

Statistical Inference via
Data Science

A ModernDive into R and the Tidyverse

Chapman & Hall/CRC

The R Series

Series Editors

John M. Chambers, Department of Statistics, Stanford University, California, USA
Torsten Hothorn, Division of Biostatistics, University of Zurich, Switzerland
Duncan Temple Lang, Department of Statistics, University of California, Davis, USA
Hadley Wickham, RStudio, Boston, Massachusetts, USA

Recently Published Titles

Computational Actuarial Science with R
Arthur Charpentier

bookdown: Authoring Books and Technical Documents with R Markdown,
Yihui Xie

Testing R Code
Richard Cotton

R Primer, Second Edition
Claus Thorn Ekstrøm

Flexible Regression and Smoothing: Using GAMLSS in R
Mikis D. Stasinopoulos, Robert A. Rigby, Gillian Z. Heller, Vlasios Voudouris, and Fernanda De Bastiani

The Essentials of Data Science: Knowledge Discovery Using R
Graham J. Williams

blogdown: Creating Websites with R Markdown
Yihui Xie, Alison Presmanes Hill, Amber Thomas

Handbook of Educational Measurement and Psychometrics Using R
Christopher D. Desjardins, Okan Bulut

Displaying Time Series, Spatial, and Space-Time Data with R, Second Edition
Oscar Perpinan Lamigueiro

Reproducible Finance with R
Jonathan K. Regenstein, Jr

R Markdown
The Definitive Guide
Yihui Xie, J.J. Allaire, Garrett Grolemund

Practical R for Mass Communication and Journalism
Sharon Machlis

Analyzing Baseball Data with R, Second Edition
Max Marchi, Jim Albert, Benjamin S. Baumer

Spatio-Temporal Statistics with R
Christopher K. Wikle, Andrew Zammit-Mangion, and Noel Cressie

Statistical Computing with R, Second Edition
Maria L. Rizzo

Geocomputation with R
Robin Lovelace, Jakub Nowosad, Jannes Muenchow

Distributions for Modelling Location, Scale, and Shape
Using GAMLSS in R
Robert A. Rigby , Mikis D. Stasinopoulos, Gillian Z. Heller and Fernanda De Bastiani

Advanced Business Analytics in R: Descriptive, Predictive, and Prescriptive
Bradley Boehmke and Brandon Greenwell

Statistical Inference via Data Science: A ModernDive into R and the Tidyverse

Chester Ismay and Albert Y. Kim

For more information about this series, please visit: https://www.crcpress.com/go/the-r-series

Statistical Inference via
Data Science

A ModernDive into R and the Tidyverse

Chester Ismay
Albert Y. Kim

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2020 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

International Standard Book Number-13: 978-0-367-40982-1 (paperback)
International Standard Book Number-13: 978-0-367-40987-6 (hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the
validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copy-
right holders of all material reproduced in this publication and apologize to copyright holders if permission to publish
in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know
so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or
utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including pho-
tocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission
from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA
01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users.
For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been
arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Library of Congress Cataloging-in-Publication Data

Names: Ismay, Chester, author. | Kim, Albert Young-Sun, 1980- author.
Title: Statistical inference via data science : a ModernDive, into R and
the tidyverse / Chester Ismay, Albert Y. Kim.
Description: Boca Raton : Taylor and Francis, 2019. | Series: Chapman &
hall/crc the r series | Includes bibliographical references and index. |
Summary: “Statistical Inference via Data Science: A ModernDive into R
and the Tidyverse provides a pathway for learning about statistical
inference using data science tools widely used in industry, academia,
and government. It introduces the tidyverse suite of R packages,
including the ggplot2 package for data visualization, and the dplyr
package for data wrangling. After equipping readers with just enough of
these data science tools to perform effective exploratory data analyses,
the book covers traditional introductory statistics topics like
confidence intervals, hypothesis testing, and multiple regression
modeling, while focusing on visualization throughout”-- Provided by publisher.
Identifiers: LCCN 2019042572 (print) | LCCN 2019042573 (ebook) | ISBN 9780367409821
(paperback) | ISBN 9780367409876 (hardback) | ISBN 9780367409913 (ebook)
Subjects: LCSH: Statistics--Data processing. | Quantitative research. | R
(Computer program language)
Classification: LCC QA276.45.R3 I86 2019 (print) |LCC QA276.45.R3
(ebook) | DDC 519.5/4--dc23
LC record available at https://lccn.loc.gov/2019042572
LC ebook record available at https://lccn.loc.gov/2019042573

Chester: To Karolyn, who has always been patient and continued to support
me to write and finish edits on this book even sometimes when that meant
working through a weekend. Your continued pushes for me to think about

new ways to teach novices about R have meant the world to me.

Albert: 엄마와 아빠: 나 한번도 표현 못해도 그냥 다 고마워요. 행복하게 살수 있는
지금 모습이 모두가 다 당신때문이예요. To Ginna: Thanks for tolerating my
playing of “Nothing In This World Will Ever Break My Heart Again” on

repeat while I finished this book. I love you.

Contents

Foreword xv

Preface xvii

About the authors xxix

1 Getting Started with Data in R 1
1.1 What are R and RStudio? . 1

1.1.1 Installing R and RStudio 2
1.1.2 Using R via RStudio 3

1.2 How do I code in R? . 4
1.2.1 Basic programming concepts and terminology 4
1.2.2 Errors, warnings, and messages 6
1.2.3 Tips on learning to code 7

1.3 What are R packages? . 8
1.3.1 Package installation 9
1.3.2 Package loading . 11
1.3.3 Package use . 11

1.4 Explore your first datasets 12
1.4.1 nycflights13 package 12
1.4.2 flights data frame . 13
1.4.3 Exploring data frames 14
1.4.4 Identification and measurement variables 17
1.4.5 Help files . 18

1.5 Conclusion . 19
1.5.1 Additional resources 19
1.5.2 What’s to come? . 20

I Data Science with tidyverse 21

2 Data Visualization 23
2.1 The grammar of graphics . 24

2.1.1 Components of the grammar 24
2.1.2 Gapminder data . 25
2.1.3 Other components . 26

vii

viii Contents

2.1.4 ggplot2 package . 27
2.2 Five named graphs - the 5NG 27
2.3 5NG#1: Scatterplots . 28

2.3.1 Scatterplots via geom_point 29
2.3.2 Overplotting . 31
2.3.3 Summary . 35

2.4 5NG#2: Linegraphs . 35
2.4.1 Linegraphs via geom_line 36
2.4.2 Summary . 38

2.5 5NG#3: Histograms . 38
2.5.1 Histograms via geom_histogram 40
2.5.2 Adjusting the bins . 41
2.5.3 Summary . 43

2.6 Facets . 43
2.7 5NG#4: Boxplots . 45

2.7.1 Boxplots via geom_boxplot 47
2.7.2 Summary . 50

2.8 5NG#5: Barplots . 50
2.8.1 Barplots via geom_bar or geom_col 51
2.8.2 Must avoid pie charts! 54
2.8.3 Two categorical variables 55
2.8.4 Summary . 60

2.9 Conclusion . 60
2.9.1 Summary table . 60
2.9.2 Function argument specification 61
2.9.3 Additional resources 62
2.9.4 What’s to come . 62

3 Data Wrangling 65
3.1 The pipe operator: %>% . 67
3.2 filter rows . 69
3.3 summarize variables . 72
3.4 group_by rows . 75

3.4.1 Grouping by more than one variable 78
3.5 mutate existing variables . 80
3.6 arrange and sort rows . 84
3.7 join data frames . 86

3.7.1 Matching “key” variable names 87
3.7.2 Different “key” variable names 88
3.7.3 Multiple “key” variables 89
3.7.4 Normal forms . 90

3.8 Other verbs . 91

Contents ix

3.8.1 select variables . 91
3.8.2 rename variables . 93
3.8.3 top_n values of a variable 93

3.9 Conclusion . 94
3.9.1 Summary table . 94
3.9.2 Additional resources 96
3.9.3 What’s to come? . 96

4 Data Importing and “Tidy” Data 99
4.1 Importing data . 100

4.1.1 Using the console . 101
4.1.2 Using RStudio’s interface 102

4.2 “Tidy” data . 103
4.2.1 Definition of “tidy” data 106
4.2.2 Converting to “tidy” data 108
4.2.3 nycflights13 package 112

4.3 Case study: Democracy in Guatemala 113
4.4 tidyverse package . 116
4.5 Conclusion . 117

4.5.1 Additional resources 117
4.5.2 What’s to come? . 117

II Data Modeling with moderndive 119

5 Basic Regression 121
5.1 One numerical explanatory variable 123

5.1.1 Exploratory data analysis 124
5.1.2 Simple linear regression 133
5.1.3 Observed/fitted values and residuals 137

5.2 One categorical explanatory variable 139
5.2.1 Exploratory data analysis 140
5.2.2 Linear regression . 147
5.2.3 Observed/fitted values and residuals 151

5.3 Related topics . 152
5.3.1 Correlation is not necessarily causation 152
5.3.2 Best-fitting line . 154
5.3.3 get_regression_x() functions 157

5.4 Conclusion . 160
5.4.1 Additional resources 160
5.4.2 What’s to come? . 160

6 Multiple Regression 161
6.1 One numerical and one categorical explanatory variable . . . 162

x Contents

6.1.1 Exploratory data analysis 162
6.1.2 Interaction model . 166
6.1.3 Parallel slopes model 169
6.1.4 Observed/fitted values and residuals 173

6.2 Two numerical explanatory variables 175
6.2.1 Exploratory data analysis 176
6.2.2 Regression plane . 181
6.2.3 Observed/fitted values and residuals 183

6.3 Related topics . 184
6.3.1 Model selection . 184
6.3.2 Correlation coefficient 188
6.3.3 Simpson’s Paradox . 188

6.4 Conclusion . 191
6.4.1 Additional resources 191
6.4.2 What’s to come? . 191

III Statistical Inference with infer 193

7 Sampling 195
7.1 Sampling bowl activity . 195

7.1.1 What proportion of this bowl’s balls are red? 196
7.1.2 Using the shovel once 196
7.1.3 Using the shovel 33 times 198
7.1.4 What did we just do? 201

7.2 Virtual sampling . 202
7.2.1 Using the virtual shovel once 203
7.2.2 Using the virtual shovel 33 times 206
7.2.3 Using the virtual shovel 1000 times 209
7.2.4 Using different shovels 212

7.3 Sampling framework . 216
7.3.1 Terminology and notation 216
7.3.2 Statistical definitions 219
7.3.3 The moral of the story 222

7.4 Case study: Polls . 226
7.5 Conclusion . 230

7.5.1 Sampling scenarios . 230
7.5.2 Central Limit Theorem 231
7.5.3 Additional resources 232
7.5.4 What’s to come? . 232

8 Bootstrapping and Confidence Intervals 233
8.1 Pennies activity . 235

Contents xi

8.1.1 What is the average year on US pennies in 2019? . . . 235
8.1.2 Resampling once . 239
8.1.3 Resampling 35 times 244
8.1.4 What did we just do? 246

8.2 Computer simulation of resampling 247
8.2.1 Virtually resampling once 247
8.2.2 Virtually resampling 35 times 249
8.2.3 Virtually resampling 1000 times 251

8.3 Understanding confidence intervals 254
8.3.1 Percentile method . 255
8.3.2 Standard error method 256

8.4 Constructing confidence intervals 258
8.4.1 Original workflow . 259
8.4.2 infer package workflow 259
8.4.3 Percentile method with infer 267
8.4.4 Standard error method with infer 269

8.5 Interpreting confidence intervals 271
8.5.1 Did the net capture the fish? 272
8.5.2 Precise and shorthand interpretation 280
8.5.3 Width of confidence intervals 281

8.6 Case study: Is yawning contagious? 284
8.6.1 Mythbusters study data 284
8.6.2 Sampling scenario . 286
8.6.3 Constructing the confidence interval 287
8.6.4 Interpreting the confidence interval 294

8.7 Conclusion . 295
8.7.1 Comparing bootstrap and sampling distributions . . . 295
8.7.2 Theory-based confidence intervals 300
8.7.3 Additional resources 305
8.7.4 What’s to come? . 305

9 Hypothesis Testing 307
9.1 Promotions activity . 308

9.1.1 Does gender affect promotions at a bank? 308
9.1.2 Shuffling once . 310
9.1.3 Shuffling 16 times . 314
9.1.4 What did we just do? 316

9.2 Understanding hypothesis tests 317
9.3 Conducting hypothesis tests 320

9.3.1 infer package workflow 322
9.3.2 Comparison with confidence intervals 328
9.3.3 “There is only one test” 332

xii Contents

9.4 Interpreting hypothesis tests 333
9.4.1 Two possible outcomes 333
9.4.2 Types of errors . 335
9.4.3 How do we choose alpha? 336

9.5 Case study: Are action or romance movies rated higher? . . . 337
9.5.1 IMDb ratings data . 338
9.5.2 Sampling scenario . 340
9.5.3 Conducting the hypothesis test 341

9.6 Conclusion . 347
9.6.1 Theory-based hypothesis tests 347
9.6.2 When inference is not needed 356
9.6.3 Problems with p-values 358
9.6.4 Additional resources 359
9.6.5 What’s to come . 359

10 Inference for Regression 361
10.1 Regression refresher . 361

10.1.1 Teaching evaluations analysis 362
10.1.2 Sampling scenario . 364

10.2 Interpreting regression tables 365
10.2.1 Standard error . 366
10.2.2 Test statistic . 367
10.2.3 p-value . 368
10.2.4 Confidence interval . 369
10.2.5 How does R compute the table? 370

10.3 Conditions for inference for regression 371
10.3.1 Residuals refresher . 371
10.3.2 Linearity of relationship 373
10.3.3 Independence of residuals 374
10.3.4 Normality of residuals 375
10.3.5 Equality of variance 376
10.3.6 What’s the conclusion? 378

10.4 Simulation-based inference for regression 379
10.4.1 Confidence interval for slope 380
10.4.2 Hypothesis test for slope 384

10.5 Conclusion . 386
10.5.1 Theory-based inference for regression 386
10.5.2 Summary of statistical inference 388
10.5.3 Additional resources 389
10.5.4 What’s to come . 389

Contents xiii

IV Conclusion 391

11 Tell Your Story with Data 393
11.1 Review . 393
11.2 Case study: Seattle house prices 396

11.2.1 Exploratory data analysis: Part I 397
11.2.2 Exploratory data analysis: Part II 404
11.2.3 Regression modeling 407
11.2.4 Making predictions . 409

11.3 Case study: Effective data storytelling 410
11.3.1 Bechdel test for Hollywood gender representation . . . 411
11.3.2 US Births in 1999 . 411
11.3.3 Scripts of R code . 414

Appendix A Statistical Background 417
A.1 Basic statistical terms . 417

A.1.1 Mean . 417
A.1.2 Median . 417
A.1.3 Standard deviation . 417
A.1.4 Five-number summary 418
A.1.5 Distribution . 418
A.1.6 Outliers . 418

A.2 Normal distribution . 418
A.3 log10 transformations . 421

Appendix B Versions of R Packages Used 423

Bibliography 425

Index 427

Foreword

These are exciting times in statistics and data science education. (I am pre-
dicting this statement will continue to be true regardless of whether you are
reading this foreword in 2020 or 2050.) But (isn’t there always a but?), as a
statistics educator, it can also feel a bit overwhelming to stay on top of all
the new statistical, technological, and pedagogical innovations. I find myself
constantly asking, “Am I teaching my students the correct content, with the
relevant software, and in the most effective way?”. Before I make all of us feel
lost at sea, let me point out how great a life raft I have found in ModernDive.
In a sea of intro stats textbooks, ModernDive floats to the top of my list, and
let me tell you why. (Note my use of ModernDive here refers to the book in its
shortened title version. This also matches up nicely with the neat hex sticker1

Drs. Ismay and Kim created for the cover of ModernDive, too.)

My favorite aspect of ModernDive, if I must pick a favorite, is that students gain
experience with the whole data analysis pipeline (see Figure 2). In particular,
ModernDive is one of the few intro stats textbooks that teaches students how
to wrangle data. And, while data cleaning may not be as groovy as model
building, it’s often a prerequisite step! The world is full of messy data and
ModernDive equips students to transform their data via the dplyr package.

1https://moderndive.com/images/logos/hex_blue_text.png

xv

* provides s t u d e ~ ~ t s e~perievLoe wi th

t h e whole d a t a a v ~ a L 9 s i s W ~ i v L e .

* l v~oorporates oov~temporary, user-

friev~dL9 ~ p a o k a g e s direotL9 ivLto

t h e t e ~ t .

* ~ m p h a s i z e s models t h a t prepare

studev~ts for o u r multivariate @.

xvi Foreword

Speaking of dplyr, students of ModernDive are exposed to the tidyverse suite
of R packages. Designed with a common structure, tidyverse functions are
written to be easy to learn and use. And, since most intro stats students are
programming newbies, ModernDive carefully walks the students through each
new function it presents and provides frequent reinforcement through the many
Learning checks dispersed throughout the chapters.

Overall, ModernDive includes wise choices for the placement of topics. Starting
with data visualization, ModernDive gets students building ggplot2 graphs early
on and then continues to reinforce important concepts graphically throughout
the book. After moving through data wrangling and data importing, modeling
plays a prominent role, with two chapters devoted to building regression models
and a later chapter on inference for regression. Lastly, statistical inference is
presented through a computational lens with calculations done via the infer
package.

I first met Drs. Ismay and Kim while attending their workshop at the 2017
US Conference on Teaching Statistics2. They pushed us as participants to put
data first and to use computers, instead of math, as the engine for statistical
inference. That experience helped me modernize my own intro stats course
and introduced me to two really forward-thinking statistics and data science
educators. It has been exciting to see ModernDive develop and grow into such
a wonderful, timely textbook. I hope you have decided to dive on in!

Kelly S. McConville, Reed College

2https://www.causeweb.org/cause/uscots/uscots17/workshop/3

Preface

Help! I’m new to R and RStudio and I need to learn about them!
However, I’m completely new to coding! What do I do?

If you’re asking yourself this question, then you’ve come to the right place!
Start with the “Introduction for students” section.

• Are you an instructor hoping to use this book in your courses? We recommend
you first read the “Introduction for students” section first. Then, read the
“Introduction for instructors” section for more information on how to teach
with this book.

• Are you looking to connect with and contribute to ModernDive? Then, read
the “Connect and contribute” section for information on how.

• Are you curious about the publishing of this book? Then, read the “About
this book” section for more information on the open-source technology, in
particular R Markdown and the bookdown package.

Introduction for students
This book assumes no prerequisites: no algebra, no calculus, and no prior
programming/coding experience. This is intended to be a gentle introduction
to the practice of analyzing data and answering questions using data the way
data scientists, statisticians, data journalists, and other researchers would.

We present a map of your upcoming journey in Figure 1.

xvii

xviii Preface

FIGURE 1: ModernDive flowchart.

You’ll first get started with data in Chapter 1 where you’ll learn about the
difference between R and RStudio, start coding in R, install and load your
first R packages, and explore your first dataset: all domestic departure flights
from a New York City airport in 2013. Then you’ll cover the following three
portions of this book (Parts 2 and 4 are combined into a single portion):

1. Data science with tidyverse. You’ll assemble your data science toolbox
using tidyverse packages. In particular, you’ll

•Ch.2: Visualize data using the ggplot2 package.
•Ch.3: Wrangle data using the dplyr package.
•Ch.4: Learn about the concept of “tidy” data as a standardized
data input and output format for all packages in the tidyverse.
Furthermore, you’ll learn how to import spreadsheet files into R
using the readr package.

2. Data modeling with moderndive. Using these data science tools and
helper functions from the moderndive package, you’ll fit your first data
models. In particular, you’ll

Preface xix

•Ch.5: Discover basic regression models with only one explanatory
variable.

•Ch.6: Examine multiple regression models with more than one
explanatory variable.

3. Statistical inference with infer. Once again using your newly acquired
data science tools, you’ll unpack statistical inference using the infer
package. In particular, you’ll:

•Ch.7: Learn about the role that sampling variability plays in
statistical inference and the role that sample size plays in this
sampling variability.

•Ch.8: Construct confidence intervals using bootstrapping.
•Ch.9: Conduct hypothesis tests using permutation.

4. Data modeling with moderndive (revisited): Armed with your under-
standing of statistical inference, you’ll revisit and review the models
you’ll construct in Ch.5 and Ch.6. In particular, you’ll:

•Ch.10: Interpret confidence intervals and hypothesis tests in a
regression setting.

We’ll end with a discussion on what it means to “tell your story with data” in
Chapter 11 by presenting example case studies.3

What we hope you will learn from this book

We hope that by the end of this book, you’ll have learned how to:

1. Use R and the tidyverse suite of R packages for data science.
2. Fit your first models to data, using a method known as linear regres-

sion.
3. Perform statistical inference using sampling, confidence intervals. and

hypothesis tests.
4. Tell your story with data using these tools.

What do we mean by data stories? We mean any analysis involving data that
engages the reader in answering questions with careful visuals and thoughtful
discussion. Further discussions on data stories can be found in the blog post
“Tell a Meaningful Story With Data.”4

3Note that you’ll see different versions of the word “ModernDive” in this book: (1)
moderndive refers to the R package. (2) ModernDive is an abbreviated version of Statistical
Inference via Data Science: A ModernDive into R and the Tidyverse. It’s essentially a
nickname we gave the book. (3) ModernDive (without italics) corresponds to both the book
and the corresponding R package together as an entity.

4https://www.thinkwithgoogle.com/marketing-resources/data-measurement/tell-meaningful-
stories-with-data/

xx Preface

Over the course of this book, you will develop your “data science toolbox,”
equipping yourself with tools such as data visualization, data formatting, data
wrangling, and data modeling using regression.

In particular, this book will lean heavily on data visualization. In today’s
world, we are bombarded with graphics that attempt to convey ideas. We will
explore what makes a good graphic and what the standard ways are used to
convey relationships within data. In general, we’ll use visualization as a way of
building almost all of the ideas in this book.

To impart the statistical lessons of this book, we have intentionally mini-
mized the number of mathematical formulas used. Instead, you’ll develop a
conceptual understanding of statistics using data visualization and computer
simulations. We hope this is a more intuitive experience than the way statistics
has traditionally been taught in the past and how it is commonly perceived.

Finally, you’ll learn the importance of literate programming. By this we mean
you’ll learn how to write code that is useful not just for a computer to execute,
but also for readers to understand exactly what your analysis is doing and how
you did it. This is part of a greater effort to encourage reproducible research
(see the “Reproducible research” subsection in this Preface for more details).
Hal Abelson coined the phrase that we will follow throughout this book:

Programs must be written for people to read, and only incidentally for machines
to execute.

We understand that there may be challenging moments as you learn to program.
Both of us continue to struggle and find ourselves often using web searches to
find answers and reach out to colleagues for help. In the long run though, we
all can solve problems faster and more elegantly via programming. We wrote
this book as our way to help you get started and you should know that there
is a huge community of R users that are happy to help everyone along as well.
This community exists in particular on the internet on various forums and
websites such as stackoverflow.com5.

Data/science pipeline

You may think of statistics as just being a bunch of numbers. We commonly
hear the phrase “statistician” when listening to broadcasts of sporting events.

5https://stackoverflow.com/

Preface xxi

Statistics (in particular, data analysis), in addition to describing numbers like
with baseball batting averages, plays a vital role in all of the sciences.

You’ll commonly hear the phrase “statistically significant” thrown around in
the media. You’ll see articles that say, “Science now shows that chocolate
is good for you.” Underpinning these claims is data analysis. By the end of
this book, you’ll be able to better understand whether these claims should be
trusted or whether we should be wary. Inside data analysis are many sub-fields
that we will discuss throughout this book (though not necessarily in this order):

• data collection
• data wrangling
• data visualization
• data modeling
• inference
• correlation and regression
• interpretation of results
• data communication/storytelling

These sub-fields are summarized in what Grolemund and Wickham have
previously termed the “data/science pipeline”6 in Figure 2.

FIGURE 2: Data/science pipeline.

We will begin by digging into the grey Understand portion of the cycle with
data visualization, then with a discussion on what is meant by tidy data and
data wrangling, and then conclude by talking about interpreting and discussing
the results of our models via Communication. These steps are vital to any
statistical analysis. But, why should you care about statistics?

6http://r4ds.had.co.nz/explore-intro.html

xxii Preface

There’s a reason that many fields require a statistics course. Scientific knowledge
grows through an understanding of statistical significance and data analysis.
You needn’t be intimidated by statistics. It’s not the beast that it used to
be and, paired with computation, you’ll see how reproducible research in the
sciences particularly increases scientific knowledge.

Reproducible research

The most important tool is the mindset, when starting, that the end product
will be reproducible. – Keith Baggerly

Another goal of this book is to help readers understand the importance of
reproducible analyses. The hope is to get readers into the habit of making their
analyses reproducible from the very beginning. This means we’ll be trying to
help you build new habits. This will take practice and be difficult at times.
You’ll see just why it is so important for you to keep track of your code and
document it well to help yourself later and any potential collaborators as well.

Copying and pasting results from one program into a word processor is not an
ideal way to conduct efficient and effective scientific research. It’s much more
important for time to be spent on data collection and data analysis and not
on copying and pasting plots back and forth across a variety of programs.

In traditional analyses, if an error was made with the original data, we’d need
to step through the entire process again: recreate the plots and copy-and-paste
all of the new plots and our statistical analysis into our document. This is
error prone and a frustrating use of time. We want to help you to get away
from this tedious activity so that we can spend more time doing science.

We are talking about computational reproducibility. - Yihui Xie

Reproducibility means a lot of things in terms of different scientific fields.
Are experiments conducted in a way that another researcher could follow the
steps and get similar results? In this book, we will focus on what is known
as computational reproducibility. This refers to being able to pass all of

Preface xxiii

one’s data analysis, datasets, and conclusions to someone else and have them
get exactly the same results on their machine. This allows for time to be spent
interpreting results and considering assumptions instead of the more error
prone way of starting from scratch or following a list of steps that may be
different from machine to machine.

Final note for students

At this point, if you are interested in instructor perspectives on this book, ways
to contribute and collaborate, or the technical details of this book’s construction
and publishing, then continue with the rest of the chapter. Otherwise, let’s get
started with R and RStudio in Chapter 1!

Introduction for instructors
Resources

Here are some resources to help you use ModernDive:

1. We’ve included review questions posed as Learning checks. You can
find all the solutions to all Learning checks in Appendix D of the
online version of the book at https://moderndive.com/D-appendixD.html.

2. Dr. Jenny Smetzer and Albert Y. Kim have written a series of labs
and problem sets. You can find them at https://moderndive.com/labs.

3. You can see the webpages for two courses that use ModernDive:
•Smith College “SDS192 Introduction to Data Science”: https:
//rudeboybert.github.io/SDS192/.

•Smith College “SDS220 Introduction to Probability and Statis-
tics”: https://rudeboybert.github.io/SDS220/.

Why did we write this book?

This book is inspired by

• Mathematical Statistics with Resampling and R (Chihara and Hesterberg,
2011)

• OpenIntro: Intro Stat with Randomization and Simulation (Diez et al., 2014)
• R for Data Science (Grolemund and Wickham, 2017)

The first book, designed for upper-level undergraduates and graduate students,
provides an excellent resource on how to use resampling to impart statistical
concepts like sampling distributions using computation instead of large-sample

xxiv Preface

approximations and other mathematical formulas. The last two books are free
options for learning about introductory statistics and data science, providing
an alternative to the many traditionally expensive introductory statistics
textbooks.

When looking over the introductory statistics textbooks that currently exist,
we found there wasn’t one that incorporated many newly developed R packages
directly into the text, in particular the many packages included in the tidyverse7

set of packages, such as ggplot2, dplyr, tidyr, and readr that will be the focus
of this book’s first part on “Data Science with tidyverse.”

Additionally, there wasn’t an open-source and easily reproducible textbook
available that exposed new learners to all four of the learning goals we listed
in the “Introduction for students” subsection. We wanted to write a book that
could develop theory via computational techniques and help novices master
the R language in doing so.

Who is this book for?

This book is intended for instructors of traditional introductory statistics classes
using RStudio, who would like to inject more data science topics into their
syllabus. RStudio can be used in either the server version or the desktop version.
(This is discussed further in Subsection 1.1.1.) We assume that students taking
the class will have no prior algebra, no calculus, nor programming/coding
experience.

Here are some principles and beliefs we kept in mind while writing this text. If
you agree with them, this is the book for you.

1. Blur the lines between lecture and lab
•With increased availability and accessibility of laptops and open-
source non-proprietary statistical software, the strict dichotomy
between lab and lecture can be loosened.

•It’s much harder for students to understand the importance of
using software if they only use it once a week or less. They forget
the syntax in much the same way someone learning a foreign
language forgets the grammar rules. Frequent reinforcement is
key.

2. Focus on the entire data/science research pipeline
•We believe that the entirety of Grolemund and Wickham’s
data/science pipeline8 as seen in Figure 2 should be taught.

7http://tidyverse.org/
8http://r4ds.had.co.nz/introduction.html

Preface xxv

•We heed George Cobb’s call to “minimize prerequisites to re-
search”9: students should be answering questions with data as
soon as possible.

3. It’s all about the data
•We leverage R packages for rich, real, and realistic datasets that
at the same time are easy-to-load into R, such as the nycflights13
and fivethirtyeight packages.

•We believe that data visualization is a “gateway drug” for statis-
tics10 and that the grammar of graphics as implemented in the
ggplot2 package is the best way to impart such lessons. However,
we often hear: “You can’t teach ggplot2 for data visualization
in intro stats!” We, like David Robinson11, are much more opti-
mistic and have found our students have been largely successful
in learning it.

•dplyr has made data wrangling much more accessible12 to
novices, and hence much more interesting datasets can be
explored.

4. Use simulation/resampling to introduce statistical inference,
not probability/mathematical formulas

•Instead of using formulas, large-sample approximations, and
probability tables, we teach statistical concepts using simulation-
based inference.

•This allows for a de-emphasis of traditional probability topics,
freeing up room in the syllabus for other topics. Bridges to these
mathematical concepts are given as well to help with relation of
these traditional topics with more modern approaches.

5. Don’t fence off students from the computation pool, throw
them in!

•Computing skills are essential to working with data in the 21st
century. Given this fact, we feel that to shield students from
computing is to ultimately do them a disservice.

•We are not teaching a course on coding/programming per se,
but rather just enough of the computational and algorithmic
thinking necessary for data analysis.

6. Complete reproducibility and customizability
•We are frustrated when textbooks give examples, but not the
source code and the data itself. We give you the source code for all
examples as well as the whole book! While we have made choices

9https://arxiv.org/abs/1507.05346
10http://escholarship.org/uc/item/84v3774z
11http://varianceexplained.org/r/teach_ggplot2_to_beginners/
12http://chance.amstat.org/2015/04/setting-the-stage/

xxvi Preface

to occasionally hide the code that produces more complicated
figures, reviewing the book’s GitHub repository will provide you
with all the code (see below).

•Ultimately the best textbook is one you’ve written yourself. You
know best your audience, their background, and their priorities.
You know best your own style and the types of examples and
problems you like best. Customization is the ultimate end. We
encourage you to take what we’ve provided and make it work
for your own needs. For more about how to make this book your
own, see “About this book” later in this Preface.

Connect and contribute
If you would like to connect with ModernDive, check out the following links:

• If you would like to receive periodic updates about ModernDive (roughly
every 6 months), please sign up for our mailing list13.

• Contact Albert at albert.ys.kim@gmail.com and Chester at
chester.ismay@gmail.com.

• We’re on Twitter at https://twitter.com/ModernDive.

If you would like to contribute to ModernDive, there are many ways! We would
love your help and feedback to make this book as great as possible! For example,
if you find any errors, typos, or areas for improvement, then please email us or
post an issue on our GitHub issues14 page. If you are familiar with GitHub
and would like to contribute, see the “About this book” section.

Acknowledgements
The authors would like to thank Nina Sonneborn15, Dr. Alison Hill16, Kristin
Bott17, Dr. Jenny Smetzer18, and the participants of our 201719 and 201920

13http://eepurl.com/cBkItf
14https://github.com/moderndive/moderndive_book/issues
15https://github.com/nsonneborn
16https://alison.rbind.io/
17https://twitter.com/rhobott?lang=en
18https://www.smith.edu/academics/faculty/jennifer-smetzer
19https://www.causeweb.org/cause/uscots/uscots17/workshop/3
20https://www.causeweb.org/cause/uscots/uscots19/workshop/4

Preface xxvii

USCOTS workshops for their feedback and suggestions. We’d also like to
thank Dr. Andrew Heiss21 for contributing nearly all of Subsection 1.2.3 on
“Errors, warnings, and messages,” Evgeni Chasnovski22 for creating the new
geom_parallel_slopes() extension to the ggplot2 package for plotting parallel
slopes models, and Starry Zhou23 for her many edits to the book. A special
thanks goes to Dr. Yana Weinstein, cognitive psychological scientist and co-
founder of The Learning Scientists24, for her extensive feedback.

We were both honored to have Dr. Kelly S. McConville25 write the Foreword of
the book. Dr. McConville is a pioneer in statistics education and was a source of
great inspiration to both of us as we continued to update the book to get it to its
current form. Thanks additionally to the continued contributions by members
of the community26 to the book on GitHub and to the many individuals that
have recommended this book to others. We are so very appreciative of all of
you!

Lastly, a very special shout out to any student who has ever taken a class with
us at either Pacific University, Reed College, Middlebury College, Amherst
College, or Smith College. We couldn’t have made this book without you!

About this book
This book was written using RStudio’s bookdown27 package by Yihui Xie (Xie,
2019). This package simplifies the publishing of books by having all content
written in R Markdown28. The bookdown/R Markdown source code for all
versions of ModernDive is available on GitHub:

• Latest online version The most up-to-date release:
– Version 1.0.0 released on November 25, 2019 (source code29)
– Available at https://moderndive.com/

• Print version The CRC Press print version of ModernDive corresponds to
Version 1.0.0.
21https://twitter.com/andrewheiss
22https://github.com/echasnovski
23https://github.com/Starryz
24http://www.learningscientists.org/yana-weinstein/
25https://www.reed.edu/faculty-profiles/profiles/mcconville-kelly.html
26https://github.com/moderndive/ModernDive_book/graphs/contributors
27https://bookdown.org/
28http://rmarkdown.rstudio.com/html_document_format.html
29https://github.com/moderndive/moderndive_book/releases/tag/v1.0.0

xxviii Preface

• Development online version The working copy of the next version which
is currently being edited:

– Preview of development version is available at https://moderndive.
netlify.com/.

– Source code: Available on ModernDive’s GitHub repository page at
https://github.com/moderndive/moderndive_book.

• Previous online versions Older versions that may be out of date:
– Version 0.6.130 released on August 28, 2019 (source code31)
– Version 0.6.032 released on August 7, 2019 (source code33)
– Version 0.5.034 released on February 24, 2019 (source code35)
– Version 0.4.036 released on July 21, 2018 (source code37)
– Version 0.3.038 released on February 3, 2018 (source code39)
– Version 0.2.040 released on August 2, 2017 (source code41)
– Version 0.1.342 released on February 9, 2017 (source code43)
– Version 0.1.244 released on January 22, 2017 (source code45)

Could this be a new paradigm for textbooks? Instead of the traditional model
of textbook companies publishing updated editions of the textbook every few
years, we apply a software design influenced model of publishing more easily
updated versions. We can then leverage open-source communities of instructors
and developers for ideas, tools, resources, and feedback. As such, we welcome
your GitHub pull requests.

Finally, since this book is under a Creative Commons Attribution - NonCom-
mercial - ShareAlike 4.0 license46, feel free to modify the book as you wish
for your own non-commercial needs, but please list the authors at the top of
index.Rmd as: “Chester Ismay, Albert Y. Kim, and YOU!”

30https://moderndive.com/previous_versions/v0.6.1/index.html
31https://github.com/moderndive/ModernDive_book/releases/tag/v0.6.1
32https://moderndive.com/previous_versions/v0.6.0/index.html
33https://github.com/moderndive/moderndive_book/releases/tag/v0.6.0
34https://moderndive.com/previous_versions/v0.5.0/index.html
35https://github.com/moderndive/moderndive_book/releases/tag/v0.5.0
36https://moderndive.com/previous_versions/v0.4.0/index.html
37https://github.com/moderndive/moderndive_book/releases/tag/v0.4.0
38https://moderndive.com/previous_versions/v0.3.0/index.html
39https://github.com/moderndive/moderndive_book/releases/tag/v0.3.0
40https://moderndive.com/previous_versions/v0.2.0/index.html
41https://github.com/moderndive/moderndive_book/releases/tag/v0.2.0
42https://moderndive.com/previous_versions/v0.1.3/index.html
43https://github.com/moderndive/moderndive_book/releases/tag/v0.1.3
44https://moderndive.com/previous_versions/v0.1.2/index.html
45https://github.com/moderndive/moderndive_book/releases/tag/v0.1.2
46https://creativecommons.org/licenses/by-nc-sa/4.0/

About the authors

Chester Ismay Albert Y. Kim

Chester Ismay is a Data Science Evangelist at DataRobot in Portland, OR,
USA. In this role, he leads data science, machine learning, and data engineering
in-person workshops for DataRobot University. He completed his PhD in
statistics from Arizona State University in 2013. He has previously worked in a
variety of roles including as an actuary at Scottsdale Insurance Company (now
Nationwide E&S/Specialty), as a freelance data science consultant, and at
Ripon College, Reed College, and Pacific University. In addition to his work for
ModernDive, he also contributed as initial developer of the infer47 R package
and is author and maintainer of the thesisdown48 R package.

• Email: chester.ismay@gmail.com
• Webpage: https://chester.rbind.io/
• Twitter: old_man_chester49

• GitHub: https://github.com/ismayc
47https://cran.r-project.org/package=infer
48https://github.com/ismayc/thesisdown
49https://twitter.com/old_man_chester

xxix

xxx About the authors

Albert Y. Kim is an Assistant Professor of Statistical & Data Sciences at
Smith College in Northampton, MA, USA. He completed his PhD in statistics
at the University of Washington in 2011. Previously he worked in the Search
Ads Metrics Team at Google Inc. as well as at Reed, Middlebury, and Amherst
Colleges. In addition to his work for ModernDive, he is a co-author of the
resampledata50 and SpatialEpi51 R packages.

• Email: albert.ys.kim@gmail.com
• Webpage: https://rudeboybert.rbind.io/
• Twitter: rudeboybert52

• GitHub: https://github.com/rudeboybert

Both Drs. Ismay and Kim, along with Jennifer Chunn53, are co-authors of
the fivethirtyeight54 package of code and datasets published by the data
journalism website FiveThirtyEight.com55.

50https://cran.r-project.org/package=resampledata
51https://cran.r-project.org/package=SpatialEpi
52https://twitter.com/rudeboybert
53https://github.com/jchunn
54https://fivethirtyeight-r.netlify.com/
55https://fivethirtyeight.com/

1
Getting Started with Data in R

Before we can start exploring data in R, there are some key concepts to
understand first:

1. What are R and RStudio?
2. How do I code in R?
3. What are R packages?

We’ll introduce these concepts in the upcoming Sections 1.1-1.3. If you are
already somewhat familiar with these concepts, feel free to skip to Section 1.4
where we’ll introduce our first dataset: all domestic flights departing one of
the three main New York City (NYC) airports in 2013. This is a dataset we
will explore in depth for much of the rest of this book.

1.1 What are R and RStudio?
Throughout this book, we will assume that you are using R via RStudio. First
time users often confuse the two. At its simplest, R is like a car’s engine while
RStudio is like a car’s dashboard as illustrated in Figure 1.1.

FIGURE 1.1: Analogy of difference between R and RStudio.

1

2 1 Getting Started with Data in R

More precisely, R is a programming language that runs computations, while
RStudio is an integrated development environment (IDE) that provides an
interface by adding many convenient features and tools. So just as the way of
having access to a speedometer, rearview mirrors, and a navigation system
makes driving much easier, using RStudio’s interface makes using R much
easier as well.

1.1.1 Installing R and RStudio

Note about RStudio Server or RStudio Cloud: If your instructor has
provided you with a link and access to RStudio Server or RStudio Cloud, then
you can skip this section. We do recommend after a few months of working
on RStudio Server/Cloud that you return to these instructions to install this
software on your own computer though.

You will first need to download and install both R and RStudio (Desktop
version) on your computer. It is important that you install R first and then
install RStudio.

1. You must do this first: Download and install R by going to https:
//cloud.r-project.org/.

•If you are a Windows user: Click on “Download R for Windows”,
then click on “base”, then click on the Download link.

•If you are macOS user: Click on “Download R for (Mac) OS
X”, then under “Latest release:” click on R-X.X.X.pkg, where
R-X.X.X is the version number. For example, the latest version
of R as of November 25, 2019 was R-3.6.1.

•If you are a Linux user: Click on “Download R for Linux” and
choose your distribution for more information on installing R for
your setup.

2. You must do this second: Download and install RStudio at https:
//www.rstudio.com/products/rstudio/download/.

•Scroll down to “Installers for Supported Platforms” near the
bottom of the page.

•Click on the download link corresponding to your computer’s
operating system.

1.1 What are R and RStudio? 3

1.1.2 Using R via RStudio

Recall our car analogy from earlier. Much as we don’t drive a car by interacting
directly with the engine but rather by interacting with elements on the car’s
dashboard, we won’t be using R directly but rather we will use RStudio’s
interface. After you install R and RStudio on your computer, you’ll have two
new programs (also called applications) you can open. We’ll always work in
RStudio and not in the R application. Figure 1.2 shows what icon you should
be clicking on your computer.

FIGURE 1.2: Icons of R versus RStudio on your computer.

After you open RStudio, you should see something similar to Figure 1.3. (Note
that slight differences might exist if the RStudio interface is updated after
2019 to not be this by default.)

FIGURE 1.3: RStudio interface to R.

4 1 Getting Started with Data in R

Note the three panes which are three panels dividing the screen: the console
pane, the files pane, and the environment pane. Over the course of this chapter,
you’ll come to learn what purpose each of these panes serves.

1.2 How do I code in R?
Now that you’re set up with R and RStudio, you are probably asking yourself,
“OK. Now how do I use R?”. The first thing to note is that unlike other statistical
software programs like Excel, SPSS, or Minitab that provide point-and-click1

interfaces, R is an interpreted language2. This means you have to type in
commands written in R code. In other words, you have to code/program in R.
Note that we’ll use the terms “coding” and “programming” interchangeably in
this book.

While it is not required to be a seasoned coder/computer programmer to use
R, there is still a set of basic programming concepts that new R users need
to understand. Consequently, while this book is not a book on programming,
you will still learn just enough of these basic programming concepts needed to
explore and analyze data effectively.

1.2.1 Basic programming concepts and terminology

We now introduce some basic programming concepts and terminology. Instead
of asking you to memorize all these concepts and terminology right now, we’ll
guide you so that you’ll “learn by doing.” To help you learn, we will always use
a different font to distinguish regular text from computer_code. The best way to
master these topics is, in our opinions, through deliberate practice3 with R
and lots of repetition.

• Basics:
– Console pane: where you enter in commands.
– Running code: the act of telling R to perform an act by giving it

commands in the console.
– Objects: where values are saved in R. We’ll show you how to assign

values to objects and how to display the contents of objects.
– Data types: integers, doubles/numerics, logicals, and characters. Integers

are values like -1, 0, 2, 4092. Doubles or numerics are a larger set of
values containing both the integers but also fractions and decimal values

1https://en.wikipedia.org/wiki/Point_and_click
2https://en.wikipedia.org/wiki/Interpreted_language
3https://jamesclear.com/deliberate-practice-theory

1.2 How do I code in R? 5

like -24.932 and 0.8. Logicals are either TRUE or FALSE while characters
are text such as “cabbage”, “Hamilton”, “The Wire is the greatest TV
show ever”, and “This ramen is delicious.” Note that characters are
often denoted with the quotation marks around them.

• Vectors: a series of values. These are created using the c() function, where
c() stands for “combine” or “concatenate.” For example, c(6, 11, 13, 31, 90,
92) creates a six element series of positive integer values .

• Factors: categorical data are commonly represented in R as factors. Categori-
cal data can also be represented as strings. We’ll study this difference as we
progress through the book.

• Data frames: rectangular spreadsheets. They are representations of datasets
in R where the rows correspond to observations and the columns correspond
to variables that describe the observations. We’ll cover data frames later in
Section 1.4.

• Conditionals:
– Testing for equality in R using == (and not =, which is typically used for

assignment). For example, 2 + 1 == 3 compares 2 + 1 to 3 and is correct
R code, while 2 + 1 = 3 will return an error.

– Boolean algebra: TRUE/FALSE statements and mathematical operators
such as < (less than), <= (less than or equal), and != (not equal to). For
example, 4 + 2 >= 3 will return TRUE, but 3 + 5 <= 1 will return FALSE.

– Logical operators: & representing “and” as well as | representing “or.” For
example, (2 + 1 == 3) & (2 + 1 == 4) returns FALSE since both clauses
are not TRUE (only the first clause is TRUE). On the other hand, (2 + 1
== 3) | (2 + 1 == 4) returns TRUE since at least one of the two clauses is
TRUE.

• Functions, also called commands: Functions perform tasks in R. They take in
inputs called arguments and return outputs. You can either manually specify
a function’s arguments or use the function’s default values.

– For example, the function seq() in R generates a sequence of numbers.
If you just run seq() it will return the value 1. That doesn’t seem very
useful! This is because the default arguments are set as seq(from = 1,
to = 1). Thus, if you don’t pass in different values for from and to to
change this behavior, R just assumes all you want is the number 1. You
can change the argument values by updating the values after the = sign.
If we try out seq(from = 2, to = 5) we get the result 2 3 4 5 that we
might expect.

– We’ll work with functions a lot throughout this book and you’ll get
lots of practice in understanding their behaviors. To further assist you
in understanding when a function is mentioned in the book, we’ll also
include the () after them as we did with seq() above.

6 1 Getting Started with Data in R

This list is by no means an exhaustive list of all the programming concepts
and terminology needed to become a savvy R user; such a list would be so
large it wouldn’t be very useful, especially for novices. Rather, we feel this is
a minimally viable list of programming concepts and terminology you need
to know before getting started. We feel that you can learn the rest as you go.
Remember that your mastery of all of these concepts and terminology will
build as you practice more and more.

1.2.2 Errors, warnings, and messages

One thing that intimidates new R and RStudio users is how it reports errors,
warnings, and messages. R reports errors, warnings, and messages in a glaring
red font, which makes it seem like it is scolding you. However, seeing red text
in the console is not always bad.

R will show red text in the console pane in three different situations:

• Errors: When the red text is a legitimate error, it will be prefaced with
“Error in…” and will try to explain what went wrong. Generally when there’s
an error, the code will not run. For example, we’ll see in Subsection 1.3.3
if you see Error in ggplot(...) : could not find function "ggplot", it means
that the ggplot() function is not accessible because the package that contains
the function (ggplot2) was not loaded with library(ggplot2). Thus you cannot
use the ggplot() function without the ggplot2 package being loaded first.

• Warnings: When the red text is a warning, it will be prefaced with “Warning:”
and R will try to explain why there’s a warning. Generally your code will
still work, but with some caveats. For example, you will see in Chapter 2 if
you create a scatterplot based on a dataset where two of the rows of data
have missing entries that would be needed to create points in the scatterplot,
you will see this warning: Warning: Removed 2 rows containing missing values
(geom_point). R will still produce the scatterplot with all the remaining
non-missing values, but it is warning you that two of the points aren’t there.

• Messages: When the red text doesn’t start with either “Error” or “Warning”,
it’s just a friendly message. You’ll see these messages when you load R
packages in the upcoming Subsection 1.3.2 or when you read data saved
in spreadsheet files with the read_csv() function as you’ll see in Chapter 4.
These are helpful diagnostic messages and they don’t stop your code from
working. Additionally, you’ll see these messages when you install packages
too using install.packages() as discussed in Subsection 1.3.1.

Remember, when you see red text in the console, don’t panic. It doesn’t
necessarily mean anything is wrong. Rather:

1.2 How do I code in R? 7

• If the text starts with “Error”, figure out what’s causing it. Think of errors
as a red traffic light: something is wrong!

• If the text starts with “Warning”, figure out if it’s something to worry about.
For instance, if you get a warning about missing values in a scatterplot and
you know there are missing values, you’re fine. If that’s surprising, look at
your data and see what’s missing. Think of warnings as a yellow traffic light:
everything is working fine, but watch out/pay attention.

• Otherwise, the text is just a message. Read it, wave back at R, and thank it
for talking to you. Think of messages as a green traffic light: everything is
working fine and keep on going!

1.2.3 Tips on learning to code

Learning to code/program is quite similar to learning a foreign language. It
can be daunting and frustrating at first. Such frustrations are common and it
is normal to feel discouraged as you learn. However, just as with learning a
foreign language, if you put in the effort and are not afraid to make mistakes,
anybody can learn and improve.

Here are a few useful tips to keep in mind as you learn to program:

• Remember that computers are not actually that smart: You may
think your computer or smartphone is “smart,” but really people spent a lot
of time and energy designing them to appear “smart.” In reality, you have
to tell a computer everything it needs to do. Furthermore, the instructions
you give your computer can’t have any mistakes in them, nor can they be
ambiguous in any way.

• Take the “copy, paste, and tweak” approach: Especially when you
learn your first programming language or you need to understand particularly
complicated code, it is often much easier to take existing code that you know
works and modify it to suit your ends. This is as opposed to trying to
type out the code from scratch. We call this the “copy, paste, and tweak”
approach. So early on, we suggest not trying to write code from memory,
but rather take existing examples we have provided you, then copy, paste,
and tweak them to suit your goals. After you start feeling more confident,
you can slowly move away from this approach and write code from scratch.
Think of the “copy, paste, and tweak” approach as training wheels for a
child learning to ride a bike. After getting comfortable, they won’t need
them anymore.

• The best way to learn to code is by doing: Rather than learning to
code for its own sake, we find that learning to code goes much smoother
when you have a goal in mind or when you are working on a particular

8 1 Getting Started with Data in R

project, like analyzing data that you are interested in and that is important
to you.

• Practice is key: Just as the only method to improve your foreign language
skills is through lots of practice and speaking, the only method to improving
your coding skills is through lots of practice. Don’t worry, however, we’ll give
you plenty of opportunities to do so!

1.3 What are R packages?
Another point of confusion with many new R users is the idea of an R package.
R packages extend the functionality of R by providing additional functions,
data, and documentation. They are written by a worldwide community of R
users and can be downloaded for free from the internet.

For example, among the many packages we will use in this book are the ggplot2
package (Wickham et al., 2019a) for data visualization in Chapter 2, the
dplyr package (Wickham et al., 2019b) for data wrangling in Chapter 3, the
moderndive package (Kim and Ismay, 2019) that accompanies this book, and
the infer package (Bray et al., 2019) for “tidy” and transparent statistical
inference in Chapters 8, 9, and 10.

A good analogy for R packages is they are like apps you can download onto a
mobile phone:

FIGURE 1.4: Analogy of R versus R packages.

So R is like a new mobile phone: while it has a certain amount of features
when you use it for the first time, it doesn’t have everything. R packages are
like the apps you can download onto your phone from Apple’s App Store or
Android’s Google Play.

1.3 What are R packages? 9

Let’s continue this analogy by considering the Instagram app for editing and
sharing pictures. Say you have purchased a new phone and you would like to
share a photo you have just taken with friends on Instagram. You need to:

1. Install the app: Since your phone is new and does not include the
Instagram app, you need to download the app from either the App
Store or Google Play. You do this once and you’re set for the time
being. You might need to do this again in the future when there is an
update to the app.

