer collaboration
for three different eigenmodels, specifying (i) no pair-specific covariates (blue), (ii) a covariate for
common practice (red), and (iii) a covariate for shared office location (yellow), respectively

status, all three models appear to be comparable in their performance and to perform
reasonably well, with an area under the curve (AUC) of roughly 80%.

19 An ROC curve is used commonly in classification problems. The term refers to a curve obtained
by plotting the true positive rate of a classifier against the true negative rate, as a threshold (or
similar parameter) is varied across its natural range, where the threshold is applied to the predicted
values to discriminate between two classes of interest. Here, since the predictions are posterior
probabilities, the threshold is varied from 0 to 1, with vertex pairs for which the posterior proba-
bility of an edge is above threshold being predicted to have an edge.
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#6.33 1 > perf1.auc <- performance(pred1, "auc")
2 > slot(perf1.auc, "y.values")
3 [[1]]
4 [1] 0.820515

6.5 Additional Reading

Of the three model classes discussed in this chapter, ERGMs have by far the longest
and most extensive development, which has been summarized in the review article
by Robins et al. [126] and detailed in the book by Lusher et al. [105]. For network
block models and latent network models, the seminal articles (such as those refer-
enced above) are at this time still the best resources for additional details.



Chapter 7
Network Topology Inference

7.1 Introduction

Network graphs are constructed in all sorts of ways and to varying levels of
completeness. In some settings, there is little if any uncertainty in assessing whether
or not an edge exists between two vertices and we can exhaustively assess in-
cidence between vertex pairs. For example, in examining one’s own network of
Facebook friends, the presence or absence of an edge can be assessed through
direct inspection. In other settings, however, constructing a network graph is not
so straightforward. We may have information only on the status of some of the
potential edges in the network, but not all. Alternatively, we may not even have the
ability to directly assess whether or not an edge is present. Rather, it may be that
we can only measure vertex or edge attributes that are to some extent predictive of
edge status. In such cases, it can be natural to consider the task of constructing a
network graph representation from the available data as one of statistical inference.

To be more precise, suppose that, broadly speaking, we have a set of measure-
ments from a system of interest, such as vertex attributes x= (x1, . . . ,xNv)

T or binary
indicators y = [yi j] of certain edges but not others, or both x and y, and we have a
collection G of potential network graphs G. We might then take as our goal to select
an appropriate member of G that best captures the underlying state of the system,
based upon the information in the data as well as any other prior information, using
techniques of statistical modeling and inference. That is, we might pose the problem
as one of network topology inference.

In this chapter, we will focus on three particular classes of problems in net-
work topology inference. Each class of problems is somewhat ‘canonical’ in na-
ture, being easily posed in more than just a single specific network context. More
specifically, in Sect. 7.2 we consider the problem of inferring whether or not a pair
of vertices does or does not have an edge between them (i.e., inference of ‘edge’ or
‘non-edge’ status), using measurements that include a subset of vertex pairs whose
edge/non-edge status is already observed. This problem is commonly referred to as
link prediction. Next, in Sect. 7.3, we discuss the inference of association networks.

E.D. Kolaczyk and G. Csárdi, Statistical Analysis of Network Data with R, Use R! 65,
DOI 10.1007/978-1-4939-0983-4 7, © Springer Science+Business Media New York 2014
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Here the relation defining edges is taken by definition to be a nontrivial level of
association (e.g., correlation) between certain characteristics of the vertices, but is
itself unobserved and must be inferred from measurements reflecting these charac-
teristics. Finally, we examine problems of tomographic network inference briefly in
Sect. 7.4. These problems are distinguished by the fact that measurements are avail-
able only at vertices that are somehow at the ‘perimeter’ of the network, and it is
necessary to infer the presence or absence of both edges and vertices in the ‘interior.’

The ordering of these three classes of problems has a general progression.
The first assumes knowledge of all of the vertices and the status of some of the
edges/non-edges of the network graph, and seeks to infer the rest of the edges/non-
edges. The second starts with no knowledge of edge status anywhere in the network
graph, but assumes relevant measurements at all of the vertices and seeks to infer
edge status throughout the network using these measurements. The third involves
measurements at only a particular subset of vertices, which nevertheless indirectly
provide some information useful for inferring the unknown topology of the rest of
the network graph. A visual characterization of these three types of problems is
shown in Fig. 7.1.

7.2 Link Prediction

Let Y be the random Nv ×Nv binary adjacency matrix for a network graph G =
(V,E). Suppose that we observe only some of the entries of Y, while others
are missing. Denote the observed and missing elements of Y as Yobs and Ymiss,
respectively. The problem of link prediction is to predict the entries in Ymiss, given
the values Yobs = yobs and possibly various vertex attribute variables X = x =
(x1, . . . ,xNv)

T . In other words, we wish to predict whether ‘potential edges’ between
pairs of vertices in a network graph are present or absent using information provided
by a subset of observed edges/non-edges and, if available, vertex attributes.

There are a number of variants of the link prediction problem that have been
formulated, arising in settings ranging from information networks (e.g., Liben-
Nowell and Kleinberg [101], Popescul and Ungar [123], Taskar et al. [137]), to
social networks (e.g., Hoff [72]), to biomolecular networks (e.g., Goldberg and
Roth [65], Bader et al. [7]). Besides differing in context, these variants of the prob-
lem can also differ, importantly, in why and how the values in Ymiss are missing.
Sometimes there is simply a temporal component to the problem and, for example,
edges may be ‘missing’ only in the sense that they are absent up to a certain point
in time and then become present, as in Liben-Nowell and Kleinberg [101] and their
study of the growth of the World Wide Web network graph. In many cases, however,
all edges and non-edges effectively coincide in time, but the status of potential edges
is missing due to issues of sampling. In this latter case the underlying mechanism
of missingness can be important.

A common assumption (e.g., Hoff [72], Taskar et al. [137]), and one we shall
make here as well, is that the missing information on edge presence/absence is miss-
ing at random. This assumption means, essentially, that the probability that an edge
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Fig. 7.1 Visual characterization of three types of network topology inference problems, for a toy
network graph G. Edges shown in solid; non-edges, dotted. Observed vertices and edges shown
in dark (i.e., red and blue, respectively); un-observed vertices and edges, in light (i.e., pink and
light blue). Top left: True underlying graph G. Top right: Link prediction. Bottom left: Association
network inference. Bottom right: Tomographic network inference

variable Yi j is observed depends only on the values of those other edge variables
observed and not, for example, on its own value.1

Given an appropriate model for X and (Yobs,Ymiss), such as those discussed in
Chap. 6, we might aim to jointly predict the elements of Ymiss based on the induced
model for

P

(
Ymiss |Yobs = yobs, X = x

)
. (7.1)

But serious pursuit of this strategy entails, in part, successfully meeting the various
challenges of modeling network graphs already described in Chap. 6, and in addition
modeling the missingness in an appropriate fashion.

Perhaps not surprisingly, therefore, to date most model-based efforts in this area
have instead focused upon the comparatively more manageable task of predict-
ing the variables Y miss

i j individually. Not only does this approach simplify matters

1 See Little and Rubin [103], for example, for a more formal definition and a general introduction
to such missing data concepts.
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considerably in many ways, but it also appears to in fact be a strong competitor to
methods that predict the variables Y miss

i j jointly. See Taskar et al. [137], for example.
In fact, we have already seen this approach demonstrated in the use of cross-

validation as a framework for assessing model goodness-of-fit, in Sect. 6.4. There
the values that we leave out for each of the K folds are indeed missing-at-random,
by design. And the predictions for the status of each potential edge between vertex
pairs i and j were based on the posterior expectation of Yi j under our model.

Alternatively, scoring methods—methods based on the use of score functions—
although somewhat less formal than model-based approaches, are nevertheless pop-
ular and can be quite effective. With scoring methods, for each pair of vertices i
and j whose edge status is unknown, a score s(i, j) is computed. A set of predicted
edges may then be returned either by applying a threshold s∗ to these scores, for
some fixed s∗, or by ordering them and keeping those pairs with the top n∗ values,
for some fixed n∗.

There are many types of scores that have been proposed in the literature. They
generally are designed to assess certain structural characteristics of a network graph
Gobs = (V obs,Eobs) associated with Yobs = yobs. A simple score, inspired by the
‘small-world’ principle, is negative the shortest-path distance between i and j,

s(i, j) =−distGobs(i, j) . (7.2)

The negative sign in (7.2) is present so as to have larger score values indicate vertex
pairs more likely to share an edge.

There are also a number of scores based on comparison of the observed neighbor-
hoods N obs

i and N obs
j of i and j in Gobs, the simplest being the number of common

neighbors

s(i, j) = |N obs
i ∩N obs

j | . (7.3)

To illustrate the potential of simple scoring methods like this, recall the network
fblog of French political blogs. The number of nearest common neighbors for
each pair of vertices in this network, excluding—if incident to each other—the two
vertices themselves, may be computed in the following manner.

#7.1 1 > library(sand)
2 > nv <- vcount(fblog)
3 > ncn <- numeric()
4 > A <- get.adjacency(fblog)
5 >
6 > for(i in (1:(nv-1))){
7 + ni <- neighborhood(fblog, 1, i)
8 + nj <- neighborhood(fblog, 1, (i+1):nv)
9 + nbhd.ij <- mapply(intersect, ni, nj, SIMPLIFY=FALSE)
10 + temp <- unlist(lapply(nbhd.ij, length)) -
11 + 2 * A[i, (i+1):nv]
12 + ncn <- c(ncn, temp)
13 + }
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In Fig. 7.2 we compare the scores s(i, j) for those vertex pairs that are not incident
to each other (i.e., ‘no edge’), and those that are (i.e., ‘edge’), using so-called violin
plots.2

#7.2 1 > library(vioplot)
2 > Avec <- A[lower.tri(A)]
3 > vioplot(ncn[Avec==0], ncn[Avec==1],
4 + names=c("No Edge", "Edge"))
5 > title(ylab="Number of Common Neighbors")

It is evident from this comparison that there is a decided tendency towards larger
scores when there is in fact an edge present. Viewing the calculation we have done
here as a ‘leave-one-out’ cross-validation, and calculating the area under the curve
(AUC) of the corresponding ROC curve,

#7.3 1 > library(ROCR)
2 > pred <- prediction(ncn, Avec)
3 > perf <- performance(pred, "auc")
4 > slot(perf, "y.values")
5 [[1]]
6 [1] 0.9275179

we obtain further confirmation of the power of this score statistic to discriminate
between edges and non-edges in this network.
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Fig. 7.2 Comparison of the number of common neighbors score statistic [i.e., (7.3)] in the network
of French political blogs, grouped according to whether or not an edge is actually present between
a vertex pair, for all vertex pairs

2 These plots combine a traditional boxplot (in the middle) with a kernel density estimate, running
in a symmetric fashion to either side.
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Other choices of similar score statistics include a standardized version of this
value, called the Jaccard coefficient,

s(i, j) =
|N obs

i ∩N obs
j |

|N obs
i ∪N obs

j | , (7.4)

and a variation on this idea due to Liben-Nowell and Kleinberg [101], extending a
more general idea of Adamic and Adar [1], of the form

s(i, j) = ∑
k∈N obs

i ∩N obs
j

1

log |N obs
k | . (7.5)

This last score in (7.5) has the effect of weighting more heavily those common
neighbors of i and j that are themselves not highly connected.

7.3 Association Network Inference

Often the rule used for defining edges in the network graph representation of a given
data set is that there be a sufficient level of ‘association’ between certain attributes
of the two incident vertices. Such association networks are found in many domains
and include networks of citation patterns across scientific articles, networks of actors
co-starring in movies, networks of regulatory influence among genes, and networks
of functional connectivity between regions of the brain.

Frequently the rules defining edges in such networks are specified without
statistics necessarily playing an explicit role. While such rule-based approaches
are appropriate in some contexts, in other contexts, where issues of sampling or
measurement error are of potential concern, it may be necessary to incorporate
statistical principles and methods into the process of constructing an association
network graph. That is, the problem becomes one of association network inference.

Formally, we may suppose we have a collection of elements represented as ver-
tices v ∈ V . Furthermore, suppose that each such vertex v has corresponding to it
a vector x of m observed vertex attributes, yielding a collection {x1, . . . ,xNv} of
attribute vectors. Let sim(i, j) be a user-specified quantification of the inherent sim-
ilarity between the pair of vertices i, j ∈ V , and assume that it is accompanied by
a corresponding notion of what value(s) of sim(i, j) constitute a ‘non-trivial’ level
of association between i and j. We are interested here in the case where sim is not
itself directly observable, but nevertheless the attributes {xi} contain sufficiently
useful information to make inference on sim conceivable.

There are of course countless choices for sim in practice. Here we concentrate on
two common and popular linear measures of association—correlation and partial
correlation—and the corresponding methods for inferring an association network
based upon them.

We will illustrate these methods in the context of gene regulatory networks. The
data in Ecoli.expr contain two objects.
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#7.4 1 > rm(list=ls())
2 > data(Ecoli.data)
3 > ls()
4 [1] "Ecoli.expr" "regDB.adj"

The first is a 40 by 153 matrix of (log) gene expression levels in the bacteria
Escherichia coli (E. coli), measured for 153 genes under each of 40 different ex-
perimental conditions, averaged over three replicates of each experiment. The data
are a subset of those published in [54]. The genes are actually so-called transcription
factors, which in general are known to play a particularly important role in the net-
work of gene regulatory relationships. The experiments were genetic perturbation
experiments, in which a given gene was ‘turned off’, for each of 40 different genes.
The gene expression measurements are an indication of the level of activity of each
of the 153 genes under each of the given experimental perturbations.

In Fig. 7.3 is shown a heatmap visualization of these data.

#7.5 1 > heatmap(scale(Ecoli.expr), Rowv=NA)

The genes (columns) have been ordered according to a hierarchical clustering of
their corresponding vectors of expression levels. Due to the nature of the process of
gene regulation, the expression levels of gene regulatory pairs often can be expected
to vary together. We see some visual evidence of such associations in the figure,
where certain genes show similar behavior across certain subsets of experiments.
This fact suggests the value of constructing an association network from these data,
as a proxy for the underlying network(s) of gene regulatory relationships at work, a
common practice in systems biology.

The second object in this data set is an adjacency matrix summarizing our
(incomplete) knowledge of actual regulatory relationships in E. coli, extracted from
the RegulonDB database3 at the same time the experimental data were collected.
We coerce this matrix into a network object

#7.6 1 > library(igraph)
2 > g.regDB <- graph.adjacency(regDB.adj, "undirected")
3 > summary(g.regDB)
4 IGRAPH UN-- 153 209 --
5 attr: name (v/c)

and note that there are 209 known regulatory pairs represented. Visualizing this
graph

#7.7 1 > plot(g.regDB, vertex.size=3, vertex.label=NA)

we see, examining the result in Fig. 7.4, that these pairs are largely contained within
a single connected component.

The information in the graph g.regDB represents a type of aggregate truth set,
in that some or all of these gene–gene regulatory relationships may be active in
the biological organism under a given set of conditions. As such, the graph will be
useful as a point of reference in evaluating on these data the methods of association
network inference we introduce below.

3 http://regulondb.ccg.unam.mx/.
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Fig. 7.3 Heatmap visualization of gene expression patterns over 40 experiments (rows) for 153
genes (columns)

7.3.1 Correlation Networks

Let X be a (continuous) random variable of interest corresponding to the vertices
in V . A standard measure of similarity between vertex pairs is sim(i, j) = ρi j, where

ρi j = corrXi,Xj =
σi j√σiiσ j j

(7.6)
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Fig. 7.4 Network of known regulatory relationships among 153 genes in E. coli

is the Pearson product-moment correlation between Xi and Xj, expressed in terms of
the entries of the covariance matrix Σ = {σi j} of the random vector (X1, . . . ,XNv)

T

of vertex attributes.
Given this choice of similarity, a natural criterion defining association between i

and j is that ρi j be non-zero. The corresponding association graph G is then just the
graph (V,E) with edge set

E =
{
{i, j} ∈V (2) : ρi j �= 0

}
. (7.7)

This graph is often called a covariance (correlation) graph.
Given a set of observations of the Xi, the task of inferring this association network

graph can be taken as equivalent to that of inferring the set of non-zero correlations.
One way this task can be approached is through testing4 the hypotheses

H0 : ρi j = 0 versus H1 : ρi j �= 0 . (7.8)

However, there are at least three important issues to be faced in doing so. First, there
is the choice of test statistic to be used. Second, given a test statistic, an appropriate
null distribution must be determined for the evaluation of statistical significance.
And third, there is the fact that a large number of tests are to be conducted simulta-
neously (i.e., for all Nv(Nv − 1)/2 potential edges), which implies that the problem
of multiple testing must be addressed.

4 Another way is through the use of penalized regression methods, similar to those that we discuss
in Sect. 7.3.3.
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Suppose that for each vertex i ∈ V , we have n independent observations
xi1, . . . ,xin of Xi. As test statistics, the empirical correlations

ρ̂i j =
σ̂i j√
σ̂iiσ̂ j j

(7.9)

are a common choice, where the σ̂i j are the corresponding empirical versions of the
σi j in (7.6).

To calculate these values across all gene pairs in our expression data is straight-
forward.

#7.8 1 > mycorr <- cor(Ecoli.expr)

However, it is more common to work with transformations of these values. For ex-
ample, Fisher’s transformation,

zi j = tanh−1(ρ̂i j) =
1
2

log

[
(1+ ρ̂i j)

(1− ρ̂i j)

]
(7.10)

can be helpful as a variance stabilizing transformation. If the pair of variables
(Xi,Xj) has a bivariate normal distribution, the density of ρ̂i j under H0 : ρi j = 0
is known to be well approximated by that of a Gaussian random variable with mean
zero and variance 1/(n− 3), for sufficiently large n.

Accordingly, we transform the correlations in mycorr following (7.10),

#7.9 1 > z <- 0.5 * log((1 + mycorr) / (1 - mycorr))

and calculate p-values by comparing to the appropriate normal distribution.

#7.10 1 > z.vec <- z[upper.tri(z)]
2 > n <- dim(Ecoli.expr)[1]
3 > corr.pvals <- 2 * pnorm(abs(z.vec), 0,
4 + sqrt(1 / (n-3)), lower.tail=FALSE)

In assessing these p-values, however, it is necessary to account for the fact that we
are conducting

#7.11 1 > length(corr.pvals)
2 [1] 11628

tests simultaneously. The R function p.adjust may be used to calculate p-values
adjusted for multiple testing. Here we apply a Benjamini-Hochberg adjustment,
wherein p-values are adjusted through control of the false discovery rate.5

5 The false discovery rate (FDR) is defined to be

FDR= E

(
R f alse

R

∣∣∣R > 0

)
P(R > 0) , (7.11)

where R is the number of rejections among m tests and R f alse is the number of false rejections.
Benjamini and Hochberg [11] provide a method for controlling the FDR at a user-specified level γ
by rejecting the null hypothesis for all tests associated with p-values p( j) ≤ ( j/m)γ , where p( j) is
the jth smallest p-value among the m tests.
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#7.12 1 > corr.pvals.adj <- p.adjust(corr.pvals, "BH")

Comparing these values to a standard 0.05 significance level, we find a total of

#7.13 1 > length(corr.pvals.adj[corr.pvals.adj < 0.05])
2 [1] 5227

gene pairs implicated. This number is far too large to be realistic, and an order
of magnitude larger than in the aggregate network shown in Fig. 7.4. Simple diag-
nostics (e.g., using the qqnorm function to produce normal QQ plots) show that,
unfortunately, the assumption of normality for the Fisher transformed correlations
z is problematic with these data. As a result, any attempt to assign edge status to the
5227 ‘significant’ vertex pairs above is highly suspect.

Fortunately, being in a decidedly ‘data rich’ situation, with over 11 thousand
unique elements in z, we have the luxury to use data-dependent methods to learn
the null distribution. The R package fdrtool implements several such methods.

#7.14 1 > library(fdrtool)

The methods in this package share the characteristic that they are all based on
mixture models for some statistic S, of the form

f (s) = η0 f0(s)+ (1−η0) f1(s) , (7.12)

where f0(s) denotes the probability density function of S under the null hypothesis
H0, and f1(s), under the alternative hypothesis H1, with η0 effectively serving as the
fraction of true null hypotheses expected in the data. Both f0 and f1 are estimated
from the data, as is the mixing parameter η0. In this framework, multiple testing is
controlled through control of various notions of false discovery rates.

Here, taking the statistic S to be the empirical correlation (7.9) and using the
default options in the main function fdrtool within fdrtool,

#7.15 1 > mycorr.vec <- mycorr[upper.tri(mycorr)]
2 > fdr <- fdrtool(mycorr.vec, statistic="correlation")

results in the output summarized in Fig. 7.5. Note that the histogram of (absolute)
empirical correlation coefficients shows a single and widely dispersed mode whose
shape, although little resembling a normal distribution, can be easily estimated from
the data. Note too, however, that with an estimate of η̂0 = 1, the method is indicating
that all of the correlation coefficients are judged to come from the single density
function f0. Accordingly, the false discovery rate is estimated to be 100% no matter
what threshold might be applied to the correlations.