2. Open the app: After you’ve installed Instagram, you need to open it.

Once Instagram is open on your phone, you can then proceed to share your
photo with your friends and family. The process is very similar for using an R
package. You need to:

1. Install the package: This is like installing an app on your phone. Most
packages are not installed by default when you install R and RStudio.
Thus if you want to use a package for the first time, you need to
install it first. Once you’ve installed a package, you likely won’t install
it again unless you want to update it to a newer version.

2. “Load” the package: “Loading” a package is like opening an app on
your phone. Packages are not “loaded” by default when you start
RStudio on your computer; you need to “load” each package you want
to use every time you start RStudio.

Let’s perform these two steps for the ggplot2 package for data visualization.

1.3.1 Package installation

Note about RStudio Server or RStudio Cloud: If your instructor has
provided you with a link and access to RStudio Server or RStudio Cloud, you
might not need to install packages, as they might be preinstalled for you by
your instructor. That being said, it is still a good idea to know this process for
later on when you are not using RStudio Server or Cloud, but rather RStudio
Desktop on your own computer.

There are two ways to install an R package: an easy way and a more advanced
way. Let’s install the ggplot2 package the easy way first as shown in Figure 1.5.
In the Files pane of RStudio:

10 1 Getting Started with Data in R

a) Click on the “Packages” tab.
b) Click on “Install” next to Update.
c) Type the name of the package under “Packages (separate multiple

with space or comma):” In this case, type ggplot2.
d) Click “Install.”

FIGURE 1.5: Installing packages in R the easy way.

An alternative but slightly less convenient way to install a package is by
typing install.packages("ggplot2") in the console pane of RStudio and pressing
Return/Enter on your keyboard. Note you must include the quotation marks
around the name of the package.

Much like an app on your phone, you only have to install a package once.
However, if you want to update a previously installed package to a newer
version, you need to reinstall it by repeating the earlier steps.

Learning check

(LC1.1) Repeat the earlier installation steps, but for the dplyr, nycflights13,
and knitr packages. This will install the earlier mentioned dplyr package for
data wrangling, the nycflights13 package containing data on all domestic
flights leaving a NYC airport in 2013, and the knitr package for generating
easy-to-read tables in R. We’ll use these packages in the next section.

1.3 What are R packages? 11

Note that if you’d like your output on your computer to match up exactly
with the output presented throughout the book, you may want to use the
exact versions of the packages that we used. You can find a full listing of these
packages and their versions in Appendix B. This likely won’t be relevant for
novices, but we included it for reproducibility reasons.

1.3.2 Package loading

Recall that after you’ve installed a package, you need to “load it.” In other
words, you need to “open it.” We do this by using the library() command.

For example, to load the ggplot2 package, run the following code in the console
pane. What do we mean by “run the following code”? Either type or copy-
and-paste the following code into the console pane and then hit the Enter
key.

library(ggplot2)

If after running the earlier code, a blinking cursor returns next to the > “prompt”
sign, it means you were successful and the ggplot2 package is now loaded and
ready to use. If, however, you get a red “error message” that reads ...

Error in library(ggplot2) : there is no package called ‘ggplot2’

... it means that you didn’t successfully install it. This is an example of an
“error message” we discussed in Subsection 1.2.2. If you get this error message,
go back to Subsection 1.3.1 on R package installation and make sure to install
the ggplot2 package before proceeding.

Learning check

(LC1.2) “Load” the dplyr, nycflights13, and knitr packages as well by repeat-
ing the earlier steps.

1.3.3 Package use

One very common mistake new R users make when wanting to use particular
packages is they forget to “load” them first by using the library() command
we just saw. Remember: you have to load each package you want to use every
time you start RStudio. If you don’t first “load” a package, but attempt to use
one of its features, you’ll see an error message similar to:

12 1 Getting Started with Data in R

Error: could not find function

This is a different error message than the one you just saw on a package
not having been installed yet. R is telling you that you are trying to use a
function in a package that has not yet been “loaded.” R doesn’t know where
to find the function you are using. Almost all new users forget to do this when
starting out, and it is a little annoying to get used to doing it. However, you’ll
remember with practice and after some time it will become second nature for
you.

1.4 Explore your first datasets
Let’s put everything we’ve learned so far into practice and start exploring
some real data! Data comes to us in a variety of formats, from pictures to text
to numbers. Throughout this book, we’ll focus on datasets that are saved in
“spreadsheet”-type format. This is probably the most common way data are
collected and saved in many fields. Remember from Subsection 1.2.1 that these
“spreadsheet”-type datasets are called data frames in R. We’ll focus on working
with data saved as data frames throughout this book.

Let’s first load all the packages needed for this chapter, assuming you’ve already
installed them. Read Section 1.3 for information on how to install and load R
packages if you haven’t already.

library(nycflights13)
library(dplyr)
library(knitr)

At the beginning of all subsequent chapters in this book, we’ll always have a
list of packages that you should have installed and loaded in order to work
with that chapter’s R code.

1.4.1 nycflights13 package

Many of us have flown on airplanes or know someone who has. Air travel
has become an ever-present aspect of many people’s lives. If you look at the
Departures flight information board at an airport, you will frequently see that
some flights are delayed for a variety of reasons. Are there ways that we can
understand the reasons that cause flight delays?

1.4 Explore your first datasets 13

We’d all like to arrive at our destinations on time whenever possible. (Unless you
secretly love hanging out at airports. If you are one of these people, pretend for
a moment that you are very much anticipating being at your final destination.)
Throughout this book, we’re going to analyze data related to all domestic
flights departing from one of New York City’s three main airports in 2013:
Newark Liberty International (EWR), John F. Kennedy International (JFK),
and LaGuardia Airport (LGA). We’ll access this data using the nycflights13
R package, which contains five datasets saved in five data frames:

• flights: Information on all 336,776 flights.
• airlines: A table matching airline names and their two-letter International

Air Transport Association (IATA) airline codes (also known as carrier codes)
for 16 airline companies. For example, “DL” is the two-letter code for Delta.

• planes: Information about each of the 3,322 physical aircraft used.
• weather: Hourly meteorological data for each of the three NYC airports. This

data frame has 26,115 rows, roughly corresponding to the 365 × 24 × 3 =26, 280 possible hourly measurements one can observe at three locations over
the course of a year.

• airports: Names, codes, and locations of the 1,458 domestic destinations.

1.4.2 flights data frame

We’ll begin by exploring the flights data frame and get an idea of its structure.
Run the following code in your console, either by typing it or by cutting-and-
pasting it. It displays the contents of the flights data frame in your console.
Note that depending on the size of your monitor, the output may vary slightly.

flights

A tibble: 336,776 x 19
year month day dep_time sched_dep_time dep_delay arr_time
<int> <int> <int> <int> <int> <dbl> <int>

1 2013 1 1 517 515 2 830
2 2013 1 1 533 529 4 850
3 2013 1 1 542 540 2 923
4 2013 1 1 544 545 -1 1004
5 2013 1 1 554 600 -6 812
6 2013 1 1 554 558 -4 740
7 2013 1 1 555 600 -5 913
8 2013 1 1 557 600 -3 709
9 2013 1 1 557 600 -3 838
10 2013 1 1 558 600 -2 753
... with 336,766 more rows, and 12 more variables: sched_arr_time <int>,

14 1 Getting Started with Data in R

arr_delay <dbl>, carrier <chr>, flight <int>, tailnum <chr>,
origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
minute <dbl>, time_hour <dttm>

Let’s unpack this output:

• A tibble: 336,776 x 19: A tibble is a specific kind of data frame in R. This
particular data frame has

– 336,776 rows corresponding to different observations. Here, each obser-
vation is a flight.

– 19 columns corresponding to 19 variables describing each observation.
• year, month, day, dep_time, sched_dep_time, dep_delay, and arr_time are the dif-

ferent columns, in other words, the different variables of this dataset.
• We then have a preview of the first 10 rows of observations corresponding to

the first 10 flights. R is only showing the first 10 rows, because if it showed
all 336,776 rows, it would overwhelm your screen.

• ... with 336,766 more rows, and 11 more variables: indicating to us that
336,766 more rows of data and 11 more variables could not fit in this screen.

Unfortunately, this output does not allow us to explore the data very well, but
it does give a nice preview. Let’s look at some different ways to explore data
frames.

1.4.3 Exploring data frames

There are many ways to get a feel for the data contained in a data frame such as
flights. We present three functions that take as their “argument” (their input)
the data frame in question. We also include a fourth method for exploring one
particular column of a data frame:

1. Using the View() function, which brings up RStudio’s built-in data
viewer.

2. Using the glimpse() function, which is included in the dplyr package.
3. Using the kable() function, which is included in the knitr package.
4. Using the $ “extraction operator,” which is used to view a single

variable/column in a data frame.

1. View():

Run View(flights) in your console in RStudio, either by typing it or cutting-
and-pasting it into the console pane. Explore this data frame in the resulting
pop up viewer. You should get into the habit of viewing any data frames you
encounter. Note the uppercase V in View(). R is case-sensitive, so you’ll get an
error message if you run view(flights) instead of View(flights).

1.4 Explore your first datasets 15

Learning check

(LC1.3) What does any ONE row in this flights dataset refer to?

• A. Data on an airline
• B. Data on a flight
• C. Data on an airport
• D. Data on multiple flights

By running View(flights), we can explore the different variables listed in the
columns. Observe that there are many different types of variables. Some of
the variables like distance, day, and arr_delay are what we will call quantitative
variables. These variables are numerical in nature. Other variables here are
categorical.

Note that if you look in the leftmost column of the View(flights) output, you
will see a column of numbers. These are the row numbers of the dataset. If
you glance across a row with the same number, say row 5, you can get an
idea of what each row is representing. This will allow you to identify what
object is being described in a given row by taking note of the values of the
columns in that specific row. This is often called the observational unit. The
observational unit in this example is an individual flight departing from New
York City in 2013. You can identify the observational unit by determining
what “thing” is being measured or described by each of the variables. We’ll
talk more about observational units in Subsection 1.4.4 on identification and
measurement variables.

2. glimpse():

The second way we’ll cover to explore a data frame is using the glimpse()
function included in the dplyr package. Thus, you can only use the glimpse()
function after you’ve loaded the dplyr package by running library(dplyr). This
function provides us with an alternative perspective for exploring a data frame
than the View() function:

glimpse(flights)

Observations: 336,776
Variables: 19
$ year <int> 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013,...
$ month <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,...

16 1 Getting Started with Data in R

$ day <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,...
$ dep_time <int> 517, 533, 542, 544, 554, 554, 555, 557, 557, 55...
$ sched_dep_time <int> 515, 529, 540, 545, 600, 558, 600, 600, 600, 60...
$ dep_delay <dbl> 2, 4, 2, -1, -6, -4, -5, -3, -3, -2, -2, -2, -2...
$ arr_time <int> 830, 850, 923, 1004, 812, 740, 913, 709, 838, 7...
$ sched_arr_time <int> 819, 830, 850, 1022, 837, 728, 854, 723, 846, 7...
$ arr_delay <dbl> 11, 20, 33, -18, -25, 12, 19, -14, -8, 8, -2, -...
$ carrier <chr> "UA", "UA", "AA", "B6", "DL", "UA", "B6", "EV",...
$ flight <int> 1545, 1714, 1141, 725, 461, 1696, 507, 5708, 79...
$ tailnum <chr> "N14228", "N24211", "N619AA", "N804JB", "N668DN...
$ origin <chr> "EWR", "LGA", "JFK", "JFK", "LGA", "EWR", "EWR"...
$ dest <chr> "IAH", "IAH", "MIA", "BQN", "ATL", "ORD", "FLL"...
$ air_time <dbl> 227, 227, 160, 183, 116, 150, 158, 53, 140, 138...
$ distance <dbl> 1400, 1416, 1089, 1576, 762, 719, 1065, 229, 94...
$ hour <dbl> 5, 5, 5, 5, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5,...
$ minute <dbl> 15, 29, 40, 45, 0, 58, 0, 0, 0, 0, 0, 0, 0, 0, ...
$ time_hour <dttm> 2013-01-01 05:00:00, 2013-01-01 05:00:00, 2013...

Observe that glimpse() will give you the first few entries of each variable in a
row after the variable name. In addition, the data type (see Subsection 1.2.1)
of the variable is given immediately after each variable’s name inside < >.
Here, int and dbl refer to “integer” and “double”, which are computer coding
terminology for quantitative/numerical variables. “Doubles” take up twice the
size to store on a computer compared to integers.

In contrast, chr refers to “character”, which is computer terminology for text
data. In most forms, text data, such as the carrier or origin of a flight, are
categorical variables. The time_hour variable is another data type: dttm. These
types of variables represent date and time combinations. However, we won’t
work with dates and times in this book; we leave this topic for other data
science books like Introduction to Data Science by Tiffany-Anne Timbers,
Melissa Lee, and Trevor Campbell4 or R for Data Science5 (Grolemund and
Wickham, 2017).

Learning check

(LC1.4) What are some other examples in this dataset of categorical variables?
What makes them different than quantitative variables?

4https://ubc-dsci.github.io/introduction-to-datascience/
5https://r4ds.had.co.nz/dates-and-times.html

1.4 Explore your first datasets 17

3. kable():

The final way to explore the entirety of a data frame is using the kable()
function from the knitr package. Let’s explore the different carrier codes for
all the airlines in our dataset two ways. Run both of these lines of code in the
console:

airlines
kable(airlines)

At first glance, it may not appear that there is much difference in the outputs.
However, when using tools for producing reproducible reports such as R
Markdown6, the latter code produces output that is much more legible and
reader-friendly. You’ll see us use this reader-friendly style in many places in
the book when we want to print a data frame as a nice table.

4. $ operator

Lastly, the $ operator allows us to extract and then explore a single variable
within a data frame. For example, run the following in your console

airlines$name

We used the $ operator to extract only the name variable and return it as a
vector of length 16. We’ll only be occasionally exploring data frames using the
$ operator, instead favoring the View() and glimpse() functions.

1.4.4 Identification and measurement variables

There is a subtle difference between the kinds of variables that you will
encounter in data frames. There are identification variables and measurement
variables. For example, let’s explore the airports data frame by showing the
output of glimpse(airports):

glimpse(airports)

Observations: 1,458
Variables: 8
$ faa <chr> "04G", "06A", "06C", "06N", "09J", "0A9", "0G6", "0G7", ...
$ name <chr> "Lansdowne Airport", "Moton Field Municipal Airport", "S...
$ lat <dbl> 41.1, 32.5, 42.0, 41.4, 31.1, 36.4, 41.5, 42.9, 39.8, 48...

6http://rmarkdown.rstudio.com/lesson-1.html

18 1 Getting Started with Data in R

$ lon <dbl> -80.6, -85.7, -88.1, -74.4, -81.4, -82.2, -84.5, -76.8, ...
$ alt <dbl> 1044, 264, 801, 523, 11, 1593, 730, 492, 1000, 108, 409,...
$ tz <dbl> -5, -6, -6, -5, -5, -5, -5, -5, -5, -8, -5, -6, -5, -5, ...
$ dst <chr> "A", "A", "A", "A", "A", "A", "A", "A", "U", "A", "A", "...
$ tzone <chr> "America/New_York", "America/Chicago", "America/Chicago"...

The variables faa and name are what we will call identification variables, variables
that uniquely identify each observational unit. In this case, the identification
variables uniquely identify airports. Such variables are mainly used in practice
to uniquely identify each row in a data frame. faa gives the unique code provided
by the FAA for that airport, while the name variable gives the longer official
name of the airport. The remaining variables (lat, lon, alt, tz, dst, tzone) are
often called measurement or characteristic variables: variables that describe
properties of each observational unit. For example, lat and long describe the
latitude and longitude of each airport.

Furthermore, sometimes a single variable might not be enough to uniquely
identify each observational unit: combinations of variables might be needed.
While it is not an absolute rule, for organizational purposes it is considered
good practice to have your identification variables in the leftmost columns of
your data frame.

Learning check

(LC1.5) What properties of each airport do the variables lat, lon, alt, tz, dst,
and tzone describe in the airports data frame? Take your best guess.

(LC1.6) Provide the names of variables in a data frame with at least three
variables where one of them is an identification variable and the other two are
not. Further, create your own tidy data frame that matches these conditions.

1.4.5 Help files

Another nice feature of R are help files, which provide documentation for
various functions and datasets. You can bring up help files by adding a ? before
the name of a function or data frame and then run this in the console. You
will then be presented with a page showing the corresponding documentation
if it exists. For example, let’s look at the help file for the flights data frame.

?flights

1.5 Conclusion 19

The help file should pop up in the Help pane of RStudio. If you have questions
about a function or data frame included in an R package, you should get in
the habit of consulting the help file right away.

Learning check

(LC1.7) Look at the help file for the airports data frame. Revise your earlier
guesses about what the variables lat, lon, alt, tz, dst, and tzone each describe.

1.5 Conclusion
We’ve given you what we feel is a minimally viable set of tools to explore data
in R. Does this chapter contain everything you need to know? Absolutely not.
To try to include everything in this chapter would make the chapter so large it
wouldn’t be useful! As we said earlier, the best way to add to your toolbox is
to get into RStudio and run and write code as much as possible.

1.5.1 Additional resources

Solutions to all Learning checks can be found online in Appendix D7.

If you are new to the world of coding, R, and RStudio and feel you could
benefit from a more detailed introduction, we suggest you check out the short
book, Getting Used to R, RStudio, and R Markdown8 (Ismay and Kennedy,
2016). It includes screencast recordings that you can follow along and pause
as you learn. This book also contains an introduction to R Markdown, a tool
used for reproducible research in R.

FIGURE 1.6: Preview of Getting Used to R, RStudio, and R Markdown.
7https://moderndive.com/D-appendixD.html
8https://rbasics.netlify.com/

20 1 Getting Started with Data in R

1.5.2 What’s to come?

We’re now going to start the “Data Science with tidyverse” portion of this book
in Chapter 2 as shown in Figure 1.7 with what we feel is the most important
tool in a data scientist’s toolbox: data visualization. We’ll continue to explore
the data included in the nycflights13 package using the ggplot2 package for
data visualization. You’ll see that data visualization is a powerful tool to add
to your toolbox for data exploration that provides additional insight to what
the View() and glimpse() functions can provide.

FIGURE 1.7: ModernDive flowchart - on to Part I!

Part I

Data Science with tidyverse

2
Data Visualization

We begin the development of your data science toolbox with data visualization.
By visualizing data, we gain valuable insights we couldn’t initially obtain from
just looking at the raw data values. We’ll use the ggplot2 package, as it provides
an easy way to customize your plots. ggplot2 is rooted in the data visualization
theory known as the grammar of graphics (Wilkinson, 2005), developed by
Leland Wilkinson.

At their most basic, graphics/plots/charts (we use these terms interchangeably
in this book) provide a nice way to explore the patterns in data, such as the
presence of outliers, distributions of individual variables, and relationships
between groups of variables. Graphics are designed to emphasize the findings
and insights you want your audience to understand. This does, however, require
a balancing act. On the one hand, you want to highlight as many interesting
findings as possible. On the other hand, you don’t want to include so much
information that it overwhelms your audience.

As we will see, plots also help us to identify patterns and outliers in our data.
We’ll see that a common extension of these ideas is to compare the distribution
of one numerical variable, such as what are the center and spread of the values,
as we go across the levels of a different categorical variable.

Needed packages

Let’s load all the packages needed for this chapter (this assumes you’ve already
installed them). Read Section 1.3 for information on how to install and load R
packages.

library(nycflights13)
library(ggplot2)
library(dplyr)

23

24 2 Data Visualization

2.1 The grammar of graphics
We start with a discussion of a theoretical framework for data visualization
known as “the grammar of graphics.” This framework serves as the foundation
for the ggplot2 package which we’ll use extensively in this chapter. Think of how
we construct and form sentences in English by combining different elements,
like nouns, verbs, articles, subjects, objects, etc. We can’t just combine these
elements in any arbitrary order; we must do so following a set of rules known
as a linguistic grammar. Similarly to a linguistic grammar, “the grammar
of graphics” defines a set of rules for constructing statistical graphics by
combining different types of layers. This grammar was created by Leland
Wilkinson (Wilkinson, 2005) and has been implemented in a variety of data
visualization software platforms like R, but also Plotly1 and Tableau2.

2.1.1 Components of the grammar

In short, the grammar tells us that:

A statistical graphic is a mapping of data variables to aesthetic at-
tributes of geometric objects.

Specifically, we can break a graphic into the following three essential compo-
nents:

1. data: the dataset containing the variables of interest.
2. geom: the geometric object in question. This refers to the type of object

we can observe in a plot. For example: points, lines, and bars.
3. aes: aesthetic attributes of the geometric object. For example, x/y

position, color, shape, and size. Aesthetic attributes are mapped to
variables in the dataset.

You might be wondering why we wrote the terms data, geom, and aes in a
computer code type font. We’ll see very shortly that we’ll specify the elements
of the grammar in R using these terms. However, let’s first break down the
grammar with an example.

1https://plot.ly/
2https://www.tableau.com/

2.1 The grammar of graphics 25

2.1.2 Gapminder data

In February 2006, a Swedish physician and data advocate named Hans Rosling
gave a TED talk titled “The best stats you’ve ever seen”3 where he presented
global economic, health, and development data from the website gapminder.org4.
For example, for data on 142 countries in 2007, let’s consider only a few countries
in Table 2.1 as a peak into the data.

TABLE 2.1: Gapminder 2007 Data: First 3 of 142 countries

Country Continent Life Expectancy Population GDP per Capita
Afghanistan Asia 43.8 31889923 975
Albania Europe 76.4 3600523 5937
Algeria Africa 72.3 33333216 6223

Each row in this table corresponds to a country in 2007. For each row, we have
5 columns:

1. Country: Name of country.
2. Continent: Which of the five continents the country is part of. Note

that “Americas” includes countries in both North and South America
and that Antarctica is excluded.

3. Life Expectancy: Life expectancy in years.
4. Population: Number of people living in the country.
5. GDP per Capita: Gross domestic product (in US dollars).

Now consider Figure 2.1, which plots this for all 142 of the data’s countries.

40

50

60

70

80

0 10000 20000 30000 40000 50000

GDP per capita

L
if
e
 e

x
p
e
c
ta

n
c
y

250000000

500000000

750000000

1000000000

1250000000

Continent

Africa

Americas

Asia

Europe

Oceania

FIGURE 2.1: Life expectancy over GDP per capita in 2007.
3https://www.ted.com/talks/hans_rosling_shows_the_best_stats_you_ve_ever_seen
4http://www.gapminder.org/tools/#_locale_id=en;&chart-type=bubbles

26 2 Data Visualization

Let’s view this plot through the grammar of graphics:

1. The data variable GDP per Capita gets mapped to the x-position
aesthetic of the points.

2. The data variable Life Expectancy gets mapped to the y-position
aesthetic of the points.

3. The data variable Population gets mapped to the size aesthetic of
the points.

4. The data variable Continent gets mapped to the color aesthetic of
the points.

We’ll see shortly that data corresponds to the particular data frame where our
data is saved and that “data variables” correspond to particular columns in the
data frame. Furthermore, the type of geometric object considered in this plot
are points. That being said, while in this example we are considering points,
graphics are not limited to just points. We can also use lines, bars, and other
geometric objects.

Let’s summarize the three essential components of the grammar in Table 2.2.

TABLE 2.2: Summary of the grammar of graphics for this plot

data variable aes geom

GDP per Capita x point
Life Expectancy y point
Population size point
Continent color point

2.1.3 Other components

There are other components of the grammar of graphics we can control as
well. As you start to delve deeper into the grammar of graphics, you’ll start to
encounter these topics more frequently. In this book, we’ll keep things simple
and only work with these two additional components:

• faceting breaks up a plot into several plots split by the values of another
variable (Section 2.6)

• position adjustments for barplots (Section 2.8)

Other more complex components like scales and coordinate systems are left for
a more advanced text such as R for Data Science5 (Grolemund and Wickham,
2017). Generally speaking, the grammar of graphics allows for a high degree of

5http://r4ds.had.co.nz/data-visualisation.html#aesthetic-mappings

2.3 Five named graphs - the 5NG 27

customization of plots and also a consistent framework for easily updating and
modifying them.

2.1.4 ggplot2 package

In this book, we will use the ggplot2 package for data visualization, which is
an implementation of the grammar of graphics for R (Wickham et al., 2019a).
As we noted earlier, a lot of the previous section was written in a computer
code type font. This is because the various components of the grammar of
graphics are specified in the ggplot() function included in the ggplot2 package.
For the purposes of this book, we’ll always provide the ggplot() function with
the following arguments (i.e., inputs) at a minimum:

• The data frame where the variables exist: the data argument.
• The mapping of the variables to aesthetic attributes: the mapping argument

which specifies the aesthetic attributes involved.

After we’ve specified these components, we then add layers to the plot using
the + sign. The most essential layer to add to a plot is the layer that specifies
which type of geometric object we want the plot to involve: points, lines, bars,
and others. Other layers we can add to a plot include the plot title, axes labels,
visual themes for the plots, and facets (which we’ll see in Section 2.6).

Let’s now put the theory of the grammar of graphics into practice.

2.2 Five named graphs - the 5NG
In order to keep things simple in this book, we will only focus on five different
types of graphics, each with a commonly given name. We term these “five
named graphs” or in abbreviated form, the 5NG:

1. scatterplots
2. linegraphs
3. boxplots
4. histograms
5. barplots

We’ll also present some variations of these plots, but with this basic repertoire
of five graphics in your toolbox, you can visualize a wide array of different
variable types. Note that certain plots are only appropriate for categorical
variables, while others are only appropriate for numerical variables.

28 2 Data Visualization

2.3 5NG#1: Scatterplots
The simplest of the 5NG are scatterplots, also called bivariate plots. They allow
you to visualize the relationship between two numerical variables. While you
may already be familiar with scatterplots, let’s view them through the lens
of the grammar of graphics we presented in Section 2.1. Specifically, we will
visualize the relationship between the following two numerical variables in the
flights data frame included in the nycflights13 package:

1. dep_delay: departure delay on the horizontal “x” axis and
2. arr_delay: arrival delay on the vertical “y” axis

for Alaska Airlines flights leaving NYC in 2013. This requires paring down the
data from all 336,776 flights that left NYC in 2013, to only the 714 Alaska
Airlines flights that left NYC in 2013. We do this so our scatterplot will involve
a manageable 714 points, and not an overwhelmingly large number like 336,776.
To achieve this, we’ll take the flights data frame, filter the rows so that only
the 714 rows corresponding to Alaska Airlines flights are kept, and save this in
a new data frame called alaska_flights using the <- assignment operator:

alaska_flights <- flights %>%
filter(carrier == "AS")

For now, we suggest you don’t worry if you don’t fully understand this code.
We’ll see later in Chapter 3 on data wrangling that this code uses the dplyr
package for data wrangling to achieve our goal: it takes the flights data frame
and filters it to only return the rows where carrier is equal to "AS", Alaska
Airlines’ carrier code. Recall from Section 1.2 that testing for equality is specified
with == and not =. Convince yourself that this code achieves what it is supposed
to by exploring the resulting data frame by running View(alaska_flights). You’ll
see that it has 714 rows, consisting of only 714 Alaska Airlines flights.

Learning check

(LC2.1) Take a look at both the flights and alaska_flights data frames by
running View(flights) and View(alaska_flights). In what respect do these data
frames differ? For example, think about the number of rows in each dataset.

2.3 5NG#1: Scatterplots 29

2.3.1 Scatterplots via geom_point

Let’s now go over the code that will create the desired scatterplot, while
keeping in mind the grammar of graphics framework we introduced in Section
2.1. Let’s take a look at the code and break it down piece-by-piece.

Note: The printed version of this book uses theme_light() instead of the
default theme_grey() for the plots created with ggplot2 throughout the book.
Bars and points are also converted to greyscale using scale_color_grey() and
scale_fill_grey(). This helps with readability of the plots in the printed copy.
As you follow along and run the code yourself, your plots will have a grey
background instead of the white background in the printed book. Also, your
plots will have colors beyond the greyscale versions provided in this printing.

ggplot(data = alaska_flights, mapping = aes(x = dep_delay, y = arr_delay)) +
geom_point()

Within the ggplot() function, we specify two of the components of the grammar
of graphics as arguments (i.e., inputs):

1. The data as the alaska_flights data frame via data = alaska_flights.
2. The aesthetic mapping by setting mapping = aes(x = dep_delay, y =

arr_delay). Specifically, the variable dep_delay maps to the x position
aesthetic, while the variable arr_delay maps to the y position.

We then add a layer to the ggplot() function call using the + sign. The added
layer in question specifies the third component of the grammar: the geometric
object. In this case, the geometric object is set to be points by specifying
geom_point(). After running these two lines of code in your console, you’ll notice
two outputs: a warning message and the graphic shown in Figure 2.2.

Warning: Removed 5 rows containing missing values (geom_point).

0

100

200

0 50 100 150 200

dep_delay

a
rr
_
d
e
la
y

FIGURE 2.2: Arrival delays versus departure delays for Alaska Airlines
flights from NYC in 2013.

30 2 Data Visualization

Let’s first unpack the graphic in Figure 2.2. Observe that a positive relationship
exists between dep_delay and arr_delay: as departure delays increase, arrival
delays tend to also increase. Observe also the large mass of points clustered
near (0, 0), the point indicating flights that neither departed nor arrived late.

Let’s turn our attention to the warning message. R is alerting us to the fact
that five rows were ignored due to them being missing. For these 5 rows, either
the value for dep_delay or arr_delay or both were missing (recorded in R as NA),
and thus these rows were ignored in our plot.

Before we continue, let’s make a few more observations about this code that
created the scatterplot. Note that the + sign comes at the end of lines, and
not at the beginning. You’ll get an error in R if you put it at the beginning of
a line. When adding layers to a plot, you are encouraged to start a new line
after the + (by pressing the Return/Enter button on your keyboard) so that
the code for each layer is on a new line. As we add more and more layers to
plots, you’ll see this will greatly improve the legibility of your code.

To stress the importance of adding the layer specifying the geometric object,
consider Figure 2.3 where no layers are added. Because the geometric object
was not specified, we have a blank plot which is not very useful!

ggplot(data = alaska_flights, mapping = aes(x = dep_delay, y = arr_delay))

0

100

200

0 50 100 150 200

dep_delay

a
rr
_
d
e
la
y

FIGURE 2.3: A plot with no layers.

Learning check

(LC2.2) What are some practical reasons why dep_delay and arr_delay have a
positive relationship?

2.3 5NG#1: Scatterplots 31

(LC2.3) What variables in the weather data frame would you expect to have
a negative correlation (i.e., a negative relationship) with dep_delay? Why?
Remember that we are focusing on numerical variables here. Hint: Explore the
weather dataset by using the View() function.

(LC2.4) Why do you believe there is a cluster of points near (0, 0)? What
does (0, 0) correspond to in terms of the Alaska Air flights?

(LC2.5) What are some other features of the plot that stand out to you?

(LC2.6) Create a new scatterplot using different variables in the alaska_flights
data frame by modifying the example given.

2.3.2 Overplotting

The large mass of points near (0, 0) in Figure 2.2 can cause some confusion since
it is hard to tell the true number of points that are plotted. This is the result of
a phenomenon called overplotting. As one may guess, this corresponds to points
being plotted on top of each other over and over again. When overplotting
occurs, it is difficult to know the number of points being plotted. There are
two methods to address the issue of overplotting. Either by

1. Adjusting the transparency of the points or
2. Adding a little random “jitter”, or random “nudges”, to each of the

points.

Method 1: Changing the transparency

The first way of addressing overplotting is to change the transparency/opacity
of the points by setting the alpha argument in geom_point(). We can change the
alpha argument to be any value between 0 and 1, where 0 sets the points to be
100% transparent and 1 sets the points to be 100% opaque. By default, alpha
is set to 1. In other words, if we don’t explicitly set an alpha value, R will use
alpha = 1.

Note how the following code is identical to the code in Section 2.3 that created
the scatterplot with overplotting, but with alpha = 0.2 added to the geom_point()
function:

ggplot(data = alaska_flights, mapping = aes(x = dep_delay, y = arr_delay)) +
geom_point(alpha = 0.2)

32 2 Data Visualization

0

100

200

0 50 100 150 200

dep_delay

a
rr
_
d
e
la
y

FIGURE 2.4: Arrival vs. departure delays scatterplot with alpha = 0.2.

The key feature to note in Figure 2.4 is that the transparency of the points
is cumulative: areas with a high-degree of overplotting are darker, whereas
areas with a lower degree are less dark. Note furthermore that there is no aes()
surrounding alpha = 0.2. This is because we are not mapping a variable to an
aesthetic attribute, but rather merely changing the default setting of alpha.
In fact, you’ll receive an error if you try to change the second line to read
geom_point(aes(alpha = 0.2)).

Method 2: Jittering the points

The second way of addressing overplotting is by jittering all the points. This
means giving each point a small “nudge” in a random direction. You can think
of “jittering” as shaking the points around a bit on the plot. Let’s illustrate
using a simple example first. Say we have a data frame with 4 identical rows of
x and y values: (0,0), (0,0), (0,0), and (0,0). In Figure 2.5, we present both the
regular scatterplot of these 4 points (on the left) and its jittered counterpart
(on the right).

2.3 5NG#1: Scatterplots 33

-0.02

-0.01

0.00

0.01

0.02

-0.02

-0.01

0.00

0.01

0.02

-0.02 -0.01 0.00 0.01 0.02 -0.02 -0.01 0.00 0.01 0.02

x x

y y

Regular scatterplot Jittered scatterplot

FIGURE 2.5: Regular and jittered scatterplot.

In the left-hand regular scatterplot, observe that the 4 points are superimposed
on top of each other. While we know there are 4 values being plotted, this fact
might not be apparent to others. In the right-hand jittered scatterplot, it is
now plainly evident that this plot involves four points since each point is given
a random “nudge.”

Keep in mind, however, that jittering is strictly a visualization tool; even after
creating a jittered scatterplot, the original values saved in the data frame
remain unchanged.

To create a jittered scatterplot, instead of using geom_point(), we use
geom_jitter(). Observe how the following code is very similar to the code
that created the scatterplot with overplotting in Subsection 2.3.1, but with
geom_point() replaced with geom_jitter().

ggplot(data = alaska_flights, mapping = aes(x = dep_delay, y = arr_delay)) +
geom_jitter(width = 30, height = 30)

34 2 Data Visualization

0

100

200

-50 0 50 100 150 200 250

dep_delay

a
rr
_
d
e
la
y

FIGURE 2.6: Arrival versus departure delays jittered scatterplot.

In order to specify how much jitter to add, we adjusted the width and height
arguments to geom_jitter(). This corresponds to how hard you’d like to shake
the plot in horizontal x-axis units and vertical y-axis units, respectively. In this
case, both axes are in minutes. How much jitter should we add using the width
and height arguments? On the one hand, it is important to add just enough
jitter to break any overlap in points, but on the other hand, not so much that
we completely alter the original pattern in points.

As can be seen in the resulting Figure 2.6, in this case jittering doesn’t really
provide much new insight. In this particular case, it can be argued that changing
the transparency of the points by setting alpha proved more effective. When
would it be better to use a jittered scatterplot? When would it be better to
alter the points’ transparency? There is no single right answer that applies
to all situations. You need to make a subjective choice and own that choice.
At the very least when confronted with overplotting, however, we suggest you
make both types of plots and see which one better emphasizes the point you
are trying to make.

2.4 5NG#2: Linegraphs 35

Learning check

(LC2.7) Why is setting the alpha argument value useful with scatterplots?
What further information does it give you that a regular scatterplot cannot?

(LC2.8) After viewing Figure 2.4, give an approximate range of arrival delays
and departure delays that occur most frequently. How has that region changed
compared to when you observed the same plot without alpha = 0.2 set in Figure
2.2?

2.3.3 Summary

Scatterplots display the relationship between two numerical variables. They are
among the most commonly used plots because they can provide an immediate
way to see the trend in one numerical variable versus another. However, if
you try to create a scatterplot where either one of the two variables is not
numerical, you might get strange results. Be careful!

With medium to large datasets, you may need to play around with the different
modifications to scatterplots we saw such as changing the transparency/opacity
of the points or by jittering the points. This tweaking is often a fun part of
data visualization, since you’ll have the chance to see different relationships
emerge as you tinker with your plots.

2.4 5NG#2: Linegraphs
The next of the five named graphs are linegraphs. Linegraphs show the rela-
tionship between two numerical variables when the variable on the x-axis, also
called the explanatory variable, is of a sequential nature. In other words, there
is an inherent ordering to the variable.

The most common examples of linegraphs have some notion of time on the
x-axis: hours, days, weeks, years, etc. Since time is sequential, we connect
consecutive observations of the variable on the y-axis with a line. Linegraphs
that have some notion of time on the x-axis are also called time series plots.
Let’s illustrate linegraphs using another dataset in the nycflights13 package:
the weather data frame.

36 2 Data Visualization

Let’s explore the weather data frame by running View(weather) and
glimpse(weather). Furthermore let’s read the associated help file by running
?weather to bring up the help file.

Observe that there is a variable called temp of hourly temperature recordings in
Fahrenheit at weather stations near all three major airports in New York City:
Newark (origin code EWR), John F. Kennedy International (JFK), and LaGuardia
(LGA). However, instead of considering hourly temperatures for all days in 2013
for all three airports, for simplicity let’s only consider hourly temperatures at
Newark airport for the first 15 days in January.

Recall in Section 2.3, we used the filter() function to only choose the subset
of rows of flights corresponding to Alaska Airlines flights. We similarly use
filter() here, but by using the & operator we only choose the subset of rows of
weather where the origin is "EWR", the month is January, and the day is between
1 and 15. Recall we performed a similar task in Section 2.3 when creating the
alaska_flights data frame of only Alaska Airlines flights, a topic we’ll explore
more in Chapter 3 on data wrangling.

early_january_weather <- weather %>%
filter(origin == "EWR" & month == 1 & day <= 15)

Learning check

(LC2.9) Take a look at both the weather and early_january_weather data frames
by running View(weather) and View(early_january_weather). In what respect do
these data frames differ?

(LC2.10) View() the flights data frame again. Why does the time_hour variable
uniquely identify the hour of the measurement, whereas the hour variable does
not?

2.4.1 Linegraphs via geom_line

Let’s create a time series plot of the hourly temperatures saved in the
early_january_weather data frame by using geom_line() to create a linegraph,
instead of using geom_point() like we used previously to create scatterplots:

ggplot(data = early_january_weather,
mapping = aes(x = time_hour, y = temp)) +

geom_line()

2.4 5NG#2: Linegraphs 37

30

40

50

Jan 07 Jan 14

time_hour

te
m

p

FIGURE 2.7: Hourly temperature in Newark for January 1-15, 2013.

Much as with the ggplot() code that created the scatterplot of departure and
arrival delays for Alaska Airlines flights in Figure 2.2, let’s break down this
code piece-by-piece in terms of the grammar of graphics:

Within the ggplot() function call, we specify two of the components of the
grammar of graphics as arguments:

1. The data to be the early_january_weather data frame by setting data =
early_january_weather.

2. The aesthetic mapping by setting mapping = aes(x = time_hour, y =
temp). Specifically, the variable time_hour maps to the x position aes-
thetic, while the variable temp maps to the y position aesthetic.

We add a layer to the ggplot() function call using the + sign. The layer in ques-
tion specifies the third component of the grammar: the geometric object in ques-
tion. In this case, the geometric object is a line set by specifying geom_line().

Learning check

(LC2.11) Why should linegraphs be avoided when there is not a clear ordering
of the horizontal axis?

(LC2.12) Why are linegraphs frequently used when time is the explanatory
variable on the x-axis?

38 2 Data Visualization

(LC2.13) Plot a time series of a variable other than temp for Newark Airport
in the first 15 days of January 2013.

2.4.2 Summary

Linegraphs, just like scatterplots, display the relationship between two nu-
merical variables. However, it is preferred to use linegraphs over scatterplots
when the variable on the x-axis (i.e., the explanatory variable) has an inherent
ordering, such as some notion of time.

2.5 5NG#3: Histograms
Let’s consider the temp variable in the weather data frame once again, but unlike
with the linegraphs in Section 2.4, let’s say we don’t care about its relationship
with time, but rather we only care about how the values of temp distribute. In
other words:

1. What are the smallest and largest values?
2. What is the “center” or “most typical” value?
3. How do the values spread out?
4. What are frequent and infrequent values?

One way to visualize this distribution of this single variable temp is to plot
them on a horizontal line as we do in Figure 2.8:

25 50 75 100

temp

FIGURE 2.8: Plot of hourly temperature recordings from NYC in 2013.

This gives us a general idea of how the values of temp distribute: observe that
temperatures vary from around 11°F (-11°C) up to 100°F (38°C). Furthermore,
there appear to be more recorded temperatures between 40°F and 60°F than
outside this range. However, because of the high degree of overplotting in the
points, it’s hard to get a sense of exactly how many values are between say
50°F and 55°F.

2.5 5NG#3: Histograms 39

What is commonly produced instead of Figure 2.8 is known as a histogram.
A histogram is a plot that visualizes the distribution of a numerical value as
follows:

1. We first cut up the x-axis into a series of bins, where each bin represents
a range of values.

2. For each bin, we count the number of observations that fall in the
range corresponding to that bin.

3. Then for each bin, we draw a bar whose height marks the corresponding
count.

Let’s drill-down on an example of a histogram, shown in Figure 2.9.

0

1000

2000

3000

4000

5000

30 60 90

temp

c
o
u
n
t

FIGURE 2.9: Example histogram.

Let’s focus only on temperatures between 30°F (-1°C) and 60°F (15°C) for now.
Observe that there are three bins of equal width between 30°F and 60°F. Thus
we have three bins of width 10°F each: one bin for the 30-40°F range, another
bin for the 40-50°F range, and another bin for the 50-60°F range. Since:

1. The bin for the 30-40°F range has a height of around 5000. In other
words, around 5000 of the hourly temperature recordings are between
30°F and 40°F.

2. The bin for the 40-50°F range has a height of around 4300. In other
words, around 4300 of the hourly temperature recordings are between
40°F and 50°F.

3. The bin for the 50-60°F range has a height of around 3500. In other
words, around 3500 of the hourly temperature recordings are between
50°F and 60°F.

All nine bins spanning 10°F to 100°F on the x-axis have this interpretation.

40 2 Data Visualization

2.5.1 Histograms via geom_histogram

Let’s now present the ggplot() code to plot your first histogram! Unlike with
scatterplots and linegraphs, there is now only one variable being mapped in
aes(): the single numerical variable temp. The y-aesthetic of a histogram, the
count of the observations in each bin, gets computed for you automatically.
Furthermore, the geometric object layer is now a geom_histogram(). After running
the following code, you’ll see the histogram in Figure 2.10 as well as warning
messages. We’ll discuss the warning messages first.

ggplot(data = weather, mapping = aes(x = temp)) +
geom_histogram()

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Warning: Removed 1 rows containing non-finite values (stat_bin).

0

500

1000

1500

25 50 75 100

temp

c
o
u
n
t

FIGURE 2.10: Histogram of hourly temperatures at three NYC airports.

The first message is telling us that the histogram was constructed using bins =
30 for 30 equally spaced bins. This is known in computer programming as a
default value; unless you override this default number of bins with a number
you specify, R will choose 30 by default. We’ll see in the next section how to
change the number of bins to another value than the default.

The second message is telling us something similar to the warning message we
received when we ran the code to create a scatterplot of departure and arrival
delays for Alaska Airlines flights in Figure 2.2: that because one row has a
missing NA value for temp, it was omitted from the histogram. R is just giving
us a friendly heads up that this was the case.

Now let’s unpack the resulting histogram in Figure 2.10. Observe that values less
than 25°F as well as values above 80°F are rather rare. However, because of the

2.5 5NG#3: Histograms 41

large number of bins, it’s hard to get a sense for which range of temperatures is
spanned by each bin; everything is one giant amorphous blob. So let’s add white
vertical borders demarcating the bins by adding a color = "white" argument
to geom_histogram() and ignore the warning about setting the number of bins
to a better value:

ggplot(data = weather, mapping = aes(x = temp)) +
geom_histogram(color = "white")

0

500

1000

1500

25 50 75 100

temp

c
o
u
n
t

FIGURE 2.11: Histogram of hourly temperatures at three NYC airports
with white borders.

We now have an easier time associating ranges of temperatures to each of the
bins in Figure 2.11. We can also vary the color of the bars by setting the fill
argument. For example, you can set the bin colors to be “blue steel” by setting
fill = "steelblue":

ggplot(data = weather, mapping = aes(x = temp)) +
geom_histogram(color = "white", fill = "steelblue")

If you’re curious, run colors() to see all 657 possible choice of colors in R!

2.5.2 Adjusting the bins

Observe in Figure 2.11 that in the 50-75°F range there appear to be roughly 8
bins. Thus each bin has width 25 divided by 8, or 3.125°F, which is not a very
easily interpretable range to work with. Let’s improve this by adjusting the
number of bins in our histogram in one of two ways:

42 2 Data Visualization

1. By adjusting the number of bins via the bins argument to
geom_histogram().

2. By adjusting the width of the bins via the binwidth argument to
geom_histogram().

Using the first method, we have the power to specify how many bins we would
like to cut the x-axis up in. As mentioned in the previous section, the default
number of bins is 30. We can override this default, to say 40 bins, as follows:

ggplot(data = weather, mapping = aes(x = temp)) +
geom_histogram(bins = 40, color = "white")

Using the second method, instead of specifying the number of bins, we specify
the width of the bins by using the binwidth argument in the geom_histogram()
layer. For example, let’s set the width of each bin to be 10°F.

ggplot(data = weather, mapping = aes(x = temp)) +
geom_histogram(binwidth = 10, color = "white")

We compare both resulting histograms side-by-side in Figure 2.12.

0

500

1000

1500

0

1000

2000

3000

4000

5000

25 50 75 100 0 25 50 75 100

temp temp

c
o
u
n
t

c
o
u
n
t

With 40 bins With binwidth = 10 degrees F

FIGURE 2.12: Setting histogram bins in two ways.

2.6 Facets 43

Learning check

(LC2.14) What does changing the number of bins from 30 to 40 tell us about
the distribution of temperatures?

(LC2.15) Would you classify the distribution of temperatures as symmetric
or skewed in one direction or another?

(LC2.16) What would you guess is the “center” value in this distribution?
Why did you make that choice?

(LC2.17) Is this data spread out greatly from the center or is it close? Why?

2.5.3 Summary

Histograms, unlike scatterplots and linegraphs, present information on only a
single numerical variable. Specifically, they are visualizations of the distribution
of the numerical variable in question.

2.6 Facets
Before continuing with the next of the 5NG, let’s briefly introduce a new
concept called faceting. Faceting is used when we’d like to split a particular
visualization by the values of another variable. This will create multiple copies
of the same type of plot with matching x and y axes, but whose content will
differ.

For example, suppose we were interested in looking at how the histogram of
hourly temperature recordings at the three NYC airports we saw in Figure
2.9 differed in each month. We could “split” this histogram by the 12 possible
months in a given year. In other words, we would plot histograms of temp for
each month separately. We do this by adding facet_wrap(~ month) layer. Note
the ~ is a “tilde” and can generally be found on the key next to the “1” key
on US keyboards. The tilde is required and you’ll receive the error Error in
as.quoted(facets) : object 'month' not found if you don’t include it here.

ggplot(data = weather, mapping = aes(x = temp)) +
geom_histogram(binwidth = 5, color = "white") +
facet_wrap(~ month)

44 2 Data Visualization

9 10 11 12

5 6 7 8

1 2 3 4

25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100

0
200
400
600
800

0
200
400
600
800

0
200
400
600
800

temp

c
o
u
n
t

FIGURE 2.13: Faceted histogram of hourly temperatures by month.

We can also specify the number of rows and columns in the grid by using the
nrow and ncol arguments inside of facet_wrap(). For example, say we would like
our faceted histogram to have 4 rows instead of 3. We simply add an nrow = 4
argument to facet_wrap(~ month)

ggplot(data = weather, mapping = aes(x = temp)) +
geom_histogram(binwidth = 5, color = "white") +
facet_wrap(~ month, nrow = 4)

10 11 12

7 8 9

4 5 6

1 2 3

25 50 75 100 25 50 75 100 25 50 75 100

0
200
400
600
800

0
200
400
600
800

0
200
400
600
800

0
200
400
600
800

temp

c
o
u
n
t

FIGURE 2.14: Faceted histogram with 4 instead of 3 rows.

2.7 5NG#4: Boxplots 45

Observe in both Figures 2.13 and 2.14 that as we might expect in the Northern
Hemisphere, temperatures tend to be higher in the summer months, while they
tend to be lower in the winter.

Learning check

(LC2.18) What other things do you notice about this faceted plot? How does
a faceted plot help us see relationships between two variables?

(LC2.19) What do the numbers 1-12 correspond to in the plot? What about
25, 50, 75, 100?

(LC2.20) For which types of datasets would faceted plots not work well in
comparing relationships between variables? Give an example describing the
nature of these variables and other important characteristics.

(LC2.21) Does the temp variable in the weather dataset have a lot of variability?
Why do you say that?

2.7 5NG#4: Boxplots
While faceted histograms are one type of visualization used to compare the
distribution of a numerical variable split by the values of another variable,
another type of visualization that achieves this same goal is a side-by-side
boxplot. A boxplot is constructed from the information provided in the five-
number summary of a numerical variable (see Appendix A.1).

To keep things simple for now, let’s only consider the 2141 hourly temperature
recordings for the month of November, each represented as a jittered point in
Figure 2.15.

20

30

40

50

60

70

11

te
m
p

FIGURE 2.15: November temperatures represented as jittered points.

46 2 Data Visualization

These 2141 observations have the following five-number summary:

1. Minimum: 21°F
2. First quartile (25th percentile): 36°F
3. Median (second quartile, 50th percentile): 45°F
4. Third quartile (75th percentile): 52°F
5. Maximum: 71°F

In the leftmost plot of Figure 2.16, let’s mark these 5 values with dashed
horizontal lines on top of the 2141 points. In the middle plot of Figure 2.16
let’s add the boxplot. In the rightmost plot of Figure 2.16, let’s remove the
points and the dashed horizontal lines for clarity’s sake.

20

30

40

50

60

70

20

30

40

50

60

70

20

30

40

50

60

70

11 11 11

te
m
p

te
m
p

te
m
p

FIGURE 2.16: Building up a boxplot of November temperatures.

What the boxplot does is visually summarize the 2141 points by cutting the
2141 temperature recordings into quartiles at the dashed lines, where each
quartile contains roughly 2141 ÷ 4 ≈ 535 observations. Thus

1. 25% of points fall below the bottom edge of the box, which is the
first quartile of 36°F. In other words, 25% of observations were below
36°F.

2. 25% of points fall between the bottom edge of the box and the solid
middle line, which is the median of 45°F. Thus, 25% of observations
were between 36°F and 45°F and 50% of observations were below
45°F.

3. 25% of points fall between the solid middle line and the top edge of
the box, which is the third quartile of 52°F. It follows that 25% of

2.7 5NG#4: Boxplots 47

observations were between 45°F and 52°F and 75% of observations
were below 52°F.

4. 25% of points fall above the top edge of the box. In other words, 25%
of observations were above 52°F.

5. The middle 50% of points lie within the interquartile range (IQR)
between the first and third quartile. Thus, the IQR for this example
is 52 - 36 = 16°F. The interquartile range is a measure of a numerical
variable’s spread.

Furthermore, in the rightmost plot of Figure 2.16, we see the whiskers of the
boxplot. The whiskers stick out from either end of the box all the way to the
minimum and maximum observed temperatures of 21°F and 71°F, respectively.
However, the whiskers don’t always extend to the smallest and largest observed
values as they do here. They in fact extend no more than 1.5 × the interquartile
range from either end of the box. In this case of the November temperatures,
no more than 1.5 × 16°F = 24°F from either end of the box. Any observed
values outside this range get marked with points called outliers, which we’ll
see in the next section.

2.7.1 Boxplots via geom_boxplot

Let’s now create a side-by-side boxplot of hourly temperatures split by the
12 months as we did previously with the faceted histograms. We do this by
mapping the month variable to the x-position aesthetic, the temp variable to the
y-position aesthetic, and by adding a geom_boxplot() layer:

ggplot(data = weather, mapping = aes(x = month, y = temp)) +
geom_boxplot()

25

50

75

100

3 6 9

month

te
m
p

FIGURE 2.17: Invalid boxplot specification.

48 2 Data Visualization

Warning messages:
1: Continuous x aesthetic -- did you forget aes(group=...)?
2: Removed 1 rows containing non-finite values (stat_boxplot).

Observe in Figure 2.17 that this plot does not provide information about
temperature separated by month. The first warning message clues us in as to
why. It is telling us that we have a “continuous”, or numerical variable, on the
x-position aesthetic. Boxplots, however, require a categorical variable to be
mapped to the x-position aesthetic. The second warning message is identical
to the warning message when plotting a histogram of hourly temperatures:
that one of the values was recorded as NA missing.

We can convert the numerical variable month into a factor categorical variable
by using the factor() function. So after applying factor(month), month goes
from having numerical values just the 1, 2, …, and 12 to having an associated
ordering. With this ordering, ggplot() now knows how to work with this variable
to produce the needed plot.

ggplot(data = weather, mapping = aes(x = factor(month), y = temp)) +
geom_boxplot()

25

50

75

100

1 2 3 4 5 6 7 8 9 10 11 12

factor(month)

te
m
p

FIGURE 2.18: Side-by-side boxplot of temperature split by month.

2.7 5NG#4: Boxplots 49

The resulting Figure 2.18 shows 12 separate “box and whiskers” plots similar
to the rightmost plot of Figure 2.16 of only November temperatures. Thus the
different boxplots are shown “side-by-side.”

• The “box” portions of the visualization represent the 1st quartile, the median
(the 2nd quartile), and the 3rd quartile.

• The height of each box (the value of the 3rd quartile minus the value of the
1st quartile) is the interquartile range (IQR). It is a measure of the spread of
the middle 50% of values, with longer boxes indicating more variability.

• The “whisker” portions of these plots extend out from the bottoms and
tops of the boxes and represent points less than the 25th percentile and
greater than the 75th percentiles, respectively. They’re set to extend out no
more than 1.5 × 𝐼𝑄𝑅 units away from either end of the boxes. We say “no
more than” because the ends of the whiskers have to correspond to observed
temperatures. The length of these whiskers show how the data outside the
middle 50% of values vary, with longer whiskers indicating more variability.

• The dots representing values falling outside the whiskers are called outliers.
These can be thought of as anomalous (“out-of-the-ordinary”) values.

It is important to keep in mind that the definition of an outlier is somewhat
arbitrary and not absolute. In this case, they are defined by the length of
the whiskers, which are no more than 1.5 × 𝐼𝑄𝑅 units long for each boxplot.
Looking at this side-by-side plot we can see, as expected, that summer months
(6 through 8) have higher median temperatures as evidenced by the higher solid
lines in the middle of the boxes. We can easily compare temperatures across
months by drawing imaginary horizontal lines across the plot. Furthermore, the
heights of the 12 boxes as quantified by the interquartile ranges are informative
too; they tell us about variability, or spread, of temperatures recorded in a
given month.

Learning check

(LC2.22) What does the dot at the bottom of the plot for May correspond
to? Explain what might have occurred in May to produce this point.

(LC2.23) Which months have the highest variability in temperature? What
reasons can you give for this?

(LC2.24) We looked at the distribution of the numerical variable temp split
by the numerical variable month that we converted using the factor() function
in order to make a side-by-side boxplot. Why would a boxplot of temp split by
the numerical variable pressure similarly converted to a categorical variable
using the factor() not be informative?

50 2 Data Visualization

(LC2.25) Boxplots provide a simple way to identify outliers. Why may outliers
be easier to identify when looking at a boxplot instead of a faceted histogram?

2.7.2 Summary

Side-by-side boxplots provide us with a way to compare the distribution of
a numerical variable across multiple values of another variable. One can see
where the median falls across the different groups by comparing the solid lines
in the center of the boxes.

To study the spread of a numerical variable within one of the boxes, look at
both the length of the box and also how far the whiskers extend from either
end of the box. Outliers are even more easily identified when looking at a
boxplot than when looking at a histogram as they are marked with distinct
points.

2.8 5NG#5: Barplots
Both histograms and boxplots are tools to visualize the distribution of numerical
variables. Another commonly desired task is to visualize the distribution of
a categorical variable. This is a simpler task, as we are simply counting
different categories within a categorical variable, also known as the levels of
the categorical variable. Often the best way to visualize these different counts,
also known as frequencies, is with barplots (also called barcharts).

One complication, however, is how your data is represented. Is the categorical
variable of interest “pre-counted” or not? For example, run the following code
that manually creates two data frames representing a collection of fruit: 3
apples and 2 oranges.

fruits <- tibble(
fruit = c("apple", "apple", "orange", "apple", "orange")

)
fruits_counted <- tibble(
fruit = c("apple", "orange"),
number = c(3, 2)

)

2.8 5NG#5: Barplots 51

We see both the fruits and fruits_counted data frames represent the same
collection of fruit. Whereas fruits just lists the fruit individually…

A tibble: 5 x 1
fruit
<chr>

1 apple
2 apple
3 orange
4 apple
5 orange

… fruits_counted has a variable count which represent the “pre-counted” values
of each fruit.

A tibble: 2 x 2
fruit number
<chr> <dbl>

1 apple 3
2 orange 2

Depending on how your categorical data is represented, you’ll need to add a
different geometric layer type to your ggplot() to create a barplot, as we now
explore.

2.8.1 Barplots via geom_bar or geom_col

Let’s generate barplots using these two different representations of the same
basket of fruit: 3 apples and 2 oranges. Using the fruits data frame where
all 5 fruits are listed individually in 5 rows, we map the fruit variable to the
x-position aesthetic and add a geom_bar() layer:

ggplot(data = fruits, mapping = aes(x = fruit)) +
geom_bar()

0

1

2

3

apple orange

fruit

c
o
u
n
t

FIGURE 2.19: Barplot when counts are not pre-counted.

52 2 Data Visualization

However, using the fruits_counted data frame where the fruits have been “pre-
counted”, we once again map the fruit variable to the x-position aesthetic,
but here we also map the count variable to the y-position aesthetic, and add a
geom_col() layer instead.

ggplot(data = fruits_counted, mapping = aes(x = fruit, y = number)) +
geom_col()

0

1

2

3

apple orange

fruit

n
u
m
b
e
r

FIGURE 2.20: Barplot when counts are pre-counted.

Compare the barplots in Figures 2.19 and 2.20. They are identical because
they reflect counts of the same five fruits. However, depending on how our
categorical data is represented, either “pre-counted” or not, we must add a
different geom layer. When the categorical variable whose distribution you want
to visualize

• Is not pre-counted in your data frame, we use geom_bar().
• Is pre-counted in your data frame, we use geom_col() with the y-position

aesthetic mapped to the variable that has the counts.

Let’s now go back to the flights data frame in the nycflights13 package and
visualize the distribution of the categorical variable carrier. In other words,
let’s visualize the number of domestic flights out of New York City each airline
company flew in 2013. Recall from Subsection 1.4.3 when you first explored
the flights data frame, you saw that each row corresponds to a flight. In other
words, the flights data frame is more like the fruits data frame than the
fruits_counted data frame because the flights have not been pre-counted by
carrier. Thus we should use geom_bar() instead of geom_col() to create a barplot.
Much like a geom_histogram(), there is only one variable in the aes() aesthetic
mapping: the variable carrier gets mapped to the x-position. As a difference

2.8 5NG#5: Barplots 53

though, histograms have bars that touch whereas bar graphs have white space
between the bars going from left to right.

ggplot(data = flights, mapping = aes(x = carrier)) +
geom_bar()

0

20000

40000

60000

9E AA AS B6 DL EV F9 FL HA MQ OO UA US VX WN YV

carrier

c
o
u
n
t

FIGURE 2.21: Number of flights departing NYC in 2013 by airline using
geom_bar().

Observe in Figure 2.21 that United Airlines (UA), JetBlue Airways (B6), and
ExpressJet Airlines (EV) had the most flights depart NYC in 2013. If you don’t
know which airlines correspond to which carrier codes, then run View(airlines)
to see a directory of airlines. For example, B6 is JetBlue Airways. Alternatively,
say you had a data frame where the number of flights for each carrier was
pre-counted as in Table 2.3.

TABLE 2.3: Number of flights pre-counted for each carrier

carrier number

9E 18460
AA 32729
AS 714
B6 54635
DL 48110
EV 54173
F9 685
FL 3260
HA 342
MQ 26397
OO 32
UA 58665

54 2 Data Visualization

US 20536
VX 5162
WN 12275
YV 601

In order to create a barplot visualizing the distribution of the categorical
variable carrier in this case, we would now use geom_col() instead of geom_bar(),
with an additional y = number in the aesthetic mapping on top of the x = carrier.
The resulting barplot would be identical to Figure 2.21.

Learning check

(LC2.26) Why are histograms inappropriate for categorical variables?

(LC2.27) What is the difference between histograms and barplots?

(LC2.28) How many Envoy Air flights departed NYC in 2013?

(LC2.29) What was the 7th highest airline for departed flights from NYC in
2013? How could we better present the table to get this answer quickly?

2.8.2 Must avoid pie charts!

One of the most common plots used to visualize the distribution of categorical
data is the pie chart. While they may seem harmless enough, pie charts actually
present a problem in that humans are unable to judge angles well. As Naomi
Robbins describes in her book, Creating More Effective Graphs (Robbins, 2013),
we overestimate angles greater than 90 degrees and we underestimate angles
less than 90 degrees. In other words, it is difficult for us to determine the
relative size of one piece of the pie compared to another.

Let’s examine the same data used in our previous barplot of the number of
flights departing NYC by airline in Figure 2.21, but this time we will use a pie
chart in Figure 2.22. Try to answer the following questions:

• How much larger is the portion of the pie for ExpressJet Airlines (EV) com-
pared to US Airways (US)?

• What is the third largest carrier in terms of departing flights?
• How many carriers have fewer flights than United Airlines (UA)?

2.8 5NG#5: Barplots 55

carrier

9E

AA

AS

B6

DL

EV

F9

FL

HA

MQ

OO

UA

US

VX

WN

YV

FIGURE 2.22: The dreaded pie chart.

While it is quite difficult to answer these questions when looking at the pie
chart in Figure 2.22, we can much more easily answer these questions using
the barchart in Figure 2.21. This is true since barplots present the information
in a way such that comparisons between categories can be made with single
horizontal lines, whereas pie charts present the information in a way such that
comparisons must be made by comparing angles.

Learning check

(LC2.30) Why should pie charts be avoided and replaced by barplots?

(LC2.31) Why do you think people continue to use pie charts?

2.8.3 Two categorical variables

Barplots are a very common way to visualize the frequency of different cate-
gories, or levels, of a single categorical variable. Another use of barplots is to
visualize the joint distribution of two categorical variables at the same time.

56 2 Data Visualization

Let’s examine the joint distribution of outgoing domestic flights from NYC by
carrier as well as origin. In other words, the number of flights for each carrier
and origin combination.

For example, the number of WestJet flights from JFK, the number of WestJet
flights from LGA, the number of WestJet flights from EWR, the number of American
Airlines flights from JFK, and so on. Recall the ggplot() code that created the
barplot of carrier frequency in Figure 2.21:

ggplot(data = flights, mapping = aes(x = carrier)) +
geom_bar()

We can now map the additional variable origin by adding a fill = origin inside
the aes() aesthetic mapping.

ggplot(data = flights, mapping = aes(x = carrier, fill = origin)) +
geom_bar()

0

20000

40000

60000

9E AA AS B6 DL EV F9 FL HA MQ OO UA US VX WN YV

carrier

c
o
u
n
t

origin

EWR

JFK

LGA

FIGURE 2.23: Stacked barplot of flight amount by carrier and origin.

Figure 2.23 is an example of a stacked barplot. While simple to make, in certain
aspects it is not ideal. For example, it is difficult to compare the heights of the
different colors between the bars, corresponding to comparing the number of
flights from each origin airport between the carriers.

Before we continue, let’s address some common points of confusion among
new R users. First, the fill aesthetic corresponds to the color used to fill the
bars, while the color aesthetic corresponds to the color of the outline of the
bars. This is identical to how we added color to our histogram in Subsection

2.8 5NG#5: Barplots 57

2.5.1: we set the outline of the bars to white by setting color = "white" and
the colors of the bars to blue steel by setting fill = "steelblue". Observe in
Figure 2.24 that mapping origin to color and not fill yields grey bars with
different colored outlines.

ggplot(data = flights, mapping = aes(x = carrier, color = origin)) +
geom_bar()

0

20000

40000

60000

9E AA AS B6 DL EV F9 FL HA MQ OO UA US VX WN YV

carrier

c
o
u
n
t

origin

EWR

JFK

LGA

FIGURE 2.24: Stacked barplot with color aesthetic used instead of fill.

Second, note that fill is another aesthetic mapping much like x-position; thus
we were careful to include it within the parentheses of the aes() mapping. The
following code, where the fill aesthetic is specified outside the aes() mapping
will yield an error. This is a fairly common error that new ggplot users make:

ggplot(data = flights, mapping = aes(x = carrier), fill = origin) +
geom_bar()

An alternative to stacked barplots are side-by-side barplots, also known as
dodged barplots, as seen in Figure 2.25. The code to create a side-by-side
barplot is identical to the code to create a stacked barplot, but with a position
= "dodge" argument added to geom_bar(). In other words, we are overriding the
default barplot type, which is a stacked barplot, and specifying it to be a
side-by-side barplot instead.

ggplot(data = flights, mapping = aes(x = carrier, fill = origin)) +
geom_bar(position = "dodge")

58 2 Data Visualization

0

10000

20000

30000

40000

9E AA AS B6 DL EV F9 FL HA MQ OO UA US VX WN YV

carrier

c
o
u
n
t

origin

EWR

JFK

LGA

FIGURE 2.25: Side-by-side barplot comparing number of flights by carrier
and origin.

Note the width of the bars for AS, F9, FL, HA and YV is different than the
others. We can make one tweak to the position argument to get them to be
the same size in terms of width as the other bars by using the more robust
position_dodge() function.

ggplot(data = flights, mapping = aes(x = carrier, fill = origin)) +
geom_bar(position = position_dodge(preserve = "single"))

0

10000

20000

30000

40000

9E AA AS B6 DL EV F9 FL HA MQ OO UA US VX WN YV

carrier

c
o
u
n
t

origin

EWR

JFK

LGA

FIGURE 2.26: Side-by-side barplot comparing number of flights by carrier
and origin (with formatting tweak).

2.8 5NG#5: Barplots 59

Lastly, another type of barplot is a faceted barplot. Recall in Section 2.6 we
visualized the distribution of hourly temperatures at the 3 NYC airports split
by month using facets. We apply the same principle to our barplot visualizing
the frequency of carrier split by origin: instead of mapping origin to fill we
include it as the variable to create small multiples of the plot across the levels
of origin.

ggplot(data = flights, mapping = aes(x = carrier)) +
geom_bar() +
facet_wrap(~ origin, ncol = 1)

LGA

JFK

EWR

9E AA AS B6 DL EV F9 FL HA MQ OO UA US VX WN YV

0

10000

20000

30000

40000

0

10000

20000

30000

40000

0

10000

20000

30000

40000

carrier

c
o
u
n
t

FIGURE 2.27: Faceted barplot comparing the number of flights by carrier
and origin.

60 2 Data Visualization

Learning check

(LC2.32) What kinds of questions are not easily answered by looking at
Figure 2.23?

(LC2.33) What can you say, if anything, about the relationship between
airline and airport in NYC in 2013 in regards to the number of departing
flights?

(LC2.34) Why might the side-by-side barplot be preferable to a stacked
barplot in this case?

(LC2.35) What are the disadvantages of using a dodged barplot, in general?

(LC2.36) Why is the faceted barplot preferred to the side-by-side and stacked
barplots in this case?

(LC2.37) What information about the different carriers at different airports
is more easily seen in the faceted barplot?

2.8.4 Summary

Barplots are a common way of displaying the distribution of a categorical
variable, or in other words the frequency with which the different categories
(also called levels) occur. They are easy to understand and make it easy
to make comparisons across levels. Furthermore, when trying to visualize
the relationship of two categorical variables, you have many options: stacked
barplots, side-by-side barplots, and faceted barplots. Depending on what aspect
of the relationship you are trying to emphasize, you will need to make a choice
between these three types of barplots and own that choice.

2.9 Conclusion
2.9.1 Summary table

Let’s recap all five of the five named graphs (5NG) in Table 2.4 summarizing
their differences. Using these 5NG, you’ll be able to visualize the distributions
and relationships of variables contained in a wide array of datasets. This will
be even more the case as we start to map more variables to more of each
geometric object’s aesthetic attribute options, further unlocking the awesome
power of the ggplot2 package.

2.9 Conclusion 61

TABLE 2.4: Summary of Five Named Graphs

Named graph Shows Geometric object Notes

1 Scatterplot Relationship
between 2
numerical
variables

geom_point()

2 Linegraph Relationship
between 2
numerical
variables

geom_line() Used when there is a
sequential order to
x-variable, e.g., time

3 Histogram Distribution of 1
numerical
variable

geom_histogram() Facetted histograms show
the distribution of 1
numerical variable split by
the values of another
variable

4 Boxplot Distribution of 1
numerical
variable split by
the values of
another variable

geom_boxplot()

5 Barplot Distribution of 1
categorical
variable

geom_bar() when
counts are not
pre-counted,
geom_col() when
counts are
pre-counted

Stacked, side-by-side, and
faceted barplots show the
joint distribution of 2
categorical variables

2.9.2 Function argument specification

Let’s go over some important points about specifying the arguments (i.e.,
inputs) to functions. Run the following two segments of code:

Segment 1:
ggplot(data = flights, mapping = aes(x = carrier)) +
geom_bar()

Segment 2:
ggplot(flights, aes(x = carrier)) +
geom_bar()

You’ll notice that both code segments create the same barplot, even though
in the second segment we omitted the data = and mapping = code argument
names. This is because the ggplot() function by default assumes that the data
argument comes first and the mapping argument comes second. As long as you

62 2 Data Visualization

specify the data frame in question first and the aes() mapping second, you can
omit the explicit statement of the argument names data = and mapping =.

Going forward for the rest of this book, all ggplot() code will be like the
second segment: with the data = and mapping = explicit naming of the argument
omitted with the default ordering of arguments respected. We’ll do this for
brevity’s sake; it’s common to see this style when reviewing other R users’
code.

2.9.3 Additional resources

Solutions to all Learning checks can be found online in Appendix D6.

An R script file of all R code used in this chapter is available at https:
//www.moderndive.com/scripts/02-visualization.R.

If you want to further unlock the power of the ggplot2 package for data
visualization, we suggest that you check out RStudio’s “Data Visualization
with ggplot2” cheatsheet. This cheatsheet summarizes much more than what
we’ve discussed in this chapter. In particular, it presents many more than the
5 geometric objects we covered in this chapter while providing quick and easy
to read visual descriptions. For all the geometric objects, it also lists all the
possible aesthetic attributes one can tweak. In the current version of RStudio
in late 2019, you can access this cheatsheet by going to the RStudio Menu Bar
-> Help -> Cheatsheets -> “Data Visualization with ggplot2.”

2.9.4 What’s to come

Recall in Figure 2.2 in Section 2.3 we visualized the relationship between depar-
ture delay and arrival delay for Alaska Airlines flights. This necessitated paring
down the flights data frame to a new data frame alaska_flights consisting of
only carrier == AS flights first:

alaska_flights <- flights %>%
filter(carrier == "AS")

ggplot(data = alaska_flights, mapping = aes(x = dep_delay, y = arr_delay)) +
geom_point()

Furthermore recall in Figure 2.7 in Section 2.4 we visualized hourly temperature
recordings at Newark airport only for the first 15 days of January 2013.
This necessitated paring down the weather data frame to a new data frame

6https://moderndive.com/D-appendixD.html

2.9 Conclusion 63

early_january_weather consisting of hourly temperature recordings only for
origin == "EWR", month == 1, and day less than or equal to 15 first:

early_january_weather <- weather %>%
filter(origin == "EWR" & month == 1 & day <= 15)

ggplot(data = early_january_weather, mapping = aes(x = time_hour, y = temp))
+ geom_line()

These two code segments were a preview of Chapter 3 on data wrangling
using the dplyr package. Data wrangling is the process of transforming and
modifying existing data with the intent of making it more appropriate for
analysis purposes. For example, these two code segments used the filter()
function to create new data frames (alaska_flights and early_january_weather)
by choosing only a subset of rows of existing data frames (flights and weather).
In the next chapter, we’ll formally introduce the filter() and other data
wrangling functions as well as the pipe operator %>% which allows you to
combine multiple data wrangling actions into a single sequential chain of
actions. On to Chapter 3 on data wrangling!

3
Data Wrangling

So far in our journey, we’ve seen how to look at data saved in data frames
using the glimpse() and View() functions in Chapter 1, and how to create data
visualizations using the ggplot2 package in Chapter 2. In particular we studied
what we term the “five named graphs” (5NG):

1. scatterplots via geom_point()
2. linegraphs via geom_line()
3. boxplots via geom_boxplot()
4. histograms via geom_histogram()
5. barplots via geom_bar() or geom_col()

We created these visualizations using the grammar of graphics, which maps
variables in a data frame to the aesthetic attributes of one of the 5 geometric
objects. We can also control other aesthetic attributes of the geometric objects
such as the size and color as seen in the Gapminder data example in Figure
2.1.

Recall however that for two of our visualizations, we first needed to trans-
form/modify existing data frames a little. For example, recall the scatterplot
in Figure 2.2 of departure and arrival delays only for Alaska Airlines flights.
In order to create this visualization, we first needed to pare down the flights
data frame to an alaska_flights data frame consisting of only carrier == "AS"
flights. Thus, alaska_flights will have fewer rows than flights. We did this
using the filter() function:

alaska_flights <- flights %>%
filter(carrier == "AS")

In this chapter, we’ll extend this example and we’ll introduce a series of
functions from the dplyr package for data wrangling that will allow you to take
a data frame and “wrangle” it (transform it) to suit your needs. Such functions
include:

65

66 3 Data Wrangling

1. filter() a data frame’s existing rows to only pick out a subset of them.
For example, the alaska_flights data frame.

2. summarize() one or more of its columns/variables with a summary
statistic. Examples of summary statistics include the median and
interquartile range of temperatures as we saw in Section 2.7 on
boxplots.

3. group_by() its rows. In other words, assign different rows to be part of
the same group. We can then combine group_by() with summarize() to
report summary statistics for each group separately. For example, say
you don’t want a single overall average departure delay dep_delay for
all three origin airports combined, but rather three separate average
departure delays, one computed for each of the three origin airports.

4. mutate() its existing columns/variables to create new ones. For example,
convert hourly temperature recordings from degrees Fahrenheit to
degrees Celsius.

5. arrange() its rows. For example, sort the rows of weather in ascending
or descending order of temp.

6. join() it with another data frame by matching along a “key” variable.
In other words, merge these two data frames together.

Notice how we used computer_code font to describe the actions we want to take
on our data frames. This is because the dplyr package for data wrangling has
intuitively verb-named functions that are easy to remember.

There is a further benefit to learning to use the dplyr package for data wrangling:
its similarity to the database querying language SQL1 (pronounced “sequel”
or spelled out as “S”, “Q”, “L”). SQL (which stands for “Structured Query
Language”) is used to manage large databases quickly and efficiently and is
widely used by many institutions with a lot of data. While SQL is a topic left
for a book or a course on database management, keep in mind that once you
learn dplyr, you can learn SQL easily. We’ll talk more about their similarities
in Subsection 3.7.4.

Needed packages

Let’s load all the packages needed for this chapter (this assumes you’ve already
installed them). If needed, read Section 1.3 for information on how to install
and load R packages.

1https://en.wikipedia.org/wiki/SQL

3.1 The pipe operator: %>% 67

library(dplyr)
library(ggplot2)
library(nycflights13)

3.1 The pipe operator: %>%

Before we start data wrangling, let’s first introduce a nifty tool that gets loaded
with the dplyr package: the pipe operator %>%. The pipe operator allows us to
combine multiple operations in R into a single sequential chain of actions.

Let’s start with a hypothetical example. Say you would like to perform a
hypothetical sequence of operations on a hypothetical data frame x using
hypothetical functions f(), g(), and h():

1. Take x then
2. Use x as an input to a function f() then
3. Use the output of f(x) as an input to a function g() then
4. Use the output of g(f(x)) as an input to a function h()

One way to achieve this sequence of operations is by using nesting parentheses
as follows:

h(g(f(x)))

This code isn’t so hard to read since we are applying only three functions: f(),
then g(), then h() and each of the functions is short in its name. Further, each
of these functions also only has one argument. However, you can imagine that
this will get progressively harder to read as the number of functions applied in
your sequence increases and the arguments in each function increase as well.
This is where the pipe operator %>% comes in handy. %>% takes the output of one
function and then “pipes” it to be the input of the next function. Furthermore,
a helpful trick is to read %>% as “then” or “and then.” For example, you can
obtain the same output as the hypothetical sequence of functions as follows:

x %>%
f() %>%
g() %>%
h()

68 3 Data Wrangling

You would read this sequence as:

1. Take x then
2. Use this output as the input to the next function f() then
3. Use this output as the input to the next function g() then
4. Use this output as the input to the next function h()

So while both approaches achieve the same goal, the latter is much more
human-readable because you can clearly read the sequence of operations line-
by-line. But what are the hypothetical x, f(), g(), and h()? Throughout this
chapter on data wrangling:

1. The starting value x will be a data frame. For example, the flights
data frame we explored in Section 1.4.

2. The sequence of functions, here f(), g(), and h(), will mostly be
a sequence of any number of the six data wrangling verb-named
functions we listed in the introduction to this chapter. For example, the
filter(carrier == "AS") function and argument specified we previewed
earlier.

3. The result will be the transformed/modified data frame that you
want. In our example, we’ll save the result in a new data frame by
using the <- assignment operator with the name alaska_flights via
alaska_flights <-.

alaska_flights <- flights %>%
filter(carrier == "AS")

Much like when adding layers to a ggplot() using the + sign, you form a single
chain of data wrangling operations by combining verb-named functions into a
single sequence using the pipe operator %>%. Furthermore, much like how the +
sign has to come at the end of lines when constructing plots, the pipe operator
%>% has to come at the end of lines as well.

Keep in mind, there are many more advanced data wrangling functions than
just the six listed in the introduction to this chapter; you’ll see some examples
of these in Section 3.8. However, just with these six verb-named functions
you’ll be able to perform a broad array of data wrangling tasks for the rest of
this book.

3.2 filter rows 69

3.2 filter rows

FIGURE 3.1: Diagram of filter() rows operation.

The filter() function here works much like the “Filter” option in Microsoft
Excel; it allows you to specify criteria about the values of a variable in your
dataset and then filters out only the rows that match that criteria.

We begin by focusing only on flights from New York City to Portland, Oregon.
The dest destination code (or airport code) for Portland, Oregon is "PDX". Run
the following and look at the results in RStudio’s spreadsheet viewer to ensure
that only flights heading to Portland are chosen here:

portland_flights <- flights %>%
filter(dest == "PDX")

View(portland_flights)

Note the order of the code. First, take the flights data frame flights then
filter() the data frame so that only those where the dest equals "PDX" are
included. We test for equality using the double equal sign == and not a single
equal sign =. In other words filter(dest = "PDX") will yield an error. This is
a convention across many programming languages. If you are new to coding,
you’ll probably forget to use the double equal sign == a few times before you
get the hang of it.

You can use other operators beyond just the == operator that tests for equality:

• > corresponds to “greater than”
• < corresponds to “less than”
• >= corresponds to “greater than or equal to”
• <= corresponds to “less than or equal to”
• != corresponds to “not equal to.” The ! is used in many programming

languages to indicate “not.”

70 3 Data Wrangling

Furthermore, you can combine multiple criteria using operators that make
comparisons:

• | corresponds to “or”
• & corresponds to “and”

To see many of these in action, let’s filter flights for all rows that departed from
JFK and were heading to Burlington, Vermont ("BTV") or Seattle, Washington
("SEA") and departed in the months of October, November, or December. Run
the following:

btv_sea_flights_fall <- flights %>%
filter(origin == "JFK" & (dest == "BTV" | dest == "SEA") & month >= 10)

View(btv_sea_flights_fall)

Note that even though colloquially speaking one might say “all flights leaving
Burlington, Vermont and Seattle, Washington,” in terms of computer oper-
ations, we really mean “all flights leaving Burlington, Vermont or leaving
Seattle, Washington.” For a given row in the data, dest can be "BTV", or "SEA",
or something else, but not both "BTV" and "SEA" at the same time. Furthermore,
note the careful use of parentheses around dest == "BTV" | dest == "SEA".

We can often skip the use of & and just separate our conditions with a comma.
The previous code will return the identical output btv_sea_flights_fall as the
following code:

btv_sea_flights_fall <- flights %>%
filter(origin == "JFK", (dest == "BTV" | dest == "SEA"), month >= 10)

View(btv_sea_flights_fall)

Let’s present another example that uses the ! “not” operator to pick rows that
don’t match a criteria. As mentioned earlier, the ! can be read as “not.” Here
we are filtering rows corresponding to flights that didn’t go to Burlington, VT
or Seattle, WA.

not_BTV_SEA <- flights %>%
filter(!(dest == "BTV" | dest == "SEA"))

View(not_BTV_SEA)

Again, note the careful use of parentheses around the (dest == "BTV" | dest ==
"SEA"). If we didn’t use parentheses as follows:

3.3 filter rows 71

flights %>% filter(!dest == "BTV" | dest == "SEA")

We would be returning all flights not headed to "BTV" or those headed to "SEA",
which is an entirely different resulting data frame.

Now say we have a larger number of airports we want to filter for, say "SEA",
"SFO", "PDX", "BTV", and "BDL". We could continue to use the | (or) operator:

many_airports <- flights %>%
filter(dest == "SEA" | dest == "SFO" | dest == "PDX" |

dest == "BTV" | dest == "BDL")

but as we progressively include more airports, this will get unwieldy to write.
A slightly shorter approach uses the %in% operator along with the c() function.
Recall from Subsection 1.2.1 that the c() function “combines” or “concatenates”
values into a single vector of values.

many_airports <- flights %>%
filter(dest %in% c("SEA", "SFO", "PDX", "BTV", "BDL"))

View(many_airports)

What this code is doing is filtering flights for all flights where dest is in
the vector of airports c("BTV", "SEA", "PDX", "SFO", "BDL"). Both outputs of
many_airports are the same, but as you can see the latter takes much less energy
to code. The %in% operator is useful for looking for matches commonly in one
vector/variable compared to another.

As a final note, we recommend that filter() should often be among the first
verbs you consider applying to your data. This cleans your dataset to only
those rows you care about, or put differently, it narrows down the scope of
your data frame to just the observations you care about.

Learning check

(LC3.1) What’s another way of using the “not” operator ! to filter only the
rows that are not going to Burlington, VT nor Seattle, WA in the flights data
frame? Test this out using the previous code.

72 3 Data Wrangling

3.3 summarize variables
The next common task when working with data frames is to compute summary
statistics. Summary statistics are single numerical values that summarize a
large number of values. Commonly known examples of summary statistics
include the mean (also called the average) and the median (the middle value).
Other examples of summary statistics that might not immediately come to
mind include the sum, the smallest value also called the minimum, the largest
value also called the maximum, and the standard deviation. See Appendix A.1
for a glossary of such summary statistics.

Let’s calculate two summary statistics of the temp temperature variable in
the weather data frame: the mean and standard deviation (recall from Section
1.4 that the weather data frame is included in the nycflights13 package). To
compute these summary statistics, we need the mean() and sd() summary
functions in R. Summary functions in R take in many values and return a
single value, as illustrated in Figure 3.2.

FIGURE 3.2: Diagram illustrating a summary function in R.

More precisely, we’ll use the mean() and sd() summary functions within the
summarize() function from the dplyr package. Note you can also use the British
English spelling of summarise(). As shown in Figure 3.3, the summarize() function
takes in a data frame and returns a data frame with only one row corresponding
to the summary statistics.

FIGURE 3.3: Diagram of summarize() rows.

3.3 summarize variables 73

We’ll save the results in a new data frame called summary_temp that will have
two columns/variables: the mean and the std_dev:

summary_temp <- weather %>%
summarize(mean = mean(temp), std_dev = sd(temp))

summary_temp

A tibble: 1 x 2
mean std_dev
<dbl> <dbl>

1 NA NA

Why are the values returned NA? As we saw in Subsection 2.3.1 when creating
the scatterplot of departure and arrival delays for alaska_flights, NA is how R
encodes missing values where NA indicates “not available” or “not applicable.”
If a value for a particular row and a particular column does not exist, NA is
stored instead. Values can be missing for many reasons. Perhaps the data was
collected but someone forgot to enter it? Perhaps the data was not collected
at all because it was too difficult to do so? Perhaps there was an erroneous
value that someone entered that has been corrected to read as missing? You’ll
often encounter issues with missing values when working with real data.

Going back to our summary_temp output, by default any time you try to calculate
a summary statistic of a variable that has one or more NA missing values in R,
NA is returned. To work around this fact, you can set the na.rm argument to
TRUE, where rm is short for “remove”; this will ignore any NA missing values and
only return the summary value for all non-missing values.

The code that follows computes the mean and standard deviation of all non-
missing values of temp:

summary_temp <- weather %>%
summarize(mean = mean(temp, na.rm = TRUE),

std_dev = sd(temp, na.rm = TRUE))
summary_temp

A tibble: 1 x 2
mean std_dev
<dbl> <dbl>

1 55.3 17.8

Notice how the na.rm = TRUE are used as arguments to the mean() and sd()
summary functions individually, and not to the summarize() function.

74 3 Data Wrangling

However, one needs to be cautious whenever ignoring missing values as we’ve
just done. In the upcoming Learning checks questions, we’ll consider the
possible ramifications of blindly sweeping rows with missing values “under the
rug.” This is in fact why the na.rm argument to any summary statistic function
in R is set to FALSE by default. In other words, R does not ignore rows with
missing values by default. R is alerting you to the presence of missing data
and you should be mindful of this missingness and any potential causes of this
missingness throughout your analysis.

What are other summary functions we can use inside the summarize() verb to
compute summary statistics? As seen in the diagram in Figure 3.2, you can
use any function in R that takes many values and returns just one. Here are
just a few:

• mean(): the average
• sd(): the standard deviation, which is a measure of spread
• min() and max(): the minimum and maximum values, respectively
• IQR(): interquartile range
• sum(): the total amount when adding multiple numbers
• n(): a count of the number of rows in each group. This particular summary

function will make more sense when group_by() is covered in Section 3.4.

Learning check

(LC3.2) Say a doctor is studying the effect of smoking on lung cancer for a
large number of patients who have records measured at five-year intervals. She
notices that a large number of patients have missing data points because the
patient has died, so she chooses to ignore these patients in her analysis. What
is wrong with this doctor’s approach?

(LC3.3) Modify the summarize() function to create summary_temp to also use the
n() summary function: summarize(count = n()). What does the returned value
correspond to?

(LC3.4) Why doesn’t the following code work? Run the code line-by-line
instead of all at once, and then look at the data. In other words, run summary_temp
<- weather %>% summarize(mean = mean(temp, na.rm = TRUE)) first.

summary_temp <- weather %>%
summarize(mean = mean(temp, na.rm = TRUE)) %>%
summarize(std_dev = sd(temp, na.rm = TRUE))

3.4 group_by rows 75

3.4 group_by rows

FIGURE 3.4: Diagram of group_by() and summarize().

Say instead of a single mean temperature for the whole year, you would like 12
mean temperatures, one for each of the 12 months separately. In other words,
we would like to compute the mean temperature split by month. We can do
this by “grouping” temperature observations by the values of another variable,
in this case by the 12 values of the variable month. Run the following code:

summary_monthly_temp <- weather %>%
group_by(month) %>%
summarize(mean = mean(temp, na.rm = TRUE),

std_dev = sd(temp, na.rm = TRUE))
summary_monthly_temp

A tibble: 12 x 3
month mean std_dev
<int> <dbl> <dbl>

1 1 35.6 10.2
2 2 34.3 6.98
3 3 39.9 6.25
4 4 51.7 8.79
5 5 61.8 9.68
6 6 72.2 7.55
7 7 80.1 7.12
8 8 74.5 5.19
9 9 67.4 8.47
10 10 60.1 8.85
11 11 45.0 10.4
12 12 38.4 9.98

76 3 Data Wrangling

This code is identical to the previous code that created summary_temp, but with
an extra group_by(month) added before the summarize(). Grouping the weather
dataset by month and then applying the summarize() functions yields a data
frame that displays the mean and standard deviation temperature split by the
12 months of the year.

It is important to note that the group_by() function doesn’t change data frames
by itself. Rather it changes the meta-data, or data about the data, specifically
the grouping structure. It is only after we apply the summarize() function that
the data frame changes.

For example, let’s consider the diamonds data frame included in the ggplot2
package. Run this code:

diamonds

A tibble: 53,940 x 10
carat cut color clarity depth table price x y z
<dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>

1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
4 0.290 Premium I VS2 62.4 58 334 4.2 4.23 2.63
5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48
7 0.24 Very Good I VVS1 62.3 57 336 3.95 3.98 2.47
8 0.26 Very Good H SI1 61.9 55 337 4.07 4.11 2.53
9 0.22 Fair E VS2 65.1 61 337 3.87 3.78 2.49
10 0.23 Very Good H VS1 59.4 61 338 4 4.05 2.39
... with 53,930 more rows

Observe that the first line of the output reads # A tibble: 53,940 x 10. This is
an example of meta-data, in this case the number of observations/rows and
variables/columns in diamonds. The actual data itself are the subsequent table
of values. Now let’s pipe the diamonds data frame into group_by(cut):

diamonds %>%
group_by(cut)

A tibble: 53,940 x 10
Groups: cut [5]

carat cut color clarity depth table price x y z
<dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>

3.4 group_by rows 77

1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
4 0.290 Premium I VS2 62.4 58 334 4.2 4.23 2.63
5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48
7 0.24 Very Good I VVS1 62.3 57 336 3.95 3.98 2.47
8 0.26 Very Good H SI1 61.9 55 337 4.07 4.11 2.53
9 0.22 Fair E VS2 65.1 61 337 3.87 3.78 2.49
10 0.23 Very Good H VS1 59.4 61 338 4 4.05 2.39
... with 53,930 more rows

Observe that now there is additional meta-data: # Groups: cut [5] indicating
that the grouping structure meta-data has been set based on the 5 possible
levels of the categorical variable cut: "Fair", "Good", "Very Good", "Premium", and
"Ideal". On the other hand, observe that the data has not changed: it is still a
table of 53,940 × 10 values.

Only by combining a group_by() with another data wrangling operation, in this
case summarize(), will the data actually be transformed.

diamonds %>%
group_by(cut) %>%
summarize(avg_price = mean(price))

A tibble: 5 x 2
cut avg_price
<ord> <dbl>

1 Fair 4359.
2 Good 3929.
3 Very Good 3982.
4 Premium 4584.
5 Ideal 3458.

If you would like to remove this grouping structure meta-data, we can pipe
the resulting data frame into the ungroup() function:

diamonds %>%
group_by(cut) %>%
ungroup()

A tibble: 53,940 x 10
carat cut color clarity depth table price x y z

78 3 Data Wrangling

<dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>
1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
4 0.290 Premium I VS2 62.4 58 334 4.2 4.23 2.63
5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48
7 0.24 Very Good I VVS1 62.3 57 336 3.95 3.98 2.47
8 0.26 Very Good H SI1 61.9 55 337 4.07 4.11 2.53
9 0.22 Fair E VS2 65.1 61 337 3.87 3.78 2.49
10 0.23 Very Good H VS1 59.4 61 338 4 4.05 2.39
... with 53,930 more rows

Observe how the # Groups: cut [5] meta-data is no longer present.

Let’s now revisit the n() counting summary function we briefly introduced
previously. Recall that the n() function counts rows. This is opposed to the
sum() summary function that returns the sum of a numerical variable. For
example, suppose we’d like to count how many flights departed each of the
three airports in New York City:

by_origin <- flights %>%
group_by(origin) %>%
summarize(count = n())

by_origin

A tibble: 3 x 2
origin count
<chr> <int>

1 EWR 120835
2 JFK 111279
3 LGA 104662

We see that Newark ("EWR") had the most flights departing in 2013 followed by
"JFK" and lastly by LaGuardia ("LGA"). Note there is a subtle but important
difference between sum() and n(); while sum() returns the sum of a numerical
variable, n() returns a count of the number of rows/observations.

3.4.1 Grouping by more than one variable

You are not limited to grouping by one variable. Say you want to know the
number of flights leaving each of the three New York City airports for each
month. We can also group by a second variable month using group_by(origin,
month):

3.4 group_by rows 79

by_origin_monthly <- flights %>%
group_by(origin, month) %>%
summarize(count = n())

by_origin_monthly

A tibble: 36 x 3
Groups: origin [3]

origin month count
<chr> <int> <int>

1 EWR 1 9893
2 EWR 2 9107
3 EWR 3 10420
4 EWR 4 10531
5 EWR 5 10592
6 EWR 6 10175
7 EWR 7 10475
8 EWR 8 10359
9 EWR 9 9550
10 EWR 10 10104
... with 26 more rows

Observe that there are 36 rows to by_origin_monthly because there are 12 months
for 3 airports (EWR, JFK, and LGA).

Why do we group_by(origin, month) and not group_by(origin) and then
group_by(month)? Let’s investigate:

by_origin_monthly_incorrect <- flights %>%
group_by(origin) %>%
group_by(month) %>%
summarize(count = n())

by_origin_monthly_incorrect

A tibble: 12 x 2
month count
<int> <int>

1 1 27004
2 2 24951
3 3 28834
4 4 28330
5 5 28796
6 6 28243

80 3 Data Wrangling

7 7 29425
8 8 29327
9 9 27574
10 10 28889
11 11 27268
12 12 28135

What happened here is that the second group_by(month) overwrote the grouping
structure meta-data of the earlier group_by(origin), so that in the end we are
only grouping by month. The lesson here is if you want to group_by() two or
more variables, you should include all the variables at the same time in the
same group_by() adding a comma between the variable names.

Learning check

(LC3.5) Recall from Chapter 2 when we looked at temperatures by months
in NYC. What does the standard deviation column in the summary_monthly_temp
data frame tell us about temperatures in NYC throughout the year?

(LC3.6) What code would be required to get the mean and standard deviation
temperature for each day in 2013 for NYC?

(LC3.7) Recreate by_monthly_origin, but instead of grouping via
group_by(origin, month), group variables in a different order group_by(month,
origin). What differs in the resulting dataset?

(LC3.8) How could we identify how many flights left each of the three airports
for each carrier?

(LC3.9) How does the filter() operation differ from a group_by() followed by
a summarize()?

3.5 mutate existing variables

FIGURE 3.5: Diagram of mutate() columns.

3.5 mutate existing variables 81

Another common transformation of data is to create/compute new variables
based on existing ones. For example, say you are more comfortable thinking of
temperature in degrees Celsius (°C) instead of degrees Fahrenheit (°F). The
formula to convert temperatures from °F to °C is

temp in C = temp in F − 321.8
We can apply this formula to the temp variable using the mutate() function from
the dplyr package, which takes existing variables and mutates them to create
new ones.

weather <- weather %>%
mutate(temp_in_C = (temp - 32) / 1.8)

In this code, we mutate() the weather data frame by creating a new vari-
able temp_in_C = (temp - 32) / 1.8 and then overwrite the original weather data
frame. Why did we overwrite the data frame weather, instead of assigning the
result to a new data frame like weather_new? As a rough rule of thumb, as
long as you are not losing original information that you might need later, it’s
acceptable practice to overwrite existing data frames with updated ones, as
we did here. On the other hand, why did we not overwrite the variable temp,
but instead created a new variable called temp_in_C? Because if we did this, we
would have erased the original information contained in temp of temperatures
in Fahrenheit that may still be valuable to us.

Let’s now compute monthly average temperatures in both °F and °C using the
group_by() and summarize() code we saw in Section 3.4:

summary_monthly_temp <- weather %>%
group_by(month) %>%
summarize(mean_temp_in_F = mean(temp, na.rm = TRUE),

mean_temp_in_C = mean(temp_in_C, na.rm = TRUE))
summary_monthly_temp

A tibble: 12 x 3
month mean_temp_in_F mean_temp_in_C
<int> <dbl> <dbl>

1 1 35.6 2.02
2 2 34.3 1.26
3 3 39.9 4.38
4 4 51.7 11.0

82 3 Data Wrangling

5 5 61.8 16.6
6 6 72.2 22.3
7 7 80.1 26.7
8 8 74.5 23.6
9 9 67.4 19.7
10 10 60.1 15.6
11 11 45.0 7.22
12 12 38.4 3.58

Let’s consider another example. Passengers are often frustrated when their
flight departs late, but aren’t as annoyed if, in the end, pilots can make up
some time during the flight. This is known in the airline industry as gain, and
we will create this variable using the mutate() function:

flights <- flights %>%
mutate(gain = dep_delay - arr_delay)

Let’s take a look at only the dep_delay, arr_delay, and the resulting gain variables
for the first 5 rows in our updated flights data frame in Table 3.1.

TABLE 3.1: First five rows of departure/arrival delay and gain variables

dep_delay arr_delay gain
2 11 -9
4 20 -16
2 33 -31
-1 -18 17
-6 -25 19

The flight in the first row departed 2 minutes late but arrived 11 minutes late,
so its “gained time in the air” is a loss of 9 minutes, hence its gain is 2 - 11 =
-9. On the other hand, the flight in the fourth row departed a minute early
(dep_delay of -1) but arrived 18 minutes early (arr_delay of -18), so its “gained
time in the air” is −1 − (−18) = −1 + 18 = 17 minutes, hence its gain is +17.

Let’s look at some summary statistics of the gain variable by considering
multiple summary functions at once in the same summarize() code:

gain_summary <- flights %>%
summarize(

min = min(gain, na.rm = TRUE),
q1 = quantile(gain, 0.25, na.rm = TRUE),

3.5 mutate existing variables 83

median = quantile(gain, 0.5, na.rm = TRUE),
q3 = quantile(gain, 0.75, na.rm = TRUE),
max = max(gain, na.rm = TRUE),
mean = mean(gain, na.rm = TRUE),
sd = sd(gain, na.rm = TRUE),
missing = sum(is.na(gain))

)
gain_summary

A tibble: 1 x 8
min q1 median q3 max mean sd missing

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <int>
1 -196 -3 7 17 109 5.66 18.0 9430

We see for example that the average gain is +5 minutes, while the largest is
+109 minutes! However, this code would take some time to type out in practice.
We’ll see later on in Subsection 5.1.1 that there is a much more succinct way
to compute a variety of common summary statistics: using the skim() function
from the skimr package.

Recall from Section 2.5 that since gain is a numerical variable, we can visualize
its distribution using a histogram.

ggplot(data = flights, mapping = aes(x = gain)) +
geom_histogram(color = "white", bins = 20)

0

25000

50000

75000

100000

125000

-200 -100 0 100

gain

c
o
u
n
t

FIGURE 3.6: Histogram of gain variable.

84 3 Data Wrangling

The resulting histogram in Figure 3.6 provides a different perspective on the
gain variable than the summary statistics we computed earlier. For example,
note that most values of gain are right around 0.

To close out our discussion on the mutate() function to create new variables,
note that we can create multiple new variables at once in the same mutate()
code. Furthermore, within the same mutate() code we can refer to new variables
we just created. As an example, consider the mutate() code Hadley Wickham
and Garrett Grolemund show in Chapter 5 of R for Data Science (Grolemund
and Wickham, 2017):

flights <- flights %>%
mutate(

gain = dep_delay - arr_delay,
hours = air_time / 60,
gain_per_hour = gain / hours

)

Learning check

(LC3.10) What do positive values of the gain variable in flights correspond
to? What about negative values? And what about a zero value?

(LC3.11) Could we create the dep_delay and arr_delay columns by simply
subtracting dep_time from sched_dep_time and similarly for arrivals? Try the
code out and explain any differences between the result and what actually
appears in flights.

(LC3.12) What can we say about the distribution of gain? Describe it in a
few sentences using the plot and the gain_summary data frame values.

3.6 arrange and sort rows
One of the most commonly performed data wrangling tasks is to sort a data
frame’s rows in the alphanumeric order of one of the variables. The dplyr
package’s arrange() function allows us to sort/reorder a data frame’s rows
according to the values of the specified variable.

Suppose we are interested in determining the most frequent destination airports
for all domestic flights departing from New York City in 2013:

3.6 arrange and sort rows 85

freq_dest <- flights %>%
group_by(dest) %>%
summarize(num_flights = n())

freq_dest

A tibble: 105 x 2
dest num_flights
<chr> <int>

1 ABQ 254
2 ACK 265
3 ALB 439
4 ANC 8
5 ATL 17215
6 AUS 2439
7 AVL 275
8 BDL 443
9 BGR 375
10 BHM 297
... with 95 more rows

Observe that by default the rows of the resulting freq_dest data frame are
sorted in alphabetical order of destination. Say instead we would like to see the
same data, but sorted from the most to the least number of flights (num_flights)
instead:

freq_dest %>%
arrange(num_flights)

A tibble: 105 x 2
dest num_flights
<chr> <int>

1 LEX 1
2 LGA 1
3 ANC 8
4 SBN 10
5 HDN 15
6 MTJ 15
7 EYW 17
8 PSP 19
9 JAC 25
10 BZN 36

86 3 Data Wrangling

... with 95 more rows

This is, however, the opposite of what we want. The rows are sorted with the
least frequent destination airports displayed first. This is because arrange()
always returns rows sorted in ascending order by default. To switch the ordering
to be in “descending” order instead, we use the desc() function as so:

freq_dest %>%
arrange(desc(num_flights))

A tibble: 105 x 2
dest num_flights
<chr> <int>

1 ORD 17283
2 ATL 17215
3 LAX 16174
4 BOS 15508
5 MCO 14082
6 CLT 14064
7 SFO 13331
8 FLL 12055
9 MIA 11728
10 DCA 9705
... with 95 more rows

3.7 join data frames
Another common data transformation task is “joining” or “merging” two
different datasets. For example, in the flights data frame, the variable carrier
lists the carrier code for the different flights. While the corresponding airline
names for "UA" and "AA" might be somewhat easy to guess (United and American
Airlines), what airlines have codes "VX", "HA", and "B6"? This information is
provided in a separate data frame airlines.

View(airlines)

We see that in airports, carrier is the carrier code, while name is the full name
of the airline company. Using this table, we can see that "VX", "HA", and "B6"
correspond to Virgin America, Hawaiian Airlines, and JetBlue, respectively.
However, wouldn’t it be nice to have all this information in a single data frame

3.7 join data frames 87

instead of two separate data frames? We can do this by “joining” the flights
and airlines data frames.

Note that the values in the variable carrier in the flights data frame match
the values in the variable carrier in the airlines data frame. In this case, we
can use the variable carrier as a key variable to match the rows of the two data
frames. Key variables are almost always identification variables that uniquely
identify the observational units as we saw in Subsection 1.4.4. This ensures
that rows in both data frames are appropriately matched during the join.
Hadley and Garrett (Grolemund and Wickham, 2017) created the diagram
shown in Figure 3.7 to help us understand how the different data frames in
the nycflights13 package are linked by various key variables:

FIGURE 3.7: Data relationships in nycflights13 from R for Data Science.