Hence, using an empirically derived null distribution, which more accurately
captures the behavior of the data in this case, we are led to the conclusion that
the correlation network we seek to infer is in fact the empty graph. A more apt
interpretation, however, is simply that the combination of (a) choice of similarity,
(b) sample size, and (c) distribution of effect size together have made it impossible
in this data to discern a clear difference between edges and non-edges. We shall see
momentarily that the use of a more nuanced notion of similarity leads to decidedly
different results.
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Type of Statistic: Correlation (kappa = 5.5, eta0 = 1)
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Fig. 7.5 Analysis of the empirical correlation coefficients for the gene expression data. Top: Esti-
mated components f0 and f1 of the mixture in (7.12). Middle: Estimated density f . Bottom: False
discovery rate

7.3.2 Partial Correlation Networks

The oft-cited dictum ‘correlation does not imply causation’ should be kept in mind
when constructing association networks based on Pearson’s correlation and the like.
Two vertices i, j ∈ V may have highly correlated attributes Xi and Xj because the
vertices somehow strongly ‘influence’ each other in a direct fashion. Alternatively,
however, their correlation may be high primarily because, for example, they each
are strongly influenced by a third vertex, say k ∈ V , and hence Xi and Xj are each
highly correlated with Xk. The extent to which this issue is problematic or not will
of course depend in no small part on the intended usage of the network graph G we
seek to infer. But if it is felt desirable to construct a graph G where the inferred edges
are more reflective of direct influence among vertices, rather than indirect influence,
the notion of partial correlation becomes relevant.
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In words, the partial correlation of attributes Xi and Xj of vertices i, j ∈ V ,
defined with respect to the attributes Xk1 , . . . ,Xkm of vertices k1, . . . ,km ∈ V \ {i, j},
is the correlation between Xi and Xj left over after adjusting for those effects of
Xk1 , . . . ,Xkm common to both. Formally, letting Sm = {k1, . . . ,km}, we define the
partial correlation of Xi and Xj, adjusting for XSm = (Xk1 , . . . ,Xkm)

T , as

ρi j|Sm =
σi j|Sm√σii|Smσ j j|Sm

. (7.13)

Here σii|Sm ,σ j j|Sm , and σi j|Sm = σ ji|Sm are the diagonal and off-diagonal elements,
respectively, of the 2× 2 partial covariance matrix

Σ11|2 = Σ11 −Σ12Σ−1
22 Σ21 , (7.14)

where Σ11, Σ22, and Σ12 = ΣT
21 are defined through the partitioned covariance matrix

Cov

(
W1

W2

)
=

[
Σ11 Σ12

Σ21 Σ22

]
, (7.15)

for W1 = (Xi,Xj)
T and W2 =XSm . If (Xi,Xj,Xk1 , . . . ,Xkm)

T has a multivariate Gaus-
sian distribution, then ρi j|Sm = 0 if and only if Xi and Xj are independent conditional
on XSm . For more general distributions, however, zero partial correlation will not
necessarily imply independence (the converse, of course, is still true).

Note that in the case of m = 0, the partial correlation in (7.13) reduces to the
Pearson correlation in (7.6). In addition, there are recursive expressions that relate
each mth order partial correlation coefficient to three (m− 1)th order coefficients.
For example, in the case of m = 1, the partial correlation of the attribute values Xi

and Xj, for two vertices i and j, adjusted for the attribute value Xk of a third vertex
k, is given by

ρi j|k =
ρi j −ρikρ jk√(

1−ρ2
ik

)(
1−ρ2

jk

) . (7.16)

For the general case see, for example, Anderson [5, Chap. 2.5.3].
Partial correlations can be used in various ways for defining an association

network graph G, with respect to vertex attributes X1, . . . ,XNv . For example, for a
given choice of m, we may dictate that an edge be present only when there is corre-
lation between Xi and Xj regardless of which m other vertices are conditioned upon.
That is,

E =
{
{i, j} ∈V (2) : ρi j|Sm �= 0, for all Sm ∈V (m)

\{i, j}
}

, (7.17)

where V (m)
\{i, j} is the collection of all unordered subsets of m (distinct) vertices from

V \ {i, j}. Other choices are clearly possible as well.
Under the definition of edges in (7.17), the problem of determining the presence

or absence of a potential edge {i, j} in G can be represented as one of testing
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H0 : ρi j|Sm = 0 for some Sm ∈V (m)
\{i, j}

versus

H1 : ρi j|Sm �= 0 for all Sm ∈V (m)
\{i, j} . (7.18)

In order to infer an association network graph in this context, given measurements
xi1, . . . ,xin for each vertex i ∈ V , we must again select a test statistic, construct an
appropriate null distribution, and adjust for multiple testing, as above.

Analogous to the empirical correlation coefficient ρ̂i j in (7.9), the empirical par-
tial correlation coefficient, ρ̂i j|Sm , is a natural estimate of ρi j|Sm . And, similarly,
Fisher’s transformation

zi j|Sm =
1
2

log

[
(1+ ρ̂i j|Sm)

(1− ρ̂i j|Sm)

]
(7.19)

is often used in place of the partial correlations themselves. Under the assumption
that the joint distribution of attributes (Xi,Xj,Xk1 , . . . ,Xkm)

T is a multivariate normal
distribution, this statistic has an approximate normal distribution, with mean 0 and
variance 1/(n−m− 3).

In approaching the testing problem in (7.18), it can be convenient to consider it
as a collection of smaller testing sub-problems of the form

H ′
0 : ρi j|Sm = 0 versus H ′

1 : ρi j|Sm �= 0 , (7.20)

for which ρ̂i j|Sm is a natural test statistic. A test of (7.18) may then be constructed
from the tests of the sub-problems (7.20) through aggregation. For example, Wille
et al. [148] suggest combining the information in p-values pi j|Sm , over all Sm, by
defining

pi j,max = max
{

pi j|Sm : Sm ∈V (m)
\{i, j}

}
(7.21)

to be the p-value for the test of (7.18), where the pi j|Sm are the p-values for the tests
of (7.20).

By way of illustration, recall the gene expression data Ecoli.expr that we
analyzed in the previous section. We let m = 1, meaning that we define our network
graph G that we will infer to be an association network where edges indicate
correlation between the expression of gene pairs even after adjusting for the contri-
butions of any other single gene. The following code utilizes the recursion in (7.16)
to compute the corresponding empirical partial correlation coefficients, and ap-
proximates the distribution of the Fisher transformation of each such coefficient
by a normal, with mean 0 and variance 1/(n− 4). Finally, p-values are assigned
according to (7.21).

#7.16 1 > pcorr.pvals <- matrix(0, dim(mycorr)[1],
2 + dim(mycorr)[2])
3 > for(i in seq(1, 153)){
4 + for(j in seq(1, 153)){
5 + rowi <- mycorr[i, -c(i, j)]
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6 + rowj <- mycorr[j, -c(i, j)]
7 + tmp <- (mycorr[i, j] -
8 + rowi*rowj)/sqrt((1-rowiˆ2) * (1-rowjˆ2))
9 + tmp.zvals <- (0.5) * log((1+tmp) / (1-tmp))

10 + tmp.s.zvals <- sqrt(n-4) * tmp.zvals
11 + tmp.pvals <- 2 * pnorm(abs(tmp.s.zvals),
12 + 0, 1, lower.tail=FALSE)
13 + pcorr.pvals[i, j] <- max(tmp.pvals)
14 + }
15 + }

Adjusting for multiple testing, as in the previous section,

#7.17 1 > pcorr.pvals.vec <- pcorr.pvals[lower.tri(pcorr.pvals)]
2 > pcorr.pvals.adj <- p.adjust(pcorr.pvals.vec, "BH")

and applying a nominal threshold of 0.05, we see that a total of

#7.18 1 > pcorr.edges <- (pcorr.pvals.adj < 0.05)
2 > length(pcorr.pvals.adj[pcorr.edges])
3 [1] 25

edges have been discovered under this analysis. Creating the corresponding network
graph

#7.19 1 > pcorr.A <- matrix(0, 153, 153)
2 > pcorr.A[lower.tri(pcorr.A)] <- as.numeric(pcorr.edges)
3 > g.pcorr <- graph.adjacency(pcorr.A, "undirected")

and comparing to the aggregate network in Fig. 7.4,

#7.20 1 > str(graph.intersection(g.regDB, g.pcorr, byname=FALSE))
2 IGRAPH UN-- 153 4 --
3 + attr: name (v/c)
4 + edges (vertex names):
5 [1] yhiW_b3515_at--yhiX_b3516_at
6 [2] rhaR_b3906_at--rhaS_b3905_at
7 [3] marA_b1531_at--marR_b1530_at
8 [4] gutM_b2706_at--srlR_b2707_at

we find that four of these 25 edges are among those established in the biological
literature.

Alternatively, the analogous analysis of these same data using fdrtool, fitting
a mixture model directly now to the p-values in pcorr.pvals.vec, yields the
same number of edges.

#7.21 1 > fdr <- fdrtool(pcorr.pvals.vec, statistic="pvalue",
2 + plot=FALSE)
3 > pcorr.edges.2 <- (fdr$qval < 0.05)
4 > length(fdr$qval[pcorr.edges.2])
5 [1] 25

It may be easily verified that these are in fact the same edges as above, thus
suggesting a certain robustness of our results.
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7.3.3 Gaussian Graphical Model Networks

A special—and, indeed, popular—case of the use of partial correlation coefficients
is when m = Nv − 2 and the attributes are assumed to have a multivariate Gaussian
joint distribution. Here the partial correlation between attributes of two vertices is
defined conditional upon the attribute information at all other vertices. Denoting
these coefficients as ρi j|V\{i, j}, under the Gaussian assumption the vertices i, j ∈ V
have partial correlation ρi j|V\{i, j} = 0 if and only if Xi and Xj are conditionally
independent given all of the other attributes. The graph G = (V,E) with edge set

E =
{
{i, j} ∈V (2) : ρi j|V\{i, j} �= 0

}
(7.22)

is called a conditional independence graph.6 The overall model, combining the mul-
tivariate Gaussian distribution with the graph G, is called a Gaussian graphical
model.

A useful result in the context of Gaussian graphical models is that the partial
correlation coefficients may be expressed in the form

ρi j|V\{i, j} =
−ωi j√ωiiω j j

, (7.23)

where ωi j is the (i, j)th entry of Ω = Σ−1, the inverse of the covariance matrix Σ of
the vector (X1, . . . ,XNv)

T of vertex attributes. See Lauritzen [97, Chap. 5.1] or Whit-
taker [147, Chap. 5.8], for example. The matrix Ω is known as the concentration or
precision matrix, and its non-zero off-diagonal entries, occurring as they do in the
numerator of (7.23), are linked in one-to-one correspondence with the edges in G.
As a result, G also is sometimes referred to as a concentration graph.

The problem of inferring G from data in this context was originally termed
the ‘covariance selection problem’ by Dempster [45]. Traditionally, recursive,
likelihood-based procedures have been used that effectively test the hypotheses

H0 : ρi j|V\{i, j} = 0 versus H1 : ρi j|V\{i, j} �= 0 , (7.24)

using the empirical partial correlations ρ̂i j|V\{i, j}, defined as in (7.23), but with

the entries of Ω̂ = Σ̂−1 in place of those of Ω , where Σ̂ is the usual unbiased estimate
of covariance. However, for large-scale network graphs, it has arguably become
the standard to use penalized regression methods to infer G, exploiting a variation
of the well-known connection between linear correlation and linear regression.

Suppose that the random vector (X1, . . . ,XNv)
T of vertex attributes has a

multivariate Gaussian distribution, with covariance Σ , as assumed above, and
also zero mean. Then a standard result yields that, for the attribute Xi of a
fixed vertex i, given the values of the attributes at the remaining vertices, say
X(−i) = (X1, . . . ,Xi−1,Xi+1, . . . ,XNv)

T , its conditional expectation has the form

6 Note that it is actually the non-edges in G that correspond to conditional independence, and the
edges, to conditional dependence.
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E[Xi |X(−i) = x(−i) ] =
(

β (−i)
)T

x(−i) , (7.25)

where β (−i) is an (Nv − 1)-length parameter vector. See, for example, Johnson
and Wichern [84, Chap. 4]. Furthermore, importantly, the entries of β (−i) can be

expressed in terms of the entries of the precision matrix Ω , as β (−i)
j = −ωi j/ωii.

See Lauritzen [97, Appendix C]. Hence, a potential edge {i, j} is in the edge set E

defined by (7.22) if and only if β (−i)
j (and, therefore, also β (− j)

i ) is not equal to zero.
These observations suggest that inference of G be pursued via inference of the

non-zero elements of β (−i) in (7.25), using regression-based methods of estimation
and variable selection. In fact, it can be shown that the vector β (−i) is the solution
to the optimization problem

arg min
β̃ :β̃i=0

E

[(
Xi −

(
β̃ (−i)

)T
X(−i)

)2
]

. (7.26)

It is natural, therefore, to replace this problem by a corresponding least-squares
optimization. However, because there will be Nv − 1 variables in the regression for
each Xi, and in addition it may be the case that n � Nv, a penalized regression
strategy is prudent.

Meinshausen and Bühlmann [110], for example, have suggested using estimates
of the form

β̂ (−i) = arg min
β :βi=0

n

∑
k=1

(
xik −

(
β (−i)

)T
x(−i)

k

)2

+ λ ∑
j �=i

∣∣∣β (−i)
j

∣∣∣ . (7.27)

This strategy is based on the use of the Lasso method of Tibshirani [138], which not

only estimates the coefficients in β (−i) but also forces values β̂ (−i)
j = 0 where the

association between Xi and Xj is felt to be too weak, with respect to the choice of
penalty parameter λ . In other words, the Lasso methodology performs simultaneous
estimation and variable selection, a characteristic due to the particular form of the
penalty.

There are several practical concerns that must be addressed in order to put the
above ideas into practice. These include (i) assessing the extent to which the data
conform to a multivariate normal assumption, and (ii) choice of the penalty parame-
ter λ . The R package huge—for ‘high-dimensional, undirected graph estimation’—
integrates solutions addressing both of these issues. The main function huge gen-
erates an initial set of estimates, following several pre-processing steps that seek to
transform the data to have marginal distributions close to normal and to stabilize the
overall estimation problem. The default method of estimation adopts the criterion
in (7.27) above.

#7.22 1 > library(huge)
2 > set.seed(42)
3 > huge.out <- huge(Ecoli.expr)
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The choice of penalty parameter can be determined by either of two procedures, the
first being a so-called ‘rotational information criterion’ (i.e., in the spirit of more
traditional criteria like AIC or BIC), and the second, a method based on principles
of subsampling, called stability selection. The former procedure is understood to be
prone to under-selection, while the latter, to over-selection.

Applying the former to our gene expression data returns an empty graph.

#7.23 1 > huge.opt <- huge.select(huge.out, criterion="ric")
2 > summary(huge.opt$refit)
3 153 x 153 sparse Matrix of class "dsCMatrix", with 0 entries
4 [1] i j x
5 <0 rows> (or 0-length row.names)

Conversely, applying the latter, we arrive at a network graph that is substantially
more dense.

#7.24 1 > huge.opt <- huge.select(huge.out, criterion="stars")
2 > g.huge <- graph.adjacency(huge.opt$refit, "undirected")
3 > summary(g.huge)
4 IGRAPH U--- 153 759 --

Comparisons indicate that this new network fully contains the network we obtained
previously using partial correlation

#7.25 1 > str(graph.intersection(g.pcorr, g.huge))
2 IGRAPH U--- 153 25 --
3 + edges:
4 [1] 145--146 144--146 112--125 112--113 109--138
5 [6] 108--135 97--111 96--119 92--107 87--104
6 [11] 86-- 87 84--129 81--137 72--141 70-- 75
7 [16] 60--127 46-- 77 42-- 43 38--153 37-- 98
8 [21] 27--123 21-- 33 12--135 9-- 90 3-- 60

and, moreover, contains 22 edges among those established in the biological
literature.

#7.26 1 > str(graph.intersection(g.regDB, g.huge, byname=FALSE))
2 IGRAPH UN-- 153 22 --
3 + attr: name (v/c)
4 + edges (vertex names):
5 [1] yhiW_b3515_at--yhiX_b3516_at
6 [2] tdcA_b3118_at--tdcR_b3119_at
7 [3] rpoE_b2573_at--rpoH_b3461_at
8 [4] rpoD_b3067_at--tyrR_b1323_at
9 [5] rhaR_b3906_at--rhaS_b3905_at

10 [6] nac_b1988_at --putA_b1014_at
11 [7] marA_b1531_at--marR_b1530_at
12 [8] malT_b3418_at--rpoD_b3067_at
13 [9] hns_b1237_at --rcsB_b2217_at
14 [10] hipA_b1507_at--hipB_b1508_at
15 [11] himA_b1712_at--himD_b0912_at
16 [12] gutM_b2706_at--srlR_b2707_at
17 [13] fruR_b0080_at--mtlR_b3601_at
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18 [14] flhD_b1892_at--lrhA_b2289_at
19 [15] crp_b3357_at --srlR_b2707_at
20 [16] crp_b3357_at --pdhR_b0113_at
21 [17] crp_b3357_at --oxyR_b3961_at
22 [18] crp_b3357_at --malT_b3418_at
23 [19] crp_b3357_at --galS_b2151_at
24 [20] caiF_b0034_at--rpoD_b3067_at
25 [21] caiF_b0034_at--hns_b1237_at
26 [22] arcA_b4401_at--lldR_b3604_at

7.4 Tomographic Network Topology Inference

Tomographic network topology inference is named in analogy to tomographic imag-
ing7 and refers to the inference of ‘interior’ components of a network—both vertices
and edges—from data obtained at some subset of ‘exterior’ vertices. Here ‘exterior’
and ‘interior’ are somewhat relative terms and generally are used simply to distin-
guish between vertices where it is and is not possible (or, at least, not convenient) to
obtain measurements. For example, in computer networks, desktop and laptop com-
puters are typical instances of ‘exterior’ vertices, while Internet routers to which we
do not have access are effectively ‘interior’ vertices.

With information only obtainable through measurements at ‘exterior’ vertices,
the tomographic network topology inference problem can be expected to be quite
difficult in general. This difficulty is primarily due to the fact that, for a given set
of measurements, there are likely many network topologies that conceivably could
have generated them, and without any further constraints on aspects like the number
of internal vertices and edges, and the manner in which they connect to one another,
we have no sensible way of choosing among these possible solutions.

In order to obtain useful solutions to such problems, therefore, additional
information must be incorporated into the problem statement by way of model
assumptions on the form of the internal structure to be inferred. A key structural
simplification has been the restriction to inference of networks in the form of trees.
In fact, nearly all work in this area to date has focused on this particular version of
the problem.

7.4.1 Constraining the Problem: Tree Topologies

Recall that an (undirected) tree T = (VT ,ET ) is a connected graph with no cycles.
A rooted tree is a tree in which a vertex r ∈ VT has been singled out. The subset
of vertices R ⊂ VT of degree one are called the leaves; we will refer to the vertices
in V \ {{r}∪R} as the internal vertices. The edges in ET are often referred to as
branches.

7 In the field of imaging, tomography refers to the process of imaging by sections, such as is done
in medical imaging contexts like X-ray tomography or positron emission tomography (PET).
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For example, in Fig. 7.6 is shown the logical topology, during a period of 2001,
of that portion of the Internet leading from a desktop computer in the Electrical
and Computer Engineering Department at Rice University to similar machines at
ten other university locations. Specifically, two of the destination machines were
located on a different sub-network at Rice, two at separate locations in Portugal,
and six at four other universities in the United States. The original machine at Rice
forms the root of this tree, in this representation, while the other ten machines form
the leaves. These machines are ‘exterior’ in the sense that they would be known to,
for example, their users. The other vertices, as well as the branches, are all ‘internal’
in the sense that these typically would not be known to a standard computer user.
Hence, the learning of this internal structure (from appropriate measurements) is of
natural interest.

TX

IND

Rice ECE

Rice  OwlnetM.S.U. Illinois U. Wisc.I.S.T. I.T.Berkeley

Portugal

Fig. 7.6 Computer network topology from the experiment of Castro et al. [26], representing
‘groundtruth’

It is quite common to restrict attention to binary trees. A binary tree is a rooted
tree in which, in moving from the root towards the leaves, each internal vertex has
at most two children. Trees with more general branching structure (such as that in
Fig. 7.6) can always be represented as binary trees.

We define our tomographic network inference problem as follows. Suppose that
for a set of Nl vertices—possibly a subset of the vertices V of an arbitrary graph
G=(V,E)—we have n independent and identically distributed observations of some
random variables {X1, . . . ,XNl}. Under the assumption that these vertices can be
meaningfully identified with the leaves R of a tree T , we aim to find that tree T̂ in
the set TNl of all binary trees with Nl labeled leaves that best explains the data, in
some well-defined sense. If we have knowledge of a root r, then the roots of the
trees in TNl will all be identified with r. In some contexts we may also be interested
in inferring a set of weights for the branches in T̂ .
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There are two main areas in which work on this type of network inference
problem may be found. The first is in biology and, in particular, the inference of
phylogenies. Phylogenetic inference is concerned with the construction of trees
(i.e., phylogenies) from data, for the purpose of describing evolutionary relation-
ships among biological species. See, for example, the book by Felsenstein [55]; also
useful, and shorter, are the two surveys by Holmes [75, 76]. The second is in com-
puter network analysis and the identification of logical topologies (i.e., as opposed
to physical topologies). In computer network topology identification, the goal is to
infer the tree formed by a set of paths along which traffic flows from a given origin
Internet address to a set of destination addresses. Castro et al. [27, Sect. 4] provide
a survey of this area.

The tree shown in Fig. 7.6 is an example of such a computer network topology.
In order to learn such topologies (since, in general, a map of the Internet over such
scales is not available), various techniques for probing the Internet have been de-
veloped. These probes, typically in the form of tiny packets of information, are sent
from a source computer (e.g., the root machine at Rice University in Fig. 7.6) to
various destinations (e.g., the leaf machines in Fig. 7.6), and information reflective
of the underlying topology is measured.

For example, Coates et al. [33] propose a measurement scheme they call ‘sand-
wich probing,’ which sends a sequence of three packets, two small and one large.
The large packet is sent second, after the first small packet and before the second
small packet. The two small packets are sent to one of a pair {i, j} of leaf vertices,
say i, while the large packet is sent to the other, that is, j. The basic idea is that the
large packet induces a greater delay in the arrival of the second small packet at its
destination, compared to that of the first, and that the difference in delays of the two
small packets will vary in a manner reflective of how much of the paths are shared
from the origin to i and j.