3.7.1 Matching “key” variable names

In both the flights and airlines data frames, the key variable we want to
join/merge/match the rows by has the same name: carrier. Let’s use the
inner_join() function to join the two data frames, where the rows will be
matched by the variable carrier, and then compare the resulting data frames:

flights_joined <- flights %>%
inner_join(airlines, by = "carrier")

88 3 Data Wrangling

View(flights)
View(flights_joined)

Observe that the flights and flights_joined data frames are identical except
that flights_joined has an additional variable name. The values of name corre-
spond to the airline companies’ names as indicated in the airlines data frame.

A visual representation of the inner_join() is shown in Figure 3.8 (Grole-
mund and Wickham, 2017). There are other types of joins available (such as
left_join(), right_join(), outer_join(), and anti_join()), but the inner_join()
will solve nearly all of the problems you’ll encounter in this book.

FIGURE 3.8: Diagram of inner join from R for Data Science.

3.7.2 Different “key” variable names

Say instead you are interested in the destinations of all domestic flights depart-
ing NYC in 2013, and you ask yourself questions like: “What cities are these
airports in?”, or “Is "ORD" Orlando?”, or “Where is "FLL"?”.

The airports data frame contains the airport codes for each airport:

View(airports)

However, if you look at both the airports and flights data frames, you’ll find
that the airport codes are in variables that have different names. In airports
the airport code is in faa, whereas in flights the airport codes are in origin
and dest. This fact is further highlighted in the visual representation of the
relationships between these data frames in Figure 3.7.

In order to join these two data frames by airport code, our inner_join()
operation will use the by = c("dest" = "faa") argument with modified code

3.7 join data frames 89

syntax allowing us to join two data frames where the key variable has a different
name:

flights_with_airport_names <- flights %>%
inner_join(airports, by = c("dest" = "faa"))

View(flights_with_airport_names)

Let’s construct the chain of pipe operators %>% that computes the number of
flights from NYC to each destination, but also includes information about each
destination airport:

named_dests <- flights %>%
group_by(dest) %>%
summarize(num_flights = n()) %>%
arrange(desc(num_flights)) %>%
inner_join(airports, by = c("dest" = "faa")) %>%
rename(airport_name = name)

named_dests

A tibble: 101 x 9
dest num_flights airport_name lat lon alt tz dst tzone
<chr> <int> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <chr>

1 ORD 17283 Chicago Ohare I~ 42.0 -87.9 668 -6 A Ameri~
2 ATL 17215 Hartsfield Jack~ 33.6 -84.4 1026 -5 A Ameri~
3 LAX 16174 Los Angeles Intl 33.9 -118. 126 -8 A Ameri~
4 BOS 15508 General Edward ~ 42.4 -71.0 19 -5 A Ameri~
5 MCO 14082 Orlando Intl 28.4 -81.3 96 -5 A Ameri~
6 CLT 14064 Charlotte Dougl~ 35.2 -80.9 748 -5 A Ameri~
7 SFO 13331 San Francisco I~ 37.6 -122. 13 -8 A Ameri~
8 FLL 12055 Fort Lauderdale~ 26.1 -80.2 9 -5 A Ameri~
9 MIA 11728 Miami Intl 25.8 -80.3 8 -5 A Ameri~
10 DCA 9705 Ronald Reagan W~ 38.9 -77.0 15 -5 A Ameri~
... with 91 more rows

In case you didn’t know, "ORD" is the airport code of Chicago O’Hare airport
and "FLL" is the main airport in Fort Lauderdale, Florida, which can be seen
in the airport_name variable.

3.7.3 Multiple “key” variables

Say instead we want to join two data frames by multiple key variables. For
example, in Figure 3.7, we see that in order to join the flights and weather data

90 3 Data Wrangling

frames, we need more than one key variable: year, month, day, hour, and origin.
This is because the combination of these 5 variables act to uniquely identify
each observational unit in the weather data frame: hourly weather recordings
at each of the 3 NYC airports.

We achieve this by specifying a vector of key variables to join by using the
c() function. Recall from Subsection 1.2.1 that c() is short for “combine” or
“concatenate.”

flights_weather_joined <- flights %>%
inner_join(weather, by = c("year", "month", "day", "hour", "origin"))

View(flights_weather_joined)

Learning check

(LC3.13) Looking at Figure 3.7, when joining flights and weather (or, in other
words, matching the hourly weather values with each flight), why do we need
to join by all of year, month, day, hour, and origin, and not just hour?

(LC3.14) What surprises you about the top 10 destinations from NYC in
2013?

3.7.4 Normal forms

The data frames included in the nycflights13 package are in a form that
minimizes redundancy of data. For example, the flights data frame only saves
the carrier code of the airline company; it does not include the actual name of
the airline. For example, the first row of flights has carrier equal to UA, but it
does not include the airline name of “United Air Lines Inc.”

The names of the airline companies are included in the name variable of the
airlines data frame. In order to have the airline company name included in
flights, we could join these two data frames as follows:

joined_flights <- flights %>%
inner_join(airlines, by = "carrier")

View(joined_flights)

We are capable of performing this join because each of the data frames have
keys in common to relate one to another: the carrier variable in both the
flights and airlines data frames. The key variable(s) that we base our joins
on are often identification variables as we mentioned previously.

3.8 Other verbs 91

This is an important property of what’s known as normal forms of data.
The process of decomposing data frames into less redundant tables without
losing information is called normalization. More information is available on
Wikipedia2.

Both dplyr and SQL3 we mentioned in the introduction of this chapter use
such normal forms. Given that they share such commonalities, once you learn
either of these two tools, you can learn the other very easily.

Learning check

(LC3.15) What are some advantages of data in normal forms? What are some
disadvantages?

3.8 Other verbs
Here are some other useful data wrangling verbs:

• select() only a subset of variables/columns.
• rename() variables/columns to have new names.
• Return only the top_n() values of a variable.

3.8.1 select variables

FIGURE 3.9: Diagram of select() columns.

We’ve seen that the flights data frame in the nycflights13 package contains 19
different variables. You can identify the names of these 19 variables by running
the glimpse() function from the dplyr package:

2https://en.wikipedia.org/wiki/Database_normalization
3https://en.wikipedia.org/wiki/SQL

92 3 Data Wrangling

glimpse(flights)

However, say you only need two of these 19 variables, say carrier and flight.
You can select() these two variables:

flights %>%
select(carrier, flight)

This function makes it easier to explore large datasets since it allows us to
limit the scope to only those variables we care most about. For example, if we
select() only a smaller number of variables as is shown in Figure 3.9, it will
make viewing the dataset in RStudio’s spreadsheet viewer more digestible.

Let’s say instead you want to drop, or de-select, certain variables. For example,
consider the variable year in the flights data frame. This variable isn’t quite a
“variable” because it is always 2013 and hence doesn’t change. Say you want to
remove this variable from the data frame. We can deselect year by using the -
sign:

flights_no_year <- flights %>% select(-year)

Another way of selecting columns/variables is by specifying a range of columns:

flight_arr_times <- flights %>% select(month:day, arr_time:sched_arr_time)
flight_arr_times

This will select() all columns between month and day, as well as between arr_time
and sched_arr_time, and drop the rest.

The select() function can also be used to reorder columns when used with the
everything() helper function. For example, suppose we want the hour, minute,
and time_hour variables to appear immediately after the year, month, and day
variables, while not discarding the rest of the variables. In the following code,
everything() will pick up all remaining variables:

flights_reorder <- flights %>%
select(year, month, day, hour, minute, time_hour, everything())

glimpse(flights_reorder)

Lastly, the helper functions starts_with(), ends_with(), and contains() can be
used to select variables/columns that match those conditions. As examples,

3.8 Other verbs 93

flights %>% select(starts_with("a"))
flights %>% select(ends_with("delay"))
flights %>% select(contains("time"))

3.8.2 rename variables

Another useful function is rename(), which as you may have guessed changes
the name of variables. Suppose we want to only focus on dep_time and arr_time
and change dep_time and arr_time to be departure_time and arrival_time instead
in the flights_time data frame:

flights_time_new <- flights %>%
select(dep_time, arr_time) %>%
rename(departure_time = dep_time, arrival_time = arr_time)

glimpse(flights_time_new)

Note that in this case we used a single = sign within the rename(). For example,
departure_time = dep_time renames the dep_time variable to have the new name
departure_time. This is because we are not testing for equality like we would
using ==. Instead we want to assign a new variable departure_time to have the
same values as dep_time and then delete the variable dep_time. Note that new
dplyr users often forget that the new variable name comes before the equal
sign.

3.8.3 top_n values of a variable

We can also return the top n values of a variable using the top_n() function.
For example, we can return a data frame of the top 10 destination airports
using the example from Subsection 3.7.2. Observe that we set the number of
values to return to n = 10 and wt = num_flights to indicate that we want the
rows corresponding to the top 10 values of num_flights. See the help file for
top_n() by running ?top_n for more information.

named_dests %>% top_n(n = 10, wt = num_flights)

Let’s further arrange() these results in descending order of num_flights:

named_dests %>%
top_n(n = 10, wt = num_flights) %>%
arrange(desc(num_flights))

94 3 Data Wrangling

Learning check

(LC3.16) What are some ways to select all three of the dest, air_time, and
distance variables from flights? Give the code showing how to do this in at
least three different ways.

(LC3.17) How could one use starts_with(), ends_with(), and contains() to
select columns from the flights data frame? Provide three different examples
in total: one for starts_with(), one for ends_with(), and one for contains().

(LC3.18) Why might we want to use the select function on a data frame?

(LC3.19) Create a new data frame that shows the top 5 airports with the
largest arrival delays from NYC in 2013.

3.9 Conclusion
3.9.1 Summary table

Let’s recap our data wrangling verbs in Table 3.2. Using these verbs and the
pipe %>% operator from Section 3.1, you’ll be able to write easily legible code
to perform almost all the data wrangling and data transformation necessary
for the rest of this book.

TABLE 3.2: Summary of data wrangling verbs

Verb Data wrangling operation

filter() Pick out a subset of rows
summarize() Summarize many values to one using a summary statistic function

like mean(), median(), etc.
group_by() Add grouping structure to rows in data frame. Note this does not

change values in data frame, rather only the meta-data
mutate() Create new variables by mutating existing ones
arrange() Arrange rows of a data variable in ascending (default) or

descending order
inner_join() Join/merge two data frames, matching rows by a key variable

Learning check

(LC3.20) Let’s now put your newly acquired data wrangling skills to the test!

3.9 Conclusion 95

An airline industry measure of a passenger airline’s capacity is the available
seat miles4, which is equal to the number of seats available multiplied by the
number of miles or kilometers flown summed over all flights.

For example, let’s consider the scenario in Figure 3.10. Since the airplane has
4 seats and it travels 200 miles, the available seat miles are 4 × 200 = 800.

FIGURE 3.10: Example of available seat miles for one flight.

Extending this idea, let’s say an airline had 2 flights using a plane with 10 seats
that flew 500 miles and 3 flights using a plane with 20 seats that flew 1000
miles, the available seat miles would be 2 × 10 × 500 + 3 × 20 × 1000 = 70, 000
seat miles.

Using the datasets included in the nycflights13 package, compute the available
seat miles for each airline sorted in descending order. After completing all the
necessary data wrangling steps, the resulting data frame should have 16 rows
(one for each airline) and 2 columns (airline name and available seat miles).
Here are some hints:

1. Crucial: Unless you are very confident in what you are doing, it is
worthwhile not starting to code right away. Rather, first sketch out
on paper all the necessary data wrangling steps not using exact code,

4https://en.wikipedia.org/wiki/Available_seat_miles

96 3 Data Wrangling

but rather high-level pseudocode that is informal yet detailed enough
to articulate what you are doing. This way you won’t confuse what
you are trying to do (the algorithm) with how you are going to do it
(writing dplyr code).

2. Take a close look at all the datasets using the View() function: flights,
weather, planes, airports, and airlines to identify which variables are
necessary to compute available seat miles.

3. Figure 3.7 showing how the various datasets can be joined will also
be useful.

4. Consider the data wrangling verbs in Table 3.2 as your toolbox!

3.9.2 Additional resources

Solutions to all Learning checks can be found online in Appendix D5.

An R script file of all R code used in this chapter is available at https:
//www.moderndive.com/scripts/03-wrangling.R.

If you want to further unlock the power of the dplyr package for data wrangling,
we suggest that you check out RStudio’s “Data Transformation with dplyr”
cheatsheet. This cheatsheet summarizes much more than what we’ve discussed
in this chapter, in particular more intermediate level and advanced data
wrangling functions, while providing quick and easy-to-read visual descriptions.
In fact, many of the diagrams illustrating data wrangling operations in this
chapter, such as Figure 3.1 on filter(), originate from this cheatsheet.

In the current version of RStudio in late 2019, you can access this cheat-
sheet by going to the RStudio Menu Bar -> Help -> Cheatsheets -> “Data
Transformation with dplyr.”

On top of the data wrangling verbs and examples we presented in this section,
if you’d like to see more examples of using the dplyr package for data wrangling,
check out Chapter 56 of R for Data Science (Grolemund and Wickham, 2017).

3.9.3 What’s to come?

So far in this book, we’ve explored, visualized, and wrangled data saved in
data frames. These data frames were saved in a spreadsheet-like format: in a
rectangular shape with a certain number of rows corresponding to observations

5https://moderndive.com/D-appendixD.html
6http://r4ds.had.co.nz/transform.html

3.9 Conclusion 97

and a certain number of columns corresponding to variables describing these
observations.

We’ll see in the upcoming Chapter 4 that there are actually two ways to
represent data in spreadsheet-type rectangular format: (1) “wide” format and
(2) “tall/narrow” format. The tall/narrow format is also known as “tidy”
format in R user circles. While the distinction between “tidy” and non-“tidy”
formatted data is subtle, it has immense implications for our data science work.
This is because almost all the packages used in this book, including the ggplot2
package for data visualization and the dplyr package for data wrangling, all
assume that all data frames are in “tidy” format.

Furthermore, up until now we’ve only explored, visualized, and wrangled data
saved within R packages. But what if you want to analyze data that you have
saved in a Microsoft Excel, a Google Sheets, or a “Comma-Separated Values”
(CSV) file? In Section 4.1, we’ll show you how to import this data into R using
the readr package.

4
Data Importing and “Tidy” Data

In Subsection 1.2.1, we introduced the concept of a data frame in R: a rect-
angular spreadsheet-like representation of data where the rows correspond to
observations and the columns correspond to variables describing each obser-
vation. In Section 1.4, we started exploring our first data frame: the flights
data frame included in the nycflights13 package. In Chapter 2, we created
visualizations based on the data included in flights and other data frames
such as weather. In Chapter 3, we learned how to take existing data frames and
transform/modify them to suit our ends.

In this final chapter of the “Data Science with tidyverse” portion of the book,
we extend some of these ideas by discussing a type of data formatting called
“tidy” data. You will see that having data stored in “tidy” format is about
more than just what the everyday definition of the term “tidy” might suggest:
having your data “neatly organized.” Instead, we define the term “tidy” as it’s
used by data scientists who use R, outlining a set of rules by which data is
saved.

Knowledge of this type of data formatting was not necessary for our treatment
of data visualization in Chapter 2 and data wrangling in Chapter 3. This is
because all the data used were already in “tidy” format. In this chapter, we’ll
now see that this format is essential to using the tools we covered up until
now. Furthermore, it will also be useful for all subsequent chapters in this book
when we cover regression and statistical inference. First, however, we’ll show
you how to import spreadsheet data in R.

Needed packages

Let’s load all the packages needed for this chapter (this assumes you’ve already
installed them). If needed, read Section 1.3 for information on how to install
and load R packages.

library(dplyr)
library(ggplot2)
library(readr)
library(tidyr)

99

100 4 Data Importing and “Tidy” Data

library(nycflights13)
library(fivethirtyeight)

4.1 Importing data
Up to this point, we’ve almost entirely used data stored inside of an R package.
Say instead you have your own data saved on your computer or somewhere
online. How can you analyze this data in R? Spreadsheet data is often saved
in one of the following three formats:

First, a Comma Separated Values .csv file. You can think of a .csv file as a
bare-bones spreadsheet where:

• Each line in the file corresponds to one row of data/one observation.
• Values for each line are separated with commas. In other words, the values

of different variables are separated by commas in each row.
• The first line is often, but not always, a header row indicating the names of

the columns/variables.

Second, an Excel .xlsx spreadsheet file. This format is based on Microsoft’s
proprietary Excel software. As opposed to bare-bones .csv files, .xlsx Excel
files contain a lot of meta-data (data about data). Recall we saw a previous
example of meta-data in Section 3.4 when adding “group structure” meta-
data to a data frame by using the group_by() verb. Some examples of Excel
spreadsheet meta-data include the use of bold and italic fonts, colored cells,
different column widths, and formula macros.

Third, a Google Sheets1 file, which is a “cloud” or online-based way to work
with a spreadsheet. Google Sheets allows you to download your data in both
comma separated values .csv and Excel .xlsx formats. One way to import
Google Sheets data in R is to go to the Google Sheets menu bar -> File ->
Download as -> Select “Microsoft Excel” or “Comma-separated values” and
then load that data into R. A more advanced way to import Google Sheets
data in R is by using the googlesheets2 package, a method we leave to a more
advanced data science book.

1https://www.google.com/sheets/about/
2https://cran.r-project.org/web/packages/googlesheets/vignettes/basic-usage.html

4.1 Importing data 101

We’ll cover two methods for importing .csv and .xlsx spreadsheet data in R:
one using the console and the other using RStudio’s graphical user interface,
abbreviated as “GUI.”

4.1.1 Using the console

First, let’s import a Comma Separated Values .csv file that exists on the
internet. The .csv file dem_score.csv contains ratings of the level of democracy
in different countries spanning 1952 to 1992 and is accessible at https://
moderndive.com/data/dem_score.csv. Let’s use the read_csv() function from the
readr (Wickham et al., 2018) package to read it off the web, import it into R,
and save it in a data frame called dem_score.

library(readr)
dem_score <- read_csv("https://moderndive.com/data/dem_score.csv")
dem_score

A tibble: 96 x 10
country `1952` `1957` `1962` `1967` `1972` `1977` `1982` `1987` `1992`
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Albania -9 -9 -9 -9 -9 -9 -9 -9 5
2 Argentina -9 -1 -1 -9 -9 -9 -8 8 7
3 Armenia -9 -7 -7 -7 -7 -7 -7 -7 7
4 Australia 10 10 10 10 10 10 10 10 10
5 Austria 10 10 10 10 10 10 10 10 10
6 Azerbaij~ -9 -7 -7 -7 -7 -7 -7 -7 1
7 Belarus -9 -7 -7 -7 -7 -7 -7 -7 7
8 Belgium 10 10 10 10 10 10 10 10 10
9 Bhutan -10 -10 -10 -10 -10 -10 -10 -10 -10
10 Bolivia -4 -3 -3 -4 -7 -7 8 9 9
... with 86 more rows

In this dem_score data frame, the minimum value of -10 corresponds to a highly
autocratic nation, whereas a value of 10 corresponds to a highly democratic
nation. Note also that backticks surround the different variable names. Variable
names in R by default are not allowed to start with a number nor include
spaces, but we can get around this fact by surrounding the column name
with backticks. We’ll revisit the dem_score data frame in a case study in the
upcoming Section 4.3.

Note that the read_csv() function included in the readr package is different
than the read.csv() function that comes installed with R. While the difference
in the names might seem trivial (an _ instead of a .), the read_csv() function is,

102 4 Data Importing and “Tidy” Data

in our opinion, easier to use since it can more easily read data off the web and
generally imports data at a much faster speed. Furthermore, the read_csv()
function included in the readr saves data frames as tibbles by default.

4.1.2 Using RStudio’s interface

Let’s read in the exact same data, but this time from an Excel file saved on
your computer. Furthermore, we’ll do this using RStudio’s graphical interface
instead of running read_csv() in the console. First, download the Excel file
dem_score.xlsx by going to https://moderndive.com/data/dem_score.xlsx, then

1. Go to the Files pane of RStudio.
2. Navigate to the directory (i.e., folder on your computer) where the

downloaded dem_score.xlsx Excel file is saved. For example, this might
be in your Downloads folder.

3. Click on dem_score.xlsx.
4. Click “Import Dataset…”

At this point, you should see a screen pop-up like in Figure 4.1. After clicking
on the “Import” button on the bottom right of Figure 4.1, RStudio will save
this spreadsheet’s data in a data frame called dem_score and display its contents
in the spreadsheet viewer.

FIGURE 4.1: Importing an Excel file to R.

4.2 “Tidy” data 103

Furthermore, note the “Code Preview” block in the bottom right of Figure 4.1.
You can copy and paste this code to reload your data again later programmat-
ically, instead of repeating this manual point-and-click process.

4.2 “Tidy” data
Let’s now switch gears and learn about the concept of “tidy” data format with
a motivating example from the fivethirtyeight package. The fivethirtyeight
package (Kim et al., 2019) provides access to the datasets used in many
articles published by the data journalism website, FiveThirtyEight.com3. For a
complete list of all 127 datasets included in the fivethirtyeight package, check
out the package webpage by going to: https://fivethirtyeight-r.netlify.com/
articles/fivethirtyeight.html.

Let’s focus our attention on the drinks data frame and look at its first 5 rows:

A tibble: 5 x 5
country beer_servings spirit_servings wine_servings total_litres_of_pu~
<chr> <int> <int> <int> <dbl>

1 Afghanis~ 0 0 0 0
2 Albania 89 132 54 4.9
3 Algeria 25 0 14 0.7
4 Andorra 245 138 312 12.4
5 Angola 217 57 45 5.9

After reading the help file by running ?drinks, you’ll see that drinks is a data
frame containing results from a survey of the average number of servings of beer,
spirits, and wine consumed in 193 countries. This data was originally reported
on FiveThirtyEight.com in Mona Chalabi’s article: “Dear Mona Followup:
Where Do People Drink The Most Beer, Wine And Spirits?”4.

Let’s apply some of the data wrangling verbs we learned in Chapter 3 on the
drinks data frame:

1. filter() the drinks data frame to only consider 4 countries: the United
States, China, Italy, and Saudi Arabia, then

2. select() all columns except total_litres_of_pure_alcohol by using the
- sign, then

3https://fivethirtyeight.com/
4https://fivethirtyeight.com/features/dear-mona-followup-where-do-people-drink-the-most-

beer-wine-and-spirits/

104 4 Data Importing and “Tidy” Data

3. rename() the variables beer_servings, spirit_servings, and wine_servings
to beer, spirit, and wine, respectively.

and save the resulting data frame in drinks_smaller:

drinks_smaller <- drinks %>%
filter(country %in% c("USA", "China", "Italy", "Saudi Arabia")) %>%
select(-total_litres_of_pure_alcohol) %>%
rename(beer = beer_servings, spirit = spirit_servings, wine = wine_servings)
drinks_smaller

A tibble: 4 x 4
country beer spirit wine
<chr> <int> <int> <int>

1 China 79 192 8
2 Italy 85 42 237
3 Saudi Arabia 0 5 0
4 USA 249 158 84

Let’s now ask ourselves a question: “Using the drinks_smaller data frame, how
would we create the side-by-side barplot in Figure 4.2?”. Recall we saw barplots
displaying two categorical variables in Subsection 2.8.3.

0

50

100

150

200

250

China Italy Saudi Arabia USA

country

s
e
rv

in
g
s

type

beer

spirit

wine

FIGURE 4.2: Comparing alcohol consumption in 4 countries.

4.2 “Tidy” data 105

Let’s break down the grammar of graphics we introduced in Section 2.1:

1. The categorical variable country with four levels (China, Italy, Saudi
Arabia, USA) would have to be mapped to the x-position of the bars.

2. The numerical variable servings would have to be mapped to the
y-position of the bars (the height of the bars).

3. The categorical variable type with three levels (beer, spirit, wine)
would have to be mapped to the fill color of the bars.

Observe, however, that drinks_smaller has three separate variables beer, spirit,
and wine. In order to use the ggplot() function to recreate the barplot in Figure
4.2. However, we need a single variable type with three possible values: beer,
spirit, and wine. We could then map this type variable to the fill aesthetic of
our plot. In other words, to recreate the barplot in Figure 4.2, our data frame
would have to look like this:

drinks_smaller_tidy

A tibble: 12 x 3
country type servings
<chr> <chr> <int>

1 China beer 79
2 Italy beer 85
3 Saudi Arabia beer 0
4 USA beer 249
5 China spirit 192
6 Italy spirit 42
7 Saudi Arabia spirit 5
8 USA spirit 158
9 China wine 8
10 Italy wine 237
11 Saudi Arabia wine 0
12 USA wine 84

Observe that while drinks_smaller and drinks_smaller_tidy are both rectangular
in shape and contain the same 12 numerical values (3 alcohol types by 4
countries), they are formatted differently. drinks_smaller is formatted in what’s
known as “wide”5 format, whereas drinks_smaller_tidy is formatted in what’s
known as “long/narrow”6 format.

5https://en.wikipedia.org/wiki/Wide_and_narrow_data
6https://en.wikipedia.org/wiki/Wide_and_narrow_data#Narrow

106 4 Data Importing and “Tidy” Data

In the context of doing data science in R, long/narrow format is also known
as “tidy” format. In order to use the ggplot2 and dplyr packages for data
visualization and data wrangling, your input data frames must be in “tidy”
format. Thus, all non-“tidy” data must be converted to “tidy” format first.
Before we convert non-“tidy” data frames like drinks_smaller to “tidy” data
frames like drinks_smaller_tidy, let’s define “tidy” data.

4.2.1 Definition of “tidy” data

You have surely heard the word “tidy” in your life:

• “Tidy up your room!”
• “Write your homework in a tidy way so it is easier to provide feedback.”
• Marie Kondo’s best-selling book, The Life-Changing Magic of Tidying Up:

The Japanese Art of Decluttering and Organizing7, and Netflix TV series
Tidying Up with Marie Kondo8.

• “I am not by any stretch of the imagination a tidy person, and the piles of
unread books on the coffee table and by my bed have a plaintive, pleading
quality to me - ‘Read me, please!’ ” - Linda Grant

What does it mean for your data to be “tidy”? While “tidy” has a clear English
meaning of “organized,” the word “tidy” in data science using R means that
your data follows a standardized format. We will follow Hadley Wickham’s
definition of “tidy” data (Wickham, 2014) shown also in Figure 4.3:

A dataset is a collection of values, usually either numbers (if quantitative) or
strings AKA text data (if qualitative/categorical). Values are organised in two
ways. Every value belongs to a variable and an observation. A variable contains
all values that measure the same underlying attribute (like height, temperature,
duration) across units. An observation contains all values measured on the
same unit (like a person, or a day, or a city) across attributes.

“Tidy” data is a standard way of mapping the meaning of a dataset to its
structure. A dataset is messy or tidy depending on how rows, columns and
tables are matched up with observations, variables and types. In tidy data:

1. Each variable forms a column.
2. Each observation forms a row.
3. Each type of observational unit forms a table.

7https://www.powells.com/book/-9781607747307
8https://www.netflix.com/title/80209379

4.2 “Tidy” data 107

FIGURE 4.3: Tidy data graphic from R for Data Science.

For example, say you have the following table of stock prices in Table 4.1:

TABLE 4.1: Stock prices (non-tidy format)

Date Boeing stock price Amazon stock price Google stock price

2009-01-01 $173.55 $174.90 $174.34
2009-01-02 $172.61 $171.42 $170.04

Although the data are neatly organized in a rectangular spreadsheet-type
format, they do not follow the definition of data in “tidy” format. While there
are three variables corresponding to three unique pieces of information (date,
stock name, and stock price), there are not three columns. In “tidy” data
format, each variable should be its own column, as shown in Table 4.2. Notice
that both tables present the same information, but in different formats.

TABLE 4.2: Stock prices (tidy format)

Date Stock Name Stock Price

2009-01-01 Boeing $173.55
2009-01-01 Amazon $174.90
2009-01-01 Google $174.34
2009-01-02 Boeing $172.61
2009-01-02 Amazon $171.42
2009-01-02 Google $170.04

Now we have the requisite three columns Date, Stock Name, and Stock Price.
On the other hand, consider the data in Table 4.3.

TABLE 4.3: Example of tidy data

Date Boeing Price Weather
2009-01-01 $173.55 Sunny
2009-01-02 $172.61 Overcast

108 4 Data Importing and “Tidy” Data

In this case, even though the variable “Boeing Price” occurs just like in our
non-“tidy” data in Table 4.1, the data is “tidy” since there are three variables
corresponding to three unique pieces of information: Date, Boeing price, and
the Weather that particular day.

Learning check

(LC4.1) What are common characteristics of “tidy” data frames?

(LC4.2) What makes “tidy” data frames useful for organizing data?

4.2.2 Converting to “tidy” data

In this book so far, you’ve only seen data frames that were already in “tidy”
format. Furthermore, for the rest of this book, you’ll mostly only see data
frames that are already in “tidy” format as well. This is not always the case
however with all datasets in the world. If your original data frame is in wide
(non-“tidy”) format and you would like to use the ggplot2 or dplyr packages,
you will first have to convert it to “tidy” format. To do so, we recommend
using the pivot_longer() function in the tidyr package (Wickham and Henry,
2019).

Going back to our drinks_smaller data frame from earlier:

drinks_smaller

A tibble: 4 x 4
country beer spirit wine
<chr> <int> <int> <int>

1 China 79 192 8
2 Italy 85 42 237
3 Saudi Arabia 0 5 0
4 USA 249 158 84

We convert it to “tidy” format by using the pivot_longer() function from the
tidyr package as follows:

drinks_smaller_tidy <- drinks_smaller %>%
pivot_longer(names_to = "type",

values_to = "servings",
cols = -country)

drinks_smaller_tidy

4.2 “Tidy” data 109

A tibble: 12 x 3
country type servings
<chr> <chr> <int>

1 China beer 79
2 China spirit 192
3 China wine 8
4 Italy beer 85
5 Italy spirit 42
6 Italy wine 237
7 Saudi Arabia beer 0
8 Saudi Arabia spirit 5
9 Saudi Arabia wine 0
10 USA beer 249
11 USA spirit 158
12 USA wine 84

We set the arguments to pivot_longer() as follows:

1. names_to here corresponds to the name of the variable in the new
“tidy”/long data frame that will contain the column names of the
original data. Observe how we set names_to = "type". In the resulting
drinks_smaller_tidy, the column type contains the three types of alcohol
beer, spirit, and wine. Since type is a variable name that doesn’t appear
in drinks_smaller, we use quotation marks around it. You’ll receive an
error if you just use names_to = type here.

2. values_to here is the name of the variable in the new “tidy” data frame
that will contain the values of the original data. Observe how we set
values_to = "servings" since each of the numeric values in each of the
beer, wine, and spirit columns of the drinks_smaller data corresponds
to a value of servings. In the resulting drinks_smaller_tidy, the column
servings contains the 4 × 3 = 12 numerical values. Note again that
servings doesn’t appear as a variable in drinks_smaller so it again
needs quotation marks around it for the values_to argument.

3. The third argument cols is the columns in the drinks_smaller data
frame you either want to or don’t want to “tidy.” Observe how we set
this to -country indicating that we don’t want to “tidy” the country
variable in drinks_smaller and rather only beer, spirit, and wine. Since
country is a column that appears in drinks_smaller we don’t put quo-
tation marks around it.

The third argument here of cols is a little nuanced, so let’s consider code that’s
written slightly differently but that produces the same output:

110 4 Data Importing and “Tidy” Data

drinks_smaller %>%
pivot_longer(names_to = "type",

values_to = "servings",
cols = c(beer, spirit, wine))

Note that the third argument now specifies which columns we want to “tidy”
with c(beer, spirit, wine), instead of the columns we don’t want to “tidy”
using -country. We use the c() function to create a vector of the columns in
drinks_smaller that we’d like to “tidy.” Note that since these three columns
appear one after another in the drinks_smaller data frame, we could also do
the following for the cols argument:

drinks_smaller %>%
pivot_longer(names_to = "type",

values_to = "servings",
cols = beer:wine)

With our drinks_smaller_tidy “tidy” formatted data frame, we can now produce
the barplot you saw in Figure 4.2 using geom_col(). This is done in Figure 4.4.
Recall from Section 2.8 on barplots that we use geom_col() and not geom_bar(),
since we would like to map the “pre-counted” servings variable to the y-aesthetic
of the bars.

ggplot(drinks_smaller_tidy, aes(x = country, y = servings, fill = type)) +
geom_col(position = "dodge")

0

50

100

150

200

250

China Italy Saudi Arabia USA

country

s
e
rv

in
g
s

type

beer

spirit

wine

FIGURE 4.4: Comparing alcohol consumption in 4 countries using
geom_col().

4.2 “Tidy” data 111

Converting “wide” format data to “tidy” format often confuses new R users.
The only way to learn to get comfortable with the pivot_longer() function is
with practice, practice, and more practice using different datasets. For example,
run ?pivot_longer and look at the examples in the bottom of the help file. We’ll
show another example of using pivot_longer() to convert a “wide” formatted
data frame to “tidy” format in Section 4.3.

If however you want to convert a “tidy” data frame to “wide” format, you will
need to use the pivot_wider() function instead. Run ?pivot_wider and look at
the examples in the bottom of the help file for examples.

You can also view examples of both pivot_longer() and pivot_wider() on the
tidyverse.org9 webpage. There’s a nice example to check out the different
functions available for data tidying and a case study using data from the World
Health Organization on that webpage. Furthermore, each week the R4DS
Online Learning Community posts a dataset in the weekly #TidyTuesday
event10 that might serve as a nice place for you to find other data to explore
and transform.

Learning check

(LC4.3) Take a look at the airline_safety data frame included in the
fivethirtyeight data package. Run the following:

airline_safety

After reading the help file by running ?airline_safety, we see that airline_safety
is a data frame containing information on different airline companies’ safety
records. This data was originally reported on the data journalism website,
FiveThirtyEight.com, in Nate Silver’s article, “Should Travelers Avoid Flying
Airlines That Have Had Crashes in the Past?”11. Let’s only consider the
variables airlines and those relating to fatalities for simplicity:

airline_safety_smaller <- airline_safety %>%
select(airline, starts_with("fatalities"))

airline_safety_smaller

A tibble: 56 x 3
airline fatalities_85_99 fatalities_00_14
9https://tidyr.tidyverse.org/dev/articles/pivot.html#pew

10https://github.com/rfordatascience/tidytuesday
11https://fivethirtyeight.com/features/should-travelers-avoid-flying-airlines-that-have-

had-crashes-in-the-past/

112 4 Data Importing and “Tidy” Data

<chr> <int> <int>
1 Aer Lingus 0 0
2 Aeroflot 128 88
3 Aerolineas Argentinas 0 0
4 Aeromexico 64 0
5 Air Canada 0 0
6 Air France 79 337
7 Air India 329 158
8 Air New Zealand 0 7
9 Alaska Airlines 0 88
10 Alitalia 50 0
... with 46 more rows

This data frame is not in “tidy” format. How would you convert this data frame
to be in “tidy” format, in particular so that it has a variable fatalities_years
indicating the incident year and a variable count of the fatality counts?

4.2.3 nycflights13 package

Recall the nycflights13 package we introduced in Section 1.4 with data about all
domestic flights departing from New York City in 2013. Let’s revisit the flights
data frame by running View(flights). We saw that flights has a rectangular
shape, with each of its 336,776 rows corresponding to a flight and each of its
22 columns corresponding to different characteristics/measurements of each
flight. This satisfied the first two criteria of the definition of “tidy” data from
Subsection 4.2.1: that “Each variable forms a column” and “Each observation
forms a row.” But what about the third property of “tidy” data that “Each
type of observational unit forms a table”?

Recall that we saw in Subsection 1.4.3 that the observational unit for the
flights data frame is an individual flight. In other words, the rows of the
flights data frame refer to characteristics/measurements of individual flights.
Also included in the nycflights13 package are other data frames with their
rows representing different observational units (Wickham, 2019a):

• airlines: translation between two letter IATA carrier codes and airline com-
pany names (16 in total). The observational unit is an airline company.

• planes: aircraft information about each of 3,322 planes used, i.e., the observa-
tional unit is an aircraft.

• weather: hourly meteorological data (about 8,705 observations) for each of
the three NYC airports, i.e., the observational unit is an hourly measurement
of weather at one of the three airports.

4.3 Case study: Democracy in Guatemala 113

• airports: airport names and locations. The observational unit is an airport.

The organization of the information into these five data frames follows the
third “tidy” data property: observations corresponding to the same observa-
tional unit should be saved in the same table, i.e., data frame. You could
think of this property as the old English expression: “birds of a feather flock
together.”

4.3 Case study: Democracy in Guatemala
In this section, we’ll show you another example of how to convert a data frame
that isn’t in “tidy” format (“wide” format) to a data frame that is in “tidy”
format (“long/narrow” format). We’ll do this using the pivot_longer() function
from the tidyr package again.

Furthermore, we’ll make use of functions from the ggplot2 and dplyr packages to
produce a time-series plot showing how the democracy scores have changed over
the 40 years from 1952 to 1992 for Guatemala. Recall that we saw time-series
plots in Section 2.4 on creating linegraphs using geom_line().

Let’s use the dem_score data frame we imported in Section 4.1, but focus on
only data corresponding to Guatemala.

guat_dem <- dem_score %>%
filter(country == "Guatemala")

guat_dem

A tibble: 1 x 10
country `1952` `1957` `1962` `1967` `1972` `1977` `1982` `1987` `1992`
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Guatemala 2 -6 -5 3 1 -3 -7 3 3

Let’s lay out the grammar of graphics we saw in Section 2.1.

First we know we need to set data = guat_dem and use a geom_line() layer, but
what is the aesthetic mapping of variables? We’d like to see how the democracy
score has changed over the years, so we need to map:

• year to the x-position aesthetic and
• democracy_score to the y-position aesthetic

Now we are stuck in a predicament, much like with our drinks_smaller example
in Section 4.2. We see that we have a variable named country, but its only

114 4 Data Importing and “Tidy” Data

value is "Guatemala". We have other variables denoted by different year values.
Unfortunately, the guat_dem data frame is not “tidy” and hence is not in the
appropriate format to apply the grammar of graphics, and thus we cannot use
the ggplot2 package just yet.

We need to take the values of the columns corresponding to years in guat_dem
and convert them into a new “names” variable called year. Furthermore, we
need to take the democracy score values in the inside of the data frame and
turn them into a new “values” variable called democracy_score. Our resulting
data frame will have three columns: country, year, and democracy_score. Recall
that the pivot_longer() function in the tidyr package does this for us:

guat_dem_tidy <- guat_dem %>%
pivot_longer(names_to = "year",

values_to = "democracy_score",
cols = -country,
names_ptypes = list(year = integer()))

guat_dem_tidy

A tibble: 9 x 3
country year democracy_score
<chr> <int> <dbl>

1 Guatemala 1952 2
2 Guatemala 1957 -6
3 Guatemala 1962 -5
4 Guatemala 1967 3
5 Guatemala 1972 1
6 Guatemala 1977 -3
7 Guatemala 1982 -7
8 Guatemala 1987 3
9 Guatemala 1992 3

We set the arguments to pivot_longer() as follows:

1. names_to is the name of the variable in the new “tidy” data frame
that will contain the column names of the original data. Observe how
we set names_to = "year". In the resulting guat_dem_tidy, the column
year contains the years where Guatemala’s democracy scores were
measured.

2. values_to is the name of the variable in the new “tidy” data frame
that will contain the values of the original data. Observe how we
set values_to = "democracy_score". In the resulting guat_dem_tidy the

4.3 Case study: Democracy in Guatemala 115

column democracy_score contains the 1 × 9 = 9 democracy scores as
numeric values.

3. The third argument is the columns you either want to or don’t want
to “tidy.” Observe how we set this to cols = -country indicating that
we don’t want to “tidy” the country variable in guat_dem and rather
only variables 1952 through 1992.

4. The last argument of names_ptypes tells R what type of variable year
should be set to. Without specifying that it is an integer as we’ve
done here, pivot_longer() will set it to be a character value by default.

We can now create the time-series plot in Figure 4.5 to visualize how democracy
scores in Guatemala have changed from 1952 to 1992 using a geom_line().
Furthermore, we’ll use the labs() function in the ggplot2 package to add
informative labels to all the aes()thetic attributes of our plot, in this case the
x and y positions.

ggplot(guat_dem_tidy, aes(x = year, y = democracy_score)) +
geom_line() +
labs(x = "Year", y = "Democracy Score")

-7.5

-5.0

-2.5

0.0

2.5

1950 1960 1970 1980 1990

Year

D
e
m

o
c
ra

c
y
 S

c
o
re

FIGURE 4.5: Democracy scores in Guatemala 1952-1992.

Note that if we forgot to include the names_ptypes argument specifying that
year was not of character format, we would have gotten an error here since
geom_line() wouldn’t have known how to sort the character values in year in
the right order.

116 4 Data Importing and “Tidy” Data

Learning check

(LC4.4) Convert the dem_score data frame into a “tidy” data frame and assign
the name of dem_score_tidy to the resulting long-formatted data frame.

(LC4.5) Read in the life expectancy data stored at https://moderndive.com/
data/le_mess.csv and convert it to a “tidy” data frame.

4.4 tidyverse package
Notice at the beginning of the chapter we loaded the following four packages,
which are among four of the most frequently used R packages for data science:

library(ggplot2)
library(dplyr)
library(readr)
library(tidyr)

Recall that ggplot2 is for data visualization, dplyr is for data wrangling, readr
is for importing spreadsheet data into R, and tidyr is for converting data to
“tidy” format. There is a much quicker way to load these packages than by
individually loading them: by installing and loading the tidyverse package. The
tidyverse package acts as an “umbrella” package whereby installing/loading it
will install/load multiple packages at once for you.

After installing the tidyverse package as you would a normal package as seen
in Section 1.3, running:

library(tidyverse)

would be the same as running:

library(ggplot2)
library(dplyr)
library(readr)
library(tidyr)
library(purrr)

4.5 Conclusion 117

library(tibble)
library(stringr)
library(forcats)

The purrr, tibble, stringr, and forcats are left for a more advanced book; check
out R for Data Science12 to learn about these packages.

For the remainder of this book, we’ll start every chapter by running
library(tidyverse), instead of loading the various component packages individ-
ually. The tidyverse “umbrella” package gets its name from the fact that all the
functions in all its packages are designed to have common inputs and outputs:
data frames are in “tidy” format. This standardization of input and output data
frames makes transitions between different functions in the different packages
as seamless as possible. For more information, check out the tidyverse.org13

webpage for the package.

4.5 Conclusion
4.5.1 Additional resources

Solutions to all Learning checks can be found online in Appendix D14.

An R script file of all R code used in this chapter is available at https:
//www.moderndive.com/scripts/04-tidy.R.

If you want to learn more about using the readr and tidyr package, we suggest
that you check out RStudio’s “Data Import Cheat Sheet.” In the current version
of RStudio in late 2019, you can access this cheatsheet by going to the RStudio
Menu Bar -> Help -> Cheatsheets -> “Browse Cheatsheets” -> Scroll down
the page to the “Data Import Cheat Sheet.” The first page of this cheatsheet
has information on using the readr package to import data, while the second
page has information on using the tidyr package to “tidy” data.

4.5.2 What’s to come?

Congratulations! You’ve completed the “Data Science with tidyverse” portion
of this book. We’ll now move to the “Data modeling with moderndive” portion
of this book in Chapters 5 and 6, where you’ll leverage your data visualization

12http://r4ds.had.co.nz/
13https://www.tidyverse.org/
14https://moderndive.com/D-appendixD.html

118 4 Data Importing and “Tidy” Data

and wrangling skills to model relationships between different variables in data
frames.

However, we’re going to leave Chapter 10 on “Inference for Regression” until
after we’ve covered statistical inference in Chapters 7, 8, and 9. Onwards and
upwards into Data Modeling as shown in Figure 4.6!

FIGURE 4.6: ModernDive flowchart - on to Part II!

Part II

Data Modeling with moderndive

5
Basic Regression

Now that we are equipped with data visualization skills from Chapter 2, data
wrangling skills from Chapter 3, and an understanding of how to import data
and the concept of a “tidy” data format from Chapter 4, let’s now proceed
with data modeling. The fundamental premise of data modeling is to make
explicit the relationship between:

• an outcome variable 𝑦, also called a dependent variable or response variable,
and

• an explanatory/predictor variable 𝑥, also called an independent variable or
covariate.

Another way to state this is using mathematical terminology: we will model
the outcome variable 𝑦 “as a function” of the explanatory/predictor variable𝑥. When we say “function” here, we aren’t referring to functions in R like
the ggplot() function, but rather as a mathematical function. But, why do we
have two different labels, explanatory and predictor, for the variable 𝑥? That’s
because even though the two terms are often used interchangeably, roughly
speaking data modeling serves one of two purposes:

1. Modeling for explanation: When you want to explicitly describe
and quantify the relationship between the outcome variable 𝑦 and
a set of explanatory variables 𝑥, determine the significance of any
relationships, have measures summarizing these relationships, and
possibly identify any causal relationships between the variables.

2. Modeling for prediction: When you want to predict an outcome
variable 𝑦 based on the information contained in a set of predictor
variables 𝑥. Unlike modeling for explanation, however, you don’t
care so much about understanding how all the variables relate and
interact with one another, but rather only whether you can make
good predictions about 𝑦 using the information in 𝑥.

For example, say you are interested in an outcome variable 𝑦 of whether
patients develop lung cancer and information 𝑥 on their risk factors, such
as smoking habits, age, and socioeconomic status. If we are modeling for
explanation, we would be interested in both describing and quantifying the

121

122 5 Basic Regression

effects of the different risk factors. One reason could be that you want to
design an intervention to reduce lung cancer incidence in a population, such as
targeting smokers of a specific age group with advertising for smoking cessation
programs. If we are modeling for prediction, however, we wouldn’t care so
much about understanding how all the individual risk factors contribute to
lung cancer, but rather only whether we can make good predictions of which
people will contract lung cancer.

In this book, we’ll focus on modeling for explanation and hence refer to 𝑥
as explanatory variables. If you are interested in learning about modeling for
prediction, we suggest you check out books and courses on the field of machine
learning such as An Introduction to Statistical Learning with Applications in R
(ISLR)1 (James et al., 2017). Furthermore, while there exist many techniques
for modeling, such as tree-based models and neural networks, in this book we’ll
focus on one particular technique: linear regression. Linear regression is one of
the most commonly-used and easy-to-understand approaches to modeling.

Linear regression involves a numerical outcome variable 𝑦 and explanatory vari-
ables 𝑥 that are either numerical or categorical. Furthermore, the relationship
between 𝑦 and 𝑥 is assumed to be linear, or in other words, a line. However,
we’ll see that what constitutes a “line” will vary depending on the nature of
your explanatory variables 𝑥 .

In Chapter 5 on basic regression, we’ll only consider models with a single
explanatory variable 𝑥. In Section 5.1, the explanatory variable will be numer-
ical. This scenario is known as simple linear regression. In Section 5.2, the
explanatory variable will be categorical.

In Chapter 6 on multiple regression, we’ll extend the ideas behind basic
regression and consider models with two explanatory variables 𝑥1 and 𝑥2. In
Section 6.1, we’ll have two numerical explanatory variables. In Section 6.2, we’ll
have one numerical and one categorical explanatory variable. In particular,
we’ll consider two such models: interaction and parallel slopes models.

In Chapter 10 on inference for regression, we’ll revisit our regression models
and analyze the results using the tools for statistical inference you’ll develop
in Chapters 7, 8, and 9 on sampling, bootstrapping and confidence intervals,
and hypothesis testing and 𝑝-values, respectively.
Let’s now begin with basic regression, which refers to linear regression models
with a single explanatory variable 𝑥. We’ll also discuss important statistical
concepts like the correlation coefficient, that “correlation isn’t necessarily
causation,” and what it means for a line to be “best-fitting.”

1http://www-bcf.usc.edu/~gareth/ISL/

5.1 One numerical explanatory variable 123

Needed packages

Let’s now load all the packages needed for this chapter (this assumes you’ve
already installed them). In this chapter, we introduce some new packages:

1. The tidyverse “umbrella” (Wickham, 2019b) package. Recall from
our discussion in Section 4.4 that loading the tidyverse package by
running library(tidyverse) loads the following commonly used data
science packages all at once:

•ggplot2 for data visualization
•dplyr for data wrangling
•tidyr for converting data to “tidy” format
•readr for importing spreadsheet data into R
•As well as the more advanced purrr, tibble, stringr, and forcats
packages

2. The moderndive package of datasets and functions for tidyverse-friendly
introductory linear regression.

3. The skimr (Quinn et al., 2019) package, which provides a simple-to-use
function to quickly compute a wide array of commonly used summary
statistics.

If needed, read Section 1.3 for information on how to install and load R
packages.

library(tidyverse)
library(moderndive)
library(skimr)
library(gapminder)

5.1 One numerical explanatory variable
Why do some professors and instructors at universities and colleges receive
high teaching evaluations scores from students while others receive lower ones?
Are there differences in teaching evaluations between instructors of different
demographic groups? Could there be an impact due to student biases? These
are all questions that are of interest to university/college administrators, as
teaching evaluations are among the many criteria considered in determining
which instructors and professors get promoted.

124 5 Basic Regression

Researchers at the University of Texas in Austin, Texas (UT Austin) tried
to answer the following research question: what factors explain differences in
instructor teaching evaluation scores? To this end, they collected instructor
and course information on 463 courses. A full description of the study can be
found at openintro.org2.

In this section, we’ll keep things simple for now and try to explain differences
in instructor teaching scores as a function of one numerical variable: the
instructor’s “beauty” score (we’ll describe how this score was determined
shortly). Could it be that instructors with higher “beauty” scores also have
higher teaching evaluations? Could it be instead that instructors with higher
“beauty” scores tend to have lower teaching evaluations? Or could it be that
there is no relationship between “beauty” score and teaching evaluations? We’ll
answer these questions by modeling the relationship between teaching scores
and “beauty” scores using simple linear regression where we have:

1. A numerical outcome variable 𝑦 (the instructor’s teaching score) and
2. A single numerical explanatory variable 𝑥 (the instructor’s “beauty”

score).

5.1.1 Exploratory data analysis

The data on the 463 courses at UT Austin can be found in the evals data
frame included in the moderndive package. However, to keep things simple, let’s
select() only the subset of the variables we’ll consider in this chapter, and
save this data in a new data frame called evals_ch5:

evals_ch5 <- evals %>%
select(ID, score, bty_avg, age)

A crucial step before doing any kind of analysis or modeling is performing
an exploratory data analysis, or EDA for short. EDA gives you a sense of the
distributions of the individual variables in your data, whether any potential
relationships exist between variables, whether there are outliers and/or missing
values, and (most importantly) how to build your model. Here are three
common steps in an EDA:

1. Most crucially, looking at the raw data values.
2. Computing summary statistics, such as means, medians, and interquar-

tile ranges.
3. Creating data visualizations.
2https://www.openintro.org/stat/data/?data=evals

5.1 One numerical explanatory variable 125

Let’s perform the first common step in an exploratory data analysis: looking
at the raw data values. Because this step seems so trivial, unfortunately many
data analysts ignore it. However, getting an early sense of what your raw data
looks like can often prevent many larger issues down the road.