The data set sandwichprobe contains the results of this experiment, consist-
ing of (i) the measured delay between small packet pairs (in microseconds), indexed
by the destination to which the small and large packets were sent, respectively, and
(ii) the identifiers of destinations (called ‘host’ machines).

#7.27 1 > data(sandwichprobe)
2 > delaydata[1:5, ]
3 DelayDiff SmallPktDest BigPktDest
4 1 757 3 10
5 2 608 6 2
6 3 242 8 9
7 4 84 1 8
8 5 1000 7 3
9 > host.locs

10 [1] "IST" "IT" "UCBkly" "MSU1" "MSU2"
11 [6] "UIUC" "UW1" "UW2" "Rice1" "Rice2"

Figure 7.7 shows an image representation of the mean delay differences,
symmetrized to eliminate variations within each pair due to receipt of the small
packets versus the large packet.
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#7.28 1 > meanmat <- with(delaydata, by(DelayDiff,
2 + list(SmallPktDest, BigPktDest), mean))
3 > image(log(meanmat + t(meanmat)), xaxt="n", yaxt="n",
4 + col=heat.colors(16))
5 > mtext(side=1, text=host.locs,
6 + at=seq(0.0,1.0,0.11), las=3)
7 > mtext(side=2, text=host.locs,
8 + at=seq(0.0,1.0,0.11), las=1)

The hierarchical relationship among the destinations in the logical topology in
Fig. 7.6 is clearly evident in the relative magnitudes of the mean delay differences.
This association can be used to infer the topology from the delay differences.
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Fig. 7.7 Image representation of pairwise delay differences in the data of Coates et al. [33], with
increasingly darker red corresponding to lower values, and increasingly brighter yellow, to higher
values

7.4.2 Tomographic Inference of Tree Topologies: An Illustration

Broadly speaking, there are two classes of methods that have been developed quite
extensively for the tomographic inference of tree topologies: (i) those based on
hierarchical clustering and related ideas, and (ii) likelihood-based methods. Details
associated with examples of the latter class of methods, being model-based, tend
to be quite context-dependent. In contrast, simpler versions of the former class of
methods are relatively straightforward to describe and may be implemented using
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existing tools in the R base package. Therefore, although a treatment of likelihood-
based methods is beyond the scope of this book,8 we will take a look at a simple
example of how hierarchical clustering may be applied to this problem.

Given a set of Nl objects, recall from our discussion in Chap. 4.4.1 that hierar-
chical clustering is concerned with the grouping of those objects into hierarchically
nested sets of partitions, based on some notion of their (dis)similarity. And, in par-
ticular, recall that generally these nested partitions are represented using a tree. The
usage of hierarchical clustering we saw in Chap. 4.4.1 was for the purpose of graph
clustering. But it also is a natural tool to use for the tomographic inference of tree
topologies, where we treat the Nl leaves as the ‘objects’ to be clustered and the
tree corresponding to the resulting clustering as our inferred tree T̂ . It is perhaps
worth emphasizing that, whereas in standard applications of hierarchical clustering
the goal often ultimately is to select just one of the nested partitions to represent the
data, here the tree corresponding to the entire set of partitions is our focus.

Recall that hierarchical clustering methods require some notion of (dis)similarity,
which is usually constructed from the observed data, but sometimes measured
directly. In the context of our tomographic inference problem, it is logical to use
the n observations of the random variables {X1, . . . ,XNl} at the leaves to derive an
Nl ×Nl matrix of (dis)similarities.

For example, the information in the matrix delaydatamay be used to compute
the (squared) Euclidean distance between delays at each pair of destinations.

#7.29 1 > SSDelayDiff <- with(delaydata, by(DelayDiffˆ2,
2 + list(SmallPktDest, BigPktDest), sum))

The R function hclust may then be used for hierarchical clustering.

#7.30 1 > x <- as.dist(1 / sqrt(SSDelayDiff))
2 > myclust <- hclust(x, method="average")

Here we have used the inverse of distance between delays as a similarity matrix.
The choice of average for the hierarchical clustering method corresponds to using
the unweighted pair group method with arithmetic mean (UPGMA), a standard
choice and one that is quite similar to the more application-specific agglomerative
likelihood tree (ALT) method of Coates et al. [33].

The result of our hierarchical clustering is displayed in Fig. 7.8, in the form of a
dendrogram.

#7.31 1 > plot(myclust, labels=host.locs, axes=FALSE,
2 + ylab=NULL, ann=FALSE)

Comparing our inferred topology to the ground truth in Fig. 7.6, we see that many
aspects of the latter are capture by the former. For example, the fact that the two
destinations at Rice University are, naturally, much closer to the root machine at
Rice than any of the other destinations is strongly indicated. Similarly, the two

8 A brief treatment of such methods, largely from the perspective of computer network topology
inference, may be found in [91, Chap. 7.4]. In terms of software, there are a number of fairly com-
prehensive packages in R dedicated to phylogenetic tree inference. See, for example, the packages
ape and phangorn.
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machines in Portugal are found grouped together, as are the two machines at the
University of Wisconsin, and the three other machines in the midwest (i.e., two
at Michigan State, and one at the University of Illinois). Curiously, however, the
machine at Berkeley is inferred to be close to those at Wisconsin, although in reality
they appear to be well-separated in the actual topology.
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Fig. 7.8 Inferred topology, based on ‘sandwich’ probe measurements, using a hierarchical cluster-
ing algorithm

7.5 Additional Reading

Recent surveys of methods of link prediction include that of Lu and Zhou [104], in
the physics literature, and Al Hasan and Zaki [3], in the computer science literature.
For the specific problem of inferring gene regulatory networks, there are many
resources to be found, including the recent survey of Noor et al. [120]. Finally,
for more information on tomographic inference of tree topologies, the literature in
phylogenetics is extensive. See, for example, the book by Felsenstein [55] or the
surveys by Holmes [75, 76].



Chapter 8
Modeling and Prediction for Processes
on Network Graphs

8.1 Introduction

Throughout this book so far, we have seen numerous examples of network graphs
that provide representations—useful for various purposes—of the interaction among
elements in a system under study. Often, however, it is some quantity (or attribute)
associated with each of the elements that ultimately is of most interest. In such
settings it frequently is not unreasonable to expect that this quantity be influenced
in an important manner by the interactions among the elements. For example, the
behaviors and beliefs of people can be strongly influenced by their social inter-
actions; proteins that are more similar to each other, with respect to their DNA
sequence information, often are responsible for the same or related functional roles
in a cell; computers more easily accessible to a computer infected with a virus may
in turn themselves become more quickly infected; and the relative concentration of
species in an environment (e.g., animal species in a forest or chemical species in a
vat) can vary over time as a result of the nature of the relationships among species.

Quantities associated with such phenomena can usefully be thought of as stochas-
tic processes defined on network graphs. More formally, they can be represented
in terms of collections of random variables, say X , indexed on a network graph
G = (V,E), either of the form {Xi}, for i ∈ V , or {Xi(t)}, with t varying in a dis-
crete or continuous manner over a range of times. For example, the functionality
of proteins can be viewed as categorical variables associated with each i ∈ V . So
too can various behaviors and beliefs of individuals in a social community be rep-
resented using such variables, possibly indexed in time. Similarly, the spread of a
computer virus can be captured using a set of binary variables (i.e., ‘infected’ or
‘not infected’) that evolve over time.

We will refer to processes {Xi} as static processes and {Xi(t)} as dynamic
processes. Given appropriate measurements, statistical tasks that arise in the study
of such processes include their modeling and the inference of model parameters,
and also, in particular, prediction. To date, most such work arguably has been done
in the context of static processes, although this situation is beginning to change.

E.D. Kolaczyk and G. Csárdi, Statistical Analysis of Network Data with R, Use R! 65,
DOI 10.1007/978-1-4939-0983-4 8, © Springer Science+Business Media New York 2014
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Accordingly, our presentation in this chapter will concentrate largely on the case
of static processes, with the development of methods and models in Sects. 8.2
through 8.4. In addition, we briefly discuss the modeling and prediction of dynamic
processes in Sect. 8.5. Some further discussion related to this latter topic may be
found in Chap. 10.5.

8.2 Nearest Neighbor Methods

We begin by focusing on the problem of predicting a static process on a graph and
demonstrate the feasibility of doing so by examining one of the simplest of methods
for this task—nearest-neighbor prediction.

Consider a collection of vertex attributes, which, as in previous chapters, we
will express succinctly in vector form as X = (Xi). Such attributes may be inher-
ently independent of time, and hence form a truly static process, or perhaps more
commonly, may constitute a ‘snapshot’ of a dynamic process in a given ‘slice’ of
time. In Chaps. 6 and 7, such attributes were used in modeling and predicting the
presence or absence of edges in a network graph G. That is, we modeled the behavior
of the variables Y= [Yi j], conditional on X. Alternatively, however, in some contexts
it may be the behavior of X, conditional on Y, that is of interest instead.

We illustrate through the problem of protein function prediction. Recall, from
our discussion of validation of graph partitioning in Chap. 4.4.3 and of assorta-
tivity and mixing in Chap. 4.5, that the affinity of proteins to physically bind to
each other is known to be directly related to their participation in common cellular
functions. And, in fact, we found in our analysis of the data set yeast that the
external assignment of proteins to functional classes correlated to a reasonable ex-
tent with their assignment to ‘communities’ by our graph partitioning algorithms.
Furthermore, we saw examples of strong assortative mixing of protein function in
the underlying network of protein–protein interactions. While the gold standard for
establishing the functionality of proteins is through direct experimental validation
(or ‘assays’), results like these have been taken to suggest that, given the vast num-
ber of proteins yet to be annotated, it is natural to approach this problem from the
perspective of statistical prediction. Approaches to protein function prediction that
incorporate network-based information have become standard.

The data set ppi.CC

#8.1 1 > set.seed(42)
2 > library(sand)
3 > data(ppi.CC)

contains a network data object, called ppi.CC, that consists of a network of 241
interactions among 134 proteins, as well as various vertex attributes.

#8.2 1 > summary(ppi.CC)
2 IGRAPH UN-- 134 241 --
3 attr: name (v/c), ICSC (v/n), IPR000198 (v/n),
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4 IPR000403 (v/n), IPR001806 (v/n), IPR001849
5 (v/n), IPR002041 (v/n), IPR003527 (v/n)

These data pertain to Baker’s yeast—the organism formally known as Saccha-
romyces cerevisiae. They were assembled by Jiang et al. [83], from various sources,
and pertain to only those proteins annotated, as of January 2007, with the term cell
communication in the gene ontology1 (GO) database—a standard database for terms
describing protein function. The vertex attribute ICSC is a binary vector

#8.3 1 > V(ppi.CC)$ICSC[1:10]
2 [1] 1 1 1 1 1 0 1 1 1 1

indicating those proteins annotated with the GO term intracellular signaling cas-
cade (ICSC), a specific form of cellular communication.

A visualization of this network is shown in Fig. 8.1.

#8.4 1 > V(ppi.CC)[ICSC == 1]$color <- "yellow"
2 > V(ppi.CC)[ICSC == 0]$color <- "blue"
3 > plot(ppi.CC, vertex.size=5, vertex.label=NA)

We can see that there is a good deal of homogeneity to the vertex labels, with
neighbors frequently sharing the same color. This observation suggests that local
prediction of ICSC on this network graph should be feasible.

A simple, but often quite effective, method for producing local predictions is the
nearest-neighbor method. See Hastie, Tibshirani, and Friedman [71, Chap. 2.3.2],
for example, for general background on nearest-neighbor methods. For networks,
the nearest-neighbor method centers on the calculation, for a given vertex i ∈V , of
the nearest-neighbor average

∑ j∈Ni
x j

|N i| , (8.1)

i.e., the average of the values of the vertex attribute vector X in the neighborhood
Ni of i. Here |Ni| denotes the number of neighbors of i in G. Calculation of these
averages over all vertices i ∈ V corresponds to a nearest-neighbor smoothing of X
across the network.

In the context of protein function prediction, X is a binary vector, with entries
indicating whether or not each protein is or is not annotated with a function of
interest (e.g., ICSC). In predicting binary vertex attributes, the nearest-neighbor av-
erages (8.1) typically are compared to some threshold. For example, a threshold
of 0.5 is commonly used, with a nearest-neighbor average greater than this value
meaning that a majority of neighbors have the characteristic indicated by X = 1,
resulting in a prediction for Xi of 1 as well. Such methods are also known as ‘guilt-
by-association’ methods in some fields.

In order to obtain some sense as to how effective the nearest-neighbor method
might be in predicting ICSC in our yeast data set, utilizing the information available
through protein–protein interactions, we can calculate the nearest-neighbor average
for each of the proteins in the giant connected component of our network.

1 http://www.geneontology.org
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Fig. 8.1 Network of interactions among proteins known to be responsible for cell communication
in yeast. Yellow vertices denote proteins that are known to be involved in intracellular signaling
cascades, a specific form of communication in the cell. The remaining proteins are indicated in blue

#8.5 1 > clu <- clusters(ppi.CC)
2 > ppi.CC.gc <- induced.subgraph(ppi.CC,
3 + clu$membership==which.max(clu$csize))
4 > nn.ave <- sapply(V(ppi.CC.gc),
5 + function(x) mean(V(ppi.CC.gc)[nei(x)]$ICSC))

We then plot histograms of the resulting values, separated according to the status
of the vertex defining each neighborhood, i.e., according to the status of the ‘ego’
vertex, in the terminology of social networks.

#8.6 1 > par(mfrow=c(2,1))
2 > hist(nn.ave[V(ppi.CC.gc)$ICSC == 1], col="yellow",
3 + ylim=c(0, 30), xlab="Proportion Neighbors w/ ICSC",
4 + main="Egos w/ ICSC")
5 > hist(nn.ave[V(ppi.CC.gc)$ICSC == 0], col="blue",
6 + ylim=c(0, 30), xlab="Proportion Neighbors w/ ICSC",
7 + main="Egos w/out ICSC")
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The results, shown in Fig. 8.2, confirm that ICSC can be predicted with fairly
good accuracy.2 In particular, using a threshold of 0.5 would yield an error rate
of roughly 25%.

#8.7 1 > nn.pred <- as.numeric(nn.ave > 0.5)
2 > mean(as.numeric(nn.pred != V(ppi.CC.gc)$ICSC))
3 [1] 0.2598425
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Fig. 8.2 Histograms of nearest-neighbor averages for the network shown in Fig. 8.1, separated
according to the status of the vertex defining each neighborhood (i.e., ‘ego’)

Interestingly, we can push this illustration a bit further by taking advantage of the
evolving nature of biological databases like GO. In particular, the proteins annotated
in GO as not having a given biological function include both (1) those that indeed are
known not to have that function, and (2) those whose status is simply unknown. As
a result, by comparing against more recent versions of GO, it is sometimes possible
to identify proteins whose status has changed for a given functional annotation,
indicating that in the interim it has been discovered to in fact have that function.

2 A more rigorous assessment of predictive performance would use some version of cross-
validation, similar to what was used in Chap. 6.4. However, for the purposes of illustration, here
and elsewhere in this chapter we instead content ourselves with examination of the fitted values
produced by the various methods discussed, which, for sufficiently low to moderate numbers of
predictions to be made, should be reflective of actual predictive performance.
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The R package GOstats, a part of the Bioconductor package, may be used to
manipulate and analyze Gene Ontology, as contained in the database GO.db.

#8.8 1 > source("http://bioconductor.org/biocLite.R")
2 > biocLite("GOstats", suppressAutoUpdate=TRUE,
3 + suppressUpdates=TRUE)
4 > library(GOstats)
5 > library(GO.db)

And the annotations specific to the organism yeast can be obtained from the
org.Sc.sgd.db database.

#8.9 1 > biocLite("org.Sc.sgd.db", suppressAutoUpdate=TRUE,
2 + suppressUpdates=TRUE)
3 > library(org.Sc.sgd.db)

At the time of this writing, these annotations were last updated in September of
2013, roughly six years after the data in ppi.CC were assembled.

We extract those proteins with the function ICSC—now subsumed3 under the
term intercellular signaling transduction (ICST), or GO label 003556—and keep
only those that have been identified from direct experimental assay, as indicated by
the evidence code ‘IDA’.

#8.10 1 > x <- as.list(org.Sc.sgdGO2ALLORFS)
2 > current.icst <- x[names(x) == "GO:0035556"]
3 > ev.code <- names(current.icst[[1]])
4 > icst.ida <- current.icst[[1]][ev.code == "IDA"]

We then separate out the names of those proteins that had ICSC in our original data

#8.11 1 > orig.icsc <- V(ppi.CC.gc)[ICSC == 1]$name

and similarly extract the names of those proteins under the new annotations that
were present in the giant connected component of our original network.

#8.12 1 > candidates <- intersect(icst.ida, V(ppi.CC.gc)$name)

Among these candidates, there are four that have been newly discovered to have
ICSC, with the following names.

#8.13 1 > new.icsc <- setdiff(candidates, orig.icsc)
2 > new.icsc
3 [1] "YDL159W" "YHL007C" "YIL033C" "YLR362W"

And among these four, we find that two of them would have been correctly predicted
by comparing the value of their nearest-neighbor averages to a threshold of 0.5.

#8.14 1 > nn.ave[V(ppi.CC.gc)$name %in% new.icsc]
2 [1] 0.7500000 0.4166667 0.3333333 0.8750000

3 Not only do the protein annotations in GO evolve over time, as biological knowledge continues to
be developed and refined, but so too (to a lesser extent) do the actual names of those annotations,
as is the case here, with intercellular signaling cascade being replaced in the GO database by
intercellular signaling transduction.
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8.3 Markov Random Fields

The principles underlying the nearest-neighbor method can be formalized and
extended through the construction of appropriate statistical models. Such modeling
can allow, for example, for probabilistically rigorous predictive statements as well
as estimation and testing of model parameters. In addition, a modeling perspective
facilitates a systematic approach to the inclusion of both network (endogenous) and
non-network (exogenous) effects. It can also facilitate the handling of missing data.
Markov random fields (MRFs) represent one well-developed modeling paradigm
that achieves all of these goals.

8.3.1 General Characterization

Let G = (V,E) be a graph and X = (X1, . . . ,XNv)
T be a collection of discrete random

variables defined on V . We say that X is a Markov random field (MRF) on G if

P(X = x)> 0, for all possible outcomes x, (8.2)

and

P
(
Xi = xi |X(−i) = x(−i)

)
= P

(
Xi = xi |XNi = xNi

)
, (8.3)

where X(−i) is the vector (X1, . . . ,Xi−1,Xi+1, . . . ,XNv)
T and XNi is the vector of all

Xj for j ∈Ni. The positivity assumed in (8.2) for the joint distribution of X is simply
a useful technical condition. The expression in (8.3) is the key Markov condition,
asserting that Xi is conditionally independent of all other Xk, given the values of its
neighbors, where the neighborhood structure is determined by G.

The concept of an MRF can be seen as a generalization of a Markov chain
(common in the modeling of temporal data) and has its roots in statistical mechan-
ics, going back to the work of Ising [80] on ferromagnetic fields. MRFs are used
extensively in spatial statistics (e.g., see Cressie [37, Chap. 6.4]) and in image anal-
ysis (e.g., see Li [100]).

A key feature facilitating the practical usage of Markov random fields is their
equivalence, under appropriate conditions, with Gibbs random fields i.e., random
vectors X with distributions of the form

P(X = x) =
(

1
κ

)
exp{U(x)} . (8.4)

Here U(·) is called the energy function and

κ = ∑
x

exp{U(x)} , (8.5)

the partition function. Importantly, the energy function can be decomposed as a sum
over cliques in G, in the form
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U(x) = ∑
c∈C

Uc(x), (8.6)

where C denotes the set of all cliques of all sizes in G, and a clique of size 1 consists
of just a single vertex v ∈V .

In this abstract form, MRF models can involve extremely complicated
expressions, a fact which, while arguably an indication of their richness on the
one hand, can adversely impact both interpretability and computations. In practice,
these models often are simplified by assumptions of homogeneity, in the sense that
the form of the clique potentials Uc is assumed not to depend on the particular
positions of the cliques c ∈ C . Furthermore, usually cliques of only a limited size
are defined to have non-zero partition functions Uc, which reduces the complexity
of the decomposition in (8.6). This later step has direct implications on the nature
of the assumed dependency in X.

Here we will focus on a class of MRFs commonly used in network analysis for
modeling binary vertex attribute data, like the indicators of protein function (e.g.,
ICSC) discussed previously. These models are sometimes referred to as auto-logistic
models.4

8.3.2 Auto-Logistic Models

The class of auto-logistic models goes back to Besag [12], who suggested introduc-
ing the additional conditions on MRFs that (i) only cliques c ∈ C of size one or two
have non-zero potential functions Uc, and (ii) the conditional probabilities in (8.3)
have an exponential family form (i.e., a form like that in (6.1)). The first condition
is sometimes referred to as ‘pairwise-only dependence.’ Under these conditions, the
energy function takes the form

U(x) = ∑
i∈V

xiHi(xi)+ ∑
{i, j}∈E

βi jxix j, (8.7)

for some functions Hi(·) and coefficients {βi j}. Besag called the class of Markov
random field models with energy functions like that in (8.7) auto-models.

Now suppose that the Xi are binary random variables (i.e., taking on just the
values zero and one). Under appropriate normalization conditions, the functions Hi

can be made to only contribute to the expansion of U(x) in (8.6) in a non-trivial
fashion when xi = 1, in which case (8.7) can be shown to be equivalent in form to

U(x) = ∑
i∈V

αixi + ∑
{i, j}∈E

βi jxix j, (8.8)

4 For continuous-valued data, there is an analogous framework of so-called auto-Gaussian models,
which bear close structural resemblance to the class of Gaussian graphical models we have seen in
Chap. 7.3.3. We refer the reader to [91, Chap. 8.3.1] for a brief discussion of these models, in the
context of network analysis, and additional references.
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for certain parameters {αi}. The resulting MRF model is called an auto-logistic
model, because the conditional probabilities in (8.3) have the form

P
(
Xi = 1 |XNi = xNi

)
=

exp
(
αi +∑ j∈Ni

βi jx j
)

1+ exp
(
αi +∑ j∈Ni

βi jx j
) , (8.9)

indicating logistic regression of xi on its neighboring x j’s.
Assumptions of homogeneity can further simplify this model. For example, spec-

ifying that αi ≡ α and βi j ≡ β , the probability in (8.9) reduces to

Pα ,β
(
Xi = 1 |XNi = xNi

)
=

exp
(
α +β ∑ j∈Ni

x j
)

1+ exp
(
α +β ∑ j∈Ni

x j
) . (8.10)

This model can be read as dictating that the logarithm of the conditional odds that
Xi = 1 scales linearly in the number of neighbors j of i with the value Xj = 1,

log
Pα ,β

(
Xi = 1 |XNi = xNi

)
Pα ,β

(
Xi = 0 |XNi = xNi

) = α +β ∑
j∈Ni

x j. (8.11)

Hence, we see that such (homogeneous) auto-logistic models effectively can be
viewed as probabilistic extensions of nearest-neighbor methods. The R package
ngspatial allows for the specification and fitting of such models.

#8.15 1 > library(ngspatial)

More precisely, it allows for models with both endogenous and exogenous effects,
in which the logarithm of the conditional odds in (8.11) takes the form

log
Pα ,β

(
Xi = 1 |XNi = xNi ,Zi = zi

)
Pα ,β

(
Xi = 0 |XNi = xNi ,Zi = zi

) = zT
i α +β ∑

j∈Ni

(x j − μ j). (8.12)

Here the Zi are vectors of exogenous variables, indexed by vertex i, and α is a
corresponding vector of coefficients. The values μ j = {1+ exp(−zT

j α)}−1 are the
expectations of the Xj under independence, i.e., when β = 0. The presence of the
μ j amounts to a centering of the model, which has been found to be useful for
both interpretation (i.e., β in this model still reflects only dependence due to the
underlying network, just as in (8.11)) and for improved fitting [24].

The specification of such models thus requires three pieces: the network process
X to be modeled, the network G, and the set of relevant exogenous variables (if
any). Returning to our problem of predicting the protein function ICSC in the net-
work ppi.CC, the first two specifications are accomplished in ngspatial through
the following assignments.

#8.16 1 > X <- V(ppi.CC.gc)$ICSC
2 > A <- get.adjacency(ppi.CC.gc, sparse=FALSE)
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The last specification depends on what additional information we wish to incorpo-
rate. For example, if, as in (8.11), we wish only to have an intercept, then we indicate
this by

#8.17 1 > formula1 <- X ~ 1

Alternatively, biology tells us that various types of protein-specific information
besides interactions can be useful in predicting protein function. An example is
information on the genetic sequence underlying that gene coding for a given protein.
For instance, genetic motifs are short sequences of DNA thought to have biological
significance, such as by influencing the spatial configuration of proteins. Indicators
of the presence or absence of six such motifs are included with the network ppi.CC
as vertex attribute variables, each starting with the letters ‘IPR’. These are natural
candidates for exogenous variables in our model.

#8.18 1 > gene.motifs <- cbind(V(ppi.CC.gc)$IPR000198,
2 + V(ppi.CC.gc)$IPR000403,
3 + V(ppi.CC.gc)$IPR001806,
4 + V(ppi.CC.gc)$IPR001849,
5 + V(ppi.CC.gc)$IPR002041,
6 + V(ppi.CC.gc)$IPR003527)
7 > formula2 <- X ~ gene.motifs

We will see below that they indeed have nontrivial predictive power.

8.3.3 Inference and Prediction for Auto-logistic Models

As with our treatment of the nearest-neighbor method, we focus again on the
task of prediction of network processes X. However, unlike previously, we require
knowledge of the handful of parameters in our models in order to generate predic-
tions. This will, of course, be true of Markov random field models in general. In the
specific context of the auto-logistic models (8.12), it is the parameters α and β that
are needed. Given measurements of X, we can try to infer these parameters from
the data.

In principle, the task of inferring the vector (αT ,β ) is most naturally approached
through the method of maximum likelihood. But in practice this method often
proves to be intractable. Consider, for example, the auto-logistic model without
exogenous effects, in (8.10). The maximum likelihood estimate (MLE) of (α,β ) is

defined as the value
(

α̂ , β̂
)

MLE
maximizing the log-likelihood logPα ,β (X = x), a

task that can be shown to be equivalent to maximizing the expression

αM1(x)+β M11(x)−κ (α,β ) . (8.13)

Here M1(x) is the number of vertices with the attribute value 1, M11(x) is twice
the number of adjacent pairs of vertices where both have the attribute value 1,
and κ(α,β ) is the partition function for this model, corresponding to the generic
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function defined in (8.5). Unfortunately, calculation of κ(α,β ) is prohibitive, as it
requires evaluation of M1 and M11 across all 2Nv binary vectors x of length Nv, with
respect to the network graph G.

The method of maximum pseudo-likelihood, originally proposed by Besag [13]
for the analysis of spatial data, is a popular, computationally-feasible alternative
to maximum likelihood in the context of MRF models. For the specific case
of our auto-logistic models, instead of optimizing the marginal log-likelihood
logPα ,β (X = x), we instead seek to maximize the so-called pseudo log-likelihood

∑
i∈V

logPα ,β
(
Xi = xi |XNi = xNi

)
, (8.14)

which is the logarithm of the product of the conditional probabilities of each
observed xi, given the values of its neighbors.

Importantly, these conditional probabilities do not involve the partition func-
tion κ(α,β ). For the auto-logistic model without exogenous effects, in (8.10),
the maximum pseudo-likelihood estimate (MPLE) can be shown to be that value(

α̂ , β̂
)

MPLE
which maximizes

αM1(x)+β M11(x)−
Nv

∑
i=1

log

[
1+ exp

(
α +β ∑

j∈Ni

x j

)]
. (8.15)

While the solution to this optimization does not have a closed-form expression, the
piece defined by the summation over vertices i, replacing κ(α,β ) in (8.13), can now
be computed easily. In fact, the overall estimate can be computed using standard
software for logistic regression, with the Nv pairs

(
xi , ∑ j∈Ni

x j
)

serving as response
and predictor variables, respectively.

Maximum pseudo-likelihood estimates typically will differ from maximum like-
lihood estimates. Experience, however, has found them to be fairly accurate, as long
as the dependencies inherent in the full joint distribution are not too substantial to
be ignored. These estimates may be calculated for the centered auto-logistic model
defined in (8.12) using the autologistic function in ngspatial.5 For example,
we can fit the simpler of our two models to the protein interaction data as follows.

#8.19 1 > m1.mrf <- autologistic(formula1, A=A,
2 + control=list(confint="none"))

With the resulting coefficients estimated6 to be

5 In fact, the function autologistic also implements a Bayesian approach to estimation of the
parameters α and β . However, as this method is decidedly more computationally intensive, and
its implementation requires the use of parallel processing, we discuss only the pseudo-likelihood
method here, which is the default for autologistic.
6 It is also possible to obtain approximate confidence intervals of α and β using autologistic.
However, this option too requires the use of parallel processing and is thus omitted here to simplify
our exposition.
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#8.20 1 > m1.mrf$coefficients
2 (Intercept) eta
3 0.2004949 1.1351942

we see, for example, that in these data the addition of one neighboring protein with
the function ICSC is estimated to increase the log-odds of the ego protein having
ICSC by a factor of roughly 1.135.

In order to obtain some sense as to how effective we might be in predicting ICSC
using this model,7 we consider the simple prediction rule that a protein have ICSC
if the fitted probability Pα̂ ,β̂

(
Xi = 1 |XNi = xNi

)
is greater than 0.5,

#8.21 1 > mrf1.pred <- as.numeric((m1.mrf$fitted.values > 0.5))

which yields an error rate of roughly 20%.

#8.22 1 > mean(as.numeric(mrf1.pred != V(ppi.CC.gc)$ICSC))
2 [1] 0.2047244

This may be compared to the 25% error rate we witnessed with the nearest-neighbor
method. However, with respect to the four proteins that were discovered to have
ICSC between 2007 and 2013, we find that this model and the nearest-neighbor
method make similar predictions.

#8.23 1 > m1.mrf$fitted.values[V(ppi.CC.gc)$name %in% new.icsc]
2 [1] 0.7519142 0.1658647 0.2184092 0.9590030

The inclusion of gene motif information in our model

#8.24 1 > m2.mrf <- autologistic(formula2, A=A,
2 + control=list(confint="none"))

actually leads to an estimated network effect that is greater than in the previous
model, i.e., approximately 1.30.

#8.25 1 > m2.mrf$coefficients
2 (Intercept) gene.motifs1 gene.motifs2 gene.motifs3
3 5.081573e-02 1.876848e+00 1.875217e+01 1.875217e+01
4 gene.motifs4 gene.motifs5 gene.motifs6 eta
5 1.824990e+01 8.492393e-08 -1.837997e+01 1.297921e+00

And the error rate improves slightly.

#8.26 1 > mrf.pred2 <- as.numeric((m2.mrf$fitted.values > 0.5))
2 > mean(as.numeric(mrf.pred2 != V(ppi.CC.gc)$ICSC))
3 [1] 0.1889764

But perhaps most interestingly, this model appears to come much closer than the
simpler model to correctly predicting ICSC function for the four proteins of interest.

#8.27 1 > m2.mrf$fitted.values[V(ppi.CC.gc)$name %in% new.icsc]
2 [1] 0.7829254 0.4715219 0.4962188 0.7829254

7 Note that if we observe only some of the elements of X, say Xobs = xobs, and we wish to
predict the remaining elements Xmiss, then formally we should do so based on the distribution
Pα,β (X

miss|Xobs = xobs). Explicit evaluation of this distribution will be prohibitive, but it is rela-
tively straightforward to simulate from this distribution using the Gibbs sampler, a type of Markov
chain Monte Carlo algorithm. See [91, Chap. 8.3.2.2] for a brief sketch of this approach.
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8.3.4 Goodness of Fit

Similar to as was discussed earlier in Chap. 6, in the context of modeling net-
work graphs, it is important to assess the goodness-of-fit here too in the context
of MRF models. Again, at this point in time, simulation appears to be the primary
tool available for this purpose. Here, given a fitted MRF model, we would like to
simulate realizations of the network process X from this model. Various statistics
summarizing characteristics of these realizations may then be computed and
compared to what results when the same is done for the original data.

The function rautologistic in the ngspatial package can be used to simu-
late realizations of centered autologistic models. The following code simulates 100
realizations from each of the two auto-logistic models considered above for the
prediction of the protein function ICSC. For each realization X, the assortativity
coefficient ra is calculated with respect to the network ppi.CC.gc.

#8.28 1 > srand(42) # random seed for rautologistic
2 > ntrials <- 100
3 > a1.mrf <- numeric(ntrials)
4 > a2.mrf <- numeric(ntrials)
5 > Z1 <- rep(1,length(X))
6 > Z2 <- cbind(Z1, gene.motifs)
7 > for(i in 1:ntrials){
8 + X1.mrf <- rautologistic(as.matrix(Z1), A=A,
9 + theta=m1.mrf$coefficients)

10 + X2.mrf<- rautologistic(as.matrix(Z2), A=A,
11 + theta=m2.mrf$coefficients)
12 + a1.mrf[i] <- assortativity(ppi.CC.gc, X1.mrf+1,
13 directed=FALSE)
14 + a2.mrf[i] <- assortativity(ppi.CC.gc, X2.mrf+1,
15 directed=FALSE)
16 + }

The assortativity coefficient for the originally observed labels of ICSC function is
roughly 0.37—fairly high, consistent with our findings that ICSC may be predicted
reasonably well from protein–protein interactions.

#8.29 1 > assortativity(ppi.CC.gc, X+1, directed=FALSE)
2 [1] 0.3739348

Comparing this value to the distribution of those values obtained under our two
models, we find that it falls in the upper quartile.

#8.30 1 > summary(a1.mrf)
2 Min. 1st Qu. Median Mean 3rd Qu. Max.
3 0.09915 0.22210 0.28050 0.28900 0.35300 0.47980
4 > summary(a2.mrf)
5 Min. 1st Qu. Median Mean 3rd Qu. Max.
6 0.04049 0.20570 0.25750 0.26020 0.32080 0.48150

This suggests that the goodness-of-fit of our models, while not bad, can likely still
be improved upon.
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8.4 Kernel Methods

The probabilistic models we have just seen postulate a precise form for the
dependency structure among vertex attributes Xi, with respect to the topology of the
underlying graph G. But in some contexts, such as when prediction of unobserved
vertex attributes is the only goal, it may be felt sufficient simply to ‘learn’ from
the data a function relating the vertices to their attributes. The nearest-neighbor
methods discussed in Sect. 8.2 in principle yield such a function, albeit implic-
itly. For a more explicit construction, a regression-based approach i.e., essentially
regression on the graph G, would seem appealing. However, standard methods of
regression, such as classical least squares regression, being set up as they are for
relating response and predictor variables in Euclidean space, are not immediately
applicable to graph-indexed data.

Kernel methods have been found to be useful for extending the classical
regression paradigm to various settings with non-traditional data. At the most
basic level, these methods consist of (i) a generalized notion of predictor variables
(i.e., encoded in a so-called ‘kernel’), and (ii) regression of a response on these
generalized predictors using a penalized regression strategy. In this section we first
introduce the notion of a kernel on a graph, and we then discuss the basic kernel
approach to regression modeling in the context of graphs.

8.4.1 Designing Kernels on Graphs

At the heart of kernel methods is the notion of a kernel function. Broadly speaking,
kernels can be thought of as functions that produce similarity matrices. The predic-
tor variables used in the kernel regression are in turn derived from these similarity
matrices. In the present context of kernel regression on network graphs, the kernel
describes the similarity among vertices in the underlying graph G. Since G itself
often is defined to represent such similarities, it is common to construct kernels that
summarize the topology of G.

Formally, a function K, receiving vertex pairs (i, j) as input and returning a real
value as output, is called a (positive semi-definite) kernel if, for each m = 1, . . . ,Nv

and subset of vertices {i1, . . . , im} ∈ V , the m×m matrix K(m) = [K(i j, i j′)] is sym-
metric and positive semi-definite.8

Although vertex proximity—and, hence, hopefully similarity—is naturally en-
coded in the adjacency matrix A, it is more common to see the graph Laplacian
used in the context of kernel regression. Recall from Chap. 4.4.2 that the graph
Laplacian is defined as L = D−A, where D = diag [(dv)]. The Laplacian kernel is
defined simply as the (pseudo)inverse of the Laplacian, i.e., K = L−.

8 A matrix M ∈ IRm is positive semi-definite if xT Mx ≥ 0, for all x ∈ IRm.



8.4 Kernel Methods 149

More precisely, write L = ΦΓ ΦT , where Φ and Γ = diag[(γi)] are Nv × Nv

orthogonal and diagonal matrices, respectively, arising through the eigen-
decomposition of L. Then the (pseudo)inverse is given by

L− =
Nv

∑
i=1

f (γi)φiφT
i , (8.16)

where φi is the i-th column of Φ and

f (γ) =
{

γ−1, if γ �= 0 ,
0, otherwise .

(8.17)

It is not difficult to show that L− is symmetric and positive semi-definite, and hence
a proper kernel matrix.

Why might L− be a reasonable choice of kernel? We shall see shortly that in
kernel regression the values of a vertex process X on a graph G are predicted through
linear combinations of the eigen-vectors φi. That is, through quantities of the form
h = Φβ . However, in order to better constrain the choice of such quantities, in
fitting to data, penalized regression strategies are used, wherein β T Γ β = ∑Nv

i=1 γiβ 2
i

is encouraged to be ‘small’. But

β T Γ β = β T ΦT ΦΓ ΦT Φβ
= hT Lh. (8.18)

Furthermore, it can be shown that

hT Lh = ∑
{i, j}∈E

(hi − h j)
2. (8.19)

So β T Γ β in (8.18) will be small if and only if hT Lh in (8.19) is small, which in
turn is the case when the values of h assigned to vertices i and j adjacent in G are
close, so as to reduce the magnitude of the differences hi − h j.

In other words, use of the kernel K = L− will encourage kernel regression to
seek vectors h = Φβ that are locally ‘smooth’ with respect to the topology of G. In
this sense, therefore, kernel regression can be made to behave similarly on network
graphs to the manner in which we have already seen nearest-neighbor and Markov
random field methods to behave.

By way of illustration, consider again the network ppi.CC of protein interac-
tions. In Fig. 8.3 are shown the weights f (γi) defining the Laplacian kernel K = L−
in (8.16) for the giant connected component of this network.

#8.31 1 > L <- as.matrix(graph.laplacian(ppi.CC.gc))
2 > e.L <- eigen(L)
3 > nv <- vcount(ppi.CC.gc)
4 > e.vals <- e.L$values[1:(nv-1)]
5 > f.e.vals <- c((e.vals)ˆ(-1), 0)
6 > plot(f.e.vals, col="magenta", xlim=c(1, nv),
7 + xlab=c("Index i"), ylab=expression(f(gamma[i])))
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Because this subgraph is connected, the smallest eigenvalue γmin of L is zero, and all
others are positive. Upon inversion of the nonzero eigenvalues, through application
of the function f in (8.17), we see that there are a relatively small percentage (e.g.,
the last 20 or so) of rather large weights f (γi), with the rest being comparatively
much smaller.

As a result of this behavior of the weights, we know that the structure of
K is largely governed by the structure of a correspondingly small percentage of
eigen-vectors. In Fig. 8.4 is shown a visual representation of the eigen-vectors cor-
responding to the three largest weights. The first is produced through the following
code.

#8.32 1 > e.vec <- e.L$vectors[, (nv-1)]
2 > v.colors <- character(nv)
3 > v.colors[e.vec >= 0] <- "red"
4 > v.colors[e.vec < 0] <- "blue"
5 > v.size <- 15 * sqrt(abs(e.vec))
6 > l <- layout.fruchterman.reingold(ppi.CC.gc)
7 > plot(ppi.CC.gc, layout=l, vertex.color=v.colors,
8 + vertex.size=v.size, vertex.label=NA)

The other two are produced similarly, with nv-1, in the first line, replaced by nv-2
and nv-3, respectively. For each of these eigen-vectors we see evidence of large
clusters of vertices with values of similar sign and magnitude, indicative of smooth
behavior on the network graph.
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Fig. 8.3 Plot of the weights f (γi) defining the Laplacian kernel K = L− in (8.16)
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Fig. 8.4 Visual representation of the eigenvectors φi corresponding to the largest, second largest,
and third largest (left to right) weights f (γi) for the protein interaction network ppi.CC.gc. Neg-
ative values are shown in blue, and positive values, in red, with the area of each vertex proportional
to the magnitude of its entry in the corresponding eigenvector

We will use the R package kernlab to apply kernel regression methods to our
problem of modeling and predicting processes on network graphs.

#8.33 1 > library(kernlab)

This package contains implementations of a variety of kernel-based machine learn-
ing methods. The Laplacian kernel for our protein–protein interaction network is
constructed and declared a kernel object as follows.

#8.34 1 > K1.tmp <- e.L$vectors %*% diag(f.e.vals) %*%
2 + t(e.L$vectors)
3 > K1 <- as.kernelMatrix(K1.tmp)

The notion of a kernel is quite general and so, not surprisingly, there are a variety
of other ways that a kernel can be defined in our context. For example, Smola and
Kondor [132] introduced a more general class of kernels, based on a certain notion
of ‘regularization,’ wherein the function f in (8.17) is replaced by various other
choices of smooth function. Alternatively, we may wish to combine multiple sources
of information in constructing our kernel. A common approach to doing so is to
encode each separate source of information into its own kernel and to then define
the kernel K as a convex combination of those kernels (so as to maintain symmetry
and positive definiteness).

For example, recall that inclusion of the gene motif information in the matrix
gene.motifs was useful for predicting ICSC protein function with Markov
random field models. A straightforward way in which to encode this information in
a kernel is through the use of inner products, resulting in a so-called inner-product
kernel.

#8.35 1 > K.motifs <- gene.motifs %*% t(gene.motifs)
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Giving equal weight9 to both this and our Laplacian kernel results in a kernel that
now incorporates both endogenous and exogenous network information.

#8.36 1 > K2.tmp <- 0.5 * K1.tmp + 0.5 * K.motifs
2 > K2 <- as.kernelMatrix(K2.tmp)

8.4.2 Kernel Regression on Graphs

We now formalize the notion of kernel regression on graphs and illustrate the type
of performance that can be obtained in the context of our prediction problem. Let
G = (V,E) be a network graph and X = (X1, . . . ,XNv) a vertex attribute process.
From the perspective of kernel regression, our goal is to learn from the data an
appropriate function, say ĥ, mapping from V to IR, that describes well the manner
in which attributes vary across the vertices. More precisely, given a kernel K, with
eigen-decomposition K = ΦΔΦT , in kernel regression we seek to find an optimal
choice of h within the class

H K =
{

h : h = Φβ and β T Δ−1β < ∞
}
, (8.20)

where h is an Nv-length vector.
In order to choose an appropriate element h in H K , say ĥ, a penalized regression

strategy is employed in kernel regression in an effort to enforce that ĥ both be close
to the observed data and be sufficiently smooth (i.e., in the sense of (8.19) or,
equivalently, (8.18), being small). Specifically, an estimate ĥ = Φβ̂ is produced by
selecting that β̂ that minimizes

∑
i∈V obs

C (xi ; (Φβ )i) + λ β T Δ−1β , (8.21)

where V obs ⊆ V denotes the set of vertices i at which we have observations Xi = xi,
C(·; ·) is a convex function that measures the loss incurred through predicting its
first argument by its second, (Φβ )i denotes that element of Φβ corresponding to
i ∈V obs, and λ is a tuning parameter.