You can do this by using RStudio’s spreadsheet viewer or by using the glimpse()
function as introduced in Subsection 1.4.3 on exploring data frames:

glimpse(evals_ch5)

Observations: 463
Variables: 4
$ ID <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,...
$ score <dbl> 4.7, 4.1, 3.9, 4.8, 4.6, 4.3, 2.8, 4.1, 3.4, 4.5, 3.8,...
$ bty_avg <dbl> 5.00, 5.00, 5.00, 5.00, 3.00, 3.00, 3.00, 3.33, 3.33, ...
$ age <int> 36, 36, 36, 36, 59, 59, 59, 51, 51, 40, 40, 40, 40, 40...

Observe that Observations: 463 indicates that there are 463 rows/observations in
evals_ch5, where each row corresponds to one observed course at UT Austin. It is
important to note that the observational unit is an individual course and not an
individual instructor. Recall from Subsection 1.4.3 that the observational unit
is the “type of thing” that is being measured by our variables. Since instructors
teach more than one course in an academic year, the same instructor will
appear more than once in the data. Hence there are fewer than 463 unique
instructors being represented in evals_ch5. We’ll revisit this idea in Section
10.3, when we talk about the “independence assumption” for inference for
regression.

A full description of all the variables included in evals can be found at open-
intro.org3 or by reading the associated help file (run ?evals in the console).
However, let’s fully describe only the 4 variables we selected in evals_ch5:

1. ID: An identification variable used to distinguish between the 1 through
463 courses in the dataset.

2. score: A numerical variable of the course instructor’s average teaching
score, where the average is computed from the evaluation scores from
all students in that course. Teaching scores of 1 are lowest and 5 are
highest. This is the outcome variable 𝑦 of interest.

3. bty_avg: A numerical variable of the course instructor’s average
“beauty” score, where the average is computed from a separate panel
of six students. “Beauty” scores of 1 are lowest and 10 are highest.
This is the explanatory variable 𝑥 of interest.

3https://www.openintro.org/stat/data/?data=evals

126 5 Basic Regression

4. age: A numerical variable of the course instructor’s age. This will be
another explanatory variable 𝑥 that we’ll use in the Learning check
at the end of this subsection.

An alternative way to look at the raw data values is by choosing a random
sample of the rows in evals_ch5 by piping it into the sample_n() function from
the dplyr package. Here we set the size argument to be 5, indicating that we
want a random sample of 5 rows. We display the results in Table 5.1. Note
that due to the random nature of the sampling, you will likely end up with a
different subset of 5 rows.

evals_ch5 %>%
sample_n(size = 5)

TABLE 5.1: A random sample of 5 out of the 463 courses at UT Austin

ID score bty_avg age

129 3.7 3.00 62
109 4.7 4.33 46
28 4.8 5.50 62

434 2.8 2.00 62
330 4.0 2.33 64

Now that we’ve looked at the raw values in our evals_ch5 data frame and got
a preliminary sense of the data, let’s move on to the next common step in
an exploratory data analysis: computing summary statistics. Let’s start by
computing the mean and median of our numerical outcome variable score and
our numerical explanatory variable “beauty” score denoted as bty_avg. We’ll
do this by using the summarize() function from dplyr along with the mean() and
median() summary functions we saw in Section 3.3.

evals_ch5 %>%
summarize(mean_bty_avg = mean(bty_avg), mean_score = mean(score),

median_bty_avg = median(bty_avg), median_score = median(score))

A tibble: 1 x 4
mean_bty_avg mean_score median_bty_avg median_score

<dbl> <dbl> <dbl> <dbl>
1 4.42 4.17 4.33 4.3

5.1 One numerical explanatory variable 127

However, what if we want other summary statistics as well, such as the
standard deviation (a measure of spread), the minimum and maximum values,
and various percentiles?

Typing out all these summary statistic functions in summarize() would be long
and tedious. Instead, let’s use the convenient skim() function from the skimr
package. This function takes in a data frame, “skims” it, and returns commonly
used summary statistics. Let’s take our evals_ch5 data frame, select() only the
outcome and explanatory variables teaching score and bty_avg, and pipe them
into the skim() function:

evals_ch5 %>% select(score, bty_avg) %>% skim()

Skim summary statistics
n obs: 463
n variables: 2

── Variable type:numeric
variable missing complete n mean sd p0 p25 p50 p75 p100
bty_avg 0 463 463 4.42 1.53 1.67 3.17 4.33 5.5 8.17
score 0 463 463 4.17 0.54 2.3 3.8 4.3 4.6 5

(For formatting purposes in this book, the inline histogram that is usu-
ally printed with skim() has been removed. This can be done by using
skim_with(numeric = list(hist = NULL)) prior to using the skim() function for
version 1.0.6 of skimr.)

For the numerical variables teaching score and bty_avg it returns:

• missing: the number of missing values
• complete: the number of non-missing or complete values
• n: the total number of values
• mean: the average
• sd: the standard deviation
• p0: the 0th percentile: the value at which 0% of observations are smaller than

it (the minimum value)
• p25: the 25th percentile: the value at which 25% of observations are smaller

than it (the 1st quartile)
• p50: the 50th percentile: the value at which 50% of observations are smaller

than it (the 2nd quartile and more commonly called the median)
• p75: the 75th percentile: the value at which 75% of observations are smaller

than it (the 3rd quartile)
• p100: the 100th percentile: the value at which 100% of observations are smaller

than it (the maximum value)

128 5 Basic Regression

Looking at this output, we can see how the values of both variables distribute.
For example, the mean teaching score was 4.17 out of 5, whereas the mean
“beauty” score was 4.42 out of 10. Furthermore, the middle 50% of teaching
scores was between 3.80 and 4.6 (the first and third quartiles), whereas the
middle 50% of “beauty” scores falls within 3.17 to 5.5 out of 10.

The skim() function only returns what are known as univariate summary
statistics: functions that take a single variable and return some numerical
summary of that variable. However, there also exist bivariate summary statistics:
functions that take in two variables and return some summary of those two
variables. In particular, when the two variables are numerical, we can compute
the correlation coefficient. Generally speaking, coefficients are quantitative
expressions of a specific phenomenon. A correlation coefficient is a quantitative
expression of the strength of the linear relationship between two numerical
variables. Its value ranges between -1 and 1 where:

• -1 indicates a perfect negative relationship: As one variable increases, the
value of the other variable tends to go down, following a straight line.

• 0 indicates no relationship: The values of both variables go up/down inde-
pendently of each other.

• +1 indicates a perfect positive relationship: As the value of one variable goes
up, the value of the other variable tends to go up as well in a linear fashion.

Figure 5.1 gives examples of 9 different correlation coefficient values for hypo-
thetical numerical variables 𝑥 and 𝑦. For example, observe in the top right plot
that for a correlation coefficient of -0.75 there is a negative linear relationship
between 𝑥 and 𝑦, but it is not as strong as the negative linear relationship
between 𝑥 and 𝑦 when the correlation coefficient is -0.9 or -1.

0.75 0.9 1

-0.3 0 0.3

-1 -0.9 -0.75

x

y

FIGURE 5.1: Nine different correlation coefficients.

5.1 One numerical explanatory variable 129

The correlation coefficient can be computed using the get_correlation() function
in the moderndive package. In this case, the inputs to the function are the two
numerical variables for which we want to calculate the correlation coefficient.

We put the name of the outcome variable on the left-hand side of the ~ “tilde”
sign, while putting the name of the explanatory variable on the right-hand
side. This is known as R’s formula notation. We will use this same “formula”
syntax with regression later in this chapter.

evals_ch5 %>%
get_correlation(formula = score ~ bty_avg)

A tibble: 1 x 1
cor

<dbl>
1 0.187

An alternative way to compute correlation is to use the cor() summary function
within a summarize():

evals_ch5 %>%
summarize(correlation = cor(score, bty_avg))

In our case, the correlation coefficient of 0.187 indicates that the relationship
between teaching evaluation score and “beauty” average is “weakly positive.”
There is a certain amount of subjectivity in interpreting correlation coefficients,
especially those that aren’t close to the extreme values of -1, 0, and 1. To
develop your intuition about correlation coefficients, play the “Guess the
Correlation” 1980’s style video game mentioned in Subsection 5.4.1.

Let’s now perform the last of the steps in an exploratory data analysis: creating
data visualizations. Since both the score and bty_avg variables are numerical,
a scatterplot is an appropriate graph to visualize this data. Let’s do this using
geom_point() and display the result in Figure 5.2. Furthermore, let’s highlight
the six points in the top right of the visualization in a box.

ggplot(evals_ch5, aes(x = bty_avg, y = score)) +
geom_point() +
labs(x = "Beauty Score",

y = "Teaching Score",
title = "Scatterplot of relationship of teaching and beauty scores")

130 5 Basic Regression

3

4

5

3 5 7

Beauty Score

T
e
a
c
h
in

g
 S

c
o
re

Scatterplot of relationship of teaching and beauty scores

FIGURE 5.2: Instructor evaluation scores at UT Austin.

Observe that most “beauty” scores lie between 2 and 8, while most teaching
scores lie between 3 and 5. Furthermore, while opinions may vary, it is our
opinion that the relationship between teaching score and “beauty” score is
“weakly positive.” This is consistent with our earlier computed correlation
coefficient of 0.187.

Furthermore, there appear to be six points in the top-right of this plot high-
lighted in the box. However, this is not actually the case, as this plot suffers
from overplotting. Recall from Subsection 2.3.2 that overplotting occurs when
several points are stacked directly on top of each other, making it difficult
to distinguish them. So while it may appear that there are only six points
in the box, there are actually more. This fact is only apparent when using
geom_jitter() in place of geom_point(). We display the resulting plot in Figure
5.3 along with the same small box as in Figure 5.2.

ggplot(evals_ch5, aes(x = bty_avg, y = score)) +
geom_jitter() +
labs(x = "Beauty Score", y = "Teaching Score",

title = "Scatterplot of relationship of teaching and beauty scores")

5.1 One numerical explanatory variable 131

3

4

5

2 4 6 8

Beauty Score

T
e
a
c
h
in

g
 S

c
o
re

(Jittered) Scatterplot of relationship of teaching and beauty scores

FIGURE 5.3: Instructor evaluation scores at UT Austin.

It is now apparent that there are 12 points in the area highlighted in the
box and not six as originally suggested in Figure 5.2. Recall from Subsection
2.3.2 on overplotting that jittering adds a little random “nudge” to each of
the points to break up these ties. Furthermore, recall that jittering is strictly
a visualization tool; it does not alter the original values in the data frame
evals_ch5. To keep things simple going forward, however, we’ll only present
regular scatterplots rather than their jittered counterparts.

Let’s build on the unjittered scatterplot in Figure 5.2 by adding a “best-fitting”
line: of all possible lines we can draw on this scatterplot, it is the line that “best”
fits through the cloud of points. We do this by adding a new geom_smooth(method
= "lm", se = FALSE) layer to the ggplot() code that created the scatterplot in
Figure 5.2. The method = "lm" argument sets the line to be a “linear model.”
The se = FALSE argument suppresses standard error uncertainty bars. (We’ll
define the concept of standard error later in Subsection 7.3.2.)

ggplot(evals_ch5, aes(x = bty_avg, y = score)) +
geom_point() +
labs(x = "Beauty Score", y = "Teaching Score",

title = "Relationship between teaching and beauty scores") +
geom_smooth(method = "lm", se = FALSE)

132 5 Basic Regression

3

4

5

2 4 6 8

Beauty Score

T
e
a
c
h
in

g
 S

c
o
re

Relationship between teaching and beauty scores

FIGURE 5.4: Regression line.

The line in the resulting Figure 5.4 is called a “regression line.” The regression
line is a visual summary of the relationship between two numerical variables, in
our case the outcome variable score and the explanatory variable bty_avg. The
positive slope of the blue line is consistent with our earlier observed correlation
coefficient of 0.187 suggesting that there is a positive relationship between
these two variables: as instructors have higher “beauty” scores, so also do they
receive higher teaching evaluations. We’ll see later, however, that while the
correlation coefficient and the slope of a regression line always have the same
sign (positive or negative), they typically do not have the same value.

Furthermore, a regression line is “best-fitting” in that it minimizes some
mathematical criteria. We present these mathematical criteria in Subsection
5.3.2, but we suggest you read this subsection only after first reading the rest
of this section on regression with one numerical explanatory variable.

Learning check

(LC5.1) Conduct a new exploratory data analysis with the same outcome vari-
able 𝑦 being score but with age as the new explanatory variable 𝑥. Remember,
this involves three things:

(a) Looking at the raw data values.
(b) Computing summary statistics.

5.1 One numerical explanatory variable 133

(c) Creating data visualizations.

What can you say about the relationship between age and teaching scores
based on this exploration?

5.1.2 Simple linear regression

You may recall from secondary/high school algebra that the equation of a
line is 𝑦 = 𝑎 + 𝑏 ⋅ 𝑥. (Note that the ⋅ symbol is equivalent to the × “multiply
by” mathematical symbol. We’ll use the ⋅ symbol in the rest of this book as
it is more succinct.) It is defined by two coefficients 𝑎 and 𝑏. The intercept
coefficient 𝑎 is the value of 𝑦 when 𝑥 = 0. The slope coefficient 𝑏 for 𝑥 is the
increase in 𝑦 for every increase of one in 𝑥. This is also called the “rise over
run.”

However, when defining a regression line like the regression line in Figure
5.4, we use slightly different notation: the equation of the regression line iŝ𝑦 = 𝑏0 + 𝑏1 ⋅ 𝑥 . The intercept coefficient is 𝑏0, so 𝑏0 is the value of ̂𝑦 when𝑥 = 0. The slope coefficient for 𝑥 is 𝑏1, i.e., the increase in ̂𝑦 for every increase
of one in 𝑥. Why do we put a “hat” on top of the 𝑦? It’s a form of notation
commonly used in regression to indicate that we have a “fitted value,” or the
value of 𝑦 on the regression line for a given 𝑥 value. We’ll discuss this more in
the upcoming Subsection 5.1.3.

We know that the regression line in Figure 5.4 has a positive slope 𝑏1 corre-
sponding to our explanatory 𝑥 variable bty_avg. Why? Because as instructors
tend to have higher bty_avg scores, so also do they tend to have higher teaching
evaluation scores. However, what is the numerical value of the slope 𝑏1? What
about the intercept 𝑏0? Let’s not compute these two values by hand, but rather
let’s use a computer!

We can obtain the values of the intercept 𝑏0 and the slope for btg_avg 𝑏1 by
outputting a linear regression table. This is done in two steps:

1. We first “fit” the linear regression model using the lm() function and
save it in score_model.

2. We get the regression table by applying the get_regression_table()
function from the moderndive package to score_model.

Fit regression model:
score_model <- lm(score ~ bty_avg, data = evals_ch5)

134 5 Basic Regression

Get regression table:
get_regression_table(score_model)

TABLE 5.2: Linear regression table

term estimate std_error statistic p_value lower_ci upper_ci

intercept 3.880 0.076 50.96 0 3.731 4.030
bty_avg 0.067 0.016 4.09 0 0.035 0.099

Let’s first focus on interpreting the regression table output in Table 5.2, and
then we’ll later revisit the code that produced it. In the estimate column of
Table 5.2 are the intercept 𝑏0 = 3.88 and the slope 𝑏1 = 0.067 for bty_avg. Thus
the equation of the regression line in Figure 5.4 follows:̂𝑦 = 𝑏0 + 𝑏1 ⋅ 𝑥

ŝcore = 𝑏0 + 𝑏bty_avg ⋅ bty_avg= 3.880 + 0.067 ⋅ bty_avg
The intercept 𝑏0 = 3.88 is the average teaching score ̂𝑦 = ŝcore for those courses
where the instructor had a “beauty” score bty_avg of 0. Or in graphical terms,
it’s where the line intersects the 𝑦 axis when 𝑥 = 0. Note, however, that while
the intercept of the regression line has a mathematical interpretation, it has no
practical interpretation here, since observing a bty_avg of 0 is impossible; it is
the average of six panelists’ “beauty” scores ranging from 1 to 10. Furthermore,
looking at the scatterplot with the regression line in Figure 5.4, no instructors
had a “beauty” score anywhere near 0.

Of greater interest is the slope 𝑏1 = 𝑏bty_avg for bty_avg of 0.067, as this
summarizes the relationship between the teaching and “beauty” score variables.
Note that the sign is positive, suggesting a positive relationship between these
two variables, meaning teachers with higher “beauty” scores also tend to have
higher teaching scores. Recall from earlier that the correlation coefficient is
0.187. They both have the same positive sign, but have a different value.
Recall further that the correlation’s interpretation is the “strength of linear
association”. The slope’s interpretation is a little different:

For every increase of 1 unit in bty_avg, there is an associated increase of, on
average, 0.067 units of score.

5.1 One numerical explanatory variable 135

We only state that there is an associated increase and not necessarily a causal
increase. For example, perhaps it’s not that higher “beauty” scores directly
cause higher teaching scores per se. Instead, the following could hold true:
individuals from wealthier backgrounds tend to have stronger educational
backgrounds and hence have higher teaching scores, while at the same time
these wealthy individuals also tend to have higher “beauty” scores. In other
words, just because two variables are strongly associated, it doesn’t necessarily
mean that one causes the other. This is summed up in the often quoted
phrase, “correlation is not necessarily causation.” We discuss this idea further
in Subsection 5.3.1.

Furthermore, we say that this associated increase is on average 0.067 units of
teaching score, because you might have two instructors whose bty_avg scores
differ by 1 unit, but their difference in teaching scores won’t necessarily be
exactly 0.067. What the slope of 0.067 is saying is that across all possible
courses, the average difference in teaching score between two instructors whose
“beauty” scores differ by one is 0.067.

Now that we’ve learned how to compute the equation for the regression line in
Figure 5.4 using the values in the estimate column of Table 5.2, and how to
interpret the resulting intercept and slope, let’s revisit the code that generated
this table:

Fit regression model:
score_model <- lm(score ~ bty_avg, data = evals_ch5)
Get regression table:
get_regression_table(score_model)

First, we “fit” the linear regression model to the data using the lm() function
and save this as score_model. When we say “fit”, we mean “find the best fitting
line to this data.” lm() stands for “linear model” and is used as follows: lm(y ~
x, data = data_frame_name) where:

• y is the outcome variable, followed by a tilde ~. In our case, y is set to score.
• x is the explanatory variable. In our case, x is set to bty_avg.
• The combination of y ~ x is called a model formula. (Note the order of y and

x.) In our case, the model formula is score ~ bty_avg. We saw such model
formulas earlier when we computed the correlation coefficient using the
get_correlation() function in Subsection 5.1.1.

• data_frame_name is the name of the data frame that contains the variables y
and x. In our case, data_frame_name is the evals_ch5 data frame.

Second, we take the saved model in score_model and apply the
get_regression_table() function from the moderndive package to it to ob-

136 5 Basic Regression

tain the regression table in Table 5.2. This function is an example of what’s
known in computer programming as a wrapper function. They take other
pre-existing functions and “wrap” them into a single function that hides its
inner workings. This concept is illustrated in Figure 5.5.

FIGURE 5.5: The concept of a wrapper function.

So all you need to worry about is what the inputs look like and what the
outputs look like; you leave all the other details “under the hood of the car.”
In our regression modeling example, the get_regression_table() function takes
a saved lm() linear regression model as input and returns a data frame of the
regression table as output. If you’re interested in learning more about the
get_regression_table() function’s inner workings, check out Subsection 5.3.3.

Lastly, you might be wondering what the remaining five columns in Table 5.2
are: std_error, statistic, p_value, lower_ci and upper_ci. They are the standard
error, test statistic, p-value, lower 95% confidence interval bound, and upper 95%
confidence interval bound. They tell us about both the statistical significance
and practical significance of our results. This is loosely the “meaningfulness”
of our results from a statistical perspective. Let’s put aside these ideas for now
and revisit them in Chapter 10 on (statistical) inference for regression. We’ll do
this after we’ve had a chance to cover standard errors in Chapter 7, confidence
intervals in Chapter 8, and hypothesis testing and 𝑝-values in Chapter 9.

Learning check

(LC5.2) Fit a new simple linear regression using lm(score ~ age, data =
evals_ch5) where age is the new explanatory variable 𝑥. Get information
about the “best-fitting” line from the regression table by applying the
get_regression_table() function. How do the regression results match up with
the results from your earlier exploratory data analysis?

5.1 One numerical explanatory variable 137

5.1.3 Observed/fitted values and residuals

We just saw how to get the value of the intercept and the slope of a regres-
sion line from the estimate column of a regression table generated by the
get_regression_table() function. Now instead say we want information on indi-
vidual observations. For example, let’s focus on the 21st of the 463 courses in
the evals_ch5 data frame in Table 5.3:

TABLE 5.3: Data for the 21st course out of 463

ID score bty_avg age

21 4.9 7.33 31

What is the value ̂𝑦 on the regression line corresponding to this instructor’s
bty_avg “beauty” score of 7.333? In Figure 5.6 we mark three values corre-
sponding to the instructor for this 21st course and give their statistical names:

• Circle: The observed value 𝑦 = 4.9 is this course’s instructor’s actual teaching
score.

• Square: The fitted value ̂𝑦 is the value on the regression line for 𝑥 = bty_avg
= 7.333. This value is computed using the intercept and slope in the previous
regression table:̂𝑦 = 𝑏0 + 𝑏1 ⋅ 𝑥 = 3.88 + 0.067 ⋅ 7.333 = 4.369

• Arrow: The length of this arrow is the residual and is computed by subtracting
the fitted value ̂𝑦 from the observed value 𝑦. The residual can be thought of
as a model’s error or “lack of fit” for a particular observation. In the case of
this course’s instructor, it is 𝑦 − ̂𝑦 = 4.9 - 4.369 = 0.531.

3

4

5

2 4 6 8

Beauty Score

T
e
a
c
h
in

g
 S

c
o
re

Relationship of teaching and beauty scores

FIGURE 5.6: Example of observed value, fitted value, and residual.

138 5 Basic Regression

Now say we want to compute both the fitted value ̂𝑦 = 𝑏0+𝑏1 ⋅𝑥 and the residual𝑦 − ̂𝑦 for all 463 courses in the study. Recall that each course corresponds to
one of the 463 rows in the evals_ch5 data frame and also one of the 463 points
in the regression plot in Figure 5.6.

We could repeat the previous calculations we performed by hand 463 times,
but that would be tedious and time consuming. Instead, let’s do this us-
ing a computer with the get_regression_points() function. Just like the
get_regression_table() function, the get_regression_points() function is a “wrap-
per” function. However, this function returns a different output. Let’s apply
the get_regression_points() function to score_model, which is where we saved
our lm() model in the previous section. In Table 5.4 we present the results of
only the 21st through 24th courses for brevity’s sake.

regression_points <- get_regression_points(score_model)
regression_points

TABLE 5.4: Regression points (for only the 21st through 24th courses)

ID score bty_avg score_hat residual
21 4.9 7.33 4.37 0.531
22 4.6 7.33 4.37 0.231
23 4.5 7.33 4.37 0.131
24 4.4 5.50 4.25 0.153

Let’s inspect the individual columns and match them with the elements of
Figure 5.6:

• The score column represents the observed outcome variable 𝑦. This is the
y-position of the 463 black points.

• The bty_avg column represents the values of the explanatory variable 𝑥. This
is the x-position of the 463 black points.

• The score_hat column represents the fitted values ̂𝑦. This is the corresponding
value on the regression line for the 463 𝑥 values.

• The residual column represents the residuals 𝑦 − ̂𝑦. This is the 463 vertical
distances between the 463 black points and the regression line.

Just as we did for the instructor of the 21st course in the evals_ch5 dataset (in
the first row of the table), let’s repeat the calculations for the instructor of the
24th course (in the fourth row of Table 5.4):

• score = 4.4 is the observed teaching score 𝑦 for this course’s instructor.

5.2 One categorical explanatory variable 139

• bty_avg = 5.50 is the value of the explanatory variable bty_avg 𝑥 for this
course’s instructor.

• score_hat = 4.25 = 3.88 + 0.067 ⋅ 5.50 is the fitted value ̂𝑦 on the regression
line for this course’s instructor.

• residual = 0.153 = 4.4 - 4.25 is the value of the residual for this instructor.
In other words, the model’s fitted value was off by 0.153 teaching score units
for this course’s instructor.

At this point, you can skip ahead if you like to Subsection 5.3.2 to learn about
the processes behind what makes “best-fitting” regression lines. As a primer, a
“best-fitting” line refers to the line that minimizes the sum of squared residuals
out of all possible lines we can draw through the points. In Section 5.2, we’ll
discuss another common scenario of having a categorical explanatory variable
and a numerical outcome variable.

Learning check

(LC5.3) Generate a data frame of the residuals of the model where you used
age as the explanatory 𝑥 variable.

5.2 One categorical explanatory variable
It’s an unfortunate truth that life expectancy is not the same across all
countries in the world. International development agencies are interested in
studying these differences in life expectancy in the hopes of identifying where
governments should allocate resources to address this problem. In this section,
we’ll explore differences in life expectancy in two ways:

1. Differences between continents: Are there significant differences in
average life expectancy between the five populated continents of the
world: Africa, the Americas, Asia, Europe, and Oceania?

2. Differences within continents: How does life expectancy vary within the
world’s five continents? For example, is the spread of life expectancy
among the countries of Africa larger than the spread of life expectancy
among the countries of Asia?

To answer such questions, we’ll use the gapminder data frame included in the
gapminder package. This dataset has international development statistics such
as life expectancy, GDP per capita, and population for 142 countries for 5-year

140 5 Basic Regression

intervals between 1952 and 2007. Recall we visualized some of this data in
Figure 2.1 in Subsection 2.1.2 on the grammar of graphics.

We’ll use this data for basic regression again, but now using an explanatory
variable 𝑥 that is categorical, as opposed to the numerical explanatory variable
model we used in the previous Section 5.1.

1. A numerical outcome variable 𝑦 (a country’s life expectancy) and
2. A single categorical explanatory variable 𝑥 (the continent that the

country is a part of).

When the explanatory variable 𝑥 is categorical, the concept of a “best-fitting”
regression line is a little different than the one we saw previously in Section 5.1
where the explanatory variable 𝑥 was numerical. We’ll study these differences
shortly in Subsection 5.2.2, but first we conduct an exploratory data analysis.

5.2.1 Exploratory data analysis

The data on the 142 countries can be found in the gapminder data frame included
in the gapminder package. However, to keep things simple, let’s filter() for only
those observations/rows corresponding to the year 2007. Additionally, let’s
select() only the subset of the variables we’ll consider in this chapter. We’ll
save this data in a new data frame called gapminder2007:

library(gapminder)
gapminder2007 <- gapminder %>%

filter(year == 2007) %>%
select(country, lifeExp, continent, gdpPercap)

Let’s perform the first common step in an exploratory data analysis: looking at
the raw data values. You can do this by using RStudio’s spreadsheet viewer or
by using the glimpse() command as introduced in Subsection 1.4.3 on exploring
data frames:

glimpse(gapminder2007)

Observations: 142
Variables: 4
$ country <fct> Afghanistan, Albania, Algeria, Angola, Argentina, Au...
$ lifeExp <dbl> 43.8, 76.4, 72.3, 42.7, 75.3, 81.2, 79.8, 75.6, 64.1...
$ continent <fct> Asia, Europe, Africa, Africa, Americas, Oceania, Eur...
$ gdpPercap <dbl> 975, 5937, 6223, 4797, 12779, 34435, 36126, 29796, 1...

5.2 One categorical explanatory variable 141

Observe that Observations: 142 indicates that there are 142 rows/observations
in gapminder2007, where each row corresponds to one country. In other words,
the observational unit is an individual country. Furthermore, observe that the
variable continent is of type <fct>, which stands for factor, which is R’s way of
encoding categorical variables.

A full description of all the variables included in gapminder can be found by
reading the associated help file (run ?gapminder in the console). However, let’s
fully describe only the 4 variables we selected in gapminder2007:

1. country: An identification variable of type character/text used to
distinguish the 142 countries in the dataset.

2. lifeExp: A numerical variable of that country’s life expectancy at birth.
This is the outcome variable 𝑦 of interest.

3. continent: A categorical variable with five levels. Here “levels” corre-
spond to the possible categories: Africa, Asia, Americas, Europe, and
Oceania. This is the explanatory variable 𝑥 of interest.

4. gdpPercap: A numerical variable of that country’s GDP per capita
in US inflation-adjusted dollars that we’ll use as another outcome
variable 𝑦 in the Learning check at the end of this subsection.

Let’s look at a random sample of five out of the 142 countries in Table 5.5.

gapminder2007 %>% sample_n(size = 5)

TABLE 5.5: Random sample of 5 out of 142 countries

country lifeExp continent gdpPercap

Togo 58.4 Africa 883
Sao Tome and Principe 65.5 Africa 1598
Congo, Dem. Rep. 46.5 Africa 278
Lesotho 42.6 Africa 1569
Bulgaria 73.0 Europe 10681

Note that random sampling will likely produce a different subset of 5 rows
for you than what’s shown. Now that we’ve looked at the raw values in
our gapminder2007 data frame and got a sense of the data, let’s move on to
computing summary statistics. Let’s once again apply the skim() function from
the skimr package. Recall from our previous EDA that this function takes in a
data frame, “skims” it, and returns commonly used summary statistics. Let’s
take our gapminder2007 data frame, select() only the outcome and explanatory
variables lifeExp and continent, and pipe them into the skim() function:

142 5 Basic Regression

gapminder2007 %>%
select(lifeExp, continent) %>%
skim()

Skim summary statistics
n obs: 142
n variables: 2

── Variable type:factor
variable missing complete n n_unique top_counts ordered

continent 0 142 142 5 Afr: 52, Asi: 33, Eur: 30, Ame: 25 FALSE

── Variable type:numeric
variable missing complete n mean sd p0 p25 p50 p75 p100
lifeExp 0 142 142 67.01 12.07 39.61 57.16 71.94 76.41 82.6

The skim() output now reports summaries for categorical variables (Variable
type:factor) separately from the numerical variables (Variable type:numeric).
For the categorical variable continent, it reports:

• missing, complete, and n, which are the number of missing, complete, and
total number of values as before, respectively.

• n_unique: The number of unique levels to this variable, corresponding to Africa,
Asia, Americas, Europe, and Oceania. This refers to how many countries are
in the data for each continent.

• top_counts: In this case, the top four counts: Africa has 52 countries, Asia
has 33, Europe has 30, and Americas has 25. Not displayed is Oceania with 2
countries.

• ordered: This tells us whether the categorical variable is “ordinal”: whether
there is an encoded hierarchy (like low, medium, high). In this case, continent
is not ordered.

Turning our attention to the summary statistics of the numerical variable
lifeExp, we observe that the global median life expectancy in 2007 was 71.94.
Thus, half of the world’s countries (71 countries) had a life expectancy less
than 71.94. The mean life expectancy of 67.01 is lower, however. Why is the
mean life expectancy lower than the median?

We can answer this question by performing the last of the three common steps
in an exploratory data analysis: creating data visualizations. Let’s visualize
the distribution of our outcome variable 𝑦 = lifeExp in Figure 5.7.

5.2 One categorical explanatory variable 143

ggplot(gapminder2007, aes(x = lifeExp)) +
geom_histogram(binwidth = 5, color = "white") +
labs(x = "Life expectancy", y = "Number of countries",

title = "Histogram of distribution of worldwide life expectancies")

0

10

20

30

40 50 60 70 80 90

Life expectancy

N
u
m

b
e
r

o
f
c
o
u
n
tr

ie
s

Histogram of distribution of worldwide life expectancies

FIGURE 5.7: Histogram of life expectancy in 2007.

We see that this data is left-skewed, also known as negatively skewed: there are
a few countries with low life expectancy that are bringing down the mean life
expectancy. However, the median is less sensitive to the effects of such outliers;
hence, the median is greater than the mean in this case.

Remember, however, that we want to compare life expectancies both between
continents and within continents. In other words, our visualizations need to
incorporate some notion of the variable continent. We can do this easily with
a faceted histogram. Recall from Section 2.6 that facets allow us to split a
visualization by the different values of another variable. We display the resulting
visualization in Figure 5.8 by adding a facet_wrap(~ continent, nrow = 2) layer.

144 5 Basic Regression

ggplot(gapminder2007, aes(x = lifeExp)) +
geom_histogram(binwidth = 5, color = "white") +
labs(x = "Life expectancy",

y = "Number of countries",
title = "Histogram of distribution of worldwide life expectancies") +

facet_wrap(~ continent, nrow = 2)

Europe Oceania

Africa Americas Asia

40 50 60 70 80 90 40 50 60 70 80 90

40 50 60 70 80 90

0

5

10

15

0

5

10

15

Life expectancy

N
u
m

b
e
r

o
f
c
o
u
n
tr

ie
s

Histogram of distribution of worldwide life expectancies

FIGURE 5.8: Life expectancy in 2007.

Observe that unfortunately the distribution of African life expectancies is
much lower than the other continents, while in Europe life expectancies tend
to be higher and furthermore do not vary as much. On the other hand, both
Asia and Africa have the most variation in life expectancies. There is the least
variation in Oceania, but keep in mind that there are only two countries in
Oceania: Australia and New Zealand.

Recall that an alternative method to visualize the distribution of a numerical
variable split by a categorical variable is by using a side-by-side boxplot. We
map the categorical variable continent to the 𝑥-axis and the different life
expectancies within each continent on the 𝑦-axis in Figure 5.9.

5.2 One categorical explanatory variable 145

ggplot(gapminder2007, aes(x = continent, y = lifeExp)) +
geom_boxplot() +
labs(x = "Continent", y = "Life expectancy",

title = "Life expectancy by continent")

40

50

60

70

80

Africa Americas Asia Europe Oceania

Continent

L
if
e
 e

x
p
e
c
ta

n
c
y

Life expectancy by continent

FIGURE 5.9: Life expectancy in 2007.

Some people prefer comparing the distributions of a numerical variable be-
tween different levels of a categorical variable using a boxplot instead of a
faceted histogram. This is because we can make quick comparisons between
the categorical variable’s levels with imaginary horizontal lines. For example,
observe in Figure 5.9 that we can quickly convince ourselves that Oceania has
the highest median life expectancies by drawing an imaginary horizontal line
at 𝑦 = 80. Furthermore, as we observed in the faceted histogram in Figure 5.8,
Africa and Asia have the largest variation in life expectancy as evidenced by
their large interquartile ranges (the heights of the boxes).

It’s important to remember, however, that the solid lines in the middle of the
boxes correspond to the medians (the middle value) rather than the mean (the
average). So, for example, if you look at Asia, the solid line denotes the median
life expectancy of around 72 years. This tells us that half of all countries in
Asia have a life expectancy below 72 years, whereas half have a life expectancy
above 72 years.

Let’s compute the median and mean life expectancy for each continent with a
little more data wrangling and display the results in Table 5.6.

146 5 Basic Regression

lifeExp_by_continent <- gapminder2007 %>%
group_by(continent) %>%
summarize(median = median(lifeExp),

mean = mean(lifeExp))

TABLE 5.6: Life expectancy by continent

continent median mean
Africa 52.9 54.8
Americas 72.9 73.6
Asia 72.4 70.7
Europe 78.6 77.6
Oceania 80.7 80.7

Observe the order of the second column median life expectancy: Africa is lowest,
the Americas and Asia are next with similar medians, then Europe, then
Oceania. This ordering corresponds to the ordering of the solid black lines
inside the boxes in our side-by-side boxplot in Figure 5.9.

Let’s now turn our attention to the values in the third column mean. Using
Africa’s mean life expectancy of 54.8 as a baseline for comparison, let’s start
making comparisons to the mean life expectancies of the other four continents
and put these values in Table 5.7, which we’ll revisit later on in this section.

1. For the Americas, it is 73.6 - 54.8 = 18.8 years higher.
2. For Asia, it is 70.7 - 54.8 = 15.9 years higher.
3. For Europe, it is 77.6 - 54.8 = 22.8 years higher.
4. For Oceania, it is 80.7 - 54.8 = 25.9 years higher.

TABLE 5.7: Mean life expectancy by continent and relative differences from
mean for Africa

continent mean Difference versus Africa

Africa 54.8 0.0
Americas 73.6 18.8
Asia 70.7 15.9
Europe 77.6 22.8
Oceania 80.7 25.9

5.2 One categorical explanatory variable 147

Learning check

(LC5.4) Conduct a new exploratory data analysis with the same explanatory
variable 𝑥 being continent but with gdpPercap as the new outcome variable 𝑦.
What can you say about the differences in GDP per capita between continents
based on this exploration?

5.2.2 Linear regression

In Subsection 5.1.2 we introduced simple linear regression, which involves
modeling the relationship between a numerical outcome variable 𝑦 and a
numerical explanatory variable 𝑥. In our life expectancy example, we now
instead have a categorical explanatory variable continent. Our model will not
yield a “best-fitting” regression line like in Figure 5.4, but rather offsets relative
to a baseline for comparison.

As we did in Subsection 5.1.2 when studying the relationship between teaching
scores and “beauty” scores, let’s output the regression table for this model.
Recall that this is done in two steps:

1. We first “fit” the linear regression model using the lm(y ~ x, data)
function and save it in lifeExp_model.

2. We get the regression table by applying the get_regression_table()
function from the moderndive package to lifeExp_model.

lifeExp_model <- lm(lifeExp ~ continent, data = gapminder2007)
get_regression_table(lifeExp_model)

TABLE 5.8: Linear regression table

term estimate std_error statistic p_value lower_ci upper_ci

intercept 54.8 1.02 53.45 0 52.8 56.8
continentAmericas 18.8 1.80 10.45 0 15.2 22.4
continentAsia 15.9 1.65 9.68 0 12.7 19.2
continentEurope 22.8 1.70 13.47 0 19.5 26.2
continentOceania 25.9 5.33 4.86 0 15.4 36.5

Let’s once again focus on the values in the term and estimate columns of Table
5.8. Why are there now 5 rows? Let’s break them down one-by-one:

148 5 Basic Regression

1. intercept corresponds to the mean life expectancy of countries in
Africa of 54.8 years.

2. continentAmericas corresponds to countries in the Americas and the
value +18.8 is the same difference in mean life expectancy relative
to Africa we displayed in Table 5.7. In other words, the mean life
expectancy of countries in the Americas is 54.8 + 18.8 = 73.6.

3. continentAsia corresponds to countries in Asia and the value +15.9
is the same difference in mean life expectancy relative to Africa we
displayed in Table 5.7. In other words, the mean life expectancy of
countries in Asia is 54.8 + 15.9 = 70.7.

4. continentEurope corresponds to countries in Europe and the value
+22.8 is the same difference in mean life expectancy relative to Africa
we displayed in Table 5.7. In other words, the mean life expectancy of
countries in Europe is 54.8 + 22.8 = 77.6.

5. continentOceania corresponds to countries in Oceania and the value
+25.9 is the same difference in mean life expectancy relative to Africa
we displayed in Table 5.7. In other words, the mean life expectancy of
countries in Oceania is 54.8 + 25.9 = 80.7.

To summarize, the 5 values in the estimate column in Table 5.8 correspond to
the “baseline for comparison” continent Africa (the intercept) as well as four
“offsets” from this baseline for the remaining 4 continents: the Americas, Asia,
Europe, and Oceania.

You might be asking at this point why was Africa chosen as the “baseline for
comparison” group. This is the case for no other reason than it comes first
alphabetically of the five continents; by default R arranges factors/categorical
variables in alphanumeric order. You can change this baseline group to be
another continent if you manipulate the variable continent’s factor “levels”
using the forcats package. See Chapter 154 of R for Data Science (Grolemund
and Wickham, 2017) for examples.

Let’s now write the equation for our fitted values ̂𝑦 = ̂life exp.̂𝑦 = ̂life exp = 𝑏0 + 𝑏Amer ⋅ 𝟙Amer(𝑥) + 𝑏Asia ⋅ 𝟙Asia(𝑥)+𝑏Euro ⋅ 𝟙Euro(𝑥) + 𝑏Ocean ⋅ 𝟙Ocean(𝑥)= 54.8 + 18.8 ⋅ 𝟙Amer(𝑥) + 15.9 ⋅ 𝟙Asia(𝑥)+22.8 ⋅ 𝟙Euro(𝑥) + 25.9 ⋅ 𝟙Ocean(𝑥)
Whoa! That looks daunting! Don’t fret, however, as once you understand what
all the elements mean, things simplify greatly. First, 𝟙𝐴(𝑥) is what’s known

4https://r4ds.had.co.nz/factors.html

5.2 One categorical explanatory variable 149

in mathematics as an “indicator function.” It returns only one of two possible
values, 0 and 1, where 𝟙𝐴(𝑥) = { 1 if 𝑥 is in 𝐴0 if otherwise

In a statistical modeling context, this is also known as a dummy variable. In
our case, let’s consider the first such indicator variable 𝟙Amer(𝑥). This indicator
function returns 1 if a country is in the Americas, 0 otherwise:𝟙Amer(𝑥) = { 1 if country 𝑥 is in the Americas0 otherwise

Second, 𝑏0 corresponds to the intercept as before; in this case, it’s the mean life
expectancy of all countries in Africa. Third, the 𝑏Amer, 𝑏Asia, 𝑏Euro, and 𝑏Ocean
represent the 4 “offsets relative to the baseline for comparison” in the regression
table output in Table 5.8: continentAmericas, continentAsia, continentEurope, and
continentOceania.

Let’s put this all together and compute the fitted value ̂𝑦 = ̂life exp for a
country in Africa. Since the country is in Africa, all four indicator functions𝟙Amer(𝑥), 𝟙Asia(𝑥), 𝟙Euro(𝑥), and 𝟙Ocean(𝑥) will equal 0, and thus:̂life exp = 𝑏0 + 𝑏Amer ⋅ 𝟙Amer(𝑥) + 𝑏Asia ⋅ 𝟙Asia(𝑥)+𝑏Euro ⋅ 𝟙Euro(𝑥) + 𝑏Ocean ⋅ 𝟙Ocean(𝑥)= 54.8 + 18.8 ⋅ 𝟙Amer(𝑥) + 15.9 ⋅ 𝟙Asia(𝑥)+22.8 ⋅ 𝟙Euro(𝑥) + 25.9 ⋅ 𝟙Ocean(𝑥)= 54.8 + 18.8 ⋅ 0 + 15.9 ⋅ 0 + 22.8 ⋅ 0 + 25.9 ⋅ 0= 54.8
In other words, all that’s left is the intercept 𝑏0, corresponding to the average
life expectancy of African countries of 54.8 years. Next, say we are considering
a country in the Americas. In this case, only the indicator function 𝟙Amer(𝑥)
for the Americas will equal 1, while all the others will equal 0, and thus:̂life exp = 54.8 + 18.8 ⋅ 𝟙Amer(𝑥) + 15.9 ⋅ 𝟙Asia(𝑥) + 22.8 ⋅ 𝟙Euro(𝑥)+25.9 ⋅ 𝟙Ocean(𝑥)= 54.8 + 18.8 ⋅ 1 + 15.9 ⋅ 0 + 22.8 ⋅ 0 + 25.9 ⋅ 0= 54.8 + 18.8= 73.6

150 5 Basic Regression

which is the mean life expectancy for countries in the Americas of 73.6 years
in Table 5.7. Note the “offset from the baseline for comparison” is +18.8 years.

Let’s do one more. Say we are considering a country in Asia. In this case, only
the indicator function 𝟙Asia(𝑥) for Asia will equal 1, while all the others will
equal 0, and thus:̂life exp = 54.8 + 18.8 ⋅ 𝟙Amer(𝑥) + 15.9 ⋅ 𝟙Asia(𝑥) + 22.8 ⋅ 𝟙Euro(𝑥)+25.9 ⋅ 𝟙Ocean(𝑥)= 54.8 + 18.8 ⋅ 0 + 15.9 ⋅ 1 + 22.8 ⋅ 0 + 25.9 ⋅ 0= 54.8 + 15.9= 70.7
which is the mean life expectancy for Asian countries of 70.7 years in Table
5.7. The “offset from the baseline for comparison” here is +15.9 years.

Let’s generalize this idea a bit. If we fit a linear regression model using a
categorical explanatory variable 𝑥 that has 𝑘 possible categories, the regression
table will return an intercept and 𝑘 − 1 “offsets.” In our case, since there are𝑘 = 5 continents, the regression model returns an intercept corresponding to
the baseline for comparison group of Africa and 𝑘 −1 = 4 offsets corresponding
to the Americas, Asia, Europe, and Oceania.

Understanding a regression table output when you’re using a categorical
explanatory variable is a topic those new to regression often struggle with. The
only real remedy for these struggles is practice, practice, practice. However,
once you equip yourselves with an understanding of how to create regression
models using categorical explanatory variables, you’ll be able to incorporate
many new variables into your models, given the large amount of the world’s
data that is categorical. If you feel like you’re still struggling at this point,
however, we suggest you closely compare Tables 5.7 and 5.8 and note how you
can compute all the values from one table using the values in the other.

Learning check

(LC5.5) Fit a new linear regression using lm(gdpPercap ~ continent, data =
gapminder2007) where gdpPercap is the new outcome variable 𝑦. Get informa-
tion about the “best-fitting” line from the regression table by applying the
get_regression_table() function. How do the regression results match up with
the results from your previous exploratory data analysis?

5.2 One categorical explanatory variable 151

5.2.3 Observed/fitted values and residuals

Recall in Subsection 5.1.3, we defined the following three concepts:

1. Observed values 𝑦, or the observed value of the outcome variable
2. Fitted values ̂𝑦, or the value on the regression line for a given 𝑥 value
3. Residuals 𝑦 − ̂𝑦, or the error between the observed value and the fitted

value

We obtained these values and other values using the get_regression_points()
function from the moderndive package. This time, however, let’s add an argument
setting ID = "country": this is telling the function to use the variable country
in gapminder2007 as an identification variable in the output. This will help
contextualize our analysis by matching values to countries.

regression_points <- get_regression_points(lifeExp_model, ID = "country")
regression_points

TABLE 5.9: Regression points (First 10 out of 142 countries)

country lifeExp continent lifeExp_hat residual

Afghanistan 43.8 Asia 70.7 -26.900
Albania 76.4 Europe 77.6 -1.226
Algeria 72.3 Africa 54.8 17.495
Angola 42.7 Africa 54.8 -12.075
Argentina 75.3 Americas 73.6 1.712
Australia 81.2 Oceania 80.7 0.515
Austria 79.8 Europe 77.6 2.180
Bahrain 75.6 Asia 70.7 4.907
Bangladesh 64.1 Asia 70.7 -6.666
Belgium 79.4 Europe 77.6 1.792

Observe in Table 5.9 that lifeExp_hat contains the fitted values ̂𝑦 = ̂lifeExp.
If you look closely, there are only 5 possible values for lifeExp_hat. These
correspond to the five mean life expectancies for the 5 continents that we
displayed in Table 5.7 and computed using the values in the estimate column
of the regression table in Table 5.8.

The residual column is simply 𝑦 − ̂𝑦 = lifeExp - lifeExp_hat. These values
can be interpreted as the deviation of a country’s life expectancy from its
continent’s average life expectancy. For example, look at the first row of Table
5.9 corresponding to Afghanistan. The residual of 𝑦 − ̂𝑦 = 43.8 − 70.7 = −26.9
is telling us that Afghanistan’s life expectancy is a whopping 26.9 years lower

152 5 Basic Regression

than the mean life expectancy of all Asian countries. This can in part be
explained by the many years of war that country has suffered.

Learning check

(LC5.6) Using either the sorting functionality of RStudio’s spreadsheet viewer
or using the data wrangling tools you learned in Chapter 3, identify the five
countries with the five smallest (most negative) residuals? What do these
negative residuals say about their life expectancy relative to their continents’
life expectancy?

(LC5.7) Repeat this process, but identify the five countries with the five
largest (most positive) residuals. What do these positive residuals say about
their life expectancy relative to their continents’ life expectancy?

5.3 Related topics
5.3.1 Correlation is not necessarily causation

Throughout this chapter we’ve been cautious when interpreting regression
slope coefficients. We always discussed the “associated” effect of an explanatory
variable 𝑥 on an outcome variable 𝑦. For example, our statement from Subsec-
tion 5.1.2 that “for every increase of 1 unit in bty_avg, there is an associated
increase of on average 0.067 units of score.” We include the term “associated”
to be extra careful not to suggest we are making a causal statement. So while
“beauty” score of bty_avg is positively correlated with teaching score, we can’t
necessarily make any statements about “beauty” scores’ direct causal effect
on teaching score without more information on how this study was conducted.
Here is another example: a not-so-great medical doctor goes through medical
records and finds that patients who slept with their shoes on tended to wake up
more with headaches. So this doctor declares, “Sleeping with shoes on causes
headaches!”

FIGURE 5.10: Does sleeping with shoes on cause headaches?

5.3 Related topics 153

However, there is a good chance that if someone is sleeping with their shoes on,
it’s potentially because they are intoxicated from alcohol. Furthermore, higher
levels of drinking leads to more hangovers, and hence more headaches. The
amount of alcohol consumption here is what’s known as a confounding/lurking
variable. It “lurks” behind the scenes, confounding the causal relationship (if
any) of “sleeping with shoes on” with “waking up with a headache.” We can
summarize this in Figure 5.11 with a causal graph where:

• Y is a response variable; here it is “waking up with a headache.”
• X is a treatment variable whose causal effect we are interested in; here it is

“sleeping with shoes on.”

FIGURE 5.11: Causal graph.

To study the relationship between Y and X, we could use a regression model
where the outcome variable is set to Y and the explanatory variable is set to
be X, as you’ve been doing throughout this chapter. However, Figure 5.11 also
includes a third variable with arrows pointing at both X and Y:

• Z is a confounding variable that affects both X and Y, thereby “confounding”
their relationship. Here the confounding variable is alcohol.

Alcohol will cause people to be both more likely to sleep with their shoes on
as well as be more likely to wake up with a headache. Thus any regression
model of the relationship between X and Y should also use Z as an explanatory
variable. In other words, our doctor needs to take into account who had been
drinking the night before. In the next chapter, we’ll start covering multiple
regression models that allow us to incorporate more than one variable in our
regression models.

Establishing causation is a tricky problem and frequently takes either carefully
designed experiments or methods to control for the effects of confounding
variables. Both these approaches attempt, as best they can, either to take
all possible confounding variables into account or negate their impact. This

154 5 Basic Regression

allows researchers to focus only on the relationship of interest: the relationship
between the outcome variable Y and the treatment variable X.

As you read news stories, be careful not to fall into the trap of thinking that
correlation necessarily implies causation. Check out the Spurious Correlations5

website for some rather comical examples of variables that are correlated, but
are definitely not causally related.

5.3.2 Best-fitting line

Regression lines are also known as “best-fitting” lines. But what do we mean by
“best”? Let’s unpack the criteria that is used in regression to determine “best.”
Recall Figure 5.6, where for an instructor with a beauty score of 𝑥 = 7.333 we
mark the observed value 𝑦 with a circle, the fitted value ̂𝑦 with a square, and
the residual 𝑦 − ̂𝑦 with an arrow. We re-display Figure 5.6 in the top-left plot
of Figure 5.12 in addition to three more arbitrarily chosen course instructors:

3

4

5

3

4

5

3

4

5

3

4

5

2 4 6 8 2 4 6 8

2 4 6 8 2 4 6 8

Beauty Score Beauty Score

Beauty Score Beauty Score

T
e
a
c
h
in

g
 S

c
o
re

T
e
a
c
h
in

g
 S

c
o
re

T
e
a
c
h
in

g
 S

c
o
re

T
e
a
c
h
in

g
 S

c
o
re

First instructor's residual Adding second instructor's residual

Adding third instructor's residual Adding fourth instructor's residual

FIGURE 5.12: Example of observed value, fitted value, and residual.
5http://www.tylervigen.com/spurious-correlations

5.3 Related topics 155

The three other plots refer to:

1. A course whose instructor had a “beauty” score 𝑥 = 2.333 and teaching
score 𝑦 = 2.7. The residual in this case is 2.7 −4.036 = −1.336, which
we mark with a new arrow in the top-right plot.