The optimization in (8.21) is a type of complexity-penalized estimation strategy.
The role of the predictor variable is played by the columns of the matrix Φ (i.e.,
the eigenvectors of the kernel matrix K), and that of the response variable, by the
observed elements of X. The loss captured by C(·; ·) encourages goodness of fit in
the model, while the term β T Δ−1β penalizes excessive complexity, in the sense
that eigenvectors with small eigenvalues are penalized more harshly than those with
large eigenvalues. The parameter λ dictates the relative importance of the loss versus
the complexity penalty, and is typically chosen in a data-dependent fashion.

9 More ambitiously, these weights in turn may be chosen in a data-adaptive fashion. See, for ex-
ample, [102, 150, 96, 38, 39].
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For certain choices of loss, the optimal solution to the minimization of the expres-
sion in (8.21) has a closed form. In general, however, numerical methods must be
used. The details of the implementation depend on the specific choices of loss func-
tion C(·; ·). In kernlab, for the problem of regression with binary response variables,
a standard choice of loss function is implemented in the functionksvm. Specifically,
the loss

C(x;h) = [max(0,1− x̃h)]2 (8.22)

is used, where x̃ = 2x−1, mapping the values x = 0 or 1 to −1 and +1, respectively.
This choice corresponds to what is known as a 2-norm soft-margin support vector
machine.

Returning to our motivating problem of predicting ICSC using our network of
protein interactions, we use the Laplacian kernel K1 defined earlier as input to ksvm
and extract the resulting fitted values, which ksvm produces in the form of 0 or 1
values10.

#8.37 1 > m1.svm <- ksvm(K1, X, type="C-svc")
2 > m1.svm.fitted <- fitted(m1.svm)

Comparing these fitted values to the originally observed indicators of ICSC func-
tion, we see that this kernel regression produces an error rate of 11%, roughly half
of that of the analogous MRF model.

#8.38 1 > mean(as.numeric(m1.svm.fitted != V(ppi.CC.gc)$ICSC))
2 [1] 0.1102362

Furthermore, the model accurately predicts ICSC function for the four proteins of
interest.

#8.39 1 > m1.svm.fitted[V(ppi.CC.gc)$name %in% new.icsc]
2 [1] 1 1 1 1

If we now incorporate gene motif information as well, by using the kernel K2
instead of K1,

#8.40 1 > m2.svm <- ksvm(K2, X, type="C-svc")

we find that the overall error rate is again decreased by nearly half,

#8.41 1 > m2.svm.fitted <- fitted(m2.svm)
2 > mean(as.numeric(m2.svm.fitted != V(ppi.CC.gc)$ICSC))
3 [1] 0.06299213

although in this case, only two of the four proteins of interest are predicted correctly.

#8.42 1 > m2.svm.fitted[V(ppi.CC.gc)$name %in% new.icsc]
2 [1] 1 0 0 1

10 Alternatively, using the option prob.model=TRUE, probabilities may be calculated.
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8.5 Modeling and Prediction for Dynamic Processes

As remarked earlier in this chapter, many processes defined on networks are more
accurately thought of as dynamic, rather than static, processes. Examples include
a cascade of failures (e.g., as an electrical power-grid strains under a heat-wave),
the diffusion of knowledge (e.g., as a rumor spreads in a population), the search
for information (e.g., as an Internet-based search engine formulates a response to
a query), the spread of disease (e.g., as a virus propagates through a population of
humans or computers), the synchronization of behavior (e.g., as neurons fire in the
brain), and the interaction of ‘species’ in an environment (e.g., as genes in a cell
auto-regulate among themselves).

Conceptually, we may think of processes like these as time-indexed vertex
attribute processes X(t) = (Xi(t))i∈V , with t varying in a discrete or continuous
manner over a range of times. Both deterministic and stochastic perspectives are
commonly adopted for modeling such processes. Deterministic models are based
on difference and differential equations, whereas stochastic models are based on
time-indexed stochastic processes—usually Markov processes.11

While there has been a substantial amount of work done in the past 10–15 years
on the mathematical and probabilistic modeling of dynamic processes on network
graphs (see [9], for example, for a survey), there has been comparatively much less
work on the statistics. As a result, our treatment of this topic here will be similarly
limited in scope, with the goal being simply to take a quick peek at the modeling
and simulation of such processes. We illustrate within the context of one particular
class of dynamic process—epidemic processes.

8.5.1 Epidemic Processes: An Illustration

The term epidemic refers to a phenomenon that is prevalent in excess to what might
be expected. It is most commonly used in the context of diseases and their dissemi-
nation throughout a population—such as with malaria, bubonic plague, and AIDS—
but it is also at times used more broadly in other contexts, such as in describing the
spread of perceived problems in a society or the adoption of a commercial product.

Epidemic modeling has been an area of intense interest among researchers work-
ing on network-based dynamic process models. We begin our discussion here by
briefly introducing a classical model from traditional (i.e., non-network) epidemic
modeling. We then examine a network-based analogue.

11 Informally speaking, a Markov process is a stochastic process in which the future of the process
at any given point in time depends only upon its present state and not its past.
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Traditional Epidemic Modeling

The most commonly used class of continuous-time epidemic models is the class
of susceptible-infected-removed (SIR) models. In this section, we will focus on the
stochastic formulation of what is arguably the simplest member of this class—the
so-called general epidemic model.

Imagine a (closed) population of, say, N + 1 elements such that, at any point
in time t, there are some random number NS(t) of elements susceptible to infec-
tion (called ‘susceptibles’), NI(t) elements infected (called ‘infectives’), and NR(t)
elements recovered and immune (or, alternatively, removed). Starting with one in-
fective and N susceptibles, that is, with NI(0) = 1 and NS(0) = N, and letting s and
i generically denote some numbers of susceptibles and infectives, respectively, it is
assumed that the triple (NS(t),NI(t),NR(t)) evolves according to the instantaneous
transition probabilities

P(NS(t +δ t) = s−1 , NI(t +δ t) = i+1 |NS(t) = s , NI(t) = i) ≈ β siδ t (8.23)

P(NS(t +δ t) = s , NI(t +δ t) = i−1 |NS(t) = s , NI(t) = i) ≈ γ iδ t

P(NS(t +δ t) = s , NI(t +δ t) = i |NS(t) = s , NI(t) = i) ≈ 1− (β s+ γ)iδ t,

where δ t refers to the usual infinitesimal and the role of NR(t) is omitted due to the
constraint NS(t)+NI(t)+NR(t) = N + 1.

The above model states that, at any given time t, a new infective will emerge from
among the susceptibles (due to contact with and infection by one of the infectives)
with instantaneous probability proportional to the product of the number of suscepti-
bles s and the number of infectives i. Similarly, infectives recover with instantaneous
probability proportional to i. These probabilities are scaled by the parameters β and
γ , usually referred to as the infection and recovery rates, respectively. The product
form for the probability with which infectives emerge corresponds to an assump-
tion of ‘homogeneous mixing’ (or ‘mass-action,’ in chemistry) among members of
the population, which asserts that the population is (i) homogeneous and (ii) well
mixed, in the sense that any pair of members are equally likely to interact with each
other.

An equivalent formulation of the model states that, given s susceptibles and i
infectives at time t, the process remains in the state (s, i) for an amount of time
distributed as an exponential random variable, with rate (β s+ γ)i. A transition then
occurs, which will be either to the state (s−1, i+1), with probability β s/[(β s+γ)i],
or to the state (s, i− 1), with probability γi/[(β s+ γ)i].

Figure 8.5 shows a schematic characterization of the typical behavior of our
stochastic SIR process under simulation.12 Starting with a population composed
almost entirely of susceptibles and just a few infectives, we see an initial exponen-
tial increase in the number of infectives and a corresponding decrease in the number

12 Tools in the R package EpiModel may be used to generate and analyze such curves, as well as
curves corresponding to individual epidemic processes. As our primary focus is on network-based
epidemics, however, we do not explore those tools here.
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Fig. 8.5 Schematic characterization of an SIR process, showing how the relative proportions of
those susceptible (green), infective (red), and removed (yellow) vary over time

of susceptibles. This initial period is followed by a peak in the number of infectives,
after which this number decays exponentially, as the supply of susceptibles is de-
pleted and the infectives recover.

Unfortunately, despite the fact that the general epidemic SIR model captures
the gross characteristics of a canonical epidemic, the underlying assumption of
homogeneous mixing is admittedly simple and, for many diseases, too poor of an
approximation to reality. A key element lacking from these models is the natural
structure often inherent to populations. Such structure might derive from spatial
proximity (e.g., diseases of plants, in which infection occurs through the help of
carriers over short distances), social contact (e.g., sexual contact in the transmission
of AIDS), or demographics (e.g., households, age brackets, etc.). More sophisticated
models assume contact patterns that take into account such structure(s) within the
population of interest. And frequently it is convenient to represent these patterns in
the form of a graph.

Network-Based Epidemic Modeling

Let G be a network graph describing the contact structure among Nv elements in
a population. We assume that initially, at time t = 0, one vertex is infected and
the rest are susceptible. Infected vertices remain infected for an amount of time
distributed exponentially, with rate γ , after which they are considered recovered.
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During the infectious period a vertex has infectious contacts independently13 with
each neighbor, according to an exponential distribution with rate β , where an
infectious contact automatically results in infection if the other individual is suscep-
tible. Define Xi(t) = 0,1, or 2, according to whether vertex i is susceptible, infected,
or removed at time t, respectively.

Let X(t) = (Xi(t))i∈V be the resulting (continuous) time-indexed process14 on
the network graph G. Denote by x the state of the process at a given time t (i.e., the
particular pattern of 0’s, 1’s, and 2’s across the vertices in G at time t). Successive
changes of states, say from x to x′, will involve a change in one and only one element
at a time. Suppose that x and x′ differ in the i-th element. Then it may be shown that
the model just described is equivalent to specifying that

P
(

X(t + δ t) = x′ |X(t) = x
)≈

⎧⎨
⎩

β Mi(x)δ t , if xi = 0 and x′i = 1 ,
γδ t , if xi = 1 and x′i = 2 ,
1− [β Mi(x)+ γ]δ t , if xi = 2 and x′i = 2 ,

(8.24)

where we define Mi(x) to be the number of neighbors j ∈ N i for which x j = 1
(i.e., the number of neighbors of i infected at time t). Our network-based analogue
of the tradition SIR process then follows by defining the processes NS(t),NI(t), and
NR(t), counting the numbers of susceptible, infective, and removed vertices at time
t, respectively, in analogy to the traditional case.

In light of the expressions in (8.24), we can expect the characteristics of the
processes NS(t),NI(t), and NR(t) to be affected to at least some extent by the charac-
teristics of the network graph G. Simulation can be used to confirm this expectation.

We begin by generating examples of three different random graphs introduced
earlier, in Chap. 5.

#8.43 1 > gl <- list()
2 > gl$ba <- barabasi.game(250, m=5, directed=FALSE)
3 > gl$er <- erdos.renyi.game(250, 1250, type=c("gnm"))
4 > gl$ws <- watts.strogatz.game(1, 100, 12, 0.01)

The parameters have been chosen so as to guarantee graphs of roughly the same
average degree (i.e., around 10), and a number of vertices of similar order of mag-
nitude, since both are basic characteristics expected to fundamentally affect the
progression of an epidemic in ways that do not reflect interesting differences in
topology.

Setting the infection rate to be β = 0.5, and the recovery rate, to be γ = 1.0,

#8.44 1 > beta <- 0.5
2 > gamma <- 1

we use the function sir in igraph to produce

#8.45 1 > ntrials <- 100

13 Technically, independence pertains only to sufficiently small time intervals. Over the life of the
epidemic, the events that an element in the population infects two neighbors are not independent,
but rather positively correlated.
14 Formally, X(t) constitutes a continuous-time Markov chain.
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simulated epidemics on each network.

#8.46 1 > sim <- lapply(gl, sir, beta=beta, gamma=gamma,
2 + no.sim=ntrials)

The output from each simulation is an sir object, containing information about
the times at which changes of states occurred and the values of the processes
NS(t),NI(t), and NR(t) at those times. The results of plotting the total number of
infectives NI(t) for each of these three networks is shown in the first three panels of
Fig. 8.6.

#8.47 1 > plot(sim$er)
2 > plot(sim$ba, color="palegoldenrod",
3 + median_color="gold", quantile_color="gold")
4 > plot(sim$ws, color="pink", median_color="red",
5 + quantile_color="red")

Individual simulation paths, as well as their medians and 10% and 90% quantiles,
are shown in each panel.

For all three network topologies we observe an exponential rise and decay that
is qualitatively similar to that of a traditional SIR epidemic process, as shown in
Fig. 8.5. Nevertheless, it is clear that they also differ in important ways, such as in
their rates of growth and decay and in the effective duration of the epidemic. These
differences may be better seen plotting the median of the curves NI(t), for each
graph, on one plot.

#8.48 1 > x.max <- max(sapply(sapply(sim, time_bins), max))
2 > y.max <- 1.05 * max(sapply(sapply(sim, function(x)
3 + median(x)[["NI"]]), max, na.rm=TRUE))
4

5 > plot(time_bins(sim$er), median(sim$er)[["NI"]],
6 + type="l", lwd=2, col="blue", xlim=c(0, x.max),
7 + ylim=c(0, y.max), xlab="Time",
8 + ylab=expression(N[I](t)))
9 > lines(time_bins(sim$ba), median(sim$ba)[["NI"]],

10 + lwd=2, col="gold")
11 > lines(time_bins(sim$ws), median(sim$ws)[["NI"]],
12 + lwd=2, col="red")
13 > legend("topright", c("ER", "BA", "WS"),
14 + col=c("blue", "gold", "red"), lty=1)

8.6 Additional Reading

General discussion of nearest neighbor methods may be found in Hastie, Tibshirani,
and Friedman [71, Chap. 2.3.2]. For an extensive development of Markov random
fields, see Cressie [37, Chap. 6.4], where the emphasis is on modeling data on spatial
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Fig. 8.6 Realizations of the number of infectives NI(t) for the network-based SIR process sim-
ulated on an Erdős-Rényi random graph (blue), a Barabási-Albert random graph (yellow), and a
Watts-Strogatz ‘small-world’ random graph (red). Darker curves indicate the median (solid) and
the 10th and 90th percentile (dotted), over a total of 100 epidemics (shown in light curves). The
three median functions are compared in the lower right-hand plot

lattices. Standard references on kernel methods include Schölkopf and Smola [128]
and Shawe-Taylor and Cristianini [131]. Finally, for a general introduction to epi-
demic modeling, see Daley and Gani [40], for example, or Anderson and May [6],
for a more in-depth treatment.



Chapter 9
Analysis of Network Flow Data

9.1 Introduction

Many networks serve as conduits—either literally or figuratively—for flows, in the
sense that they facilitate the movement of something, such as materials, people, or
information. For example, transportation networks (e.g., of highways, railways, and
airlines) support flows of commodities and people, communication networks allow
for the flow of data, and networks of trade relations among nations reflect the flow
of capital. We will generically refer to that of which a flow consists as traffic.

Flows are at the heart of the form and function of many networks, and under-
standing their behavior is often a goal of primary interest. Much of the quantitative
work in the literature on flows is concerned with various types of problems involv-
ing, for example, questions of network design, provisioning, and routing, and their
solutions have involved primarily tools in optimization and algorithms. Questions
that are of a more statistical nature typically involve the modeling and prediction of
network flow volumes, based on relevant data, and it is upon these topics that we
will focus here.

Let G=(V,E) be a network graph. Since flows have direction, from an origin to a
destination, formally G will be a digraph. Following the convention in this literature,
we will refer to the (directed) edges in this graph as links. Traffic typically passes
over multiple links in moving between origin and destination vertices. A quantity of
fundamental interest in the study of network flows is the so-called origin-destination
(OD) matrix, which we will denote by Z = [Zi j], where Zi j is the total volume of
traffic flowing from an origin vertex i to a destination vertex j in a given period of
time. The matrix Z is also sometimes referred to as the traffic matrix.

In this chapter we will examine two statistical problems that arise in the context
of network flows, distinguished by whether the traffic matrix Z is observed or to be
predicted. More specifically, in Sect. 9.2, we consider the case where it is possible
to observe the entire traffic matrix Z and it is of interest to model these observations.
Modeling might be of interest both to obtain an understanding as to how potentially
relevant factors (e.g., costs) affect flow volumes and to be able to make predictions

E.D. Kolaczyk and G. Csárdi, Statistical Analysis of Network Data with R, Use R! 65,
DOI 10.1007/978-1-4939-0983-4 9, © Springer Science+Business Media New York 2014
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of future flow volumes. A class of models commonly used for such purposes are
the so-called gravity models. In Sect. 9.3, we consider the problem of traffic matrix
estimation. Here the case is assumed to be such that it is difficult or impossible to
observe the traffic matrix entries Zi j directly. Nevertheless, given sufficient informa-
tion on marginal flow volumes (i.e., in the form of total volumes through vertices or
over links) and on the routing of flows between origins and destinations, it is often
possible to generate accurate predictions of Z using statistical methods.

9.2 Modeling Network Flows: Gravity Models

Gravity models are a class of models, developed largely in the social sciences, for
describing aggregate levels of interaction among the people of different popula-
tions. They have traditionally been used most in areas like geography, economics,
and sociology, for example, but also have found application in other areas of the
sciences, such as hydrology and the analysis of computer network traffic. Our
interest in gravity models in this chapter will be for their use in contexts where
the relevant traffic flows are over a network of sorts.

The term ‘gravity model’ derives from the fact that, in analogy to Newton’s law
of universal gravitation, it is assumed that the interaction among two populations
varies in direct proportion to their size, and inversely, with some measure of their
separation. The concept goes back at least to the work of Carey [25] in the 1850’s,
but arguably was formulated in the strictest sense of the analogy by Stewart [136]
in 1941, and has since been developed substantially in the past 50 years. Here we
focus on a certain general version of the gravity model and corresponding methods
of inference.

9.2.1 Model Specification

We let I and J represent sets of origins i and destinations j in V , of cardinality
I = |I | and J = |J |, respectively. Furthermore, Zi j denotes—as defined in the
introduction—a measure of the traffic flowing from i ∈ I to j ∈ J over a given
period of time. Suppose that we are able to observe Z = [Zi j] in full.

For example, the data set calldata contains a set of data for phone traffic
between 32 telecommunication districts in Austria throughout a period during the
year 1991.

#9.1 1 > library(sand)
2 > data(calldata)
3 > names(calldata)
4 [1] "Orig" "Dest" "DistEuc" "DistRd" "O.GRP"
5 [6] "D.GRP" "Flow"
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These data, first described1 by Fischer and Gopal [57], consist of 32× 31 = 992
flow measurements zi j, i �= j = 1, . . . ,32, capturing contact intensity over the period
studied. In addition to basic labels of origin and destination region for each flow,
there is information on the gross regional product (GRP) for each region, which
may serve as a proxy for economic activity and income, both of which are relevant
to business and private phone calls. Finally, there are two sets of measurements
reflecting notions of distance between regions, one based on Euclidean distance and
the other road-based.

As the original data in the variable Flow are in units of erlang (i.e., number
of phone calls, including faxes, times the average length of the call divided by the
duration of the measurement period), and the gravity modeling frameworks we will
describe assume units of counts, we convert these data to quasi-counts, for the pur-
poses of illustration.

#9.2 1 > min.call <- min(calldata$Flow)
2 > calldata$FlowCnt <- round(5 * calldata$Flow / min.call)

These flow counts may be thought of as corresponding to (directed) edge weights in
a graph, where the vertices represent telecommunication districts.

#9.3 1 > W <- xtabs(FlowCnt ~ Orig + Dest, calldata)
2 > g.cd <- graph.adjacency(W, weighted=TRUE)

A plot of the resulting network graph is shown in Fig. 9.1.

#9.4 1 > in.flow <- graph.strength(g.cd, mode="in")
2 > out.flow <- graph.strength(g.cd, mode="out")
3 > vsize <- sqrt(in.flow + out.flow) / 100
4 > pie.vals <- lapply((1:vcount(g.cd)),
5 + function(i) c(in.flow[i], out.flow[i]))
6 > ewidth <- E(g.cd)$weight / 10ˆ5
7 > plot(g.cd, vertex.size=vsize, vertex.shape="pie",
8 + vertex.pie=pie.vals, edge.width=ewidth,
9 + edge.arrow.size=0.1)

Gravity models have been found to be useful in modeling such data. The gen-
eral gravity model specifies that the traffic flows Zi j be in the form of counts, with
independent Poisson distributions and mean functions of the form

E(Zi j) = hO(i) hD( j) hS(ci j), (9.1)

where hO,hD, and hS are positive functions, respectively, of the origin i, the destina-
tion j, and a vector ci j of K so-called separation attributes. On a logarithmic scale,
we therefore have

logE(Zi j) = loghO(i) + loghD( j) + loghS(ci j). (9.2)

1 Data were originally collected by Manfred Fischer and Petra Staufer.
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As we shall see momentarily, common specifications of the functions hO,hD, and
hS tend to lead to expressions on the right-hand side of (9.2) that are linear in some
unknown parameters. This log-linear form in turn facilitates the use of log-linear
methods for statistical inference on the model parameters, as we discuss below in
Sect. 9.2.2.