2. A course whose instructor had a “beauty” score 𝑥 = 3.667 and teaching
score 𝑦 = 4.4. The residual in this case is 4.4 − 4.125 = 0.2753, which
we mark with a new arrow in the bottom-left plot.

3. A course whose instructor had a “beauty” score 𝑥 = 6 and teaching
score 𝑦 = 3.8. The residual in this case is 3.8−4.28 = −0.4802, which
we mark with a new arrow in the bottom-right plot.

Now say we repeated this process of computing residuals for all 463 courses’
instructors, then we squared all the residuals, and then we summed them. We
call this quantity the sum of squared residuals; it is a measure of the lack of
fit of a model. Larger values of the sum of squared residuals indicate a bigger
lack of fit. This corresponds to a worse fitting model.

If the regression line fits all the points perfectly, then the sum of squared
residuals is 0. This is because if the regression line fits all the points perfectly,
then the fitted value ̂𝑦 equals the observed value 𝑦 in all cases, and hence the
residual 𝑦 − ̂𝑦 = 0 in all cases, and the sum of even a large number of 0’s is
still 0.

Furthermore, of all possible lines we can draw through the cloud of 463 points,
the regression line minimizes this value. In other words, the regression and its
corresponding fitted values ̂𝑦 minimizes the sum of the squared residuals:𝑛∑𝑖=1(𝑦𝑖 − ̂𝑦𝑖)2
Let’s use our data wrangling tools from Chapter 3 to compute the sum of
squared residuals exactly:

Fit regression model:
score_model <- lm(score ~ bty_avg,

data = evals_ch5)

Get regression points:
regression_points <- get_regression_points(score_model)
regression_points

A tibble: 463 x 5

156 5 Basic Regression

ID score bty_avg score_hat residual
<int> <dbl> <dbl> <dbl> <dbl>

1 1 4.7 5 4.21 0.486
2 2 4.1 5 4.21 -0.114
3 3 3.9 5 4.21 -0.314
4 4 4.8 5 4.21 0.586
5 5 4.6 3 4.08 0.52
6 6 4.3 3 4.08 0.22
7 7 2.8 3 4.08 -1.28
8 8 4.1 3.33 4.10 -0.002
9 9 3.4 3.33 4.10 -0.702
10 10 4.5 3.17 4.09 0.409
... with 453 more rows

Compute sum of squared residuals
regression_points %>%
mutate(squared_residuals = residual^2) %>%
summarize(sum_of_squared_residuals = sum(squared_residuals))

A tibble: 1 x 1
sum_of_squared_residuals

<dbl>
1 132.

Any other straight line drawn in the figure would yield a sum of squared
residuals greater than 132. This is a mathematically guaranteed fact that you
can prove using calculus and linear algebra. That’s why alternative names
for the linear regression line are the best-fitting line and the least-squares line.
Why do we square the residuals (i.e., the arrow lengths)? So that both positive
and negative deviations of the same amount are treated equally.

Learning check

(LC5.8) Note in Figure 5.13 there are 3 points marked with dots and:

• The “best” fitting solid regression line
• An arbitrarily chosen dotted line
• Another arbitrarily chosen dashed line

5.3 Related topics 157

1.0

1.5

2.0

2.5

3.0

0.00 0.25 0.50 0.75 1.00

x

y

FIGURE 5.13: Regression line and two others.

Compute the sum of squared residuals by hand for each line and show that of
these three lines, the regression line has the smallest value.

5.3.3 get_regression_x() functions

Recall in this chapter we introduced two functions from the moderndive package:

1. get_regression_table() that returns a regression table in Subsection
5.1.2 and

2. get_regression_points() that returns point-by-point information from
a regression model in Subsection 5.1.3.

What is going on behind the scenes with the get_regression_table() and
get_regression_points() functions? We mentioned in Subsection 5.1.2 that these
were examples of wrapper functions. Such functions take other pre-existing
functions and “wrap” them into single functions that hide the user from their
inner workings. This way all the user needs to worry about is what the inputs
look like and what the outputs look like. In this subsection, we’ll “get under the
hood” of these functions and see how the “engine” of these wrapper functions
works.

Recall our two-step process to generate a regression table from Subsection
5.1.2:

158 5 Basic Regression

Fit regression model:
score_model <- lm(formula = score ~ bty_avg, data = evals_ch5)
Get regression table:
get_regression_table(score_model)

TABLE 5.10: Regression table

term estimate std_error statistic p_value lower_ci upper_ci

intercept 3.880 0.076 50.96 0 3.731 4.030
bty_avg 0.067 0.016 4.09 0 0.035 0.099

The get_regression_table() wrapper function takes two pre-existing functions
in other R packages:

• tidy() from the broom package6 (Robinson and Hayes, 2019) and
• clean_names() from the janitor package7 (Firke, 2019)

and “wraps” them into a single function that takes in a saved lm() linear model
model, here score_model, and returns a regression table saved as a “tidy” data
frame. Here is how we used the tidy() and clean_names() functions to produce
Table 5.11:

library(broom)
library(janitor)
score_model %>%

tidy(conf.int = TRUE) %>%
mutate_if(is.numeric, round, digits = 3) %>%
clean_names() %>%
rename(lower_ci = conf_low, upper_ci = conf_high)

TABLE 5.11: Regression table using tidy() from broom package

term estimate std_error statistic p_value lower_ci upper_ci

(Intercept) 3.880 0.076 50.96 0 3.731 4.030
bty_avg 0.067 0.016 4.09 0 0.035 0.099

Yikes! That’s a lot of code! So, in order to simplify your lives, we made the
editorial decision to “wrap” all the code into get_regression_table(), freeing

6https://broom.tidyverse.org/
7https://github.com/sfirke/janitor

5.4 Related topics 159

you from the need to understand the inner workings of the function. Note
that the mutate_if() function is from the dplyr package and applies the round()
function to three significant digits precision only to those variables that are
numerical.

Similarly, the get_regression_points() function is another wrapper function,
but this time returning information about the individual points involved in
a regression model like the fitted values, observed values, and the residuals.
get_regression_points() uses the augment() function in the broom package8 in-
stead of the tidy() function as with get_regression_table() to produce the data
shown in Table 5.12:

library(broom)
library(janitor)
score_model %>%

augment() %>%
mutate_if(is.numeric, round, digits = 3) %>%
clean_names() %>%
select(-c("se_fit", "hat", "sigma", "cooksd", "std_resid"))

TABLE 5.12: Regression points using augment() from broom package

score bty_avg fitted resid

4.7 5.00 4.21 0.486
4.1 5.00 4.21 -0.114
3.9 5.00 4.21 -0.314
4.8 5.00 4.21 0.586
4.6 3.00 4.08 0.520
4.3 3.00 4.08 0.220
2.8 3.00 4.08 -1.280
4.1 3.33 4.10 -0.002
3.4 3.33 4.10 -0.702
4.5 3.17 4.09 0.409

In this case, it outputs only the variables of interest to students learning
regression: the outcome variable 𝑦 (score), all explanatory/predictor variables
(bty_avg), all resulting fitted values ̂𝑦 used by applying the equation of the
regression line to bty_avg, and the residual 𝑦 − ̂𝑦.
If you’re even more curious about how these and other wrapper functions work,
take a look at the source code for these functions on GitHub9.

8https://broom.tidyverse.org/
9https://github.com/moderndive/moderndive/blob/master/R/regression_functions.R

160 5 Basic Regression

5.4 Conclusion
5.4.1 Additional resources

Solutions to all Learning checks can be found online in Appendix D10.

An R script file of all R code used in this chapter is available at https:
//www.moderndive.com/scripts/05-regression.R.

As we suggested in Subsection 5.1.1, interpreting coefficients that are not close
to the extreme values of -1, 0, and 1 can be somewhat subjective. To help
develop your sense of correlation coefficients, we suggest you play the 80s-style
video game called, “Guess the Correlation”, at http://guessthecorrelation.com/.

FIGURE 5.14: Preview of “Guess the Correlation” game.

5.4.2 What’s to come?

In this chapter, you’ve studied the term basic regression, where you fit models
that only have one explanatory variable. In Chapter 6, we’ll study multiple
regression, where our regression models can now have more than one explanatory
variable! In particular, we’ll consider two scenarios: regression models with one
numerical and one categorical explanatory variable and regression models with
two numerical explanatory variables. This will allow you to construct more
sophisticated and more powerful models, all in the hopes of better explaining
your outcome variable 𝑦.

10https://moderndive.com/D-appendixD.html

6
Multiple Regression

In Chapter 5 we introduced ideas related to modeling for explanation, in
particular that the goal of modeling is to make explicit the relationship between
some outcome variable 𝑦 and some explanatory variable 𝑥. While there are
many approaches to modeling, we focused on one particular technique: linear
regression, one of the most commonly used and easy-to-understand approaches
to modeling. Furthermore to keep things simple, we only considered models
with one explanatory 𝑥 variable that was either numerical in Section 5.1 or
categorical in Section 5.2.

In this chapter on multiple regression, we’ll start considering models that
include more than one explanatory variable 𝑥. You can imagine when trying
to model a particular outcome variable, like teaching evaluation scores as in
Section 5.1 or life expectancy as in Section 5.2, that it would be useful to
include more than just one explanatory variable’s worth of information.

Since our regression models will now consider more than one explanatory
variable, the interpretation of the associated effect of any one explanatory
variable must be made in conjunction with the other explanatory variables
included in your model. Let’s begin!

Needed packages

Let’s load all the packages needed for this chapter (this assumes you’ve already
installed them). Recall from our discussion in Section 4.4 that loading the
tidyverse package by running library(tidyverse) loads the following commonly
used data science packages all at once:

• ggplot2 for data visualization
• dplyr for data wrangling
• tidyr for converting data to “tidy” format
• readr for importing spreadsheet data into R
• As well as the more advanced purrr, tibble, stringr, and forcats packages

If needed, read Section 1.3 for information on how to install and load R
packages.

161

162 6 Multiple Regression

library(tidyverse)
library(moderndive)
library(skimr)
library(ISLR)

6.1 One numerical and one categorical explanatory variable
Let’s revisit the instructor evaluation data from UT Austin we introduced in
Section 5.1. We studied the relationship between teaching evaluation scores as
given by students and “beauty” scores. The variable teaching score was the
numerical outcome variable 𝑦, and the variable “beauty” score (bty_avg) was
the numerical explanatory 𝑥 variable.

In this section, we are going to consider a different model. Our outcome variable
will still be teaching score, but we’ll now include two different explanatory
variables: age and (binary) gender. Could it be that instructors who are older
receive better teaching evaluations from students? Or could it instead be
that younger instructors receive better evaluations? Are there differences in
evaluations given by students for instructors of different genders? We’ll answer
these questions by modeling the relationship between these variables using
multiple regression, where we have:

1. A numerical outcome variable 𝑦, the instructor’s teaching score, and
2. Two explanatory variables:

1. A numerical explanatory variable 𝑥1, the instructor’s age.
2. A categorical explanatory variable 𝑥2, the instructor’s (binary)

gender.

It is important to note that at the time of this study due to then commonly
held beliefs about gender, this variable was often recorded as a binary variable.
While the results of a model that oversimplifies gender this way may be
imperfect, we still found the results to be pertinent and relevant today.

6.1.1 Exploratory data analysis

Recall that data on the 463 courses at UT Austin can be found in the evals
data frame included in the moderndive package. However, to keep things simple,
let’s select() only the subset of the variables we’ll consider in this chapter,

6.1 One numerical and one categorical explanatory variable 163

and save this data in a new data frame called evals_ch6. Note that these are
different than the variables chosen in Chapter 5.

evals_ch6 <- evals %>%
select(ID, score, age, gender)

Recall the three common steps in an exploratory data analysis we saw in
Subsection 5.1.1:

1. Looking at the raw data values.
2. Computing summary statistics.
3. Creating data visualizations.

Let’s first look at the raw data values by either looking at evals_ch6 using
RStudio’s spreadsheet viewer or by using the glimpse() function from the dplyr
package:

glimpse(evals_ch6)

Observations: 463
Variables: 4
$ ID <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, ...
$ score <dbl> 4.7, 4.1, 3.9, 4.8, 4.6, 4.3, 2.8, 4.1, 3.4, 4.5, 3.8, ...
$ age <int> 36, 36, 36, 36, 59, 59, 59, 51, 51, 40, 40, 40, 40, 40,...
$ gender <fct> female, female, female, female, male, male, male, male,...

Let’s also display a random sample of 5 rows of the 463 rows corresponding
to different courses in Table 6.1. Remember due to the random nature of the
sampling, you will likely end up with a different subset of 5 rows.

evals_ch6 %>% sample_n(size = 5)

TABLE 6.1: A random sample of 5 out of the 463 courses at UT Austin

ID score age gender

129 3.7 62 male
109 4.7 46 female
28 4.8 62 male

434 2.8 62 male
330 4.0 64 male

164 6 Multiple Regression

Now that we’ve looked at the raw values in our evals_ch6 data frame and
got a sense of the data, let’s compute summary statistics. As we did in our
exploratory data analyses in Sections 5.1.1 and 5.2.1 from the previous chapter,
let’s use the skim() function from the skimr package, being sure to only select()
the variables of interest in our model:

evals_ch6 %>% select(score, age, gender) %>% skim()

Skim summary statistics
n obs: 463
n variables: 3

── Variable type:factor
variable missing complete n n_unique top_counts ordered

gender 0 463 463 2 mal: 268, fem: 195, NA: 0 FALSE

── Variable type:integer
variable missing complete n mean sd p0 p25 p50 p75 p100

age 0 463 463 48.37 9.8 29 42 48 57 73

── Variable type:numeric
variable missing complete n mean sd p0 p25 p50 p75 p100

score 0 463 463 4.17 0.54 2.3 3.8 4.3 4.6 5

Observe that we have no missing data, that there are 268 courses taught by male
instructors and 195 courses taught by female instructors, and that the average
instructor age is 48.37. Recall that each row represents a particular course and
that the same instructor often teaches more than one course. Therefore, the
average age of the unique instructors may differ.

Furthermore, let’s compute the correlation coefficient between our two nu-
merical variables: score and age. Recall from Subsection 5.1.1 that correlation
coefficients only exist between numerical variables. We observe that they are
“weakly negatively” correlated.

evals_ch6 %>%
get_correlation(formula = score ~ age)

A tibble: 1 x 1
cor

<dbl>
1 -0.107

6.1 One numerical and one categorical explanatory variable 165

Let’s now perform the last of the three common steps in an exploratory data
analysis: creating data visualizations. Given that the outcome variable score
and explanatory variable age are both numerical, we’ll use a scatterplot to
display their relationship. How can we incorporate the categorical variable
gender, however? By mapping the variable gender to the color aesthetic, thereby
creating a colored scatterplot. The following code is similar to the code that
created the scatterplot of teaching score over “beauty” score in Figure 5.2, but
with color = gender added to the aes()thetic mapping.

ggplot(evals_ch6, aes(x = age, y = score, color = gender)) +
geom_point() +
labs(x = "Age", y = "Teaching Score", color = "Gender") +
geom_smooth(method = "lm", se = FALSE)

3

4

5

30 40 50 60 70

Age

T
e
a
c
h
in

g
 S

c
o
re

Gender

female

male

FIGURE 6.1: Colored scatterplot of relationship of teaching and beauty
scores.

In the resulting Figure 6.1, observe that ggplot() assigns a default color scheme
to the points and to the lines associated with the two levels of gender: female
and male. Furthermore, the geom_smooth(method = "lm", se = FALSE) layer auto-
matically fits a different regression line for each group.

We notice some interesting trends. First, there are almost no women faculty
over the age of 60 as evidenced by lack of darker-colored dots above 𝑥 =
60. Second, while both regression lines are negatively sloped with age (i.e.,
older instructors tend to have lower scores), the slope for age for the female
instructors is more negative. In other words, female instructors are paying a
harsher penalty for advanced age than the male instructors.

166 6 Multiple Regression

6.1.2 Interaction model

Let’s now quantify the relationship of our outcome variable 𝑦 and the two
explanatory variables using one type of multiple regression model known as an
interaction model. We’ll explain where the term “interaction” comes from at
the end of this section.

In particular, we’ll write out the equation of the two regression lines in Figure
6.1 using the values from a regression table. Before we do this, however, let’s
go over a brief refresher of regression when you have a categorical explanatory
variable 𝑥.
Recall in Subsection 5.2.2 we fit a regression model for countries’ life expectan-
cies as a function of which continent the country was in. In other words, we
had a numerical outcome variable 𝑦 = lifeExp and a categorical explanatory
variable 𝑥 = continent which had 5 levels: Africa, Americas, Asia, Europe, and
Oceania. Let’s re-display the regression table you saw in Table 5.8:

TABLE 6.2: Regression table for life expectancy as a function of continent

term estimate std_error statistic p_value lower_ci upper_ci

intercept 54.8 1.02 53.45 0 52.8 56.8
continentAmericas 18.8 1.80 10.45 0 15.2 22.4
continentAsia 15.9 1.65 9.68 0 12.7 19.2
continentEurope 22.8 1.70 13.47 0 19.5 26.2
continentOceania 25.9 5.33 4.86 0 15.4 36.5

Recall our interpretation of the estimate column. Since Africa was the “base-
line for comparison” group, the intercept term corresponds to the mean life
expectancy for all countries in Africa of 54.8 years. The other four values of
estimate correspond to “offsets” relative to the baseline group. So, for example,
the “offset” corresponding to the Americas is +18.8 as compared to the baseline
for comparison group Africa. In other words, the average life expectancy for
countries in the Americas is 18.8 years higher. Thus the mean life expectancy
for all countries in the Americas is 54.8 + 18.8 = 73.6. The same interpretation
holds for Asia, Europe, and Oceania.

Going back to our multiple regression model for teaching score using age and
gender in Figure 6.1, we generate the regression table using the same two-step
approach from Chapter 5: we first “fit” the model using the lm() “linear model”
function and then we apply the get_regression_table() function. This time,
however, our model formula won’t be of the form y ~ x, but rather of the
form y ~ x1 * x2. In other words, our two explanatory variables x1 and x2 are
separated by a * sign:

6.1 One numerical and one categorical explanatory variable 167

Fit regression model:
score_model_interaction <- lm(score ~ age * gender, data = evals_ch6)

Get regression table:
get_regression_table(score_model_interaction)

TABLE 6.3: Regression table for interaction model

term estimate std_error statistic p_value lower_ci upper_ci

intercept 4.883 0.205 23.80 0.000 4.480 5.286
age -0.018 0.004 -3.92 0.000 -0.026 -0.009
gendermale -0.446 0.265 -1.68 0.094 -0.968 0.076
age:gendermale 0.014 0.006 2.45 0.015 0.003 0.024

Looking at the regression table output in Table 6.3, there are four rows of
values in the estimate column. While it is not immediately apparent, using
these four values we can write out the equations of both lines in Figure 6.1.
First, since the word female comes alphabetically before male, female instructors
are the “baseline for comparison” group. Thus, intercept is the intercept for
only the female instructors.

This holds similarly for age. It is the slope for age for only the female instructors.
Thus, the darker-colored regression line in Figure 6.1 has an intercept of 4.883
and slope for age of -0.018. Remember that for this data, while the intercept
has a mathematical interpretation, it has no practical interpretation since
instructors can’t have zero age.

What about the intercept and slope for age of the male instructors in the
lighter-colored line in Figure 6.1? This is where our notion of “offsets” comes
into play once again.

The value for gendermale of -0.446 is not the intercept for the male instructors,
but rather the offset in intercept for male instructors relative to female instruc-
tors. The intercept for the male instructors is intercept + gendermale = 4.883
+ (-0.446) = 4.883 - 0.446 = 4.437.

Similarly, age:gendermale = 0.014 is not the slope for age for the male instructors,
but rather the offset in slope for the male instructors. Therefore, the slope for
age for the male instructors is age + age:gendermale = −0.018+0.014 = −0.004.
Thus, the lighter-colored regression line in Figure 6.1 has intercept 4.437 and
slope for age of -0.004. Let’s summarize these values in Table 6.4 and focus on
the two slopes for age:

168 6 Multiple Regression

TABLE 6.4: Comparison of intercepts and slopes for interaction model

Gender Intercept Slope for age

Female instructors 4.883 -0.018
Male instructors 4.437 -0.004

Since the slope for age for the female instructors was -0.018, it means that on
average, a female instructor who is a year older would have a teaching score
that is 0.018 units lower. For the male instructors, however, the corresponding
associated decrease was on average only 0.004 units. While both slopes for age
were negative, the slope for age for the female instructors is more negative.
This is consistent with our observation from Figure 6.1, that this model is
suggesting that age impacts teaching scores for female instructors more than
for male instructors.

Let’s now write the equation for our regression lines, which we can use to
compute our fitted values ̂𝑦 = ŝcore.̂𝑦 = ŝcore = 𝑏0 + 𝑏age ⋅ age + 𝑏male ⋅ 𝟙is male(𝑥) + 𝑏age,male ⋅ age ⋅ 𝟙is male= 4.883 − 0.018 ⋅ age − 0.446 ⋅ 𝟙is male(𝑥) + 0.014 ⋅ age ⋅ 𝟙is male

Whoa! That’s even more daunting than the equation you saw for the life
expectancy as a function of continent in Subsection 5.2.2! However, if you
recall what an “indicator function” does, the equation simplifies greatly. In the
previous equation, we have one indicator function of interest:𝟙is male(𝑥) = { 1 if instructor 𝑥 is male0 otherwise

Second, let’s match coefficients in the previous equation with values in the
estimate column in our regression table in Table 6.3:

1. 𝑏0 is the intercept = 4.883 for the female instructors
2. 𝑏age is the slope for age = -0.018 for the female instructors
3. 𝑏male is the offset in intercept = -0.446 for the male instructors
4. 𝑏age,male is the offset in slope for age = 0.014 for the male instructors

Let’s put this all together and compute the fitted value ̂𝑦 = ŝcore for female
instructors. Since for female instructors 𝟙is male(𝑥) = 0, the previous equation
becomes

6.1 One numerical and one categorical explanatory variable 169̂𝑦 = ŝcore = 4.883 − 0.018 ⋅ age − 0.446 ⋅ 0 + 0.014 ⋅ age ⋅ 0= 4.883 − 0.018 ⋅ age − 0 + 0= 4.883 − 0.018 ⋅ age
which is the equation of the darker-colored regression line in Figure 6.1 cor-
responding to the female instructors in Table 6.4. Correspondingly, since for
male instructors 𝟙is male(𝑥) = 1, the previous equation becomeŝ𝑦 = ŝcore = 4.883 − 0.018 ⋅ age − 0.446 + 0.014 ⋅ age= (4.883 − 0.446) + (−0.018 + 0.014) ∗ age= 4.437 − 0.004 ⋅ age
which is the equation of the lighter-colored regression line in Figure 6.1 corre-
sponding to the male instructors in Table 6.4.

Phew! That was a lot of arithmetic! Don’t fret, however, this is as hard as
modeling will get in this book. If you’re still a little unsure about using indicator
functions and using categorical explanatory variables in a regression model,
we highly suggest you re-read Subsection 5.2.2. This involves only a single
categorical explanatory variable and thus is much simpler.

Before we end this section, we explain why we refer to this type of model as an
“interaction model.” The 𝑏age,male term in the equation for the fitted value ̂𝑦 =
ŝcore is what’s known in statistical modeling as an “interaction effect.” The
interaction term corresponds to the age:gendermale = 0.014 in the final row of
the regression table in Table 6.3.

We say there is an interaction effect if the associated effect of one variable
depends on the value of another variable. That is to say, the two variables are
“interacting” with each other. Here, the associated effect of the variable age
depends on the value of the other variable gender. The difference in slopes for
age of +0.014 of male instructors relative to female instructors shows this.

Another way of thinking about interaction effects on teaching scores is as
follows. For a given instructor at UT Austin, there might be an associated
effect of their age by itself, there might be an associated effect of their gender
by itself, but when age and gender are considered together there might be an
additional effect above and beyond the two individual effects.

6.1.3 Parallel slopes model

When creating regression models with one numerical and one categorical
explanatory variable, we are not just limited to interaction models as we just

170 6 Multiple Regression

saw. Another type of model we can use is known as a parallel slopes model.
Unlike interaction models where the regression lines can have different intercepts
and different slopes, parallel slopes models still allow for different intercepts
but force all lines to have the same slope. The resulting regression lines are
thus parallel. Let’s visualize the best-fitting parallel slopes model to evals_ch6.

Unfortunately, the geom_smooth() function in the ggplot2 package does not have a
convenient way to plot parallel slopes models. Evgeni Chasnovski thus created
a special purpose function called geom_parallel_slopes() that is included in
the moderndive package. You won’t find geom_parallel_slopes() in the ggplot2
package, but rather the moderndive package. Thus, if you want to be able to
use it, you will need to load both the ggplot2 and moderndive packages. Using
this function, let’s now plot the parallel slopes model for teaching score. Notice
how the code is identical to the code that produced the visualization of the
interaction model in Figure 6.1, but now the geom_smooth(method = "lm", se =
FALSE) layer is replaced with geom_parallel_slopes(se = FALSE).

ggplot(evals_ch6, aes(x = age, y = score, color = gender)) +
geom_point() +
labs(x = "Age", y = "Teaching Score", color = "Gender") +
geom_parallel_slopes(se = FALSE)

3

4

5

30 40 50 60 70

Age

T
e
a
c
h
in

g
 S

c
o
re

Gender

female

male

FIGURE 6.2: Parallel slopes model of score with age and gender.

Observe in Figure 6.2 that we now have parallel lines corresponding to the
female and male instructors, respectively: here they have the same negative

6.1 One numerical and one categorical explanatory variable 171

slope. This is telling us that instructors who are older will tend to receive lower
teaching scores than instructors who are younger. Furthermore, since the lines
are parallel, the associated penalty for being older is assumed to be the same
for both female and male instructors.

However, observe also in Figure 6.2 that these two lines have different intercepts
as evidenced by the fact that the lighter-colored line corresponding to the male
instructors is higher than the darker-colored line corresponding to the female
instructors. This is telling us that irrespective of age, female instructors tended
to receive lower teaching scores than male instructors.

In order to obtain the precise numerical values of the two intercepts and the
single common slope, we once again “fit” the model using the lm() “linear
model” function and then apply the get_regression_table() function. However,
unlike the interaction model which had a model formula of the form y ~ x1 *
x2, our model formula is now of the form y ~ x1 + x2. In other words, our two
explanatory variables x1 and x2 are separated by a + sign:

Fit regression model:
score_model_parallel_slopes <- lm(score ~ age + gender, data = evals_ch6)
Get regression table:
get_regression_table(score_model_parallel_slopes)

TABLE 6.5: Regression table for parallel slopes model

term estimate std_error statistic p_value lower_ci upper_ci

intercept 4.484 0.125 35.79 0.000 4.238 4.730
age -0.009 0.003 -3.28 0.001 -0.014 -0.003
gendermale 0.191 0.052 3.63 0.000 0.087 0.294

Similarly to the regression table for the interaction model from Table 6.3, we
have an intercept term corresponding to the intercept for the “baseline for
comparison” female instructor group and a gendermale term corresponding to
the offset in intercept for the male instructors relative to female instructors.
In other words, in Figure 6.2 the darker-colored regression line corresponding
to the female instructors has an intercept of 4.484 while the lighter-colored
regression line corresponding to the male instructors has an intercept of 4.484
+ 0.191 = 4.675. Once again, since there aren’t any instructors of age 0, the
intercepts only have a mathematical interpretation but no practical one.

Unlike in Table 6.3, however, we now only have a single slope for age of -0.009.
This is because the model dictates that both the female and male instructors
have a common slope for age. This is telling us that an instructor who is a

172 6 Multiple Regression

year older than another instructor received a teaching score that is on average
0.009 units lower. This penalty for being of advanced age applies equally to
both female and male instructors.

Let’s summarize these values in Table 6.6, noting the different intercepts but
common slopes:

TABLE 6.6: Comparison of intercepts and slope for parallel slopes model

Gender Intercept Slope for age

Female instructors 4.484 -0.009
Male instructors 4.675 -0.009

Let’s now write the equation for our regression lines, which we can use to
compute our fitted values ̂𝑦 = ŝcore.̂𝑦 = ŝcore = 𝑏0 + 𝑏age ⋅ age + 𝑏male ⋅ 𝟙is male(𝑥)= 4.484 − 0.009 ⋅ age + 0.191 ⋅ 𝟙is male(𝑥)
Let’s put this all together and compute the fitted value ̂𝑦 = ŝcore for female
instructors. Since for female instructors the indicator function 𝟙is male(𝑥) = 0,
the previous equation becomeŝ𝑦 = ŝcore = 4.484 − 0.009 ⋅ age + 0.191 ⋅ 0= 4.484 − 0.009 ⋅ age
which is the equation of the darker-colored regression line in Figure 6.2 corre-
sponding to the female instructors. Correspondingly, since for male instructors
the indicator function 𝟙is male(𝑥) = 1, the previous equation becomeŝ𝑦 = ŝcore = 4.484 − 0.009 ⋅ age + 0.191 ⋅ 1= (4.484 + 0.191) − 0.009 ⋅ age= 4.675 − 0.009 ⋅ age
which is the equation of the lighter-colored regression line in Figure 6.2 corre-
sponding to the male instructors.

Great! We’ve considered both an interaction model and a parallel slopes model
for our data. Let’s compare the visualizations for both models side-by-side in
Figure 6.3.

6.1 One numerical and one categorical explanatory variable 173

3

4

5

3

4

5

30 40 50 60 70 30 40 50 60 70

Age Age

T
e
a
c
h
in

g
 S

c
o
re

gender

female

male

Interaction model Parallel slopes model

FIGURE 6.3: Comparison of interaction and parallel slopes models.

At this point, you might be asking yourself: “Why would we ever use a parallel
slopes model?”. Looking at the left-hand plot in Figure 6.3, the two lines
definitely do not appear to be parallel, so why would we force them to be
parallel? For this data, we agree! It can easily be argued that the interaction
model on the left is more appropriate. However, in the upcoming Subsection
6.3.1 on model selection, we’ll present an example where it can be argued that
the case for a parallel slopes model might be stronger.

6.1.4 Observed/fitted values and residuals

For brevity’s sake, in this section we’ll only compute the observed values,
fitted values, and residuals for the interaction model which we saved in
score_model_interaction. You’ll have an opportunity to study the corresponding
values for the parallel slopes model in the upcoming Learning check.

Say, you have an instructor who identifies as female and is 36 years old. What
fitted value ̂𝑦 = ŝcore would our model yield? Say, you have another instructor
who identifies as male and is 59 years old. What would their fitted value ̂𝑦 be?

We answer this question visually first for the female instructor by finding the
intersection of the darker-colored regression line and the vertical line at 𝑥 =
age = 36. We mark this value with a large darker-colored dot in Figure 6.4.
Similarly, we can identify the fitted value ̂𝑦 = ŝcore for the male instructor by
finding the intersection of the lighter-colored regression line and the vertical
line at 𝑥 = age = 59. We mark this value with a large lighter-colored dot in
Figure 6.4.

174 6 Multiple Regression

3

4

5

30 40 50 60 70

Age

T
e
a
c
h
in

g
 S

c
o
re

gender

female

male

Interaction model

FIGURE 6.4: Fitted values for two new professors.

What are these two values of ̂𝑦 = ŝcore precisely? We can use the equations of
the two regression lines we computed in Subsection 6.1.2, which in turn were
based on values from the regression table in Table 6.3:

• For all female instructors: ̂𝑦 = ŝcore = 4.883 − 0.018 ⋅ age
• For all male instructors: ̂𝑦 = ŝcore = 4.437 − 0.004 ⋅ age
So our fitted values would be: 4.883−0.018 ⋅36 = 4.25 and 4.437−0.004 ⋅59 =4.20, respectively.
Now what if we want the fitted values not just for these two instructors,
but for the instructors of all 463 courses included in the evals_ch6 data
frame? Doing this by hand would be long and tedious! This is where the
get_regression_points() function from the moderndive package can help: it will
quickly automate the above calculations for all 463 courses. We present a
preview of just the first 10 rows out of 463 in Table 6.7.

regression_points <- get_regression_points(score_model_interaction)
regression_points

6.2 Two numerical explanatory variables 175

TABLE 6.7: Regression points (First 10 out of 463 courses)

ID score age gender score_hat residual
1 4.7 36 female 4.25 0.448
2 4.1 36 female 4.25 -0.152
3 3.9 36 female 4.25 -0.352
4 4.8 36 female 4.25 0.548
5 4.6 59 male 4.20 0.399
6 4.3 59 male 4.20 0.099
7 2.8 59 male 4.20 -1.401
8 4.1 51 male 4.23 -0.133
9 3.4 51 male 4.23 -0.833

10 4.5 40 female 4.18 0.318

It turns out that the female instructor of age 36 taught the first four courses,
while the male instructor taught the next 3. The resulting ̂𝑦 = ŝcore fitted
values are in the score_hat column. Furthermore, the get_regression_points()
function also returns the residuals 𝑦 − ̂𝑦. Notice, for example, the first and
fourth courses the female instructor of age 36 taught had positive residuals,
indicating that the actual teaching scores they received from students were
greater than their fitted score of 4.25. On the other hand, the second and third
courses this instructor taught had negative residuals, indicating that the actual
teaching scores they received from students were less than 4.25.

Learning check

(LC6.1) Compute the observed values, fitted values, and residuals not for the
interaction model as we just did, but rather for the parallel slopes model we
saved in score_model_interaction.

6.2 Two numerical explanatory variables
Let’s now switch gears and consider multiple regression models where instead
of one numerical and one categorical explanatory variable, we now have two
numerical explanatory variables. The dataset we’ll use is from An Introduction
to Statistical Learning with Applications in R (ISLR)1, an intermediate-level
textbook on statistical and machine learning (James et al., 2017). Its accompa-
nying ISLR R package contains the datasets to which the authors apply various
machine learning methods.

1http://www-bcf.usc.edu/~gareth/ISL/

176 6 Multiple Regression

One frequently used dataset in this book is the Credit dataset, where the
outcome variable of interest is the credit card debt of 400 individuals. Other
variables like income, credit limit, credit rating, and age are included as well.
Note that the Credit data is not based on real individuals’ financial information,
but rather is a simulated dataset used for educational purposes.

In this section, we’ll fit a regression model where we have

1. A numerical outcome variable 𝑦, the cardholder’s credit card debt
2. Two explanatory variables:

1. One numerical explanatory variable 𝑥1, the cardholder’s credit
limit

2. Another numerical explanatory variable 𝑥2, the cardholder’s in-
come (in thousands of dollars).

6.2.1 Exploratory data analysis

Let’s load the Credit dataset. To keep things simple let’s select() the subset of
the variables we’ll consider in this chapter, and save this data in the new data
frame credit_ch6. Notice our slightly different use of the select() verb here
than we introduced in Subsection 3.8.1. For example, we’ll select the Balance
variable from Credit but then save it with a new variable name debt. We do
this because here the term “debt” is easier to interpret than “balance.”

library(ISLR)
credit_ch6 <- Credit %>% as_tibble() %>%

select(ID, debt = Balance, credit_limit = Limit,
income = Income, credit_rating = Rating, age = Age)

You can observe the effect of our use of select() in the first common step of
an exploratory data analysis: looking at the raw values either in RStudio’s
spreadsheet viewer or by using glimpse().

glimpse(credit_ch6)

Observations: 400
Variables: 6
$ ID <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1...
$ debt <int> 333, 903, 580, 964, 331, 1151, 203, 872, 279, 13...
$ credit_limit <int> 3606, 6645, 7075, 9504, 4897, 8047, 3388, 7114, ...
$ income <dbl> 14.9, 106.0, 104.6, 148.9, 55.9, 80.2, 21.0, 71....
$ credit_rating <int> 283, 483, 514, 681, 357, 569, 259, 512, 266, 491...

6.2 Two numerical explanatory variables 177

$ age <int> 34, 82, 71, 36, 68, 77, 37, 87, 66, 41, 30, 64, ...

Furthermore, let’s look at a random sample of five out of the 400 credit card
holders in Table 6.8. Once again, note that due to the random nature of the
sampling, you will likely end up with a different subset of five rows.

credit_ch6 %>% sample_n(size = 5)

TABLE 6.8: Random sample of 5 credit card holders

ID debt credit_limit income credit_rating age

272 436 4866 45.0 347 30
239 52 2910 26.5 236 58
87 815 6340 55.4 448 33

108 0 3189 39.1 263 72
149 0 2420 15.2 192 69

Now that we’ve looked at the raw values in our credit_ch6 data frame and got
a sense of the data, let’s move on to the next common step in an exploratory
data analysis: computing summary statistics. Let’s use the skim() function
from the skimr package, being sure to only select() the columns of interest for
our model:

credit_ch6 %>% select(debt, credit_limit, income) %>% skim()

Skim summary statistics
n obs: 400
n variables: 3

── Variable type:integer
variable missing complete n mean sd p0 p25 p50 p75 p100

credit_limit 0 400 400 4735.6 2308.2 855 3088 4622.5 5872.75 13913
debt 0 400 400 520.01 459.76 0 68.75 459.5 863 1999

── Variable type:numeric
variable missing complete n mean sd p0 p25 p50 p75 p100

income 0 400 400 45.22 35.24 10.35 21.01 33.12 57.47 186.63

Observe the summary statistics for the outcome variable debt: the mean and
median credit card debt are $520.01 and $459.50, respectively, and that 25%
of card holders had debts of $68.75 or less. Let’s now look at one of the
explanatory variables credit_limit: the mean and median credit card limit are

178 6 Multiple Regression

$4735.6 and $4622.50, respectively, while 75% of card holders had incomes of
$57,470 or less.

Since our outcome variable debt and the explanatory variables credit_limit
and income are numerical, we can compute the correlation coefficient be-
tween the different possible pairs of these variables. First, we can run the
get_correlation() command as seen in Subsection 5.1.1 twice, once for each
explanatory variable:

credit_ch6 %>% get_correlation(debt ~ credit_limit)
credit_ch6 %>% get_correlation(debt ~ income)

Or we can simultaneously compute them by returning a correlation matrix
which we display in Table 6.9. We can see the correlation coefficient for any pair
of variables by looking them up in the appropriate row/column combination.

credit_ch6 %>%
select(debt, credit_limit, income) %>%
cor()

TABLE 6.9: Correlation coefficients between credit card debt, credit limit,
and income

debt credit_limit income

debt 1.000 0.862 0.464
credit_limit 0.862 1.000 0.792
income 0.464 0.792 1.000

For example, the correlation coefficient of:

1. debt with itself is 1 as we would expect based on the definition of the
correlation coefficient.

2. debt with credit_limit is 0.862. This indicates a strong positive linear
relationship, which makes sense as only individuals with large credit
limits can accrue large credit card debts.

3. debt with income is 0.464. This is suggestive of another positive linear
relationship, although not as strong as the relationship between debt
and credit_limit.

4. As an added bonus, we can read off the correlation coefficient between
the two explanatory variables of credit_limit and income as 0.792.

6.2 Two numerical explanatory variables 179

We say there is a high degree of collinearity between the credit_limit and income
explanatory variables. Collinearity (or multicollinearity) is a phenomenon where
one explanatory variable in a multiple regression model is highly correlated
with another.

So in our case since credit_limit and income are highly correlated, if we knew
someone’s credit_limit, we could make pretty good guesses about their income
as well. Thus, these two variables provide somewhat redundant information.
However, we’ll leave discussion on how to work with collinear explanatory
variables to a more intermediate-level book on regression modeling.

Let’s visualize the relationship of the outcome variable with each of the two
explanatory variables in two separate plots in Figure 6.5.

ggplot(credit_ch6, aes(x = credit_limit, y = debt)) +
geom_point() +
labs(x = "Credit limit (in $)", y = "Credit card debt (in $)",

title = "Debt and credit limit") +
geom_smooth(method = "lm", se = FALSE)

ggplot(credit_ch6, aes(x = income, y = debt)) +
geom_point() +
labs(x = "Income (in $1000)", y = "Credit card debt (in $)",

title = "Debt and income") +
geom_smooth(method = "lm", se = FALSE)

0

500

1000

1500

2000

0

500

1000

1500

2000

5000 10000 50 100 150

Credit limit (in $) Income (in $1000)

C
re

d
it
 c

a
rd

 d
e
b
t
(i
n
 $

)

Debt and credit limit Debt and income

FIGURE 6.5: Relationship between credit card debt and credit limit/income.

180 6 Multiple Regression

Observe there is a positive relationship between credit limit and credit card
debt: as credit limit increases so also does credit card debt. This is consistent
with the strongly positive correlation coefficient of 0.862 we computed earlier.
In the case of income, the positive relationship doesn’t appear as strong, given
the weakly positive correlation coefficient of 0.464.

However, the two plots in Figure 6.5 only focus on the relationship of the
outcome variable with each of the two explanatory variables separately. To
visualize the joint relationship of all three variables simultaneously, we need a 3-
dimensional (3D) scatterplot as seen in Figure 6.6. Each of the 400 observations
in the credit_ch6 data frame are marked with a point where

1. The numerical outcome variable 𝑦 debt is on the vertical axis.
2. The two numerical explanatory variables, 𝑥1 income and 𝑥2

credit_limit, are on the two axes that form the bottom plane.

FIGURE 6.6: 3D scatterplot and regression plane.

Furthermore, we also include the regression plane. Recall from Subsection 5.3.2
that regression lines are “best-fitting” in that of all possible lines we can draw
through a cloud of points, the regression line minimizes the sum of squared
residuals. This concept also extends to models with two numerical explanatory
variables. The difference is instead of a “best-fitting” line, we now have a

6.2 Two numerical explanatory variables 181

“best-fitting” plane that similarly minimizes the sum of squared residuals. Head
to this website2 to open an interactive version of this plot in your browser.

Learning check

(LC6.2) Conduct a new exploratory data analysis with the same outcome
variable 𝑦 debt but with credit_rating and age as the new explanatory variables𝑥1 and 𝑥2. What can you say about the relationship between a credit card
holder’s debt and their credit rating and age?

6.2.2 Regression plane

Let’s now fit a regression model and get the regression table corresponding to
the regression plane in Figure 6.6. To keep things brief in this subsection, we
won’t consider an interaction model for the two numerical explanatory variables
income and credit_limit like we did in Subsection 6.1.2 using the model formula
score ~ age * gender. Rather we’ll only consider a model fit with a formula of
the form y ~ x1 + x2. Confusingly, however, since we now have a regression
plane instead of multiple lines, the label “parallel slopes” doesn’t apply when
you have two numerical explanatory variables. Just as we have done multiple
times throughout Chapters 5 and this chapter, the regression table for this
model using our two-step process is in Table 6.10.

Fit regression model:
debt_model <- lm(debt ~ credit_limit + income, data = credit_ch6)
Get regression table:
get_regression_table(debt_model)

TABLE 6.10: Multiple regression table

term estimate std_error statistic p_value lower_ci upper_ci

intercept -385.179 19.465 -19.8 0 -423.446 -346.912
credit_limit 0.264 0.006 45.0 0 0.253 0.276
income -7.663 0.385 -19.9 0 -8.420 -6.906

1. We first “fit” the linear regression model using the lm(y ~ x1 + x2,
data) function and save it in debt_model.

2. We get the regression table by applying the get_regression_table()
function from the moderndive package to debt_model.

2https://moderndive.com/regression-plane

182 6 Multiple Regression

Let’s interpret the three values in the estimate column. First, the intercept value
is -$385.179. This intercept represents the credit card debt for an individual
who has credit_limit of $0 and income of $0. In our data, however, the intercept
has no practical interpretation since no individuals had credit_limit or income
values of $0. Rather, the intercept is used to situate the regression plane in 3D
space.

Second, the credit_limit value is $0.264. Taking into account all the other ex-
planatory variables in our model, for every increase of one dollar in credit_limit,
there is an associated increase of on average $0.26 in credit card debt. Just as
we did in Subsection 5.1.2, we are cautious not to imply causality as we saw
in Subsection 5.3.1 that “correlation is not necessarily causation.” We do this
merely stating there was an associated increase.

Furthermore, we preface our interpretation with the statement, “taking into
account all the other explanatory variables in our model.” Here, by all other
explanatory variables we mean income. We do this to emphasize that we are
now jointly interpreting the associated effect of multiple explanatory variables
in the same model at the same time.

Third, income = -$7.66. Taking into account all other explanatory variables in
our model, for every increase of one unit of income ($1000 in actual income),
there is an associated decrease of, on average, $7.66 in credit card debt.

Putting these results together, the equation of the regression plane that gives
us fitted values ̂𝑦 = d̂ebt is:̂𝑦 = 𝑏0 + 𝑏1 ⋅ 𝑥1 + 𝑏2 ⋅ 𝑥2

d̂ebt = 𝑏0 + 𝑏limit ⋅ limit + 𝑏income ⋅ income= −385.179 + 0.263 ⋅ limit − 7.663 ⋅ income

Recall however in the right-hand plot of Figure 6.5 that when plotting the
relationship between debt and income in isolation, there appeared to be a
positive relationship. In the last discussed multiple regression, however, when
jointly modeling the relationship between debt, credit_limit, and income, there
appears to be a negative relationship of debt and income as evidenced by the
negative slope for income of -$7.663. What explains these contradictory results?
A phenomenon known as Simpson’s Paradox, whereby overall trends that
exist in aggregate either disappear or reverse when the data are broken down
into groups. In Subsection 6.3.3 we elaborate on this idea by looking at the
relationship between credit_limit and credit card debt, but split along different
income brackets.

6.3 Two numerical explanatory variables 183

Learning check

(LC6.3) Fit a new simple linear regression using lm(debt ~ credit_rating +
age, data = credit_ch6) where credit_rating and age are the new numerical
explanatory variables 𝑥1 and 𝑥2. Get information about the “best-fitting” re-
gression plane from the regression table by applying the get_regression_table()
function. How do the regression results match up with the results from your
previous exploratory data analysis?

6.2.3 Observed/fitted values and residuals

Let’s also compute all fitted values and residuals for our regression model
using the get_regression_points() function and present only the first 10 rows
of output in Table 6.11. Remember that the coordinates of each of the points
in our 3D scatterplot in Figure 6.6 can be found in the income, credit_limit,
and debt columns. The fitted values on the regression plane are found in the
debt_hat column and are computed using our equation for the regression plane
in the previous section:̂𝑦 = d̂ebt = −385.179 + 0.263 ⋅ limit − 7.663 ⋅ income

get_regression_points(debt_model)

TABLE 6.11: Regression points (First 10 credit card holders out of 400)

ID debt credit_limit income debt_hat residual

1 333 3606 14.9 454 -120.8
2 903 6645 106.0 559 344.3
3 580 7075 104.6 683 -103.4
4 964 9504 148.9 986 -21.7
5 331 4897 55.9 481 -150.0
6 1151 8047 80.2 1127 23.6
7 203 3388 21.0 349 -146.4
8 872 7114 71.4 948 -76.0
9 279 3300 15.1 371 -92.2

10 1350 6819 71.1 873 477.3

184 6 Multiple Regression

6.3 Related topics
6.3.1 Model selection

When should we use an interaction model versus a parallel slopes model? Recall
in Sections 6.1.2 and 6.1.3 we fit both interaction and parallel slopes models for
the outcome variable 𝑦 (teaching score) using a numerical explanatory variable𝑥1 (age) and a categorical explanatory variable 𝑥2 (gender recorded as a binary
variable). We compared these models in Figure 6.3, which we display again
now.

3

4

5

3

4

5

30 40 50 60 70 30 40 50 60 70

Age Age

T
e
a
c
h
in

g
 S

c
o
re

gender

female

male

Interaction model Parallel slopes model

FIGURE 6.7: Previously seen comparison of interaction and parallel slopes
models.

A lot of you might have asked yourselves: “Why would I force the lines to have
parallel slopes (as seen in the right-hand plot) when they clearly have different
slopes (as seen in the left-hand plot)?”.

The answer lies in a philosophical principle known as “Occam’s Razor.” It
states that, “all other things being equal, simpler solutions are more likely to be
correct than complex ones.” When viewed in a modeling framework, Occam’s
Razor can be restated as, “all other things being equal, simpler models are
to be preferred over complex ones.” In other words, we should only favor the
more complex model if the additional complexity is warranted.

Let’s revisit the equations for the regression line for both the interaction and
parallel slopes model:

6.3 Related topics 185

Interaction ∶ ̂𝑦 = ŝcore = 𝑏0 + 𝑏age ⋅ age + 𝑏male ⋅ 𝟙is male(𝑥)+𝑏age,male ⋅ age ⋅ 𝟙is male

Parallel slopes ∶ ̂𝑦 = ŝcore = 𝑏0 + 𝑏age ⋅ age + 𝑏male ⋅ 𝟙is male(𝑥)
The interaction model is “more complex” in that there is an additional 𝑏age,male ⋅
age ⋅ 𝟙is male interaction term in the equation not present for the parallel slopes
model. Or viewed alternatively, the regression table for the interaction model
in Table 6.3 has four rows, whereas the regression table for the parallel slopes
model in Table 6.5 has three rows. The question becomes: “Is this additional
complexity warranted?”. In this case, it can be argued that this additional
complexity is warranted, as evidenced by the clear x-shaped pattern of the two
regression lines in the left-hand plot of Figure 6.7.

However, let’s consider an example where the additional complexity might not
be warranted. Let’s consider the MA_schools data included in the moderndive
package which contains 2017 data on Massachusetts public high schools pro-
vided by the Massachusetts Department of Education. For more details, read
the help file for this data by running ?MA_schools in the console.

Let’s model the numerical outcome variable 𝑦, average SAT math score for a
given high school, as a function of two explanatory variables:

1. A numerical explanatory variable 𝑥1, the percentage of that high
school’s student body that are economically disadvantaged and

2. A categorical explanatory variable 𝑥2, the school size as measured by
enrollment: small (13-341 students), medium (342-541 students), and
large (542-4264 students).

Let’s create visualizations of both the interaction and parallel slopes model once
again and display the output in Figure 6.8. Recall from Subsection 6.1.3 that
the geom_parallel_slopes() function is a special purpose function included in
the moderndive package, since the geom_smooth() method in the ggplot2 package
does not have a convenient way to plot parallel slopes models.

Interaction model
ggplot(MA_schools,

aes(x = perc_disadvan, y = average_sat_math, color = size)) +
geom_point(alpha = 0.25) +
geom_smooth(method = "lm", se = FALSE) +
labs(x = "Percent economically disadvantaged", y = "Math SAT Score",

color = "School size", title = "Interaction model")

186 6 Multiple Regression

Parallel slopes model
ggplot(MA_schools,

aes(x = perc_disadvan, y = average_sat_math, color = size)) +
geom_point(alpha = 0.25) +
geom_parallel_slopes(se = FALSE) +
labs(x = "Percent economically disadvantaged", y = "Math SAT Score",

color = "School size", title = "Parallel slopes model")

400

500

600

700

400

500

600

700

0 20 40 60 80 0 20 40 60 80

Percent economically disadvantaged Percent economically disadvantaged

M
a
th

 S
A

T
 S

c
o
re

School size

small

medium

large

Interaction model Parallel slopes model

FIGURE 6.8: Comparison of interaction and parallel slopes models for
Massachusetts schools.