In general, the K elements of ci j are chosen to quantify some notion(s) of
separation ascribed to the origin-destination pair (i, j), often based on concepts of
‘distance’ or ‘cost’ of either a literal or figurative nature. The functions hO and hD

are sometimes referred to as the origin and destination functions, respectively, while
hS is commonly called the separation or deterrence function. Often the separation
function is constrained to be non-increasing in the elements of ci j.

An early and now classical example of the gravity model is that of Stew-
art [136], proposed in connection with his theory of ‘demographic gravitation,’
which specifies that

E(Zi j) = γ πO,i πD, j d−2
i j , (9.3)

where πO,i and πD, j are measures of the origin and destination population sizes,
respectively, for two geographical regions i and j, and di j is a measure of distance
between the centers of these regions. This formulation is completely analogous to
Newton’s universal law, right down to the use of a ‘demographic gravitational con-
stant’ γ . However, unlike Newton’s law, neither empirical evidence nor theoretical
arguments suggest that this form of the gravity model is strictly accurate in practical
contexts, where somewhat more flexible forms are used.
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For example, consider again the Austrian call data. The gross regional products
O.GRP and D.GRP can be used in analogy to population size, and we use the road-
based measure of distance DistRd. A comparison of these variables against flow
volume, on a logarithmic scale, is shown in Fig. 9.2.

#9.5 1 > calldata$lFlowCnt <- log(calldata$FlowCnt, 10)
2 > calldata$lO.GRP <- log(calldata$O.GRP, 10)
3 > calldata$lD.GRP <- log(calldata$D.GRP, 10)
4 > calldata$lDistRd <- log(calldata$DistRd, 10)
5 >
6 > library(car)
7 > scatterplotMatrix( ~ lFlowCnt + lO.GRP + lD.GRP +
8 + lDistRd, data=calldata)

It is evident from examination of the scatterplots in this figure that there is a
reasonably strong relationship between call volume and the origin GRP, destination
GRP, and distance. Moreover, this relationship is fairly linear (i.e., the green lines,
produced by ordinary least-squares, lie close to the solid red lines, which are the
result of a nonparametric smoother) and is increasing in origin and destination GRP
and decreasing in distance. These observations suggest that a model of the form

E(Zi j) = γ (πO,i)
α (πD, j)

β (ci j)
θ (9.4)

might be reasonable, where πO,i is the GRP of origin i, πD, j is the GRP of destination
j, and ci j is the distance from origin i to destination j. That is, a simple loglinear
model of the form

#9.6 1 > formula.s <- FlowCnt ~ lO.GRP + lD.GRP + lDistRd

seems sensible. This choice corresponds to origin and destination functions of the
form

hO(i) = (πO,i)
α and hD( j) = (πD, j)

β , (9.5)

and separation function,
hS(ci j) = (ci j)

θ (9.6)

in the general gravity model.
Alternatively, the values {hO(i)}i∈I and {hD( j)} j∈J are often simply treated as

a collection of I + J unknown parameters. For instance, adopting this specification
for the Austrian call data, while maintaining the same choice of separation function,
yields the following more general formula.

#9.7 1 > formula.g <- FlowCnt ~ Orig + Dest + lDistRd

For a comprehensive treatment of additional variations on the general gravity
model, including versions that relax the assumption of independence between origin
and destination effects implicit in the product form hO(i) × hD( j), see Sen and
Smith [130].
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Fig. 9.2 Austrian call data. Scatterplots are shown for call flow volume versus each of origin GRP,
destination GRP, and distance, along the top row, and for the latter three variables against each
other, in the other rows. All axes are on log-log scales. Superimposed on each scatterplot are two
solid lines, for descriptive purposes, showing fits based on simple linear regression (green) and a
nonparametric smoother (solid red). Density plots for each of the four variables are shown along
the diagonal

9.2.2 Inference for Gravity Models

In light of the specification that the Zi j be independent Poisson random variables
with means μi j = E(Zi j), statistical inference in the general gravity model is most
naturally approached through likelihood-based methods. Moreover, as remarked
already, typical specifications of the general gravity model are in fact log-linear
models, which in turn are a specific instance of the class of generalized linear mod-
els. See, for example, McCullagh and Nelder [107, Ch. 6]. As a result, these models
often can be fit using standard software.
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To be concrete, consider the model underlying formula.g above. This model
can be expressed in the form

log μi j = αi +β j +θ T ci j, (9.7)

where αi = loghO(i), β j = loghD( j), and θ ,ci j are vectors of length K (with K = 1
in the context of our call data example). Other cases, such as when the origin
and destination functions are parameterized, as in the expression (9.4) underlying
formula.s above, may be handled similarly.

Let Z = z be an (IJ)× 1 vector of observations of the flows Zi j, which for
convenience are usually ordered by origin i, and by destination j within origin i
(as is the case with the data set calldata). The relevant portion of the Poisson
log-likelihood for μ takes the form

�(μ) = ∑
i, j∈I×J

zi j log μi j − μi j. (9.8)

Substituting the gravity model (9.7), taking partial derivatives with respect to the
parameters αi, β j, and θk, setting the resulting equations equal to zero, and simpli-
fying, it can be shown that the maximum likelihood estimates for these parameters
must yield estimates μ̂i j = α̂i β̂ j exp(θ̂ T ci j), for μi j satisfying the equations

μ̂i+ = zi+, for i ∈I and μ̂+ j = z+ j, for j ∈J (9.9)

∑
i, j∈I×J

ci j;kμ̂i j = ∑
i, j∈I×J

ci j;kzi j , for k = 1, . . . ,K, (9.10)

where μ̂i+ = ∑ j∈J μi j and μ̂+ j = ∑i∈I μi j, and the zi+ and z+ j are defined simi-
larly. Here ci j;k denotes the kth element of ci j.

Under mild conditions, these estimates will be well defined, and furthermore, the
values θ̂k and μ̂i j will be unique. The values α̂i and β̂ j will be unique only up to
a constant, due to the fact that the underlying model is over-parameterized by one
degree of freedom.2 Note that we are assuming here, without loss of generality,
that origins i and destinations j for which zi+ = 0 or z+ j = 0 are dropped, as they
contribute nothing to the analysis.

Various algorithms may be used to calculate the maximum likelihood estimates.
Most straightforward is to use standard software for fitting log-linear models,
usually available as an option in routines for fitting generalized linear models.
These procedures are based on an iteratively re-weighted least-squares algo-
rithm, like that used in logistic regression, which derives from application of the

2 More precisely, we can write (9.7) in the form log(μ) = Mγ , where M is an (IJ)× (I + J +K)
matrix, and γ = (α1, . . . ,αI,β1, . . . ,βJ,θ1, . . . ,θK)

T is an (I + J +K)× 1 vector. The first I + J
columns of M are binary vectors, indicating the appropriate origin and destination for each entry
of μ , and are redundant in that both the first I and the next J sum to the unit vector. The last
K columns correspond to the K variables defining the ci j. Assuming that the latter are linearly
independent of themselves and of the former, the rank of M will be (I + J − 1)+K. See Sen and
Smith [130, Chap. 5.2].
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Newton-Raphson algorithm. See, for example, McCullagh and Nelder [107, Chap.
2.5] for details. Standard output includes parameter estimates and approximate
standard errors, where the latter are driven by the usual arguments for asymptotic
normality of maximum likelihood estimators.

To illustrate, we use the function glm in the R base package to fit our simple
(i.e,. formula.s) and more general (i.e., formula.g) specifications of gravity
models for the Austrian call data.

#9.8 1 > gm.s <- glm(formula.s, family="poisson", data=calldata)
2 > gm.g <- glm(formula.g, family="poisson", data=calldata)

The results of the fitted model gm.s are as follows.

#9.9 1 > summary(gm.s)
2

3 Call:
4 glm(formula=formula.s, family="poisson", data=calldata)
5

6 Deviance Residuals:
7 Min 1Q Median 3Q Max
8 -475.06 -54.16 -29.20 -2.09 1149.93
9

10 Coefficients:
11 Estimate Std. Error z value Pr(>|z|)
12 (Intercept) -1.149e+01 5.394e-03 -2131 <2e-16 ***
13 lO.GRP 1.885e+00 4.306e-04 4376 <2e-16 ***
14 lD.GRP 1.670e+00 4.401e-04 3794 <2e-16 ***
15 lDistRd -2.191e+00 7.909e-04 -2770 <2e-16 ***
16 ---
17 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
18

19 (Dispersion parameter for poisson family taken to be 1)
20

21 Null deviance: 45490237 on 991 degrees of freedom
22 Residual deviance: 10260808 on 988 degrees of freedom
23 AIC: 10270760
24

25 Number of Fisher Scoring iterations: 5

We see that effects due to origin, destination, and distance are all found to be highly
significant, as would be expected from examination of the scatterplots in Fig. 9.2.

Nevertheless, a comparison of the Akaike information criterion (AIC) statistic3

for the two models

3 The AIC statistic for a likelihood-based model, with k-dimensional parameter η , is defined as
AIC =−2�(η̂)+2k, where �(η) is the log-likelihood evaluated at η , and η̂ is the maximum like-
lihood estimate of η . This statistic, as with others of its type, provides an estimate of the general-
ization error associated with the fitted model, in this case effectively by off-setting the assessment
of how well the model fits the data by a measure of its complexity. See, for example, Hastie,
Tibshirani, and Friedman [71, Chap. 7.5] for additional details.
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#9.10 1 > gm.g$aic
2 [1] 5466814
3 > gm.s$aic
4 [1] 10270760

indicates that the more general model is vastly better than the simpler model,
without necessarily overfitting, despite the fact that the former incorporates 64 vari-
ables, compared to four variables in the latter.

A comparison of the fitted values μ̂i j, from the model gm.g, against the observed
flow volumes zi j is shown in Fig. 9.3.

#9.11 1 > plot(calldata$lFlowCnt, log(gm.g$fitted.values,10),
2 + cex.lab=1.5,
3 + xlab=expression(Log[10](paste("Flow Volume"))),
4 + col="green", cex.axis=1.5, ylab="", ylim=c(2, 5.75))
5 > mtext(expression(Log[10](paste("Fitted Value"))), 2,
6 + outer=T, cex=1.5, padj=1)
7 > abline(0, 1, lwd=2, col="darkgoldenrod1")

This comparison is shown on a log-log scale, due to the large dynamic range of the
values involved. The relationship between the two quantities is found to be fairly
linear, although arguably a bit better for medium- and large-volume flows than for
low-volume flows.

Also shown in Fig. 9.3 is a comparison of the relative errors (zi j − μ̂i j)/zi j

against the flow volumes zi j. The comparison is again on a log-log scale. For the
relative errors, the logarithm is applied to the absolute value, and then the sign of
the error is reintroduced through the use of two shades of color.

#9.12 1 > res <- residuals.glm(gm.g, type="response")
2 > relres <- res/calldata$FlowCnt
3 > lrelres <- log(abs(relres), 10)
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Fig. 9.3 Accuracy of estimates of traffic volume made by the gravity models for the Austrian
call data. Left: Fitted values versus flow volume. Right: Relative error versus flow volume, where
light and dark points indicate under- and over-estimation, respectively. All axes are on logarith-
mic scales, base ten. The lines y = x and y = 0 are shown in yellow in the left and right plots,
respectively, for reference
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4 > res.sgn <- (relres>=0)
5 >
6 > plot(calldata$lFlowCnt[res.sgn], lrelres[res.sgn],
7 + xlim=c(0.5, 5.75), ylim=c(-3.5, 3.5),
8 + xlab=expression(Log[10](paste("Flow Volume"))),
9 + cex.lab=1.5, cex.axis=1.5, ylab="", col="lightgreen")

10 > mtext(expression(Log[10](paste("Relative Error"))), 2,
11 + outer=T, cex=1.5, padj=1)
12 > par(new=T)
13 > plot(calldata$lFlowCnt[!res.sgn], lrelres[!res.sgn],
14 + xlim=c(0.5, 5.75), ylim=c(-3.5, 3.5),
15 + xlab=expression(Log[10](paste("Flow Volume"))),
16 + cex.lab=1.5, cex.axis=1.5, ylab="", col="darkgreen")
17 > mtext(expression(Log[10](paste("Relative Error"))), 2,
18 + outer=T, cex=1.5, padj=1)
19 > abline(h=0, lwd=2, col="darkgoldenrod2")

We see that the relative error varies widely in magnitude. A large proportion of the
flows are estimated with an error on the order of zi j or less (i.e., the logarithm of
relative error is less than zero), but a substantial number are estimated with an error
on the order of up to ten times zi j, and a few others are even worse. In addition, we
can see that, roughly speaking, the relative error decreases with volume. Finally, it
is clear that for low volumes the model is inclined to over-estimate, while for higher
volumes, it is increasingly inclined to under-estimate.

9.3 Predicting Network Flows: Traffic Matrix Estimation

In many types of networks, it is difficult—if not effectively impossible—to actually
measure the flow volumes Zi j on a network. Nevertheless, knowledge of traffic flow
volumes is fundamental to a variety of network-oriented tasks, such as traffic man-
agement, network provisioning, and planning for network growth. Fortunately, in
many of the same contexts in which measurement of the flow volumes Zi j between
origins and destinations is difficult, it is often relatively easy to instead measure the
flow volumes on network links. For example, in highway road networks, sensors
may be positioned at the entrances to on- and off-ramps. Similarly, routers in an
Internet network come equipped with the facility to monitor the data on incident
links. Measurements of flow volumes on network links, in conjunction with knowl-
edge of the manner in which traffic flows over these links, between origins and
destinations, can be sufficient to allow us to accurately predict origin-destination
volumes. This is known as the traffic matrix estimation problem.

Formally, let Xe denote the total flow over a given link e∈E , and let X=(Xe)e∈E .
The link totals in X can be related to the origin-destination flow volumes in Z
through the expression X=BZ, where Z now represents our traffic matrix written as
a vector and B is the so-called routing matrix, describing the manner in which traffic
moves throughout the network. The traffic matrix estimation problem then refers to
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predicting the Zi j from the observed link counts X = (Xe)e∈E . Here we will focus
on the case that each origin-destination pair (i, j) has only a single route between
them, in which case B is a binary matrix,4 with the entry in the row corresponding
to link e and the column corresponding to pair (i, j) being

Be ; i j =

{
1, if link e is traversed in going from i to j ,
0, otherwise .

(9.11)

In any case of practical interest, the traffic matrix estimation problem will be
highly under-constrained, in the sense that we effectively seek to invert the routing
matrix B in the relation X ≈ BZ, and B typically has many fewer rows (i.e., network
links) than columns (i.e., origin-destination pairs). Various additional sources of
information therefore typically are incorporated into the problem, which effectively
serve to better constrain the set of possible solutions. Methods proposed in this
area can be roughly categorized as static or dynamic, depending on whether they
are aimed at estimating a traffic matrix for a single time period or successively
over multiple time periods. In this section we will content ourselves, after a brief
illustration of the nature of the traffic estimation problem, with introducing just one
static method—the so-called tomogravity method—which has had a good deal of
success in the context of the Internet.

9.3.1 An Ill-Posed Inverse Problem

The various static methods proposed for traffic matrix estimation are similar in
that they all ultimately involve the optimization of some objective function, usually
subject to certain constraints. However, they can differ widely in the construction
of and justification for this objective function and, to a lesser extent, the constraints
imposed.

One common approach is through the use of least-squares principles, which can
be motivated by a Gaussian measurement model. This model specifies that

X = Bμ + ε, (9.12)

where X = (Xe)e∈E and B are defined as above, μ is an IJ × 1 vector of expected
flow volumes over all origin destination pairs, and ε is an Ne × 1 vector of errors.
In principle, this formulation suggests that μ be estimated through ordinary least
squares, i.e., by minimizing

(x−Bμ)T (x−Bμ) , (9.13)

4 If multiple routes are possible, the entries of B are instead fractions representing, for example,
the proportion of traffic from i to j that is expected to use the link e.
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where x is the vector of observed link flow volumes. However, typically Ne is much
smaller than IJ, and so the least-squares problem is under-determined and there will
in general be an infinite number of possible solutions μ̂ . That is, this traffic matrix
estimation problem is ill-posed.

To illustrate, we will use the data set bell.labs in the networkTomography
package.

#9.13 1 > library(networkTomography)
2 > data(bell.labs)

These data correspond to measurements of traffic flow volume on a small computer
network at Bell Laboratories, Lucent Technologies, as reported by Cao et al. [23].
The network consisted of four computing devices—named fddi, local, switch, and
corp—connected to a single router. A representation of this network is shown in
Fig. 9.4.

#9.14 1 > g.bl <- graph.formula(fddi:switch:local:corp ++ Router)
2 > plot(g.bl)

Renaming some of the variables in this data set in a manner consistent with the
notation of this chapter,

#9.15 1 > B <- bell.labs$A
2 > Z <- bell.labs$X
3 > x <- bell.labs$Y

we see that we have available to us not only the link flow volumes X and the routing
matrix B, but also the actual origin-destination flow volumes Z, the latter which
are useful for purposes of validation. The flow volumes in X and Z are in units of
average bytes per five-minute interval. The data were collected continuously over a
twenty-four period.

Ignoring the single router in this network, which simply passes on traffic it
receives, rather than itself generating traffic, there are a total of four vertices in
this network with a total of eight links (i.e., one in-going and out-going link per ver-
tex). Hence, we have 8 link-level traffic time series. Using the lattice package, and
working from the data frame version of the underlying network and measurements
encoded in bell.labs$df, we can produce a useful visualization that shows all
eight of these time series simultaneously.

#9.16 1 > library(lattice)
2 > traffic.in <- c("dst fddi", "dst switch",
3 + "dst local", "dst corp")
4 > traffic.out <- c("src fddi", "src switch",
5 + "src local", "src corp")
6 > my.df <- bell.labs$df
7 > my.df$t <- unlist(lapply(my.df$time, function(x) {
8 + hrs <- as.numeric(substring(x, 11, 12))
9 + mins <- as.numeric(substring(x, 14, 15))

10 + t <- hrs + mins/60
11 + return(t)}))
12 >
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fddi

Router

switch

local

corp

Fig. 9.4 Schematic representation of the small computer network underlying the data in
bell.labs

13 > # Separate according to whether data
14 > # are incoming or outgoing.
15 > my.df.in <- subset(my.df, nme %in% traffic.in)
16 > my.df.out <- subset(my.df, nme %in% traffic.out)
17

18 >
19 > # Set up trellis plots for each case.
20 > p.in <- xyplot(value / 2ˆ10 ~ t | nme, data=my.df.in,
21 + type="l", col.line="goldenrod",
22 + lwd=2, layout=c(1, 4),
23 + xlab="Hour of Day", ylab="Kbytes/sec")
24 > p.out <- xyplot(value / 2ˆ10 ~ t | nme, data=my.df.out,
25 + type="l", col.line="red",
26 + lwd=2, layout=c(1, 4),
27 + xlab="Hour of Day", ylab="Kbytes/sec")
28 >
29 > # Generate trellis plots.
30 > print(p.in, position=c(0, 0.5, 1, 1), more=TRUE)
31 > print(p.out, position=c(0, 0, 1, 0.5))

The resulting plots are shown in Fig. 9.5. It is evident, looking at some of the
more pronounced features of the individual curves, how the traffic from one source
(e.g., corp, around hour 12) contributes to the traffic to another destination (e.g.,
switch, at the same time). The goal of traffic matrix estimation is to extract these
underlying individual contributions from the aggregate link-level measurements
shown in the figure.
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Now let us examine the routing matrix for this network. The matrix B comes to us
expressed in a full-rank form, by having dropped one row from the overall routing
matrix. For the purposes of illustration, we augment this matrix by adding back
this missing row (yielding a matrix of reduced rank, but not changing the overall
problem).

#9.17 1 > B.full <- rbind(B, 2 - colSums(B))
2 > write.table(format(B.full),
3 + row.names=F, col.names=F, quote=F)
4 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
8 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

Hour of Day

K
by

te
s/

se
c

0
400
800

0 5 10 15 20

dst corp
0
400
800

dst fddi
0

400
800

dst local
0
400
800

dst switch

Hour of Day

K
by

te
s/

se
c

0
400
800

0 5 10 15 20

src corp
0
400
800

src fddi
0

400
800

src local
0
400
800

src switch

Fig. 9.5 Time series showing traffic volume over the eight links in the Bell Labs network. Top:
Traffic by destination. Bottom: Traffic by source
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9 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
10 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
11 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

This matrix has sixteen columns, corresponding to each origin-destination pair
(including the four cases where a machine sends traffic to itself). Similarly, it has
eight rows, corresponding to the four machines fddi, local, switch, and corp, res-
pectively, first as origins and then as destinations. It is straightforward to derive
this matrix from the topology of the network shown in Fig. 9.4. For example, the
second column corresponds to the flow from fddi to local, while the seventh column
corresponds to the flow from local to switch.

Clearly for this network the least squares problem in (9.13) is under-determined,
in seeking to recover information on sixteen origin-destination flows from only eight
link-level flows.

9.3.2 The Tomogravity Method

A standard approach to tackling ill-posed problems like that in (9.13) is to augment
the objective function with some sort of penalty (also referred to as regularization),
so as to restrict the collection of possible solutions in a useful manner. The tomo-
gravity method is in this spirit, for the specific problem of traffic matrix estimation.
Introduced by Zhang, Roughan, Lund, and Donoho [151], the ‘tomo’ part of the
name refers to the fact that the traffic matrix estimation problem is considered a
form of ‘network tomography’ (we encountered another example in Chap. 7.4), a
term coined by Vardi [142]. The ‘gravity’ part of the name, in turn, refers to the
fact that a simple gravity model is used to constrain the solutions produced by this
method.