Look closely at the left-hand plot of Figure 6.8 corresponding to an interaction
model. While the slopes are indeed different, they do not differ by much and
are nearly identical. Now compare the left-hand plot with the right-hand plot
corresponding to a parallel slopes model. The two models don’t appear all that
different. So in this case, it can be argued that the additional complexity of the
interaction model is not warranted. Thus following Occam’s Razor, we should
prefer the “simpler” parallel slopes model. Let’s explicitly define what “simpler”
means in this case. Let’s compare the regression tables for the interaction and
parallel slopes models in Tables 6.12 and 6.13.

model_2_interaction <- lm(average_sat_math ~ perc_disadvan * size,
data = MA_schools)

get_regression_table(model_2_interaction)

6.3 Related topics 187

TABLE 6.12: Interaction model regression table

term estimate std_error statistic p_value lower_ci upper_ci

intercept 594.327 13.288 44.726 0.000 568.186 620.469
perc_disadvan -2.932 0.294 -9.961 0.000 -3.511 -2.353
sizemedium -17.764 15.827 -1.122 0.263 -48.899 13.371
sizelarge -13.293 13.813 -0.962 0.337 -40.466 13.880
perc_disadvan:sizemedium 0.146 0.371 0.393 0.694 -0.585 0.877
perc_disadvan:sizelarge 0.189 0.323 0.586 0.559 -0.446 0.824

model_2_parallel_slopes <- lm(average_sat_math ~ perc_disadvan + size,
data = MA_schools)

get_regression_table(model_2_parallel_slopes)

TABLE 6.13: Parallel slopes regression table

term estimate std_error statistic p_value lower_ci upper_ci

intercept 588.19 7.607 77.325 0.000 573.23 603.15
perc_disadvan -2.78 0.106 -26.120 0.000 -2.99 -2.57
sizemedium -11.91 7.535 -1.581 0.115 -26.74 2.91
sizelarge -6.36 6.923 -0.919 0.359 -19.98 7.26

Observe how the regression table for the interaction model has 2 more rows (6
versus 4). This reflects the additional “complexity” of the interaction model
over the parallel slopes model.

Furthermore, note in Table 6.12 how the offsets for the slopes
perc_disadvan:sizemedium being 0.146 and perc_disadvan:sizelarge being 0.189
are small relative to the slope for the baseline group of small schools of −2.932.
In other words, all three slopes are similarly negative: −2.932 for small schools,−2.786 (= −2.932+0.146) for medium schools, and −2.743 (= −2.932+0.189)
for large schools. These results are suggesting that irrespective of school size,
the relationship between average math SAT scores and the percent of the
student body that is economically disadvantaged is similar and, alas, quite
negative.

What you have just performed is a rudimentary model selection: choosing
which model fits data best among a set of candidate models. While the model
selection approach we just took was visual in nature and hence somewhat
qualitative, more statistically rigorous methods for model selection exist in the
fields of multiple regression and statistical/machine learning.

188 6 Multiple Regression

6.3.2 Correlation coefficient

Recall from Table 6.9 that the correlation coefficient between income in thou-
sands of dollars and credit card debt was 0.464. What if instead we looked at
the correlation coefficient between income and credit card debt, but where income
was in dollars and not thousands of dollars? This can be done by multiplying
income by 1000.

credit_ch6 %>% select(debt, income) %>%
mutate(income = income * 1000) %>%
cor()

TABLE 6.14: Correlation between income (in dollars) and credit card debt

debt income

debt 1.000 0.464
income 0.464 1.000

We see it is the same! We say that the correlation coefficient is invariant to
linear transformations. The correlation between 𝑥 and 𝑦 will be the same as
the correlation between 𝑎 ⋅ 𝑥 + 𝑏 and 𝑦 for any numerical values 𝑎 and 𝑏.
6.3.3 Simpson’s Paradox

Recall in Section 6.2, we saw the two seemingly contradictory results when
studying the relationship between credit card debt and income. On the one
hand, the right hand plot of Figure 6.5 suggested that the relationship between
credit card debt and income was positive. We re-display this in Figure 6.9.

0

500

1000

1500

2000

50 100 150

Income (in $1000)

Debt and income

FIGURE 6.9: Relationship between credit card debt and income.

On the other hand, the multiple regression results in Table 6.10 suggested
that the relationship between debt and income was negative. We re-display this
information in Table 6.15.

6.3 Related topics 189

TABLE 6.15: Multiple regression results

term estimate std_error statistic p_value lower_ci upper_ci

intercept -385.179 19.465 -19.8 0 -423.446 -346.912
credit_limit 0.264 0.006 45.0 0 0.253 0.276
income -7.663 0.385 -19.9 0 -8.420 -6.906

Observe how the slope for income is −7.663 and, most importantly for now, it
is negative. This contradicts our observation in Figure 6.9 that the relationship
is positive. How can this be? Recall the interpretation of the slope for income
in the context of a multiple regression model: taking into account all the other
explanatory variables in our model, for every increase of one unit in income (i.e.,
$1000), there is an associated decrease of on average $7.663 in debt.

In other words, while in isolation, the relationship between debt and income may
be positive, when taking into account credit_limit as well, this relationship
becomes negative. These seemingly paradoxical results are due to a phenomenon
aptly named Simpson’s Paradox3. Simpson’s Paradox occurs when trends that
exist for the data in aggregate either disappear or reverse when the data are
broken down into groups.

Let’s show how Simpson’s Paradox manifests itself in the credit_ch6 data.
Let’s first visualize the distribution of the numerical explanatory variable
credit_limit with a histogram in Figure 6.10.

0

10

20

30

40

0 5000 10000

Credit limit

c
o
u
n
t

Credit limit and 4 credit limit brackets.

FIGURE 6.10: Histogram of credit limits and brackets.

The vertical dashed lines are the quartiles that cut up the variable credit_limit
into four equally sized groups. Let’s think of these quartiles as converting
our numerical variable credit_limit into a categorical variable “credit_limit
bracket” with four levels. This means that

3https://en.wikipedia.org/wiki/Simpson%27s_paradox

190 6 Multiple Regression

1. 25% of credit limits were between $0 and $3088. Let’s assign these
100 people to the “low” credit_limit bracket.

2. 25% of credit limits were between $3088 and $4622. Let’s assign these
100 people to the “medium-low” credit_limit bracket.

3. 25% of credit limits were between $4622 and $5873. Let’s assign these
100 people to the “medium-high” credit_limit bracket.

4. 25% of credit limits were over $5873. Let’s assign these 100 people to
the “high” credit_limit bracket.

Now in Figure 6.11 let’s re-display two versions of the scatterplot of debt and
income from Figure 6.9, but with a slight twist:

1. The left-hand plot shows the regular scatterplot and the single regres-
sion line, just as you saw in Figure 6.9.

2. The right-hand plot shows the colored scatterplot, where the color
aesthetic is mapped to “credit_limit bracket.” Furthermore, there are
now four separate regression lines.

In other words, the location of the 400 points are the same in both scatterplots,
but the right-hand plot shows an additional variable of information: credit_limit
bracket.

0

500

1000

1500

2000

0

500

1000

1500

2000

50 100 150 50 100 150

Income (in $1000) Income (in $1000)

C
re

d
it
 c

a
rd

 d
e
b
t
(i
n
 $

)

Credit limit
bracket

low

med-low

med-high

high

Two scatterplots of credit card debt vs income

FIGURE 6.11: Relationship between credit card debt and income by credit
limit bracket.

The left-hand plot of Figure 6.11 focuses on the relationship between debt
and income in aggregate. It is suggesting that overall there exists a positive
relationship between debt and income. However, the right-hand plot of Figure
6.11 focuses on the relationship between debt and income broken down by

6.4 Conclusion 191

credit_limit bracket. In other words, we focus on four separate relationships
between debt and income: one for the “low” credit_limit bracket, one for the
“medium-low” credit_limit bracket, and so on.

Observe in the right-hand plot that the relationship between debt and income
is clearly negative for the “medium-low” and “medium-high” credit_limit
brackets, while the relationship is somewhat flat for the “low” credit_limit
bracket. The only credit_limit bracket where the relationship remains positive
is for the “high” credit_limit bracket. However, this relationship is less positive
than in the relationship in aggregate, since the slope is shallower than the
slope of the regression line in the left-hand plot.

In this example of Simpson’s Paradox, the credit_limit is a confounding variable
of the relationship between credit card debt and income as we defined in Sub-
section 5.3.1. Thus, credit_limit needs to be accounted for in any appropriate
model for the relationship between debt and income.

6.4 Conclusion
6.4.1 Additional resources

Solutions to all Learning checks can be found online in Appendix D4.

An R script file of all R code used in this chapter is available at https:
//www.moderndive.com/scripts/06-multiple-regression.R.

6.4.2 What’s to come?

Congratulations! We’ve completed the “Data Modeling with moderndive” portion
of this book. We’re ready to proceed to Part III of this book: “Statistical
Inference with infer.” Statistical inference is the science of inferring about some
unknown quantity using sampling.

For example, among the most well-known examples of sampling involves polls.
Because asking an entire population about their opinions would be a long
and arduous task, pollsters often take a smaller sample that is hopefully
representative of the population. Based on the results of this sample, pollsters
hope to make claims about the entire population.

Once we’ve covered Chapters 7 on sampling, 8 on confidence intervals, and 9 on
hypothesis testing, we’ll revisit the regression models we studied in Chapters
5 and 6 in Chapter 10 on inference for regression. So far, we’ve only studied

4https://moderndive.com/D-appendixD.html

192 6 Multiple Regression

the estimate column of all our regression tables. The next four chapters focus
on what the remaining columns mean: the standard error (std_error), the test
statistic, the p_value, and the lower and upper bounds of confidence intervals
(lower_ci and upper_ci).

Furthermore in Chapter 10, we’ll revisit the concept of residuals 𝑦 − ̂𝑦 and
discuss their importance when interpreting the results of a regression model.
We’ll perform what is known as a residual analysis of the residual variable of
all get_regression_points() outputs. Residual analyses allow you to verify what
are known as the conditions for inference for regression. On to Chapter 7 on
sampling in Part III as shown in Figure 6.12!

FIGURE 6.12: ModernDive flowchart - on to Part III!

Part III

Statistical Inference with infer

7
Sampling

In this chapter, we kick off the third portion of this book on statistical inference
by learning about sampling. The concepts behind sampling form the basis of
confidence intervals and hypothesis testing, which we’ll cover in Chapters 8
and 9. We will see that the tools that you learned in the data science portion
of this book, in particular data visualization and data wrangling, will also play
an important role in the development of your understanding. As mentioned
before, the concepts throughout this text all build into a culmination allowing
you to “tell your story with data.”

Needed packages

Let’s load all the packages needed for this chapter (this assumes you’ve already
installed them). Recall from our discussion in Section 4.4 that loading the
tidyverse package by running library(tidyverse) loads the following commonly
used data science packages all at once:

• ggplot2 for data visualization
• dplyr for data wrangling
• tidyr for converting data to “tidy” format
• readr for importing spreadsheet data into R
• As well as the more advanced purrr, tibble, stringr, and forcats packages

If needed, read Section 1.3 for information on how to install and load R
packages.

library(tidyverse)
library(moderndive)

7.1 Sampling bowl activity
Let’s start with a hands-on activity.

195

196 7 Sampling

7.1.1 What proportion of this bowl’s balls are red?

Take a look at the bowl in Figure 7.1. It has a certain number of red and
a certain number of white balls all of equal size. (Note that in this printed
version of the book “red” corresponds to the darker-colored balls, and “white”
corresponds to the lighter-colored balls. We kept the reference to “red” and
“white” throughout this book since those are the actual colors of the balls as
seen in the background of the image on our book’s cover1.) Furthermore, it
appears the bowl has been mixed beforehand, as there does not seem to be
any coherent pattern to the spatial distribution of the red and white balls.

Let’s now ask ourselves, what proportion of this bowl’s balls are red?

FIGURE 7.1: A bowl with red and white balls.

One way to answer this question would be to perform an exhaustive count:
remove each ball individually, count the number of red balls and the number
of white balls, and divide the number of red balls by the total number of balls.
However, this would be a long and tedious process.

7.1.2 Using the shovel once

Instead of performing an exhaustive count, let’s insert a shovel into the bowl
as seen in Figure 7.2. Using the shovel, let’s remove 5 ⋅ 10 = 50 balls, as seen
in Figure 7.3.

1https://moderndive.com/images/logos/book_cover.png

7.1 Sampling bowl activity 197

FIGURE 7.2: Inserting a shovel into the bowl.

FIGURE 7.3: Removing 50 balls from the bowl.

Observe that 17 of the balls are red and thus 0.34 = 34% of the shovel’s balls
are red. We can view the proportion of balls that are red in this shovel as a
guess of the proportion of balls that are red in the entire bowl. While not as
exact as doing an exhaustive count of all the balls in the bowl, our guess of
34% took much less time and energy to make.

198 7 Sampling

However, say, we started this activity over from the beginning. In other words,
we replace the 50 balls back into the bowl and start over. Would we remove
exactly 17 red balls again? In other words, would our guess at the proportion
of the bowl’s balls that are red be exactly 34% again? Maybe?

What if we repeated this activity several times following the process shown in
Figure 7.4? Would we obtain exactly 17 red balls each time? In other words,
would our guess at the proportion of the bowl’s balls that are red be exactly
34% every time? Surely not. Let’s repeat this exercise several times with the
help of 33 groups of friends to understand how the value differs with repetition.

7.1.3 Using the shovel 33 times

Each of our 33 groups of friends will do the following:

• Use the shovel to remove 50 balls each.
• Count the number of red balls and thus compute the proportion of the 50

balls that are red.
• Return the balls into the bowl.
• Mix the contents of the bowl a little to not let a previous group’s results

influence the next group’s.

FIGURE 7.4: Repeating sampling activity 33 times.

Each of our 33 groups of friends make note of their proportion of red balls
from their sample collected. Each group then marks their proportion of their
50 balls that were red in the appropriate bin in a hand-drawn histogram as
seen in Figure 7.5.

7.1 Sampling bowl activity 199

FIGURE 7.5: Constructing a histogram of proportions.

Recall from Section 2.5 that histograms allow us to visualize the distribution
of a numerical variable. In particular, where the center of the values falls and
how the values vary. A partially completed histogram of the first 10 out of 33
groups of friends’ results can be seen in Figure 7.6.

FIGURE 7.6: Hand-drawn histogram of first 10 out of 33 proportions.

200 7 Sampling

Observe the following in the histogram in Figure 7.6:

• At the low end, one group removed 50 balls from the bowl with proportion
red between 0.20 and 0.25.

• At the high end, another group removed 50 balls from the bowl with propor-
tion between 0.45 and 0.5 red.

• However, the most frequently occurring proportions were between 0.30 and
0.35 red, right in the middle of the distribution.

• The shape of this distribution is somewhat bell-shaped.

Let’s construct this same hand-drawn histogram in R using your data visual-
ization skills that you honed in Chapter 2. We saved our 33 groups of friends’
results in the tactile_prop_red data frame included in the moderndive package.
Run the following to display the first 10 of 33 rows:

tactile_prop_red

A tibble: 33 x 4
group replicate red_balls prop_red
<chr> <int> <int> <dbl>

1 Ilyas, Yohan 1 21 0.42
2 Morgan, Terrance 2 17 0.34
3 Martin, Thomas 3 21 0.42
4 Clark, Frank 4 21 0.42
5 Riddhi, Karina 5 18 0.36
6 Andrew, Tyler 6 19 0.38
7 Julia 7 19 0.38
8 Rachel, Lauren 8 11 0.22
9 Daniel, Caroline 9 15 0.3
10 Josh, Maeve 10 17 0.34
... with 23 more rows

Observe for each group that we have their names, the number of red_balls
they obtained, and the corresponding proportion out of 50 balls that were red
named prop_red. We also have a replicate variable enumerating each of the 33
groups. We chose this name because each row can be viewed as one instance
of a replicated (in other words repeated) activity: using the shovel to remove
50 balls and computing the proportion of those balls that are red.

Let’s visualize the distribution of these 33 proportions using geom_histogram()
with binwidth = 0.05 in Figure 7.7. This is a computerized and complete version
of the partially completed hand-drawn histogram you saw in Figure 7.6. Note
that setting boundary = 0.4 indicates that we want a binning scheme such that

7.1 Sampling bowl activity 201

one of the bins’ boundary is at 0.4. This helps us to more closely align this
histogram with the hand-drawn histogram in Figure 7.6.

ggplot(tactile_prop_red, aes(x = prop_red)) +
geom_histogram(binwidth = 0.05, boundary = 0.4, color = "white") +
labs(x = "Proportion of 50 balls that were red",

title = "Distribution of 33 proportions red")

0.0

2.5

5.0

7.5

0.2 0.3 0.4 0.5

Proportion of 50 balls that were red

c
o
u
n
t

Distribution of 33 proportions red

FIGURE 7.7: Distribution of 33 proportions based on 33 samples of size 50.

7.1.4 What did we just do?

What we just demonstrated in this activity is the statistical concept of sampling.
We would like to know the proportion of the bowl’s balls that are red. Because
the bowl has a large number of balls, performing an exhaustive count of the
red and white balls would be time-consuming. We thus extracted a sample
of 50 balls using the shovel to make an estimate. Using this sample of 50
balls, we estimated the proportion of the bowl’s balls that are red to be
34%.

Moreover, because we mixed the balls before each use of the shovel, the samples
were randomly drawn. Because each sample was drawn at random, the samples
were different from each other. Because the samples were different from each
other, we obtained the different proportions red observed in Figure 7.7. This is
known as the concept of sampling variation.

The purpose of this sampling activity was to develop an understanding of two
key concepts relating to sampling:

202 7 Sampling

1. Understanding the effect of sampling variation.
2. Understanding the effect of sample size on sampling variation.

In Section 7.2, we’ll mimic the hands-on sampling activity we just performed
on a computer. This will allow us not only to repeat the sampling exercise
much more than 33 times, but it will also allow us to use shovels with different
numbers of slots than just 50.

Afterwards, we’ll present you with definitions, terminology, and notation related
to sampling in Section 7.3. As in many disciplines, such necessary background
knowledge may seem inaccessible and even confusing at first. However, as with
many difficult topics, if you truly understand the underlying concepts and
practice, practice, practice, you’ll be able to master them.

To tie the contents of this chapter to the real world, we’ll present an example
of one of the most recognizable uses of sampling: polls. In Section 7.4 we’ll look
at a particular case study: a 2013 poll on then U.S. President Barack Obama’s
popularity among young Americans, conducted by Kennedy School’s Institute
of Politics at Harvard University. To close this chapter, we’ll generalize the
“sampling from a bowl” exercise to other sampling scenarios and present a
theoretical result known as the Central Limit Theorem.

Learning check

(LC7.1) Why was it important to mix the bowl before we sampled the balls?

(LC7.2) Why is it that our 33 groups of friends did not all have the same
numbers of balls that were red out of 50, and hence different proportions red?

7.2 Virtual sampling
In the previous Section 7.1, we performed a tactile sampling activity by hand.
In other words, we used a physical bowl of balls and a physical shovel. We
performed this sampling activity by hand first so that we could develop a firm
understanding of the root ideas behind sampling. In this section, we’ll mimic
this tactile sampling activity with a virtual sampling activity using a computer.
In other words, we’ll use a virtual analog to the bowl of balls and a virtual
analog to the shovel.

7.2 Virtual sampling 203

7.2.1 Using the virtual shovel once

Let’s start by performing the virtual analog of the tactile sampling exercise we
performed in Section 7.1. We first need a virtual analog of the bowl seen in
Figure 7.1. To this end, we included a data frame named bowl in the moderndive
package. The rows of bowl correspond exactly with the contents of the actual
bowl.

bowl

A tibble: 2,400 x 2
ball_ID color
<int> <chr>

1 1 white
2 2 white
3 3 white
4 4 red
5 5 white
6 6 white
7 7 red
8 8 white
9 9 red
10 10 white
... with 2,390 more rows

Observe that bowl has 2400 rows, telling us that the bowl contains 2400 equally
sized balls. The first variable ball_ID is used as an identification variable as
discussed in Subsection 1.4.4; none of the balls in the actual bowl are marked
with numbers. The second variable color indicates whether a particular virtual
ball is red or white. View the contents of the bowl in RStudio’s data viewer and
scroll through the contents to convince yourself that bowl is indeed a virtual
analog of the actual bowl in Figure 7.1.

Now that we have a virtual analog of our bowl, we now need a virtual analog
to the shovel seen in Figure 7.2 to generate virtual samples of 50 balls. We’re
going to use the rep_sample_n() function included in the moderndive package.
This function allows us to take repeated, or replicated, samples of size n.

virtual_shovel <- bowl %>%
rep_sample_n(size = 50)

virtual_shovel

A tibble: 50 x 3

204 7 Sampling

Groups: replicate [1]
replicate ball_ID color

<int> <int> <chr>
1 1 1970 white
2 1 842 red
3 1 2287 white
4 1 599 white
5 1 108 white
6 1 846 red
7 1 390 red
8 1 344 white
9 1 910 white
10 1 1485 white
... with 40 more rows

Observe that virtual_shovel has 50 rows corresponding to our virtual sample
of size 50. The ball_ID variable identifies which of the 2400 balls from bowl
are included in our sample of 50 balls while color denotes its color. However,
what does the replicate variable indicate? In virtual_shovel’s case, replicate
is equal to 1 for all 50 rows. This is telling us that these 50 rows correspond
to the first repeated/replicated use of the shovel, in our case our first sample.
We’ll see shortly that when we “virtually” take 33 samples, replicate will take
values between 1 and 33.

Let’s compute the proportion of balls in our virtual sample that are red using
the dplyr data wrangling verbs you learned in Chapter 3. First, for each of our
50 sampled balls, let’s identify if it is red or not using a test for equality with
==. Let’s create a new Boolean variable is_red using the mutate() function from
Section 3.5:

virtual_shovel %>%
mutate(is_red = (color == "red"))

A tibble: 50 x 4
Groups: replicate [1]

replicate ball_ID color is_red
<int> <int> <chr> <lgl>

1 1 1970 white FALSE
2 1 842 red TRUE
3 1 2287 white FALSE
4 1 599 white FALSE
5 1 108 white FALSE
6 1 846 red TRUE

7.2 Virtual sampling 205

7 1 390 red TRUE
8 1 344 white FALSE
9 1 910 white FALSE
10 1 1485 white FALSE
... with 40 more rows

Observe that for every row where color == "red", the Boolean (logical) value
TRUE is returned and for every row where color is not equal to "red", the Boolean
FALSE is returned.

Second, let’s compute the number of balls out of 50 that are red using the
summarize() function. Recall from Section 3.3 that summarize() takes a data
frame with many rows and returns a data frame with a single row containing
summary statistics, like the mean() or median(). In this case, we use the sum():

virtual_shovel %>%
mutate(is_red = (color == "red")) %>%
summarize(num_red = sum(is_red))

A tibble: 1 x 2
replicate num_red

<int> <int>
1 1 12

Why does this work? Because R treats TRUE like the number 1 and FALSE like
the number 0. So summing the number of TRUEs and FALSEs is equivalent to
summing 1’s and 0’s. In the end, this operation counts the number of balls
where color is red. In our case, 12 of the 50 balls were red. However, you might
have gotten a different number red because of the randomness of the virtual
sampling.

Third and lastly, let’s compute the proportion of the 50 sampled balls that are
red by dividing num_red by 50:

virtual_shovel %>%
mutate(is_red = color == "red") %>%
summarize(num_red = sum(is_red)) %>%
mutate(prop_red = num_red / 50)

A tibble: 1 x 3
replicate num_red prop_red

<int> <int> <dbl>
1 1 12 0.24

206 7 Sampling

In other words, 24% of this virtual sample’s balls were red. Let’s make this
code a little more compact and succinct by combining the first mutate() and
the summarize() as follows:

virtual_shovel %>%
summarize(num_red = sum(color == "red")) %>%
mutate(prop_red = num_red / 50)

A tibble: 1 x 3
replicate num_red prop_red

<int> <int> <dbl>
1 1 12 0.24

Great! 24% of virtual_shovel’s 50 balls were red! So based on this particular
sample of 50 balls, our guess at the proportion of the bowl’s balls that are red
is 24%. But remember from our earlier tactile sampling activity that if we
repeat this sampling, we will not necessarily obtain the same value of 24%
again. There will likely be some variation. In fact, our 33 groups of friends
computed 33 such proportions whose distribution we visualized in Figure 7.6.
We saw that these estimates varied. Let’s now perform the virtual analog of
having 33 groups of students use the sampling shovel!

7.2.2 Using the virtual shovel 33 times

Recall that in our tactile sampling exercise in Section 7.1, we had 33 groups of
students each use the shovel, yielding 33 samples of size 50 balls. We then used
these 33 samples to compute 33 proportions. In other words, we repeated/repli-
cated using the shovel 33 times. We can perform this repeated/replicated sam-
pling virtually by once again using our virtual shovel function rep_sample_n(),
but by adding the reps = 33 argument. This is telling R that we want to repeat
the sampling 33 times.

We’ll save these results in a data frame called virtual_samples. While we provide
a preview of the first 10 rows of virtual_samples in what follows, we highly
suggest you scroll through its contents using RStudio’s spreadsheet viewer by
running View(virtual_samples).

virtual_samples <- bowl %>%
rep_sample_n(size = 50, reps = 33)

virtual_samples

A tibble: 1,650 x 3
Groups: replicate [33]

7.2 Virtual sampling 207

replicate ball_ID color
<int> <int> <chr>

1 1 875 white
2 1 1851 red
3 1 1548 red
4 1 1975 white
5 1 835 white
6 1 16 white
7 1 327 white
8 1 1803 red
9 1 740 red
10 1 179 red
... with 1,640 more rows

Observe in the spreadsheet viewer that the first 50 rows of replicate are equal
to 1 while the next 50 rows of replicate are equal to 2. This is telling us that
the first 50 rows correspond to the first sample of 50 balls while the next 50
rows correspond to the second sample of 50 balls. This pattern continues for
all reps = 33 replicates and thus virtual_samples has 33 ⋅ 50 = 1650 rows.

Let’s now take virtual_samples and compute the resulting 33 proportions red.
We’ll use the same dplyr verbs as before, but this time with an additional
group_by() of the replicate variable. Recall from Section 3.4 that by assign-
ing the grouping variable “meta-data” before we summarize(), we’ll obtain 33
different proportions red. We display a preview of the first 10 out of 33 rows:

virtual_prop_red <- virtual_samples %>%
group_by(replicate) %>%
summarize(red = sum(color == "red")) %>%
mutate(prop_red = red / 50)

virtual_prop_red

A tibble: 33 x 3
replicate red prop_red

<int> <int> <dbl>
1 1 23 0.46
2 2 19 0.38
3 3 18 0.36
4 4 19 0.38
5 5 15 0.3
6 6 21 0.42
7 7 21 0.42
8 8 16 0.32

208 7 Sampling

9 9 24 0.48
10 10 14 0.28
... with 23 more rows

As with our 33 groups of friends’ tactile samples, there is variation in the
resulting 33 virtual proportions red. Let’s visualize this variation in a histogram
in Figure 7.8. Note that we add binwidth = 0.05 and boundary = 0.4 arguments
as well. Recall that setting boundary = 0.4 ensures a binning scheme with one
of the bins’ boundaries at 0.4. Since the binwidth = 0.05 is also set, this will
create bins with boundaries at 0.30, 0.35, 0.45, 0.5, etc. as well.

ggplot(virtual_prop_red, aes(x = prop_red)) +
geom_histogram(binwidth = 0.05, boundary = 0.4, color = "white") +
labs(x = "Proportion of 50 balls that were red",

title = "Distribution of 33 proportions red")

0.0

2.5

5.0

7.5

10.0

12.5

0.2 0.3 0.4 0.5

Proportion of 50 balls that were red

c
o
u
n
t

Distribution of 33 proportions red

FIGURE 7.8: Distribution of 33 proportions based on 33 samples of size 50.

Observe that we occasionally obtained proportions red that are less than 30%.
On the other hand, we occasionally obtained proportions that are greater than
45%. However, the most frequently occurring proportions were between 35%
and 40% (for 11 out of 33 samples). Why do we have these differences in
proportions red? Because of sampling variation.

Let’s now compare our virtual results with our tactile results from the previous
section in Figure 7.9. Observe that both histograms are somewhat similar
in their center and variation, although not identical. These slight differences

7.2 Virtual sampling 209

are again due to random sampling variation. Furthermore, observe that both
distributions are somewhat bell-shaped.

Virtual sampling Tactile sampling

0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5

0.0

2.5

5.0

7.5

10.0

12.5

Proportion of 50 balls that were red

c
o
u
n
t

Comparing distributions

FIGURE 7.9: Comparing 33 virtual and 33 tactile proportions red.

Learning check

(LC7.3) Why couldn’t we study the effects of sampling variation when we
used the virtual shovel only once? Why did we need to take more than one
virtual sample (in our case 33 virtual samples)?

7.2.3 Using the virtual shovel 1000 times

Now say we want to study the effects of sampling variation not for 33 samples,
but rather for a larger number of samples, say 1000. We have two choices at
this point. We could have our groups of friends manually take 1000 samples
of 50 balls and compute the corresponding 1000 proportions. However, this
would be a tedious and time-consuming task. This is where computers excel:
automating long and repetitive tasks while performing them quite quickly.
Thus, at this point we will abandon tactile sampling in favor of only virtual
sampling. Let’s once again use the rep_sample_n() function with sample size
set to be 50 once again, but this time with the number of replicates reps set
to 1000. Be sure to scroll through the contents of virtual_samples in RStudio’s
viewer.

210 7 Sampling

virtual_samples <- bowl %>%
rep_sample_n(size = 50, reps = 1000)

virtual_samples

A tibble: 50,000 x 3
Groups: replicate [1,000]

replicate ball_ID color
<int> <int> <chr>

1 1 1236 red
2 1 1944 red
3 1 1939 white
4 1 780 white
5 1 1956 white
6 1 1003 white
7 1 2113 white
8 1 2213 white
9 1 782 white
10 1 898 white
... with 49,990 more rows

Observe that now virtual_samples has 1000 ⋅ 50 = 50,000 rows, instead of the
33 ⋅ 50 = 1650 rows from earlier. Using the same data wrangling code as earlier,
let’s take the data frame virtual_samples with 1000 ⋅ 50 = 50,000 rows and
compute the resulting 1000 proportions of red balls.

virtual_prop_red <- virtual_samples %>%
group_by(replicate) %>%
summarize(red = sum(color == "red")) %>%
mutate(prop_red = red / 50)

virtual_prop_red

A tibble: 1,000 x 3
replicate red prop_red

<int> <int> <dbl>
1 1 18 0.36
2 2 19 0.38
3 3 20 0.4
4 4 15 0.3
5 5 17 0.34
6 6 16 0.32
7 7 23 0.46

7.2 Virtual sampling 211

8 8 23 0.46
9 9 15 0.3
10 10 18 0.36
... with 990 more rows

Observe that we now have 1000 replicates of prop_red, the proportion of 50 balls
that are red. Using the same code as earlier, let’s now visualize the distribution
of these 1000 replicates of prop_red in a histogram in Figure 7.10.

ggplot(virtual_prop_red, aes(x = prop_red)) +
geom_histogram(binwidth = 0.05, boundary = 0.4, color = "white") +
labs(x = "Proportion of 50 balls that were red",

title = "Distribution of 1000 proportions red")

0

100

200

300

0.2 0.3 0.4 0.5 0.6

Proportion of 50 balls that were red

c
o
u
n
t

Distribution of 1000 proportions red

FIGURE 7.10: Distribution of 1000 proportions based on 1000 samples of
size 50.

Once again, the most frequently occurring proportions of red balls occur
between 35% and 40%. Every now and then, we obtain proportions as low
as between 20% and 25%, and others as high as between 55% and 60%.
These are rare, however. Furthermore, observe that we now have a much more
symmetric and smoother bell-shaped distribution. This distribution is, in fact,
approximated well by a normal distribution. At this point we recommend you

212 7 Sampling

read the “Normal distribution” section (Appendix A.2) for a brief discussion
on the properties of the normal distribution.

Learning check

(LC7.4) Why did we not take 1000 “tactile” samples of 50 balls by hand?

(LC7.5) Looking at Figure 7.10, would you say that sampling 50 balls where
30% of them were red is likely or not? What about sampling 50 balls where
10% of them were red?

7.2.4 Using different shovels

Now say instead of just one shovel, you have three choices of shovels to extract
a sample of balls with: shovels of size 25, 50, and 100.

FIGURE 7.11: Three shovels to extract three different sample sizes.

If your goal is still to estimate the proportion of the bowl’s balls that are red,
which shovel would you choose? In our experience, most people would choose
the largest shovel with 100 slots because it would yield the “best” guess of the
proportion of the bowl’s balls that are red. Let’s define some criteria for “best”
in this subsection.

Using our newly developed tools for virtual sampling, let’s unpack the ef-
fect of having different sample sizes! In other words, let’s use rep_sample_n()
with size set to 25, 50, and 100, respectively, while keeping the number of
repeated/replicated samples at 1000:

1. Virtually use the appropriate shovel to generate 1000 samples with
size balls.

2. Compute the resulting 1000 replicates of the proportion of the shovel’s
balls that are red.

7.2 Virtual sampling 213

3. Visualize the distribution of these 1000 proportions red using a his-
togram.

Run each of the following code segments individually and then compare the
three resulting histograms.

Segment 1: sample size = 25 ------------------------------
1.a) Virtually use shovel 1000 times
virtual_samples_25 <- bowl %>%
rep_sample_n(size = 25, reps = 1000)

1.b) Compute resulting 1000 replicates of proportion red
virtual_prop_red_25 <- virtual_samples_25 %>%
group_by(replicate) %>%
summarize(red = sum(color == "red")) %>%
mutate(prop_red = red / 25)

1.c) Plot distribution via a histogram
ggplot(virtual_prop_red_25, aes(x = prop_red)) +
geom_histogram(binwidth = 0.05, boundary = 0.4, color = "white") +
labs(x = "Proportion of 25 balls that were red", title = "25")

Segment 2: sample size = 50 ------------------------------
2.a) Virtually use shovel 1000 times
virtual_samples_50 <- bowl %>%
rep_sample_n(size = 50, reps = 1000)

2.b) Compute resulting 1000 replicates of proportion red
virtual_prop_red_50 <- virtual_samples_50 %>%
group_by(replicate) %>%
summarize(red = sum(color == "red")) %>%
mutate(prop_red = red / 50)

2.c) Plot distribution via a histogram
ggplot(virtual_prop_red_50, aes(x = prop_red)) +
geom_histogram(binwidth = 0.05, boundary = 0.4, color = "white") +
labs(x = "Proportion of 50 balls that were red", title = "50")

Segment 3: sample size = 100 ------------------------------

214 7 Sampling

3.a) Virtually using shovel with 100 slots 1000 times
virtual_samples_100 <- bowl %>%
rep_sample_n(size = 100, reps = 1000)

3.b) Compute resulting 1000 replicates of proportion red
virtual_prop_red_100 <- virtual_samples_100 %>%
group_by(replicate) %>%
summarize(red = sum(color == "red")) %>%
mutate(prop_red = red / 100)

3.c) Plot distribution via a histogram
ggplot(virtual_prop_red_100, aes(x = prop_red)) +
geom_histogram(binwidth = 0.05, boundary = 0.4, color = "white") +
labs(x = "Proportion of 100 balls that were red", title = "100")

For easy comparison, we present the three resulting histograms in a single row
with matching x and y axes in Figure 7.12.

25 50 100

0.2 0.3 0.4 0.5 0.6 0.7 0.2 0.3 0.4 0.5 0.6 0.7 0.2 0.3 0.4 0.5 0.6 0.7

0

100

200

300

400

Proportion of shovel's balls that are red

c
o
u
n
t

Comparing distributions of proportions red for three different shovel sizes.

FIGURE 7.12: Comparing the distributions of proportion red for different
sample sizes.

Observe that as the sample size increases, the variation of the 1000 replicates
of the proportion of red decreases. In other words, as the sample size increases,
there are fewer differences due to sampling variation and the distribution
centers more tightly around the same value. Eyeballing Figure 7.12, all three
histograms appear to center around roughly 40%.

7.2 Virtual sampling 215

We can be numerically explicit about the amount of variation in our three sets
of 1000 values of prop_red using the standard deviation. A standard deviation is
a summary statistic that measures the amount of variation within a numerical
variable (see Appendix A.1 for a brief discussion on the properties of the
standard deviation). For all three sample sizes, let’s compute the standard
deviation of the 1000 proportions red by running the following data wrangling
code that uses the sd() summary function.

n = 25
virtual_prop_red_25 %>%
summarize(sd = sd(prop_red))

n = 50
virtual_prop_red_50 %>%
summarize(sd = sd(prop_red))

n = 100
virtual_prop_red_100 %>%
summarize(sd = sd(prop_red))

Let’s compare these three measures of distributional variation in Table 7.1.

TABLE 7.1: Comparing standard deviations of proportions red for three
different shovels

Number of slots in shovel Standard deviation of proportions red

25 0.094
50 0.069

100 0.045

As we observed in Figure 7.12, as the sample size increases, the variation
decreases. In other words, there is less variation in the 1000 values of the pro-
portion red. So as the sample size increases, our guesses at the true proportion
of the bowl’s balls that are red get more precise.

Learning check

(LC7.6) In Figure 7.12, we used shovels to take 1000 samples each, computed
the resulting 1000 proportions of the shovel’s balls that were red, and then
visualized the distribution of these 1000 proportions in a histogram. We did
this for shovels with 25, 50, and 100 slots in them. As the size of the shovels
increased, the histograms got narrower. In other words, as the size of the
shovels increased from 25 to 50 to 100, did the 1000 proportions

216 7 Sampling

• A. vary less,
• B. vary by the same amount, or
• C. vary more?

(LC7.7) What summary statistic did we use to quantify how much the 1000
proportions red varied?

• A. The interquartile range
• B. The standard deviation
• C. The range: the largest value minus the smallest.

7.3 Sampling framework
In both our tactile and our virtual sampling activities, we used sampling for the
purpose of estimation. We extracted samples in order to estimate the proportion
of the bowl’s balls that are red. We used sampling as a less time-consuming
approach than performing an exhaustive count of all the balls. Our virtual
sampling activity built up to the results shown in Figure 7.12 and Table 7.1:
comparing 1000 proportions red based on samples of size 25, 50, and 100. This
was our first attempt at understanding two key concepts relating to sampling
for estimation:

1. The effect of sampling variation on our estimates.
2. The effect of sample size on sampling variation.

Let’s now introduce some terminology and notation as well as statistical
definitions related to sampling. Given the number of new words you’ll need
to learn, you will likely have to read this section a few times. Keep in mind,
however, that all of the concepts underlying these terminology, notation, and
definitions tie directly to the concepts underlying our tactile and virtual
sampling activities. It will simply take time and practice to master them.

7.3.1 Terminology and notation

Here is a list of terminology and mathematical notation relating to sampling.

First, a population is a collection of individuals or observations we are inter-
ested in. This is also commonly denoted as a study population. We mathe-
matically denote the population’s size using upper-case 𝑁. In our sampling

7.3 Sampling framework 217

activities, the (study) population is the collection of 𝑁 = 2400 identically sized
red and white balls contained in the bowl.

Second, a population parameter is a numerical summary quantity about
the population that is unknown, but you wish you knew. For example, when
this quantity is a mean, the population parameter of interest is the population
mean. This is mathematically denoted with the Greek letter 𝜇 pronounced
“mu” (we’ll see a sampling activity involving means in the upcoming Section
8.1). In our earlier sampling from the bowl activity, however, since we were
interested in the proportion of the bowl’s balls that were red, the population
parameter is the population proportion. This is mathematically denoted with
the letter 𝑝.
Third, a census is an exhaustive enumeration or counting of all 𝑁 individuals or
observations in the population in order to compute the population parameter’s
value exactly. In our sampling activity, this would correspond to counting the
number of balls out of 𝑁 = 2400 that are red and computing the population
proportion 𝑝 that are red exactly. When the number 𝑁 of individuals or
observations in our population is large as was the case with our bowl, a census
can be quite expensive in terms of time, energy, and money.

Fourth, sampling is the act of collecting a sample from the population when
we don’t have the means to perform a census. We mathematically denote the
sample’s size using lower case 𝑛, as opposed to upper case 𝑁 which denotes
the population’s size. Typically the sample size 𝑛 is much smaller than the
population size 𝑁. Thus sampling is a much cheaper alternative than performing
a census. In our sampling activities, we used shovels with 25, 50, and 100 slots
to extract samples of size 𝑛 = 25, 𝑛 = 50, and 𝑛 = 100.

Fifth, a point estimate (AKA sample statistic) is a summary statistic
computed from a sample that estimates an unknown population parameter. In
our sampling activities, recall that the unknown population parameter was the
population proportion and that this is mathematically denoted with 𝑝. Our
point estimate is the sample proportion: the proportion of the shovel’s balls
that are red. In other words, it is our guess of the proportion of the bowl’s
balls balls that are red. We mathematically denote the sample proportion usinĝ𝑝. The “hat” on top of the 𝑝 indicates that it is an estimate of the unknown
population proportion 𝑝.
Sixth is the idea of representative sampling. A sample is said to be a
representative sample if it roughly looks like the population. In other words,
are the sample’s characteristics a good representation of the population’s
characteristics? In our sampling activity, are the samples of 𝑛 balls extracted
using our shovels representative of the bowl’s 𝑁 = 2400 balls?

218 7 Sampling

Seventh is the idea of generalizability. We say a sample is generalizable if
any results based on the sample can generalize to the population. In other
words, does the value of the point estimate generalize to the population? In our
sampling activity, can we generalize the sample proportion from our shovels to
the entire bowl? Using our mathematical notation, this is akin to asking if ̂𝑝 is
a “good guess” of 𝑝?
Eighth, we say biased sampling occurs if certain individuals or observations
in a population have a higher chance of being included in a sample than others.
We say a sampling procedure is unbiased if every observation in a population
had an equal chance of being sampled. In our sampling activities, since we
mixed all 𝑁 = 2400 balls prior to each group’s sampling and since each of the
equally sized balls had an equal chance of being sampled, our samples were
unbiased.

Ninth and lastly, the idea of random sampling. We say a sampling procedure
is random if we sample randomly from the population in an unbiased fashion.
In our sampling activities, this would correspond to sufficiently mixing the
bowl before each use of the shovel.

Phew, that’s a lot of new terminology and notation to learn! Let’s put them
all together to describe the paradigm of sampling.

In general:

• If the sampling of a sample of size 𝑛 is done at random, then
• the sample is unbiased and representative of the population of size 𝑁,

thus
• any result based on the sample can generalize to the population, thus
• the point estimate is a “good guess” of the unknown population parameter,

thus
• instead of performing a census, we can infer about the population using

sampling.

Specific to our sampling activity:

• If we extract a sample of 𝑛 = 50 balls at random, in other words, we mix
all of the equally sized balls before using the shovel, then

• the contents of the shovel are an unbiased representation of the contents
of the bowl’s 2400 balls, thus

• any result based on the shovel’s balls can generalize to the bowl, thus
• the sample proportion ̂𝑝 of the 𝑛 = 50 balls in the shovel that are red is a

“good guess” of the population proportion 𝑝 of the 𝑁 = 2400 balls that
are red, thus

7.3 Sampling framework 219

• instead of manually going over all 2400 balls in the bowl, we can infer about
the bowl using the shovel.

Note that last word we wrote in bold: infer. The act of “inferring” means to
deduce or conclude information from evidence and reasoning. In our sampling
activities, we wanted to infer about the proportion of the bowl’s balls that
are red. Statistical inference2 is the “theory, methods, and practice of forming
judgments about the parameters of a population and the reliability of statistical
relationships, typically on the basis of random sampling.” In other words,
statistical inference is the act of inference via sampling. In the upcoming
Chapter 8 on confidence intervals, we’ll introduce the infer package, which
makes statistical inference “tidy” and transparent. It is why this third portion
of the book is called “Statistical inference via infer.”

Learning check

(LC7.8) In the case of our bowl activity, what is the population parameter?
Do we know its value?

(LC7.9) What would performing a census in our bowl activity correspond to?
Why did we not perform a census?

(LC7.10) What purpose do point estimates serve in general? What is the name
of the point estimate specific to our bowl activity? What is its mathematical
notation?

(LC7.11) How did we ensure that our tactile samples using the shovel were
random?

(LC7.12) Why is it important that sampling be done at random?

(LC7.13) What are we inferring about the bowl based on the samples using
the shovel?

7.3.2 Statistical definitions

Now, for some important statistical definitions related to sampling. As a
refresher of our 1000 repeated/replicated virtual samples of size 𝑛 = 25, 𝑛 =
50, and 𝑛 = 100 in Section 7.2, let’s display Figure 7.12 again as Figure 7.13.

2https://en.wikipedia.org/wiki/Statistical_inference

220 7 Sampling

25 50 100

0.2 0.3 0.4 0.5 0.6 0.7 0.2 0.3 0.4 0.5 0.6 0.7 0.2 0.3 0.4 0.5 0.6 0.7

0

100

200

300

400

Proportion of shovel's balls that are red

c
o
u
n
t

Comparing distributions of proportions red for three different shovel sizes.

FIGURE 7.13: Previously seen three distributions of the sample proportion̂𝑝.
These types of distributions have a special name: sampling distributions;
their visualization displays the effect of sampling variation on the distribution
of any point estimate, in this case, the sample proportion ̂𝑝. Using these
sampling distributions, for a given sample size 𝑛, we can make statements
about what values we can typically expect.

For example, observe the centers of all three sampling distributions: they are
all roughly centered around 0.4 = 40%. Furthermore, observe that while we are
somewhat likely to observe sample proportions of red balls of 0.2 = 20% when
using the shovel with 25 slots, we will almost never observe a proportion of
20% when using the shovel with 100 slots. Observe also the effect of sample size
on the sampling variation. As the sample size 𝑛 increases from 25 to 50 to 100,
the variation of the sampling distribution decreases and thus the values cluster
more and more tightly around the same center of around 40%. We quantified
this variation using the standard deviation of our sample proportions in Table
7.1, which we display again as Table 7.2:

TABLE 7.2: Previously seen comparing standard deviations of proportions
red for three different shovels

Number of slots in shovel Standard deviation of proportions red

25 0.094
50 0.069

100 0.045

7.3 Sampling framework 221

So as the sample size increases, the standard deviation of the proportion of
red balls decreases. This type of standard deviation has another special name:
standard error. Standard errors quantify the effect of sampling variation
induced on our estimates. In other words, they quantify how much we can
expect different proportions of a shovel’s balls that are red to vary from one
sample to another sample to another sample, and so on. As a general rule, as
sample size increases, the standard error decreases.

Unfortunately, these names confuse many people who are new to statistical
inference. For example, it’s common for people who are new to statistical
inference to call the “sampling distribution” the “sample distribution.” Another
additional source of confusion is the name “standard deviation” and “standard
error.” Remember that a standard error is merely a kind of standard deviation:
the standard deviation of any point estimate from sampling. In other words,
all standard errors are standard deviations, but not every standard deviation
is necessarily a standard error.

To help reinforce these concepts, let’s re-display Figure 7.12 but using our new
terminology, notation, and definitions relating to sampling in Figure 7.14.

n = 25 n = 50 n = 100

0.2 0.3 0.4 0.5 0.6 0.7 0.2 0.3 0.4 0.5 0.6 0.7 0.2 0.3 0.4 0.5 0.6 0.7

0

100

200

300

400

Sample proportion p̂

c
o
u
n
t

Sampling distributions of p̂ based on n = 25, 50, 100.

FIGURE 7.14: Three sampling distributions of the sample proportion ̂𝑝.
Furthermore, let’s re-display Table 7.1 but using our new terminology, notation,
and definitions relating to sampling in Table 7.3.

222 7 Sampling

TABLE 7.3: Standard errors of the sample proportion based on sample sizes
of 25, 50, and 100

Sample size (n) Standard error of 𝑝̂
n = 25 0.094
n = 50 0.069
n = 100 0.045

Remember the key message of this last table: that as the sample size 𝑛 goes
up, the “typical” error of your point estimate will go down, as quantified by
the standard error.

Learning check

(LC7.14) What purpose did the sampling distributions serve?

(LC7.15) What does the standard error of the sample proportion ̂𝑝 quantify?

7.3.3 The moral of the story

Let’s recap this section so far. We’ve seen that if a sample is generated at
random, then the resulting point estimate is a “good guess” of the true unknown
population parameter. In our sampling activities, since we made sure to mix
the balls first before extracting a sample with the shovel, the resulting sample
proportion ̂𝑝 of the shovel’s balls that were red was a “good guess” of the
population proportion 𝑝 of the bowl’s balls that were red.

However, what do we mean by our point estimate being a “good guess”? Some-
times, we’ll get an estimate that is less than the true value of the population
parameter, while at other times we’ll get an estimate that is greater. This is
due to sampling variation. However, despite this sampling variation, our esti-
mates will “on average” be correct and thus will be centered at the true value.
This is because our sampling was done at random and thus in an unbiased
fashion.

In our sampling activities, sometimes our sample proportion ̂𝑝 was less than
the true population proportion 𝑝, while at other times it was greater. This was
due to the sampling variability. However, despite this sampling variation, our
sample proportions ̂𝑝 were “on average” correct and thus were centered at the
true value of the population proportion 𝑝. This is because we mixed our bowl
before taking samples and thus the sampling was done at random and thus in
an unbiased fashion. This is also known as having an accurate estimate.

7.3 Sampling framework 223

What was the value of the population proportion 𝑝 of the 𝑁 = 2400 balls in
the actual bowl that were red? There were 900 red balls, for a proportion red
of 900/2400 = 0.375 = 37.5%! How do we know this? Did the authors do an
exhaustive count of all the balls? No! They were listed in the contents of the
box that the bowl came in! Hence we were able to make the contents of the
virtual bowl match the tactile bowl:

bowl %>%
summarize(sum_red = sum(color == "red"),

sum_not_red = sum(color != "red"))

A tibble: 1 x 2
sum_red sum_not_red
<int> <int>

1 900 1500

Let’s re-display our sampling distributions from Figures 7.12 and 7.14, but now
with a vertical red line marking the true population proportion 𝑝 of balls that
are red = 37.5% in Figure 7.15. We see that while there is a certain amount
of error in the sample proportions ̂𝑝 for all three sampling distributions, on
average the ̂𝑝 are centered at the true population proportion red 𝑝.

n = 25 n = 50 n = 100

0.2 0.3 0.4 0.5 0.6 0.7 0.2 0.3 0.4 0.5 0.6 0.7 0.2 0.3 0.4 0.5 0.6 0.7

0

100

200

300

400

Sample proportion p̂

c
o
u
n
t

Sampling distributions of p̂ based on n = 25, 50, 100.

FIGURE 7.15: Three sampling distributions with population proportion 𝑝
marked by vertical line.

224 7 Sampling

We also saw in this section that as your sample size 𝑛 increases, your point
estimates will vary less and less and be more and more concentrated around
the true population parameter. This variation is quantified by the decreasing
standard error. In other words, the typical error of your point estimates will
decrease. In our sampling exercise, as the sample size increased, the variation
of our sample proportions ̂𝑝 decreased. You can observe this behavior in Figure
7.15. This is also known as having a precise estimate.

So random sampling ensures our point estimates are accurate, while on the
other hand having a large sample size ensures our point estimates are precise.
While the terms “accuracy” and “precision” may sound like they mean the
same thing, there is a subtle difference. Accuracy describes how “on target”
our estimates are, whereas precision describes how “consistent” our estimates
are. Figure 7.16 illustrates the difference.

FIGURE 7.16: Comparing accuracy and precision.

At this point, you might be asking yourself: “If we already knew the true
proportion of the bowl’s balls that are red was 37.5%, then why did we do any
sampling?”. You might also be asking: “Why did we take 1000 repeated samples

7.3 Sampling framework 225

of size n = 25, 50, and 100? Shouldn’t we be taking only one sample that’s as
large as possible?”. If you did ask yourself these questions, your suspicion is
merited!