In the tomogravity method, we replace the least-squares criterion in (9.13) by a
penalized least-squares criterion of the form

(x−Bμ)T (x−Bμ)+λ D
(

μ ||μ (0)
)
, (9.14)

where again the goal is to minimize the overall objective function. Here the penalty

D(μ ||μ (0)) = ∑
i j

μi j

μ++
log

μi j

μ (0)
i j

(9.15)

is the relative entropy ‘distance’ between a candidate solution μ and some
pre-specified vector μ (0). This quantity is also known as the Kullback–Liebler
divergence and summarizes how similar the two ‘distributions’ {μi j/μ++} and

{μ (0)
i j /μ (0)

++} are to each other, where μ++ and μ (0)
++ are the sum of the elements in

μ and μ (0), respectively. It is always non-negative and will be equal to zero if and
only if μ = μ (0).
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The notion of a gravity model enters into the tomogravity method by specifying
μ (0) to have a certain multiplicative form reminiscent of a simple gravity model.
Specifically, we let

μ (0)
i j = Z(0)

i+ ×Z(0)
+ j (9.16)

be the product of the net out-flow and in-flow at vertices i and j, respectively. In

addition, the constraint μ++ = Z(0)
++ is enforced, where Z(0)

++ is the total traffic in the
network. Importantly, these values all can be obtained through appropriate summa-
tion of the elements in the vector x of observed link counts.

Also necessary to completely specify the criterion in (9.14) is the value λ . This
value acts as a smoothing parameter, with larger values encouraging solutions μ̂ that
are closer to the pre-specified μ (0). A value of λ = (0.01)2 is report to work well in
practice.

The regularized least-squares problem in (9.14) can be solved by methods of
convex optimization. Note that μ̂ , as an estimate of the expected flow volumes μ ,
does not necessarily satisfy the constraint x = Bz. If it is desired to enforce this
constraint (i.e., if the measured link volumes x are without error), then the iterative
proportional fitting procedure (IPFP) may be used. IPFP, usually credited to Dem-
ing and Stephan [44] in the statistics literature, is a standard tool in the statistical
analysis of contingency tables, where it is used to force the elements of a table to
match the marginals. See [23, Sec 2.4] for a description of its use in the context of
traffic matrix estimation.

The package networkTomography implements the tomogravity method, with
IPFP adjustment, in the function tomogravity. We illustrate by applying it to
the Bell Labs data.

#9.18 1 > x.full <- Z %*% t(B.full)
2 > tomo.fit <- tomogravity(x.full, B.full, 0.01)
3 > zhat <- tomo.fit$Xhat

The plotting capabilities of the lattice package are again useful, now for compar-
ing the resulting predictions for the sixteen origin-destination pairs in this network
against the actual origin-destination flows.

#9.19 1 > nt <- nrow(Z); nf <- ncol(Z)
2 > t.dat <- data.frame(z = as.vector(c(Z) / 2ˆ10),
3 + zhat = as.vector(c(zhat) / 2ˆ10),
4 + t <- c(rep(as.vector(bell.labs$tvec), nf)))
5 >
6 > od.names <- c(rep("fddi->fddi", nt),
7 + rep("fddi->local", nt),
8 + rep("fddi->switch", nt), rep("fddi->corp", nt),
9 + rep("local->fddi", nt), rep("local->local", nt),

10 + rep("local->switch", nt), rep("local->corp", nt),
11 + rep("switch->fddi", nt), rep("switch->local", nt),
12 + rep("switch->switch", nt), rep("switch->corp", nt),
13 + rep("corp->fddi", nt), rep("corp->local", nt),
14 + rep("corp->switch", nt), rep("corp->corp", nt))
15 >
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16 > t.dat <- transform(t.dat, OD = od.names)
17 >
18 > xyplot(z~t | OD, data=t.dat,
19 + panel=function(x, y, subscripts){
20 + panel.xyplot(x, y, type="l", col.line="blue")
21 + panel.xyplot(t.dat$t[subscripts],
22 + t.dat$zhat[subscripts],
23 + type="l", col.line="green")
24 + }, as.table=T, subscripts=T, xlim=c(0, 24),
25 + xlab="Hour of Day", ylab="Kbytes/sec")

The results are shown in Fig. 9.6 and indicate that the tomogravity method
appears to do quite well in capturing the flow volumes across the network, despite
the highly variable nature of these time series and the somewhat substantial dynamic
range (i.e., almost one megabyte order of magnitude on the y-axis).
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Fig. 9.6 Time series showing the prediction of the actual origin-destination flow volumes (blue)
by the tomogravity method (green) for the Bell Labs network
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9.4 Additional Reading

For a thorough introduction to the topic of gravity models, see Sen and Smith [130].
A review of the traffic matrix estimation problem, and other related problems in
network tomography, may be found in Castro et al. [27].



Chapter 10
Dynamic Networks

10.1 Introduction

Most complex systems—and, hence, networks—are dynamic in nature. So,
realistically, the corresponding network graphs and processes thereon are dynamic
as well and, ideally, should be analyzed as such. Friendships (both traditional and
on-line versions) form and dissolve over time. Certain genes may regulate other
genes, but only during specific stages of the natural cycle of a cell. And both the
physical and logical structure of the Internet have been evolving ever since it was
first constructed.

In practice, however, the vast majority of network analyses performed to date
have been static. Arguably this state of affairs is due to a number of factors. First
of all, broadly speaking, the methodology for dynamic network analysis is decid-
edly less developed than that for static network analysis. At the same time, unless
handled carefully (and, sometimes, even then!), the computational burden associ-
ated with the analysis of dynamic network data can be comparatively much heavier.
Additionally, it is not necessarily always the case that a complex system is varying
in ways interesting or relevant to a study at the time scales upon which dynamics
can be measured. That is, oftentimes a handful of well-performed static network
analyses can sufficiently convey the behavior of the underlying system across time.
And finally, sometimes it simply is not realistic to collect data indexed over time.
For example, in systems biology it generally is far easier to collect measurements on
gene transcription activity in a single, steady-state setting than at consecutive time
points, particularly if temporal calibration across multiple cells is required.

Accordingly, the focus of this book has been devoted almost entirely to statistical
methods for static network data. Nevertheless, given the importance of dynamic
network data, and the expectation that the development of computationally effi-
cient methods for its analysis will continue to receive increasingly greater atten-
tion in the coming years, we present here in this chapter a brief introduction to this
quickly evolving area. The organization of the sections in this chapter mimics that

E.D. Kolaczyk and G. Csárdi, Statistical Analysis of Network Data with R, Use R! 65,
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of the earlier chapters in this book. Specifically, we discuss the representation and
manipulation of dynamic network data in Sect. 10.2, its visualization in Sect. 10.3,
its characterization in Sect. 10.4, and finally its modeling in Sect. 10.5.

10.2 Representation and Manipulation of Dynamic Networks

The adjective ‘dynamic’ has been applied in the context of networks to describe at
least two different aspects of an evolving complex system. Most commonly, it is
applied when the edges among a set of vertices—and sometimes the set of vertices
itself—are changing as a function of time. Alternatively, it is sometimes used in
reference to the attributes of the vertices or edges in a fixed graph G changing in
time, such as in the case of the dynamic network processes discussed in Chap. 8.5
(e.g., epidemics). The former case may be thought of as referring to dynamics of a
network, and the latter, to dynamics on a network. Of course, both types of dynamics
may be present together—networks of this type sometimes are referred to as co-
evolving. In this chapter our focus will be primarily on the first of the above cases.

Conceptually, we will think of a dynamic network as a time-indexed graph G(t)=
(V (t),E(t)), with time t varying in either a discrete or continuous manner over some
range of values. Here V (t) is the set of vertices present in the network at time t, and
E(t), the set values ei j(t), for i, j ∈V (t), indicating the presence or absence of edges
between those vertices. Sometimes it is convenient to let V be the collection of all
vertices present at some point or another during the period of time under study, in
which case we can write V (t)≡V for all t.

In practice, the extent to which the time-varying behavior of a dynamic network
G(t) actually may be captured through measurements can vary. At one extreme, we
may be able to observe with complete accuracy the appearance and disappearance of
each vertex in time, and similarly the formation and dissolution of edges between the
vertices. That is, we may literally observe G(t). And, of course, at the other extreme,
we may only be able to obtain a marginal summary of those vertices and edges that
appeared at any point during the period of observation, resulting in a static graph G.
In between these two extremes lie various other possibilities. For example, we may
observe a set of static snapshots of the network, each summarizing the marginal
behavior of the network during successive time periods. Such data are sometimes
referred to as panel data or longitudinal network data. Alternatively, we may have
knowledge of interactions between vertices only up to some finite resolution in time.

An example of this last type of data is found in the data set hc.

#10.1 1 > library(sand)
2 > data(hc)

These data,1 first reported by Vanhems et al. [141], contain records of contacts
among patients and various types of health care workers in the geriatric unit of a
hospital in Lyon, France, in 2010, from 1pm on Monday, December 6 to 2pm on

1 Original data are available at http://www.sociopatterns.org.

http://www.sociopatterns.org
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Friday, December 10. Each of the 75 people in this study consented to wear RFID
sensors on small identification badges during this period, which made it possible
to record when any two of them were in face-to-face contact with each other (i.e.,
within 1–1.5 m of each other) during a 20-second interval of time. A primary goal
of this study was to gain insight into the pattern of contacts in such a hospital envi-
ronment, particularly with an eye towards the manner in which infection might be
transmitted.

The object hc is a data frame in which the measurements are stored as an
edge list.

#10.2 1 > head(hc)
2 Time ID1 ID2 S1 S2
3 1 140 15 31 MED ADM
4 2 160 15 22 MED MED
5 3 500 15 16 MED MED
6 4 520 15 16 MED MED
7 5 560 16 22 MED MED
8 6 580 16 22 MED MED

For each contact during the week-long period of observation there is a row, in which
are recorded the time (in seconds) at which the corresponding 20-second interval
terminated, an identification number for each of the two people involved in the con-
tact, and the statuses of these people. Status was assigned according to one of four
categories, i.e., administrative staff (ADM), medical doctor (MED), paramedical
staff, such as nurses or nurses’ aides (NUR), and patients (PAT). We note that the
designation of ‘1’ and ‘2’ in the ID and status variables is arbitrary.

From a network-based perspective, we view the people in this study as vertices,
and their status, as a vertex attribute. In order to get a sense of the distribution of
this attribute across vertices, we merge the vertex IDs and status variables, extract
the unique pairings of ID and status, and summarize the results in a table.

#10.3 1 > ID.stack <- c(hc$ID1,hc$ID2)
2 > Status.stack <- c(as.character(hc$S1),
3 + as.character(hc$S2))
4 > my.t <- table(ID.stack,Status.stack)
5 > v.status <- character(nrow(my.t))
6 > for(i in (1:length(v.status))){
7 + v.status[i] <- names(which(my.t[i,]!=0))
8 + }
9 > table(v.status)

10 v.status
11 ADM MED NUR PAT
12 8 11 27 29

We see that patients and nurses each make up roughly 40% of the study, while the
administrators and medical doctors each make up roughly only 10%.

Similarly, we can view each contact between two people as an edge. Summariz-
ing these contacts in a two-way table allows us to get some rough preliminary sense
as to the distribution of such edges throughout our network.
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#10.4 1 > status.t <- table(hc$S1, hc$S2)
2 > status.t <- status.t + t(status.t)
3 > diag(status.t) <- round(diag(status.t)/2)
4 > status.t
5 ADM MED NUR PAT
6 ADM 279 459 2596 441
7 MED 459 5660 1769 1471
8 NUR 2596 1769 12695 6845
9 PAT 441 1471 6845 209

We see, for example, that easily the largest number of contacts was between nurses.
A more refined sense of the pattern of contacts among these individuals may be

obtained by incorporating time into our analysis. Figure 10.1 shows histograms of
these contacts, as a function of time, grouped by the status of the interacting pairs.

#10.5 1 > tmp.es <- paste(hc$S1, "-", hc$S2, sep="")
2 > e.status <- character(dim(hc)[[1]])
3 > e.status[tmp.es=="ADM-ADM"] <- "ADM-ADM"
4 > e.status[tmp.es=="MED-MED"] <- "MED-MED"
5 > e.status[tmp.es=="NUR-NUR"] <- "NUR-NUR"
6 > e.status[tmp.es=="PAT-PAT"] <- "PAT-PAT"
7 > e.status[(tmp.es=="ADM-MED") |
8 + (tmp.es=="MED-ADM")] <- "ADM-MED"
9 > e.status[(tmp.es=="ADM-NUR") |

10 + (tmp.es=="NUR-ADM")] <- "ADM-NUR"
11 > e.status[(tmp.es=="ADM-PAT") |
12 + (tmp.es=="PAT-ADM")] <- "ADM-PAT"
13 > e.status[(tmp.es=="MED-NUR") |
14 + (tmp.es=="NUR-MED")] <- "MED-NUR"
15 > e.status[(tmp.es=="MED-PAT") |
16 + (tmp.es=="PAT-MED")] <- "MED-PAT"
17 > e.status[(tmp.es=="NUR-PAT") |
18 + (tmp.es=="PAT-NUR")] <- "NUR-PAT"
19 >
20 > my.hc <- data.frame(Time = hc$Time/(60*60),
21 + ID1 = hc$ID1,
22 + ID2 = hc$ID2,
23 + Status = e.status)
24 >
25 > library(lattice)
26 > histogram( ~ Time|Status, data=my.hc, xlab="Hours",
27 + layout=c(5,2))

Several interesting features now become apparent. For example, there is a clear
diurnal structure to most of the histograms, with the vast majority of the contacts—
not surprisingly—having occurred during the daytime or early evening hours. There
are also exceptions to this pattern, the most notable of which may be the concentra-
tion of contacts between pairs of administrators (i.e., ADM–ADM) on the last day,
suggesting the likelihood of a weekly organizational meeting.

Note that so far the notion of a network has only been implicit in our discussion.
There are in fact several ways in which such data may be provided with an explicit
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Fig. 10.1 Histograms of contacts in the hospital data set hc, grouped by the status of the interacting
pair

network-based representation. One straightforward approach is through the use
of multi-graphs, where each contact is represented by an edge, and each edge is
equipped with an attribute indicating the time interval associated with it. This rep-
resentation can be implemented in a straightforward fashion in igraph. Applying it
to our hospital data

#10.6 1 > vids <- sort(unique(c(hc$ID1, hc$ID2)))
2 > g.week <- graph.data.frame(hc[, c("ID1", "ID2",
3 + "Time")], vertices=data.frame(vids),
4 + directed=FALSE)
5 > E(g.week)$Time <- E(g.week)$Time / (60 * 60)
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the resulting network is a single graph of 32,424 (multi)edges, annotated with time
information, among 75 vertices.

#10.7 1 > g.week
2 IGRAPH UN-- 75 32424 --
3 + attr: name (v/c), Time (e/n)

We also incorporate status as a vertex attribute.

#10.8 1 > status <- unique(rbind(data.frame(id=hc$ID1,
2 + status=hc$S1), data.frame(id=hc$ID2, status=hc$S2)))
3 > V(g.week)$Status <-
4 + as.character(status[order(status[,1]),2])

Alternatively, we can represent such data in the form of a simple graph, by
collapsing the multiple edges between vertex pairs to a single edge, but preserv-
ing information on the multiplicity of edges through the use of edge weights. We do
so for the hospital data.

#10.9 1 > E(g.week)$weight <- 1
2 > g.week.wgtd <- simplify(g.week)
3 > g.week.wgtd
4 IGRAPH UNW- 75 1139 --
5 + attr: name (v/c), Status (v/c), weight (e/n)

We see that the resulting graph is indeed simple

#10.10 1 > is.simple(g.week.wgtd)
2 [1] TRUE

and that its 1,139 edges have weights varying over a number of orders of magnitude,
although the vast majority are on the order of 1–20.

#10.11 1 > summary(E(g.week.wgtd)$weight)
2 Min. 1st Qu. Median Mean 3rd Qu. Max.
3 1.00 3.00 8.00 28.47 23.00 1059.00

Note that the time information is completely lost in collapsing a multi-graph
to a weighted graph. A compromise is to create ‘slices’ of the multi-graph, and
collapse within each slice. For example, we might take the first four days (96 h) of
our hospital data

#10.12 1 > g.week.96 <- subgraph.edges(g.week,
2 + E(g.week)[Time <= 96])

and separate that into eight slices of 12 h each.

#10.13 1 > g.sl12 <- lapply(1:8, function(i) {
2 + g <- subgraph.edges(g.week,
3 + E(g.week)[Time > 12*(i-1) &
4 + Time <= 12*i],
5 + delete.vertices=FALSE)
6 + simplify(g)
7 + })
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The resulting eight subnetworks are stored as a list of graphs. Each of these graphs
has been defined to include the full set of 75 people as its set of vertices2

#10.14 1 > sapply(g.sl12,vcount)
2 [1] 75 75 75 75 75 75 75 75

and is seen to contain on the order of two to three hundred pairs of vertices for whom
the corresponding people were involved in at least one contact.

#10.15 1 > sapply(g.sl12,ecount)
2 [1] 179 294 257 282 265 314 197 305

Finally, for measurements with sufficiently high temporal resolution—that is,
for when we effectively observe G(t) = (V (t),E(t)) itself—it is natural to wish to
maintain this representation of the dynamic network. Recently released as of this
writing, the package networkDynamic allows for such a representation.

#10.16 1 > library(networkDynamic)

Specifically, each period during which a dynamic edge ei j(t) is ‘on’—what the
authors of this package refer to as a ‘spell’—is represented by its onset and ter-
mination. The dynamic network as a whole is then represented as a collection of
such spells.

To illustrate, with our hospital data hc, for each contact we might extend the
contact period time index back by 20 s, indicating a tacit assumption that the corre-
sponding contact lasted the entire 20-second period (in reality we know only that a
contact occurred sometime during that period). Then for each pair of vertices in our
network, a spell would be defined by the union of consecutive time periods, with the
minimum length of any spell being 20 s, by definition.

#10.17 1 > hc.spls <- cbind((hc$Time-20)/(60*60),
2 + hc$Time/(60*60),
3 + hc$ID1, hc$ID2)
4 > hc.dn <- networkDynamic(edge.spells=hc.spls)

Within networkDynamic it is then possible to query the network in various
ways. For example, we can discover that the first edge (defined as the edge in our
data with the earliest spell), while active during the first hour, was not active during
the second hour.

#10.18 1 > is.active(hc.dn, onset=0, terminus=1, e=c(1))
2 [1] TRUE
3 > is.active(hc.dn, onset=1, terminus=2, e=c(1))
4 [1] FALSE

Similarly, for any given edge we can extract the full set of spells during which it
was active. For instance, the first edge was active only once in fact, at the very start
of our 4-day period.

2 Using the option delete.vertices=TRUE in the function subgraph.edges would in-
stead result in graphs with vertex subsets corresponding only to those people involved in at least
one contact during a given 12-hour period.
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#10.19 1 > get.edge.activity(hc.dn, e=c(1))
2 [[1]]
3 [,1] [,2]
4 [1,] 0.03333333 0.03888889

On the other hand, the tenth edge was involved in seven contacts (i.e., seven spells
of the minimal length of 20 s), all of which were confined to a roughly 24 h period.

#10.20 1 > get.edge.activity(hc.dn, e=c(10))
2 [[1]]
3 [,1] [,2]
4 [1,] 0.800000 0.8055556
5 [2,] 1.355556 1.3611111
6 [3,] 1.505556 1.5111111
7 [4,] 24.894444 24.9055556
8 [5,] 25.005556 25.0166667
9 [6,] 25.388889 25.3944444
10 [7,] 25.500000 25.5055556

It is also possible within networkDynamic to convert between various different
network-based representations. For example, analogous to earlier in this section, we
can produce eight subnetworks corresponding to successive 12-hour periods.

#10.21 1 > g.sl12.dN <- get.networks(hc.dn, start=0, end=96,
2 + time.increment=12)

Alternatively, we can summarize the network in the form of a data frame.

#10.22 1 > hc.dn.df <- as.data.frame(hc.dn)
2 > names(hc.dn.df)
3 [1] "onset" "terminus"
4 [3] "tail" "head"
5 [5] "onset.censored" "terminus.censored"
6 [7] "duration" "edge.id"

Here the rows correspond to spells, rather than contacts. We find that the majority
of spells in fact lasted no more than one or at most two consecutive contact periods
of 20 s. In contrast, the longest lasted for a bit over an hour.

#10.23 1 > summary(hc.dn.df$duration)
2 Min. 1st Qu. Median Mean 3rd Qu. Max.
3 0.005556 0.005556 0.005556 0.012830 0.011110 1.089000

10.3 Visualization of Dynamic Networks

With the various possible dynamic network representations just discussed there
come a similar variety of ways in which dynamic networks may be visualized.
Obviously the vast majority of the basic principles of graph drawing or visualization
that were discussed in Chap. 3, for static network graphs, continue to hold true in
the dynamic setting. However, some additional concerns arise as well in the latter
case, around the question of how best to incorporate the notion of time.
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Of course, we can ignore time altogether and simply visualize either a
multi-graph representation or the corresponding weighted graph obtained by
collapsing multi-edges. For the hospital data, plotting a multi-graph (not shown)
with on the order of 32 thousand edges among just 75 vertices yields a visualization
that is essentially useless. A visualization of the corresponding weighted graph,
shown in Fig. 10.2, is somewhat better, but is still much too busy for us to gain any
real insight.

#10.24 1 > detach(package:networkDynamic)
2 > l = layout.fruchterman.reingold(g.week.wgtd)
3 > v.cols <- character(75)
4 > v.cols[V(g.week.wgtd)$Status=="ADM"] <- "yellow"
5 > v.cols[V(g.week.wgtd)$Status=="MED"] <- "blue"
6 > v.cols[V(g.week.wgtd)$Status=="NUR"] <- "green"
7 > v.cols[V(g.week.wgtd)$Status=="PAT"] <- "black"
8 > plot(g.week.wgtd, layout=l, vertex.size=3,
9 + edge.width=2*(E(g.week.wgtd)$weight)/100,
10 + vertex.color=v.cols, vertex.label=NA,)

Ideally, we would like to maintain as much of the available temporal informa-
tion as possible when visualizing dynamic network data. From the point of view
of the graph display problem, a fundamental challenge in moving from the static
to the dynamic is the need to respect, in the case of the latter, what is referred to
as the user’s mental map. This term is used to describe the result of the process by
which, upon studying a given static network map, a user becomes familiar with it,
interprets it, and navigates about it. Simply put, we would expect a certain amount
of ‘stability’ across visualizations.

When the dynamic network is represented as a sequence of ‘slices’, whether due
to measurement constraints or user choice, and the number of slices is not too large,
it may be useful to look at the corresponding sequence of static graph visualizations.
In this case, it is natural to encourage a sense of stability by maintaining the positions
of vertices across visualizations.

For example, in Fig. 10.3 we show plots of the hospital contact network as a
sequence of eight static plots, each corresponding to a 12-hour time period.

#10.25 1 > opar <- par()
2 > par(mfrow=c(2,4),
3 + mar=c(0.5, 0.5, 0.5, 0.5),
4 + oma=c(0.5, 1.0, 0.5, 0))
5 > for(i in (1:8)) {
6 + plot(g.sl12[[i]], layout=l, vertex.size=5,
7 + edge.width=2*(E(g.week.wgtd)$weight)/1000,
8 + vertex.color=v.cols,vertex.label=NA)
9 + title(paste(12*(i-1),"to",12*i,"hrs"))
10 + }
11 > par(opar)

More ambitiously, if the data are rich enough temporally, instead of individu-
ally displaying each of the many corresponding individual static graphs, one might
animate them to produce a ‘movie,’ so as to watch the network graphs change over
time. Although the area of dynamic graph drawing of this type is still arguably in its
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Fig. 10.2 Visualization of the hospital contact data, based on a weighted graph summarizing all
contacts over the full week. Vertex colors indicate status of each person: ADM (yellow), MED
(blue), NUR (green), and PAT (black)

infancy, there are already a number of approaches that have been developed for auto-
mated display of dynamic network graphs with constraints to reinforce a consistent
user mental map. Broadly speaking, rather than stringently refusing to allow ver-
tices and edges to move, as above, one attempts to allow only ‘local’ elements in the
vicinity of a newly added graph element to change.

Within R, at the time of this writing the only package that allows for the pro-
duction of such dynamic network visualizations is ndtv, which takes as its input
an object from networkDynamic. However, it should be noted that the process of
creating a dynamic layout can take considerably more time than in the static case,
and the authors of ndtv caution that its use currently is most realistic for networks
of relatively small size. For example, it is unrealistic to apply to our hospital contact
data.

On the other hand, it is possible to produce a useful visualization of primarily
the temporal information in dynamic network data in a relatively straightforward
manner, if connectivity beyond vertex pairs (i.e., edges) is suppressed. Specifically,
we can display the onset and termination of edges as a function of time, in the form
of a type of phase-plot, with the edges indexed along the y-axis in order of their first
appearance in the network. A visualization of this type is shown in Fig. 10.4, for the
hospital contact data.3

3 The function timeline in ndtv can be used to produce a similar plot, but currently does not
have the functionality to permit annotation by edge attributes, as we require here.
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Fig. 10.3 Visualization of the hospital contact data, as a sequence of eight static networks cor-
responding to consecutive 12-hour periods. Vertex colors indicate status of each person: ADM
(yellow), MED (blue), NUR (green), and PAT (black)

#10.26 1 > # Establish colors for edge status.
2 > tmp.es <- paste(v.status[hc.dn.df$tail], "-",
3 + v.status[hc.dn.df$head], sep="")
4 > mycols <- numeric(nrow(hc.dn.df))
5 > mycols[tmp.es=="ADM-ADM"] <- 1
6 > mycols[tmp.es=="MED-MED"] <- 2
7 > mycols[tmp.es=="NUR-NUR"] <- 3
8 > mycols[tmp.es=="PAT-PAT"] <- 4
9 > mycols[(tmp.es=="ADM-MED") | (tmp.es=="MED-ADM")] <- 5
10 > mycols[(tmp.es=="ADM-NUR") | (tmp.es=="NUR-ADM")] <- 6
11 > mycols[(tmp.es=="ADM-PAT") | (tmp.es=="PAT-ADM")] <- 7
12 > mycols[(tmp.es=="MED-NUR") | (tmp.es=="NUR-MED")] <- 8
13 > mycols[(tmp.es=="MED-PAT") | (tmp.es=="PAT-MED")] <- 9
14 > mycols[(tmp.es=="NUR-PAT") | (tmp.es=="PAT-NUR")] <- 10
15 > my.palette <- rainbow(10)
16 > # Produce plot.
17 > ne <- max(hc.dn.df$edge.id)
18 > max.t <- max(hc.dn.df$terminus)
19 > plot(c(0, max.t), c(0, ne), ann=F, type=’n’)
20 > segments(hc.dn.df$onset, hc.dn.df$edge.id,
21 + hc.dn.df$terminus, hc.dn.df$edge.id,
22 + col=my.palette[mycols])
23 > title(xlab="Time (hours)",
24 + ylab="Interacting Pair
25 + (Ordered by First Interaction)")
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26 > abline(v=c(11, 35, 59, 83), lty="dashed", lw=2,
27 + col="lightgray")
28 > # Add legend to plot.
29 > status.pairs <- c("ADM-ADM", "MED-MED", "NUR-NUR",
30 + "PAT-PAT", "ADM-MED", "ADM-NUR", "ADM-PAT",
31 + "MED-NUR", "MED-PAT", "NUR-PAT")
32 > legend(7,1170,status.pairs,
33 + text.col=my.palette[(1:10)],cex=0.75)

Some of the temporal information in Fig. 10.1 is evident as well here in Fig. 10.4.
For example, the diurnal patterns in contacts are clear. However, here we now have
the capability to track individual edges and, through the use of color, edges of
various combinations of statuses. For example, we see that there is a cluster of
contacts between nurses that are introduced in the second half of the 2 day (i.e.,
edges numbered roughly 500, just after hour twenty) that are not seen again until
late in the last day.
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Fig. 10.4 Timeline showing the presence/absence of dynamic edges in the hospital contact net-
work, covering just over 96 h over 5 days (midnight of each day indicated by gray vertical lines)
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10.4 Characterization of Dynamic Networks

The development of a comprehensive body of tools for characterizing dynamic
networks, and of a corresponding understanding of their properties and usage, cur-
rently lags far behind that for static graphs G, such as was described in Chap. 4. This
lacking is probably due in part to insufficiently pressing need, in that traditionally
it has been notably more difficult in most network studies to obtain time-indexed
network data that are rich in both quality and quantity. As we have noted, however,
this situation is beginning to change, and the demand for tools to characterize dy-
namic networks is growing. Also contributing to the gap between static and dynamic
methods of characterization is possibly the absence of a similarly mature graph-
theoretic infrastructure. Finally, another important factor is the sheer combinatorial
explosion in problem variants, once the factor of ‘time’ is to be incorporated. See
Moody, McFarland, and Bender-deMoll [114], for example, for a detailed discus-
sion of how and why such variants arise, in the context of social networks.

At present, therefore, arguably the most common manner in which dynamic net-
works are characterized in practice is through the application of methods for static
networks to successive slices over time. Just as in the static case, the choice of what
methods to use is specific to the application at hand and should be driven by par-
ticular questions about the complex system being studied. Here we illustrate this
approach to dynamic network characterization using the hospital contact data again,
where recall that the goal was to obtain insight into the manner in which infection
might be transmitted between individuals in this environment.

In Chap. 8.5.1 we saw that network topology can affect the spread of a disease.
And we know from Chap. 4 that the degree distribution is one of the most fundamen-
tal summaries of network topology. Thus, to begin the process of understanding the
potential spread of infection in the hospital from which these data were obtained, we
examine the degree distributions for each of the eight successive 12-hour periods.

#10.27 1 > all.deg <- sapply(g.sl12, degree)
2 > sl.lab<- unlist(lapply(1:8, function(i)
3 + paste(12*(i-1), "-", 12*i, "hrs", sep="")))
4 > deg.df <- data.frame(Degree=as.vector(all.deg),
5 + Slice = rep(sl.lab, each=75),
6 + Status = rep(V(g.week)$Status, times=8))
7 > library(ggplot2)
8 > p = qplot(factor(Degree), data=deg.df,
9 + geom="bar", fill=Status)
10 > p + facet_grid(Slice ~ .)+xlab("Degree")+ylab("Count")

In Fig. 10.5 are shown the resulting displays of the degree distributions, visual-
ized as bar charts, where the bars have been colored to indicate the relative frequency
of vertices of each of the four statuses. Several interesting features are evident. We
see, for example, a large mode at zero in each bar chart. During any 12-hour period
there is a substantial fraction of the 75 people studied that were not involved in
any recorded contacts. Among hospital employees (i.e., ADM, MED, and NUR)
this pattern presumably reflects duty shifts. More interestingly, we see that the vast
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Fig. 10.5 Degree distributions for the hospital contact data, one per each of eight static networks
corresponding to consecutive 12-hour periods

majority of patients (i.e., PAT) are involved in contacts with comparatively fewer
numbers of other people. Similarly, the hospital employees tend to have contacts
with higher numbers of people.

This exploration suggests that the most pervasive potential spreaders of disease
would be among the hospital employees. In order to try to identify such individuals,
and acknowledging that they may change from day to day, we create a summary of
who is consistently among the top five (i.e., has the fifth highest degree or larger)
over the week.

#10.28 1 > top.deg <- lapply(1:8,function(i) {
2 + all.deg[,i][rank(all.deg[,i])>=70]
3 + })
4 > table(unlist(lapply(1:8,function(i)
5 + as.numeric(names(top.deg[[i]])))))
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6 1 5 7 8 10 11 13 15 17 19 21 22 23 24 25 26 27 29 31
7 2 2 4 1 1 2 2 4 3 3 2 1 3 2 1 2 2 2 1
8 34 36 37 63 64
9 1 1 2 1 2

We see that two of the people in this network (i.e., with vertex IDs 7 and 15) are
among the top five during four of the eight successive 12-hour periods. And these
two are indeed among the hospital employees, consisting of a nurse and a doctor,
respectively.

#10.29 1 > V(g.week)$Status[c(7,15)]
2 [1] "NUR" "MED"

Next, for these two individuals, we look at the relative number of contacts per
person contacted (i.e., the number of contacts per alter, for each of these two egos).
This means looking at ratio of vertex strength to degree.

#10.30 1 > all.str <- sapply(g.sl12, graph.strength)
2 > all.r <- all.str/all.deg
3 > round(all.r[c(7, 15),], digits=2)
4 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
5 7 2.00 25.79 11.1 32.73 14.20 33.19 8.33 37.34
6 15 29.71 26.33 17.0 12.48 19.27 15.30 19.40 12.93

We see that, compared to the network as a whole,

#10.31 1 > summary(c(all.r))
2 Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s
3 1.00 5.00 10.43 12.06 15.73 47.35 261

this nurse and this doctor tend largely to have a rate of contacts at or above the mean,
and more often than not, in the upper quartile. So not only do these two individuals
come into contact with many more others than usual in this hospital ward, they also
tend to have noticeably higher rates of contact with each, on average.

Accordingly, one might argue that these two individuals are natural candidates to
consider as potential ‘super-spreaders’. It would then be natural to also consider just
how quickly an infection might spread from these two. One rough indicator is the
average shortest-path distance from each of these two to the rest of the individuals
in the network. Again calculating this quantity slice-by-slice,

#10.32 1 > sp.len <- lapply(1:8, function(i) {
2 + spl <- shortest.paths(g.sl12[[i]], v=c(7, 15),
3 + to=V(g.sl12[[i]]),
4 + weights=NA)
5 + spl[spl==Inf] <- NA
6 + spl
7 + })
8 > ave.spl <- sapply(1:8, function(i)
9 + apply(sp.len[[i]], 1, mean, na.rm=T))
10 > round(ave.spl, digits=2)
11 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
12 7 3.05 1.27 1.79 1.12 1.80 1.33 2.00 1.24
13 15 1.72 1.51 2.48 1.35 1.36 1.26 1.61 1.36
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we find that for both individuals in most slices their distance on average from the
rest of the network—among those having at least one contact during that slice—
is less than two. These numbers might seem quite small compared to the overall
diameter of the networks.

#10.33 1 > sapply(g.sl12, diameter)
2 [1] 9 8 26 28 10 10 10 10

However, compared to the overall average shortest path distance, the contrast is
decidedly less starck.

#10.34 1 > round(sapply(g.sl12, average.path.length), digits=2)
2 [1] 2.12 1.70 1.81 1.67 1.79 1.70 1.91 1.78

Nevertheless, both the nurse and the doctor do still seem to be somewhat closer to
the others in the network most of the time, which could be argued to likely have
a further detrimental effect on containing infection, were either of them to become
infected themselves.

10.5 Modeling Dynamic Networks

The modeling of dynamic network data is nontrivial. The complexity that we have
already seen associated with modeling a static network graph, in Chaps. 5 and 6,
is further magnified by the need to not only model ‘many’ such graphs (i.e., in a
discrete or a continuous sense, as the case may be), but also—in particular—by
the need to model at the same time the manner in which these graphs evolve from
one to another. Compared to the existing literature on modeling of static network
graphs, there is decidedly less development on the dynamic side. But this state of
affairs is quickly changing. However, as of this writing, there is little available in
R. And, in addition, a sufficiently careful treatment of the few dynamic network
modeling frameworks that are available in R would require substantial attention and
is beyond the scope of this book. Therefore, we will restrict ourselves here simply
to summarizing two available options.

Given the important role that exponential random graph models (ERGMs) have
played in the modeling of static network graphs, as described in Chap. 6, they have
been considered a natural candidate for extension to the case of dynamic networks.
In recent work, building upon and modifying earlier work of Hanneke and Xing [69]
and Hanneke et al. [70], Krivitsky and Handcock [94] have introduced a class of
temporal exponential random graph models for longitudinal network data (i.e., in
which networks are observed in panels, like the ‘slices’ we created for the hospital
data), in which the formation and dissolution of edges are modeled in a separable
fashion.

Specifically, let Y(t) and Y(t −1) denote the adjacency matrices for the network
at times t and t−1, and (in a slight abuse of notation) define the so-called formation
network Y+ =Y(t)∪Y(t−1) and dissolution network Y− =Y(t)∩Y(t−1) relative
to time point t. That is, Y+ is the initial network Y(t − 1) plus the additional ties
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formed by time t, and Y− is the initial network Y(t − 1) less the ties dissolved by
time t. The separable, temporal ERGM (i.e., STERGM) framework of Krivitsky and
Handcock then assumes (a) a discrete-time Markov structure for the evolution of the
network over time, (b) that the formation and dissolution networks are conditionally
independent (i.e., separability), and (c) an exponential family form for the relevant
conditional distributions. The result is a model of the form

Pθ (Y(t) = y(t) |Y(t − 1) = y(t − 1)) = Pθ
(
Y+ = y+ |Y(t − 1) = y(t − 1)

)
×Pθ

(
Y− = y− |Y(t − 1) = y(t − 1)

)
,

where the two conditional distributions on the right-hand side above have exponen-
tial family form (i.e., as in equation (6.1)).

The specification of effects for these models can, like the ERGMs of Chap. 6,
involve both network effects (i.e., endogenous) and effects due to vertex or edge
attributes (i.e., exogenous). Maximum likelihood estimates of the corresponding
parameters θ may then be calculated using extensions of the methods for stan-
dard ERGMs, based on Monte Carlo. The R package tergm contains a collection of
functions that allow for simulation, fitting, and diagnostics with this class of models.

Alternatively, one might think to replace the discrete-time formulation in tem-
poral ERGMs with a continuous-time formulation. The stochastic actor-oriented
dynamic networks models of Snijders and colleagues do just that. See [135], for
example, for a recent overview. Under these models, a continuous-time Markov
chain is formulated, with each possible network corresponding to a state. The rate
functions governing waiting times between state transitions (i.e., from one network
to another, where the two differ in the presence or absence of a single edge) are
expressed as the sum of the collection of edge-specific rates. Each of the latter are
in turn represented in the manner of a generalized linear model (GLM), allowing
for the incorporation of specific edge and/or vertex effects. Again, a Monte Carlo
approach is required for simulation, fitting, and diagnostics. Techniques for these
tasks have been developed over a period of years and are now available in the R
package RSiena.
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155

tomography, 129
network, 175

tomogravity method, 175
traffic, 161

matrix, see origin-destination matrix
trail, 23
transitive triple, 56
tree, 25

ancestor, 25
children, 25
depth, 25
descendant, 25
directed, 25
leaf, 25
parent, 25
root, 25

triad, 43

vertex, 14
process

dynamic, 135, 154
static, 135

walk, 23
directed, 23


	Preface
	Contents
	Biographies
	Chapter 1 Introduction
	1.1 Why Networks?
	1.2 Types of Network Analysis
	1.2.1 Visualizing and Characterizing Networks
	1.2.2 Network Modeling and Inference
	1.2.3 Network Processes

	1.3 Why Use R for Network Analysis?
	1.4 About This Book
	1.5 About the R code

	Chapter 2 Manipulating Network Data
	2.1 Introduction
	2.2 Creating Network Graphs
	2.2.1 Undirected and Directed Graphs
	2.2.2 Representations for Graphs
	2.2.3 Operations on Graphs

	2.3 Decorating Network Graphs
	2.3.1 Vertex, Edge, and Graph Attributes
	2.3.2 Using Data Frames

	2.4 Talking About Graphs
	2.4.1 Basic Graph Concepts
	2.4.2 Special Types of Graphs

	2.5 Additional Reading

	Chapter 3 Visualizing Network Data
	3.1 Introduction
	3.2 Elements of Graph Visualization
	3.3 Graph Layouts
	3.4 Decorating Graph Layouts
	3.5 Visualizing Large Networks
	3.6 Using Visualization Tools Outside of R
	3.7 Additional Reading

	Chapter 4 Descriptive Analysis of Network Graph Characteristics
	4.1 Introduction
	4.2 Vertex and Edge Characteristics
	4.2.1 Vertex Degree
	4.2.2 Vertex Centrality
	4.2.3 Characterizing Edges

	4.3 Characterizing Network Cohesion
	4.3.1 Subgraphs and Censuses
	4.3.2 Density and Related Notions of Relative Frequency
	4.3.3 Connectivity, Cuts, and Flows

	4.4 Graph Partitioning
	4.4.1 Hierarchical Clustering
	4.4.2 Spectral Partitioning
	4.4.3 Validation of Graph Partitioning

	4.5 Assortativity and Mixing
	4.6 Additional Reading

	Chapter 5 Mathematical Models for Network Graphs
	5.1 Introduction
	5.2 Classical Random Graph Models
	5.3 Generalized Random Graph Models
	5.4 Network Graph Models Based on Mechanisms
	5.4.1 Small-World Models
	5.4.2 Preferential Attachment Models

	5.5 Assessing Significance of Network Graph Characteristics
	5.5.1 Assessing the Number of Communities in a Network
	5.5.2 Assessing Small World Properties

	5.6 Additional Reading

	Chapter 6 Statistical Models for Network Graphs
	6.1 Introduction
	6.2 Exponential Random Graph Models
	6.2.1 General Formulation
	6.2.2 Specifying a Model
	6.2.3 Model Fitting
	6.2.4 Goodness-of-Fit

	6.3 Network Block Models
	6.3.1 Model Specification
	6.3.2 Model Fitting
	6.3.3 Goodness-of-Fit

	6.4 Latent Network Models
	6.4.1 General Formulation
	6.4.2 Specifying the Latent Effects
	6.4.3 Model Fitting
	6.4.4 Goodness-of-Fit

	6.5 Additional Reading

	Chapter 7 Network Topology Inference
	7.1 Introduction
	7.2 Link Prediction
	7.3 Association Network Inference
	7.3.1 Correlation Networks
	7.3.2 Partial Correlation Networks
	7.3.3 Gaussian Graphical Model Networks

	7.4 Tomographic Network Topology Inference
	7.4.1 Constraining the Problem: Tree Topologies
	7.4.2 Tomographic Inference of Tree Topologies:An Illustration

	7.5 Additional Reading

	Chapter 8 Modeling and Prediction for Processes on Network Graphs
	8.1 Introduction
	8.2 Nearest Neighbor Methods
	8.3 Markov Random Fields
	8.3.1 General Characterization
	8.3.2 Auto-Logistic Models
	8.3.3 Inference and Prediction for Auto-logistic Models
	8.3.4 Goodness of Fit

	8.4 Kernel Methods
	8.4.1 Designing Kernels on Graphs
	8.4.2 Kernel Regression on Graphs

	8.5 Modeling and Prediction for Dynamic Processes
	8.5.1 Epidemic Processes: An Illustration

	8.6 Additional Reading

	Chapter 9 Analysis of Network Flow Data
	9.1 Introduction
	9.2 Modeling Network Flows: Gravity Models
	9.2.1 Model Specification
	9.2.2 Inference for Gravity Models

	9.3 Predicting Network Flows: Traffic Matrix Estimation
	9.3.1 An Ill-Posed Inverse Problem
	9.3.2 The Tomogravity Method

	9.4 Additional Reading

	Chapter 10 Dynamic Networks
	10.1 Introduction
	10.2 Representation and Manipulation of Dynamic Networks
	10.3 Visualization of Dynamic Networks
	10.4 Characterization of Dynamic Networks
	10.5 Modeling Dynamic Networks

	References
	Index