The sampling activity involving the bowl is merely an idealized version of how
sampling is done in real life. We performed this exercise only to study and
understand:

1. The effect of sampling variation.
2. The effect of sample size on sampling variation.

This is not how sampling is done in real life. In a real-life scenario, we won’t
know what the true value of the population parameter is. Furthermore, we
wouldn’t take 1000 repeated/replicated samples, but rather a single sample
that’s as large as we can afford. In the next section, let’s now study a real-life
example of sampling: polls.

Learning check

(LC7.16) The table that follows is a version of Table 7.3 matching sample
sizes 𝑛 to different standard errors of the sample proportion ̂𝑝, but with the
rows randomly re-ordered and the sample sizes removed. Fill in the table by
matching the correct sample sizes to the correct standard errors.

TABLE 7.4: Standard errors of ̂𝑝 based on n = 25, 50, 100

Sample size Standard error of 𝑝̂
n = 0.094
n = 0.045
n = 0.069

For the following four Learning checks, let the estimate be the sample proportion̂𝑝: the proportion of a shovel’s balls that were red. It estimates the population
proportion 𝑝: the proportion of the bowl’s balls that were red.

(LC7.17) What is the difference between an accurate and a precise estimate?

(LC7.18) How do we ensure that an estimate is accurate? How do we ensure
that an estimate is precise?

(LC7.19) In a real-life situation, we would not take 1000 different samples to
infer about a population, but rather only one. Then, what was the purpose of
our exercises where we took 1000 different samples?

226 7 Sampling

(LC7.20) Figure 7.16 with the targets shows four combinations of “accurate
versus precise” estimates. Draw four corresponding sampling distributions of
the sample proportion ̂𝑝, like the one in the leftmost plot in Figure 7.15.

7.4 Case study: Polls
Let’s now switch gears to a more realistic sampling scenario than our bowl
activity: a poll. In practice, pollsters do not take 1000 repeated samples as we
did in our previous sampling activities, but rather take only a single sample
that’s as large as possible.

On December 4, 2013, National Public Radio in the US reported on a poll of
President Obama’s approval rating among young Americans aged 18-29 in an
article, “Poll: Support For Obama Among Young Americans Eroding.”3 The
poll was conducted by the Kennedy School’s Institute of Politics at Harvard
University. A quote from the article:

After voting for him in large numbers in 2008 and 2012, young Americans are
souring on President Obama.

According to a new Harvard University Institute of Politics poll, just 41 percent
of millennials — adults ages 18-29 — approve of Obama’s job performance,
his lowest-ever standing among the group and an 11-point drop from April.

Let’s tie elements of the real-life poll in this new article with our “tactile”
and “virtual” bowl activity from Sections 7.1 and 7.2 using the terminology,
notations, and definitions we learned in Section 7.3. You’ll see that our sampling
activity with the bowl is an idealized version of what pollsters are trying to do
in real life.

First, who is the (Study) Population of 𝑁 individuals or observations of
interest?

• Bowl: 𝑁 = 2400 identically sized red and white balls
3https://www.npr.org/sections/itsallpolitics/2013/12/04/248793753/poll-support-for-obama-

among-young-americans-eroding

7.4 Case study: Polls 227

• Obama poll: 𝑁 = ? young Americans aged 18-29

Second, what is the population parameter?

• Bowl: The population proportion 𝑝 of all the balls in the bowl that are red.
• Obama poll: The population proportion 𝑝 of all young Americans who

approve of Obama’s job performance.

Third, what would a census look like?

• Bowl: Manually going over all 𝑁 = 2400 balls and exactly computing the
population proportion 𝑝 of the balls that are red.

• Obama poll: Locating all 𝑁 young Americans and asking them all if they
approve of Obama’s job performance. In this case, we don’t even know what
the population size 𝑁 is!

Fourth, how do you perform sampling to obtain a sample of size 𝑛?
• Bowl: Using a shovel with 𝑛 slots.
• Obama poll: One method is to get a list of phone numbers of all young

Americans and pick out 𝑛 phone numbers. In this poll’s case, the sample size
of this poll was 𝑛 = 2089 young Americans.

Fifth, what is your point estimate (AKA sample statistic) of the unknown
population parameter?

• Bowl: The sample proportion ̂𝑝 of the balls in the shovel that were red.
• Obama poll: The sample proportion ̂𝑝 of young Americans in the sample that

approve of Obama’s job performance. In this poll’s case, ̂𝑝 = 0.41 = 41%,
the quoted percentage in the second paragraph of the article.

Sixth, is the sampling procedure representative?

• Bowl: Are the contents of the shovel representative of the contents of the
bowl? Because we mixed the bowl before sampling, we can feel confident
that they are.

• Obama poll: Is the sample of 𝑛 = 2089 young Americans representative of
all young Americans aged 18-29? This depends on whether the sampling was
random.

Seventh, are the samples generalizable to the greater population?

• Bowl: Is the sample proportion ̂𝑝 of the shovel’s balls that are red a “good
guess” of the population proportion 𝑝 of the bowl’s balls that are red? Given
that the sample was representative, the answer is yes.

• Obama poll: Is the sample proportion ̂𝑝 = 0.41 of the sample of young
Americans who supported Obama a “good guess” of the population proportion𝑝 of all young Americans who supported Obama at this time in 2013? In other

228 7 Sampling

words, can we confidently say that roughly 41% of all young Americans
approved of Obama at the time of the poll? Again, this depends on whether
the sampling was random.

Eighth, is the sampling procedure unbiased? In other words, do all observa-
tions have an equal chance of being included in the sample?

• Bowl: Since each ball was equally sized and we mixed the bowl before using
the shovel, each ball had an equal chance of being included in a sample and
hence the sampling was unbiased.

• Obama poll: Did all young Americans have an equal chance at being rep-
resented in this poll? Again, this depends on whether the sampling was
random.

Ninth and lastly, was the sampling done at random?

• Bowl: As long as you mixed the bowl sufficiently before sampling, your
samples would be random.

• Obama poll: Was the sample conducted at random? We can’t answer this
question without knowing about the sampling methodology used by Kennedy
School’s Institute of Politics at Harvard University. We’ll discuss this more
at the end of this section.

In other words, the poll by Kennedy School’s Institute of Politics at Harvard
University can be thought of as an instance of using the shovel to sample balls
from the bowl. Furthermore, if another polling company conducted a similar
poll of young Americans at roughly the same time, they would likely get a
different estimate than 41%. This is due to sampling variation.

Let’s now revisit the sampling paradigm from Subsection 7.3.1:

In general:

• If the sampling of a sample of size 𝑛 is done at random, then
• the sample is unbiased and representative of the population of size 𝑁,

thus
• any result based on the sample can generalize to the population, thus
• the point estimate is a “good guess” of the unknown population parameter,

thus
• instead of performing a census, we can infer about the population using

sampling.

Specific to the bowl:

• If we extract a sample of 𝑛 = 50 balls at random, in other words, we mix
all of the equally sized balls before using the shovel, then

7.4 Case study: Polls 229

• the contents of the shovel are an unbiased representation of the contents
of the bowl’s 2400 balls, thus

• any result based on the shovel’s balls can generalize to the bowl, thus
• the sample proportion ̂𝑝 of the 𝑛 = 50 balls in the shovel that are red is a

“good guess” of the population proportion 𝑝 of the 𝑁 = 2400 balls that
are red, thus

• instead of manually going over all 2400 balls in the bowl, we can infer about
the bowl using the shovel.

Specific to the Obama poll:

• If we had a way of contacting a randomly chosen sample of 2089 young
Americans and polling their approval of President Obama in 2013, then

• these 2089 young Americans would be an unbiased and representative
sample of all young Americans in 2013, thus

• any results based on this sample of 2089 young Americans can generalize
to the entire population of all young Americans in 2013, thus

• the reported sample approval rating of 41% of these 2089 young Americans
is a good guess of the true approval rating among all young Americans in
2013, thus

• instead of performing an expensive census of all young Americans in 2013,
we can infer about all young Americans in 2013 using polling.

So as you can see, it was critical for the sample obtained by Kennedy School’s
Institute of Politics at Harvard University to be truly random in order to
infer about all young Americans’ opinions about Obama. Was their sample
truly random? It’s hard to answer such questions without knowing about the
sampling methodology they used. For example, if this poll was conducted using
only mobile phone numbers, people without mobile phones would be left out
and therefore not represented in the sample. What about if Kennedy School’s
Institute of Politics at Harvard University conducted this poll on an internet
news site? Then people who don’t read this particular internet news site would
be left out. Ensuring that our samples were random was easy to do in our
sampling bowl exercises; however, in a real-life situation like the Obama poll,
this is much harder to do.

Learning check

Comment on the representativeness of the following sampling methodologies:

(LC7.21) The Royal Air Force wants to study how resistant all their airplanes
are to bullets. They study the bullet holes on all the airplanes on the tarmac
after an air battle against the Luftwaffe (German Air Force).

230 7 Sampling

(LC7.22) Imagine it is 1993, a time when almost all households had landlines.
You want to know the average number of people in each household in your city.
You randomly pick out 500 phone numbers from the phone book and conduct
a phone survey.

(LC7.23) You want to know the prevalence of illegal downloading of TV
shows among students at a local college. You get the emails of 100 randomly
chosen students and ask them, “How many times did you download a pirated
TV show last week?”.

(LC7.24) A local college administrator wants to know the average income
of all graduates in the last 10 years. So they get the records of five randomly
chosen graduates, contact them, and obtain their answers.

7.5 Conclusion
7.5.1 Sampling scenarios

In this chapter, we performed both tactile and virtual sampling exercises to
infer about an unknown proportion. We also presented a case study of sampling
in real life with polls. In each case, we used the sample proportion ̂𝑝 to estimate
the population proportion 𝑝. However, we are not just limited to scenarios
related to proportions. In other words, we can use sampling to estimate other
population parameters using other point estimates as well. We present four
more such scenarios in Table 7.5.

TABLE 7.5: Scenarios of sampling for inference

Scenario Population
parameter

Notation Point estimate Symbol(s)

1 Population
proportion

𝑝 Sample proportion 𝑝̂
2 Population mean 𝜇 Sample mean 𝑥 or 𝜇
3 Difference in

population
proportions

𝑝1 − 𝑝2 Difference in sample
proportions

𝑝̂1 − 𝑝̂2
4 Difference in

population means
𝜇1 − 𝜇2 Difference in sample

means
𝑥1 − 𝑥2

5 Population
regression slope

𝛽1 Fitted regression slope 𝑏1 or 𝛽1
In the rest of this book, we’ll cover all the remaining scenarios as follows:

7.5 Conclusion 231

• In Chapter 8, we’ll cover examples of statistical inference for
– Scenario 2: The mean age 𝜇 of all pennies in circulation in the US.
– Scenario 3: The difference 𝑝1 − 𝑝2 in the proportion of people who yawn

when seeing someone else yawn first minus the proportion of people
who yawn without seeing someone else yawn first. This is an example of
two-sample inference.

• In Chapter 9, we’ll cover an example of statistical inference for
– Scenario 4: The difference 𝜇1 − 𝜇2 in mean IMDb ratings for action and

romance movies. This is another example of two-sample inference.
• In Chapter 10, we’ll cover an example of statistical inference for regression

by revisiting the regression models for teaching score as a function of various
instructor demographic variables you saw in Chapters 5 and 6.

– Scenario 5: The slope 𝛽1 of the population regression line.

7.5.2 Central Limit Theorem

What you visualized in Figures 7.12 and 7.14 and summarized in Tables 7.1
and 7.3 was a demonstration of a famous theorem, or mathematically proven
truth, called the Central Limit Theorem. It loosely states that when sample
means are based on larger and larger sample sizes, the sampling distribution of
these sample means becomes both more and more normally shaped and more
and more narrow.

In other words, their sampling distribution increasingly follows a normal
distribution and the variation of these sampling distributions gets smaller, as
quantified by their standard errors.

Shuyi Chiou, Casey Dunn, and Pathikrit Bhattacharyya created a 3-minute
and 38-second video at https://youtu.be/jvoxEYmQHNM explaining this crucial sta-
tistical theorem using the average weight of wild bunny rabbits and the average
wingspan of dragons as examples. Figure 7.17 shows a preview of this video.

FIGURE 7.17: Preview of Central Limit Theorem video.

232 7 Sampling

7.5.3 Additional resources

Solutions to all Learning checks can be found online in Appendix D4.

An R script file of all R code used in this chapter is available at https:
//www.moderndive.com/scripts/07-sampling.R.

7.5.4 What’s to come?

Recall in our Obama poll case study in Section 7.4 that based on this particular
sample, the best guess by Kennedy School’s Institute of Politics at Harvard
University of the U.S. President Obama’s approval rating among all young
Americans was 41%. However, this isn’t the end of the story. If you read the
article further, it states:

The online survey of 2,089 adults was conducted from Oct. 30 to Nov. 11,
just weeks after the federal government shutdown ended and the problems
surrounding the implementation of the Affordable Care Act began to take
center stage. The poll’s margin of error was plus or minus 2.1 percentage
points.

Note the term margin of error, which here is “plus or minus 2.1 percentage
points.” Most polls won’t produce an estimate that’s perfectly right; there
will always be a certain amount of error caused by sampling variation. The
margin of error of plus or minus 2.1 percentage points is saying that a typical
range of errors for polls of this type is about ± 2.1%, in words from about
2.1% too small to about 2.1% too big. We can restate this as the interval
of [41% − 2.1%, 41% + 2.1%] = [37.9%, 43.1%] (this notation indicates the
interval contains all values between 37.9% and 43.1%, including the end points
of 37.9% and 43.1%). We’ll see in the next chapter that such intervals are
known as confidence intervals.

4https://moderndive.com/D-appendixD.html

8
Bootstrapping and Confidence Intervals

In Chapter 7, we studied sampling. We started with a “tactile” exercise where
we wanted to know the proportion of balls in the sampling bowl in Figure 7.1
that are red. While we could have performed an exhaustive count, this would
have been a tedious process. So instead, we used a shovel to extract a sample
of 50 balls and used the resulting proportion that were red as an estimate.
Furthermore, we made sure to mix the bowl’s contents before every use of the
shovel. Because of the randomness created by the mixing, different uses of the
shovel yielded different proportions red and hence different estimates of the
proportion of the bowl’s balls that are red.

We then mimicked this “tactile” sampling exercise with an equivalent “virtual”
sampling exercise performed on the computer. Using our computer’s random
number generator, we quickly mimicked the above sampling procedure a
large number of times. In Subsection 7.2.4, we quickly repeated this sampling
procedure 1000 times, using three different “virtual” shovels with 25, 50, and
100 slots. We visualized these three sets of 1000 estimates in Figure 7.15 and
saw that as the sample size increased, the variation in the estimates decreased.

In doing so, what we did was construct sampling distributions. The motivation
for taking 1000 repeated samples and visualizing the resulting estimates was
to study how these estimates varied from one sample to another; in other
words, we wanted to study the effect of sampling variation. We quantified
the variation of these estimates using their standard deviation, which has a
special name: the standard error. In particular, we saw that as the sample
size increased from 25 to 50 to 100, the standard error decreased and thus
the sampling distributions narrowed. Larger sample sizes led to more precise
estimates that varied less around the center.

We then tied these sampling exercises to terminology and mathematical no-
tation related to sampling in Subsection 7.3.1. Our study population was the
large bowl with 𝑁 = 2400 balls, while the population parameter, the unknown
quantity of interest, was the population proportion 𝑝 of the bowl’s balls that
were red. Since performing a census would be expensive in terms of time and
energy, we instead extracted a sample of size 𝑛 = 50. The point estimate, also
known as a sample statistic, used to estimate 𝑝 was the sample proportion ̂𝑝

233

234 8 Bootstrapping and Confidence Intervals

of these 50 sampled balls that were red. Furthermore, since the sample was
obtained at random, it can be considered as unbiased and representative of the
population. Thus any results based on the sample could be generalized to the
population. Therefore, the proportion of the shovel’s balls that were red was a
“good guess” of the proportion of the bowl’s balls that are red. In other words,
we used the sample to infer about the population.

However, as described in Section 7.2, both the tactile and virtual sampling
exercises are not what one would do in real life; this was merely an activity
used to study the effects of sampling variation. In a real-life situation, we would
not take 1000 samples of size 𝑛, but rather take a single representative sample
that’s as large as possible. Additionally, we knew that the true proportion of
the bowl’s balls that were red was 37.5%. In a real-life situation, we will not
know what this value is. Because if we did, then why would we take a sample
to estimate it?

An example of a realistic sampling situation would be a poll, like the Obama
poll1 you saw in Section 7.4. Pollsters did not know the true proportion of all
young Americans who supported President Obama in 2013, and thus they took
a single sample of size 𝑛 = 2089 young Americans to estimate this value.

So how does one quantify the effects of sampling variation when you only have
a single sample to work with? You cannot directly study the effects of sampling
variation when you only have one sample. One common method to study this
is bootstrapping resampling, which will be the focus of the earlier sections of
this chapter.

Furthermore, what if we would like not only a single estimate of the unknown
population parameter, but also a range of highly plausible values? Going back to
the Obama poll article, it stated that the pollsters’ estimate of the proportion of
all young Americans who supported President Obama was 41%. But in addition
it stated that the poll’s “margin of error was plus or minus 2.1 percentage
points.” This “plausible range” was [41% - 2.1%, 41% + 2.1%] = [38.9%, 43.1%].
This range of plausible values is what’s known as a confidence interval, which
will be the focus of the later sections of this chapter.

Needed packages

Let’s load all the packages needed for this chapter (this assumes you’ve already
installed them). Recall from our discussion in Section 4.4 that loading the
tidyverse package by running library(tidyverse) loads the following commonly
used data science packages all at once:

1https://www.npr.org/sections/itsallpolitics/2013/12/04/248793753/poll-support-for-obama-
among-young-americans-eroding

8.1 Pennies activity 235

• ggplot2 for data visualization
• dplyr for data wrangling
• tidyr for converting data to tidy format
• readr for importing spreadsheet data into R
• As well as the more advanced purrr, tibble, stringr, and forcats packages

If needed, read Section 1.3 for information on how to install and load R
packages.

library(tidyverse)
library(moderndive)
library(infer)

8.1 Pennies activity
As we did in Chapter 7, we’ll begin with a hands-on tactile activity.

8.1.1 What is the average year on US pennies in 2019?

Try to imagine all the pennies being used in the United States in 2019. That’s
a lot of pennies! Now say we’re interested in the average year of minting
of all these pennies. One way to compute this value would be to gather up
all pennies being used in the US, record the year, and compute the average.
However, this would be near impossible! So instead, let’s collect a sample of 50
pennies from a local bank in downtown Northampton, Massachusetts, USA
as seen in Figure 8.1.

FIGURE 8.1: Collecting a sample of 50 US pennies from a local bank.

An image of these 50 pennies can be seen in Figure 8.2. For each of the 50
pennies starting in the top left, progressing row-by-row, and ending in the

236 8 Bootstrapping and Confidence Intervals

bottom right, we assigned an “ID” identification variable and marked the year
of minting.

FIGURE 8.2: 50 US pennies labelled.

The moderndive package contains this data on our 50 sampled pennies in the
pennies_sample data frame:

pennies_sample

A tibble: 50 x 2
ID year

<int> <dbl>
1 1 2002
2 2 1986
3 3 2017
4 4 1988
5 5 2008
6 6 1983
7 7 2008
8 8 1996
9 9 2004
10 10 2000
... with 40 more rows

The pennies_sample data frame has 50 rows corresponding to each penny with
two variables. The first variable ID corresponds to the ID labels in Figure 8.2,

8.1 Pennies activity 237

whereas the second variable year corresponds to the year of minting saved as a
numeric variable, also known as a double (dbl).

Based on these 50 sampled pennies, what can we say about all US pennies in
2019? Let’s study some properties of our sample by performing an exploratory
data analysis. Let’s first visualize the distribution of the year of these 50 pennies
using our data visualization tools from Chapter 2. Since year is a numerical
variable, we use a histogram in Figure 8.3 to visualize its distribution.

ggplot(pennies_sample, aes(x = year)) +
geom_histogram(binwidth = 10, color = "white")

0

5

10

1970 1990 2010

year

c
o
u
n
t

FIGURE 8.3: Distribution of year on 50 US pennies.

Observe a slightly left-skewed distribution, since most pennies fall between
1980 and 2010 with only a few pennies older than 1970. What is the average
year for the 50 sampled pennies? Eyeballing the histogram it appears to be
around 1990. Let’s now compute this value exactly using our data wrangling
tools from Chapter 3.

pennies_sample %>%
summarize(mean_year = mean(year))

A tibble: 1 x 1

238 8 Bootstrapping and Confidence Intervals

mean_year
<dbl>

1 1995.44

Thus, if we’re willing to assume that pennies_sample is a representative sample
from all US pennies, a “good guess” of the average year of minting of all US
pennies would be 1995.44. In other words, around 1995. This should all start
sounding similar to what we did previously in Chapter 7!

In Chapter 7, our study population was the bowl of 𝑁 = 2400 balls. Our
population parameter was the population proportion of these balls that were
red, denoted by 𝑝. In order to estimate 𝑝, we extracted a sample of 50 balls
using the shovel. We then computed the relevant point estimate: the sample
proportion of these 50 balls that were red, denoted mathematically by ̂𝑝.
Here our population is 𝑁 = whatever the number of pennies are being used in
the US, a value which we don’t know and probably never will. The population
parameter of interest is now the population mean year of all these pennies,
a value denoted mathematically by the Greek letter 𝜇 (pronounced “mu”).
In order to estimate 𝜇, we went to the bank and obtained a sample of 50
pennies and computed the relevant point estimate: the sample mean year of
these 50 pennies, denoted mathematically by 𝑥 (pronounced “x-bar”). An
alternative and more intuitive notation for the sample mean is ̂𝜇. However,
this is unfortunately not as commonly used, so in this book we’ll stick with
convention and always denote the sample mean as 𝑥.
We summarize the correspondence between the sampling bowl exercise in
Chapter 7 and our pennies exercise in Table 8.1, which are the first two rows
of the previously seen Table 7.5.

TABLE 8.1: Scenarios of sampling for inference

Scenario Population
parameter

Notation Point estimate Symbol(s)

1 Population
proportion

𝑝 Sample
proportion

𝑝̂
2 Population

mean
𝜇 Sample mean 𝑥 or 𝜇

Going back to our 50 sampled pennies in Figure 8.2, the point estimate of
interest is the sample mean 𝑥 of 1995.44. This quantity is an estimate of the
population mean year of all US pennies 𝜇.
Recall that we also saw in Chapter 7 that such estimates are prone to sampling
variation. For example, in this particular sample in Figure 8.2, we observed

8.1 Pennies activity 239

three pennies with the year 1999. If we sampled another 50 pennies, would we
observe exactly three pennies with the year 1999 again? More than likely not.
We might observe none, one, two, or maybe even all 50! The same can be said
for the other 26 unique years that are represented in our sample of 50 pennies.

To study the effects of sampling variation in Chapter 7, we took many samples,
something we could easily do with our shovel. In our case with pennies, however,
how would we obtain another sample? By going to the bank and getting another
roll of 50 pennies.

Say we’re feeling lazy, however, and don’t want to go back to the bank. How
can we study the effects of sampling variation using our single sample? We
will do so using a technique known as bootstrap resampling with replacement,
which we now illustrate.

8.1.2 Resampling once

Step 1: Let’s print out identically sized slips of paper representing our 50
pennies as seen in Figure 8.4.

FIGURE 8.4: Step 1: 50 slips of paper representing 50 US pennies.

Step 2: Put the 50 slips of paper into a hat or tuque as seen in Figure 8.5.

240 8 Bootstrapping and Confidence Intervals

FIGURE 8.5: Step 2: Putting 50 slips of paper in a hat.

Step 3: Mix the hat’s contents and draw one slip of paper at random as seen
in Figure 8.6. Record the year.

FIGURE 8.6: Step 3: Drawing one slip of paper at random.

Step 4: Put the slip of paper back in the hat! In other words, replace it as
seen in Figure 8.7.

8.1 Pennies activity 241

FIGURE 8.7: Step 4: Replacing slip of paper.

Step 5: Repeat Steps 3 and 4 a total of 49 more times, resulting in 50 recorded
years.

What we just performed was a resampling of the original sample of 50 pennies.
We are not sampling 50 pennies from the population of all US pennies as we
did in our trip to the bank. Instead, we are mimicking this act by resampling
50 pennies from our original sample of 50 pennies.

Now ask yourselves, why did we replace our resampled slip of paper back into
the hat in Step 4? Because if we left the slip of paper out of the hat each time
we performed Step 4, we would end up with the same 50 original pennies! In
other words, replacing the slips of paper induces sampling variation.

Being more precise with our terminology, we just performed a resampling with
replacement from the original sample of 50 pennies. Had we left the slip of
paper out of the hat each time we performed Step 4, this would be resampling
without replacement.

Let’s study our 50 resampled pennies via an exploratory data analysis. First,
let’s load the data into R by manually creating a data frame pennies_resample
of our 50 resampled values. We’ll do this using the tibble() command from
the dplyr package. Note that the 50 values you resample will almost certainly
not be the same as ours given the inherent randomness.

pennies_resample <- tibble(
year = c(1976, 1962, 1976, 1983, 2017, 2015, 2015, 1962, 2016, 1976,

2006, 1997, 1988, 2015, 2015, 1988, 2016, 1978, 1979, 1997,

242 8 Bootstrapping and Confidence Intervals

1974, 2013, 1978, 2015, 2008, 1982, 1986, 1979, 1981, 2004,
2000, 1995, 1999, 2006, 1979, 2015, 1979, 1998, 1981, 2015,
2000, 1999, 1988, 2017, 1992, 1997, 1990, 1988, 2006, 2000)

)

The 50 values of year in pennies_resample represent a resample of size 50 from
the original sample of 50 pennies. We display the 50 resampled pennies in
Figure 8.8.

FIGURE 8.8: 50 resampled US pennies labelled.

Let’s compare the distribution of the numerical variable year of our 50 resampled
pennies with the distribution of the numerical variable year of our original
sample of 50 pennies in Figure 8.9.

ggplot(pennies_resample, aes(x = year)) +
geom_histogram(binwidth = 10, color = "white") +
labs(title = "Resample of 50 pennies")

ggplot(pennies_sample, aes(x = year)) +
geom_histogram(binwidth = 10, color = "white") +
labs(title = "Original sample of 50 pennies")

8.1 Pennies activity 243

0

5

10

15

0

5

10

15

1960 1980 2000 2020 1960 1980 2000 2020

year year

c
o
u
n
t

c
o
u
n
t

Resample of 50 pennies Original sample of 50 pennies

FIGURE 8.9: Comparing year in the resampled pennies_resample with the
original sample pennies_sample.

Observe in Figure 8.9 that while the general shapes of both distributions of
year are roughly similar, they are not identical.

Recall from the previous section that the sample mean of the original sample
of 50 pennies from the bank was 1995.44. What about for our resample? Any
guesses? Let’s have dplyr help us out as before:

pennies_resample %>%
summarize(mean_year = mean(year))

A tibble: 1 x 1
mean_year

<dbl>
1 1996

We obtained a different mean year of 1996. This variation is induced by the
resampling with replacement we performed earlier.

What if we repeated this resampling exercise many times? Would we obtain
the same mean year each time? In other words, would our guess at the mean
year of all pennies in the US in 2019 be exactly 1996 every time? Just as we

244 8 Bootstrapping and Confidence Intervals

did in Chapter 7, let’s perform this resampling activity with the help of some
of our friends: 35 friends in total.

8.1.3 Resampling 35 times

Each of our 35 friends will repeat the same five steps:

1. Start with 50 identically sized slips of paper representing the 50
pennies.

2. Put the 50 small pieces of paper into a hat or beanie cap.
3. Mix the hat’s contents and draw one slip of paper at random. Record

the year in a spreadsheet.
4. Replace the slip of paper back in the hat!
5. Repeat Steps 3 and 4 a total of 49 more times, resulting in 50 recorded

years.

Since we had 35 of our friends perform this task, we ended up with 35⋅50 = 1750
values. We recorded these values in a shared spreadsheet2 with 50 rows (plus a
header row) and 35 columns. We display a snapshot of the first 10 rows and
five columns of this shared spreadsheet in Figure 8.10.

FIGURE 8.10: Snapshot of shared spreadsheet of resampled pennies.

For your convenience, we’ve taken these 35 ⋅ 50 = 1750 values and saved them
in pennies_resamples, a “tidy” data frame included in the moderndive package.
We saw what it means for a data frame to be “tidy” in Subsection 4.2.1.

2https://docs.google.com/spreadsheets/d/1y3kOsU_wDrDd5eiJbEtLeHT9L5SvpZb_TrzwFBsouk0/

8.1 Pennies activity 245

pennies_resamples

A tibble: 1,750 x 3
Groups: name [35]

replicate name year
<int> <chr> <dbl>

1 1 Arianna 1988
2 1 Arianna 2002
3 1 Arianna 2015
4 1 Arianna 1998
5 1 Arianna 1979
6 1 Arianna 1971
7 1 Arianna 1971
8 1 Arianna 2015
9 1 Arianna 1988
10 1 Arianna 1979
... with 1,740 more rows

What did each of our 35 friends obtain as the mean year? Once again, dplyr to
the rescue! After grouping the rows by name, we summarize each group of 50
rows by their mean year:

resampled_means <- pennies_resamples %>%
group_by(name) %>%
summarize(mean_year = mean(year))

resampled_means

A tibble: 35 x 2
name mean_year
<chr> <dbl>

1 Arianna 1992.5
2 Artemis 1996.42
3 Bea 1996.32
4 Camryn 1996.9
5 Cassandra 1991.22
6 Cindy 1995.48
7 Claire 1995.52
8 Dahlia 1998.48
9 Dan 1993.86
10 Eindra 1993.56
... with 25 more rows

246 8 Bootstrapping and Confidence Intervals

Observe that resampled_means has 35 rows corresponding to the 35 means based
on the 35 resamples. Furthermore, observe the variation in the 35 values in the
variable mean_year. Let’s visualize this variation using a histogram in Figure
8.11. Recall that adding the argument boundary = 1990 to the geom_histogram()
sets the binning structure so that one of the bin boundaries is at 1990 exactly.

ggplot(resampled_means, aes(x = mean_year)) +
geom_histogram(binwidth = 1, color = "white", boundary = 1990) +
labs(x = "Sampled mean year")

0

2

4

6

8

1989 1992 1995 1998

Sampled mean year

c
o
u
n
t

FIGURE 8.11: Distribution of 35 sample means from 35 resamples.

Observe in Figure 8.11 that the distribution looks roughly normal and that we
rarely observe sample mean years less than 1992 or greater than 2000. Also
observe how the distribution is roughly centered at 1995, which is close to the
sample mean of 1995.44 of the original sample of 50 pennies from the bank.

8.1.4 What did we just do?

What we just demonstrated in this activity is the statistical procedure known
as bootstrap resampling with replacement. We used resampling to mimic the
sampling variation we studied in Chapter 7 on sampling. However, in this case,
we did so using only a single sample from the population.

In fact, the histogram of sample means from 35 resamples in Figure 8.11
is called the bootstrap distribution. It is an approximation to the sampling

8.2 Computer simulation of resampling 247

distribution of the sample mean, in the sense that both distributions will have
a similar shape and similar spread. In fact in the upcoming Section 8.7, we’ll
show you that this is the case. Using this bootstrap distribution, we can study
the effect of sampling variation on our estimates. In particular, we’ll study the
typical “error” of our estimates, known as the standard error.

In Section 8.2 we’ll mimic our tactile resampling activity virtually on the
computer, allowing us to quickly perform the resampling many more than 35
times. In Section 8.3 we’ll define the statistical concept of a confidence interval,
which builds off the concept of bootstrap distributions.

In Section 8.4, we’ll construct confidence intervals using the dplyr package, as
well as a new package: the infer package for “tidy” and transparent statistical
inference. We’ll introduce the “tidy” statistical inference framework that was
the motivation for the infer package pipeline. The infer package will be the
driving package throughout the rest of this book.

As we did in Chapter 7, we’ll tie all these ideas together with a real-life case
study in Section 8.6. This time we’ll look at data from an experiment about
yawning from the US television show Mythbusters.

8.2 Computer simulation of resampling
Let’s now mimic our tactile resampling activity virtually with a computer.

8.2.1 Virtually resampling once

First, let’s perform the virtual analog of resampling once. Recall that the
pennies_sample data frame included in the moderndive package contains the
years of our original sample of 50 pennies from the bank. Furthermore, recall
in Chapter 7 on sampling that we used the rep_sample_n() function as a virtual
shovel to sample balls from our virtual bowl of 2400 balls as follows:

virtual_shovel <- bowl %>%
rep_sample_n(size = 50)

Let’s modify this code to perform the resampling with replacement of the 50
slips of paper representing our original sample 50 pennies:

virtual_resample <- pennies_sample %>%
rep_sample_n(size = 50, replace = TRUE)

248 8 Bootstrapping and Confidence Intervals

Observe how we explicitly set the replace argument to TRUE in order to tell
rep_sample_n() that we would like to sample pennies with replacement. Had
we not set replace = TRUE, the function would’ve assumed the default value of
FALSE and hence done resampling without replacement. Additionally, since we
didn’t specify the number of replicates via the reps argument, the function
assumes the default of one replicate reps = 1. Lastly, observe also that the size
argument is set to match the original sample size of 50 pennies.

Let’s look at only the first 10 out of 50 rows of virtual_resample:

virtual_resample

A tibble: 50 x 3
Groups: replicate [1]

replicate ID year
<int> <int> <dbl>

1 1 37 1962
2 1 1 2002
3 1 45 1997
4 1 28 2006
5 1 50 2017
6 1 10 2000
7 1 16 2015
8 1 47 1982
9 1 23 1998
10 1 44 2015
... with 40 more rows

The replicate variable only takes on the value of 1 corresponding to us
only having reps = 1, the ID variable indicates which of the 50 pennies from
pennies_sample was resampled, and year denotes the year of minting. Let’s now
compute the mean year in our virtual resample of size 50 using data wrangling
functions included in the dplyr package:

virtual_resample %>%
summarize(resample_mean = mean(year))

A tibble: 1 x 2
replicate resample_mean

<int> <dbl>
1 1 1996

8.2 Computer simulation of resampling 249

As we saw when we did our tactile resampling exercise, the resulting mean
year is different than the mean year of our 50 originally sampled pennies of
1995.44.

8.2.2 Virtually resampling 35 times

Let’s now perform the virtual analog of our 35 friends’ resampling. Using these
results, we’ll be able to study the variability in the sample means from 35
resamples of size 50. Let’s first add a reps = 35 argument to rep_sample_n() to
indicate we would like 35 replicates. Thus, we want to repeat the resampling
with the replacement of 50 pennies 35 times.

virtual_resamples <- pennies_sample %>%
rep_sample_n(size = 50, replace = TRUE, reps = 35)

virtual_resamples

A tibble: 1,750 x 3
Groups: replicate [35]

replicate ID year
<int> <int> <dbl>

1 1 21 1981
2 1 34 1985
3 1 4 1988
4 1 11 1994
5 1 26 1979
6 1 8 1996
7 1 19 1983
8 1 21 1981
9 1 49 2006
10 1 2 1986
... with 1,740 more rows

The resulting virtual_resamples data frame has 35 ⋅ 50 = 1750 rows correspond-
ing to 35 resamples of 50 pennies. Let’s now compute the resulting 35 sample
means using the same dplyr code as we did in the previous section, but this
time adding a group_by(replicate):

virtual_resampled_means <- virtual_resamples %>%
group_by(replicate) %>%
summarize(mean_year = mean(year))

virtual_resampled_means

250 8 Bootstrapping and Confidence Intervals

A tibble: 35 x 2
replicate mean_year

<int> <dbl>
1 1 1995.58
2 2 1999.74
3 3 1993.7
4 4 1997.1
5 5 1999.42
6 6 1995.12
7 7 1994.94
8 8 1997.78
9 9 1991.26
10 10 1996.88
... with 25 more rows

Observe that virtual_resampled_means has 35 rows, corresponding to the 35
resampled means. Furthermore, observe that the values of mean_year vary. Let’s
visualize this variation using a histogram in Figure 8.12.

ggplot(virtual_resampled_means, aes(x = mean_year)) +
geom_histogram(binwidth = 1, color = "white", boundary = 1990) +
labs(x = "Resample mean year")

0

2

4

6

8

1992 1995 1998 2000

Resample mean year

c
o
u
n
t

FIGURE 8.12: Distribution of 35 sample means from 35 resamples.

8.2 Computer simulation of resampling 251

Let’s compare our virtually constructed bootstrap distribution with the one
our 35 friends constructed via our tactile resampling exercise in Figure 8.13.
Observe how they are somewhat similar, but not identical.

0

2

4

6

8

0

2

4

6

8

1992 1994 1996 1998 2000 1990 1992 1994 1996 1998 2000

Resample mean year Resample mean year

c
o
u
n
t

c
o
u
n
t

35 means of tactile resamples 35 means of virtual resamples

FIGURE 8.13: Comparing distributions of means from resamples.

Recall that in the “resampling with replacement” scenario we are illustrating
here, both of these histograms have a special name: the bootstrap distribution
of the sample mean. Furthermore, recall they are an approximation to the
sampling distribution of the sample mean, a concept you saw in Chapter 7 on
sampling. These distributions allow us to study the effect of sampling variation
on our estimates of the true population mean, in this case the true mean
year for all US pennies. However, unlike in Chapter 7 where we took multiple
samples (something one would never do in practice), bootstrap distributions
are constructed by taking multiple resamples from a single sample: in this case,
the 50 original pennies from the bank.

8.2.3 Virtually resampling 1000 times

Remember that one of the goals of resampling with replacement is to con-
struct the bootstrap distribution, which is an approximation of the sampling
distribution. However, the bootstrap distribution in Figure 8.12 is based only
on 35 resamples and hence looks a little coarse. Let’s increase the number
of resamples to 1000, so that we can hopefully better see the shape and the
variability between different resamples.

252 8 Bootstrapping and Confidence Intervals

Repeat resampling 1000 times
virtual_resamples <- pennies_sample %>%
rep_sample_n(size = 50, replace = TRUE, reps = 1000)

Compute 1000 sample means
virtual_resampled_means <- virtual_resamples %>%
group_by(replicate) %>%
summarize(mean_year = mean(year))

However, in the interest of brevity, going forward let’s combine these two
operations into a single chain of pipe (%>%) operators:

virtual_resampled_means <- pennies_sample %>%
rep_sample_n(size = 50, replace = TRUE, reps = 1000) %>%
group_by(replicate) %>%
summarize(mean_year = mean(year))

virtual_resampled_means

A tibble: 1,000 x 2
replicate mean_year

<int> <dbl>
1 1 1992.6
2 2 1994.78
3 3 1994.74
4 4 1997.88
5 5 1990
6 6 1999.48
7 7 1990.26
8 8 1993.2
9 9 1994.88
10 10 1996.3
... with 990 more rows

In Figure 8.14 let’s visualize the bootstrap distribution of these 1000 means
based on 1000 virtual resamples:

ggplot(virtual_resampled_means, aes(x = mean_year)) +
geom_histogram(binwidth = 1, color = "white", boundary = 1990) +
labs(x = "sample mean")

8.2 Computer simulation of resampling 253

0

50

100

150

1990 1995 2000

sample mean

c
o
u
n
t

FIGURE 8.14: Bootstrap resampling distribution based on 1000 resamples.

Note here that the bell shape is starting to become much more apparent. We
now have a general sense for the range of values that the sample mean may
take on. But where is this histogram centered? Let’s compute the mean of the
1000 resample means:

virtual_resampled_means %>%
summarize(mean_of_means = mean(mean_year))

A tibble: 1 x 1
mean_of_means

<dbl>
1 1995.36

The mean of these 1000 means is 1995.36, which is quite close to the mean of
our original sample of 50 pennies of 1995.44. This is the case since each of the
1000 resamples is based on the original sample of 50 pennies.

Congratulations! You’ve just constructed your first bootstrap distribution! In
the next section, you’ll see how to use this bootstrap distribution to construct
confidence intervals.

254 8 Bootstrapping and Confidence Intervals

Learning check

(LC8.1) What is the chief difference between a bootstrap distribution and a
sampling distribution?

(LC8.2) Looking at the bootstrap distribution for the sample mean in Figure
8.14, between what two values would you say most values lie?

8.3 Understanding confidence intervals
Let’s start this section with an analogy involving fishing. Say you are trying to
catch a fish. On the one hand, you could use a spear, while on the other you
could use a net. Using the net will probably allow you to catch more fish!

Now think back to our pennies exercise where you are trying to estimate the
true population mean year 𝜇 of all US pennies. Think of the value of 𝜇 as a
fish.

On the one hand, we could use the appropriate point estimate/sample statistic
to estimate 𝜇, which we saw in Table 8.1 is the sample mean 𝑥. Based on our
sample of 50 pennies from the bank, the sample mean was 1995.44. Think of
using this value as “fishing with a spear.”

What would “fishing with a net” correspond to? Look at the bootstrap distri-
bution in Figure 8.14 once more. Between which two years would you say that
“most” sample means lie? While this question is somewhat subjective, saying
that most sample means lie between 1992 and 2000 would not be unreasonable.
Think of this interval as the “net.”

What we’ve just illustrated is the concept of a confidence interval, which
we’ll abbreviate with “CI” throughout this book. As opposed to a point es-
timate/sample statistic that estimates the value of an unknown population
parameter with a single value, a confidence interval gives what can be in-
terpreted as a range of plausible values. Going back to our analogy, point
estimates/sample statistics can be thought of as spears, whereas confidence
intervals can be thought of as nets.

8.3 Understanding confidence intervals 255

FIGURE 8.15: Analogy of difference between point estimates and confidence
intervals.

Our proposed interval of 1992 to 2000 was constructed by eye and was thus
somewhat subjective. We now introduce two methods for constructing such
intervals in a more exact fashion: the percentile method and the standard error
method.

Both methods for confidence interval construction share some commonali-
ties. First, they are both constructed from a bootstrap distribution, as you
constructed in Subsection 8.2.3 and visualized in Figure 8.14.

Second, they both require you to specify the confidence level. Commonly used
confidence levels include 90%, 95%, and 99%. All other things being equal,
higher confidence levels correspond to wider confidence intervals, and lower
confidence levels correspond to narrower confidence intervals. In this book,
we’ll be mostly using 95% and hence constructing “95% confidence intervals
for 𝜇” for our pennies activity.

8.3.1 Percentile method

One method to construct a confidence interval is to use the middle 95% of
values of the bootstrap distribution. We can do this by computing the 2.5th
and 97.5th percentiles, which are 1991.059 and 1999.283, respectively. This is
known as the percentile method for constructing confidence intervals.

For now, let’s focus only on the concepts behind a percentile method constructed
confidence interval; we’ll show you the code that computes these values in the
next section.

Let’s mark these percentiles on the bootstrap distribution with verti-
cal lines in Figure 8.16. About 95% of the mean_year variable values in

256 8 Bootstrapping and Confidence Intervals

virtual_resampled_means fall between 1991.059 and 1999.283, with 2.5% to the
left of the leftmost line and 2.5% to the right of the rightmost line.

0

50

100

150

1988 1990 1992 1994 1996 1998 2000 2002

Resample sample mean

c
o
u
n
t

FIGURE 8.16: Percentile method 95% confidence interval. Interval endpoints
marked by vertical lines.

8.3.2 Standard error method

Recall in Appendix A.2, we saw that if a numerical variable follows a normal
distribution, or, in other words, the histogram of this variable is bell-shaped,
then roughly 95% of values fall between ± 1.96 standard deviations of the
mean. Given that our bootstrap distribution based on 1000 resamples with
replacement in Figure 8.14 is normally shaped, let’s use this fact about normal
distributions to construct a confidence interval in a different way.

First, recall the bootstrap distribution has a mean equal to 1995.36. This value
almost coincides exactly with the value of the sample mean 𝑥 of our original 50
pennies of 1995.44. Second, let’s compute the standard deviation of the boot-
strap distribution using the values of mean_year in the virtual_resampled_means
data frame:

virtual_resampled_means %>%
summarize(SE = sd(mean_year))

A tibble: 1 x 1
SE

<dbl>
1 2.15466

8.3 Understanding confidence intervals 257

What is this value? Recall that the bootstrap distribution is an approximation
to the sampling distribution. Recall also that the standard deviation of a
sampling distribution has a special name: the standard error. Putting these
two facts together, we can say that 2.155 is an approximation of the standard
error of 𝑥.
Thus, using our 95% rule of thumb about normal distributions from Appendix
A.2, we can use the following formula to determine the lower and upper
endpoints of a 95% confidence interval for 𝜇:𝑥 ± 1.96 ⋅ 𝑆𝐸 = (𝑥 − 1.96 ⋅ 𝑆𝐸, 𝑥 + 1.96 ⋅ 𝑆𝐸)= (1995.44 − 1.96 ⋅ 2.15, 1995.44 + 1.96 ⋅ 2.15)= (1991.15, 1999.73)
Let’s now add the SE method confidence interval with dashed lines in Figure
8.17.

0

50

100

150

1988 1990 1992 1994 1996 1998 2000 2002

sample mean

c
o
u
n
t

Percentile method CI (solid lines), SE method CI (dashed lines)

FIGURE 8.17: Comparing two 95% confidence interval methods.

258 8 Bootstrapping and Confidence Intervals

We see that both methods produce nearly identical 95% confidence intervals for𝜇 with the percentile method yielding (1991.06, 1999.28) while the standard
error method produces (1991.22, 1999.66). However, recall that we can only
use the standard error rule when the bootstrap distribution is roughly normally
shaped.

Now that we’ve introduced the concept of confidence intervals and laid out
the intuition behind two methods for constructing them, let’s explore the code
that allows us to construct them.

Learning check

(LC8.3) What condition about the bootstrap distribution must be met for us
to be able to construct confidence intervals using the standard error method?

(LC8.4) Say we wanted to construct a 68% confidence interval instead of a
95% confidence interval for 𝜇. Describe what changes are needed to make this
happen. Hint: we suggest you look at Appendix A.2 on the normal distribution.

8.4 Constructing confidence intervals
Recall that the process of resampling with replacement we performed by hand
in Section 8.1 and virtually in Section 8.2 is known as bootstrapping. The
term bootstrapping originates in the expression of “pulling oneself up by their
bootstraps,” meaning to “succeed only by one’s own efforts or abilities.”3

From a statistical perspective, bootstrapping alludes to succeeding in being
able to study the effects of sampling variation on estimates from the “effort” of
a single sample. Or more precisely, it refers to constructing an approximation
to the sampling distribution using only one sample.

To perform this resampling with replacement virtually in Section 8.2, we used
the rep_sample_n() function, making sure that the size of the resamples matched
the original sample size of 50. In this section, we’ll build off these ideas to
construct confidence intervals using a new package: the infer package for “tidy”
and transparent statistical inference.

3https://en.wiktionary.org/wiki/pull_oneself_up_by_one%27s_bootstraps

8.4 Constructing confidence intervals 259

8.4.1 Original workflow

Recall that in Section 8.2, we virtually performed bootstrap resampling with
replacement to construct bootstrap distributions. Such distributions are ap-
proximations to the sampling distributions we saw in Chapter 7, but are
constructed using only a single sample. Let’s revisit the original workflow using
the %>% pipe operator.

First, we used the rep_sample_n() function to resample size = 50 pennies with
replacement from the original sample of 50 pennies in pennies_sample by setting
replace = TRUE. Furthermore, we repeated this resampling 1000 times by setting
reps = 1000:

pennies_sample %>%
rep_sample_n(size = 50, replace = TRUE, reps = 1000)

Second, since for each of our 1000 resamples of size 50, we wanted to com-
pute a separate sample mean, we used the dplyr verb group_by() to group
observations/rows together by the replicate variable…

pennies_sample %>%
rep_sample_n(size = 50, replace = TRUE, reps = 1000) %>%
group_by(replicate)

… followed by using summarize() to compute the sample mean() year for each
replicate group:

pennies_sample %>%
rep_sample_n(size = 50, replace = TRUE, reps = 1000) %>%
group_by(replicate) %>%
summarize(mean_year = mean(year))

For this simple case, we can get by with using the rep_sample_n() function
and a couple of dplyr verbs to construct the bootstrap distribution. However,
using only dplyr verbs only provides us with a limited set of tools. For more
complicated situations, we’ll need a little more firepower. Let’s repeat this
using the infer package.

8.4.2 infer package workflow

The infer package is an R package for statistical inference. It makes efficient
use of the %>% pipe operator we introduced in Section 3.1 to spell out the

260 8 Bootstrapping and Confidence Intervals

sequence of steps necessary to perform statistical inference in a “tidy” and
transparent fashion. Furthermore, just as the dplyr package provides functions
with verb-like names to perform data wrangling, the infer package provides
functions with intuitive verb-like names to perform statistical inference.

Let’s go back to our pennies. Previously, we computed the value of the sample
mean 𝑥 using the dplyr function summarize():

pennies_sample %>%
summarize(stat = mean(year))

We’ll see that we can also do this using infer functions specify() and calculate():

pennies_sample %>%
specify(response = year) %>%
calculate(stat = "mean")

You might be asking yourself: “Isn’t the infer code longer? Why would I use
that code?”. While not immediately apparent, you’ll see that there are three
chief benefits to the infer workflow as opposed to the dplyr workflow.

First, the infer verb names better align with the overall resampling framework
you need to understand to construct confidence intervals and to conduct
hypothesis tests (in Chapter 9). We’ll see flowchart diagrams of this framework
in the upcoming Figure 8.23 and in Chapter 9 with Figure 9.14.

Second, you can jump back and forth seamlessly between confidence intervals
and hypothesis testing with minimal changes to your code. This will become
apparent in Subsection 9.3.2 when we’ll compare the infer code for both of
these inferential methods.

Third, the infer workflow is much simpler for conducting inference when you
have more than one variable. We’ll see two such situations. We’ll first see
situations of two-sample inference where the sample data is collected from two
groups, such as in Section 8.6 where we study the contagiousness of yawning
and in Section 9.1 where we compare promotion rates of two groups at banks in
the 1970s. Then in Section 10.4, we’ll see situations of inference for regression
using the regression models you fit in Chapter 5.

Let’s now illustrate the sequence of verbs necessary to construct a confidence
interval for 𝜇, the population mean year of minting of all US pennies in 2019.

8.4 Constructing confidence intervals 261

1. specify variables

FIGURE 8.18: Diagram of the specify() verb.

As shown in Figure 8.18, the specify() function is used to choose which variables
in a data frame will be the focus of our statistical inference. We do this by
specifying the response argument. For example, in our pennies_sample data
frame of the 50 pennies sampled from the bank, the variable of interest is year:

pennies_sample %>%
specify(response = year)

Response: year (numeric)
A tibble: 50 x 1

year
<dbl>

1 2002
2 1986
3 2017
4 1988
5 2008
6 1983
7 2008
8 1996
9 2004
10 2000
... with 40 more rows

Notice how the data itself doesn’t change, but the Response: year (numeric)
meta-data does. This is similar to how the group_by() verb from dplyr
doesn’t change the data, but only adds “grouping” meta-data, as we saw in
Section 3.4.

262 8 Bootstrapping and Confidence Intervals

We can also specify which variables will be the focus of our statistical inference
using a formula = y ~ x. This is the same formula notation you saw in Chapters
5 and 6 on regression models: the response variable y is separated from the
explanatory variable x by a ~ (“tilde”). The following use of specify() with the
formula argument yields the same result seen previously:

pennies_sample %>%
specify(formula = year ~ NULL)

Since in the case of pennies we only have a response variable and no explana-
tory variable of interest, we set the x on the right-hand side of the ~ to be
NULL.

While in the case of the pennies either specification works just fine, we’ll see
examples later on where the formula specification is simpler. In particular, this
comes up in the upcoming Section 8.6 on comparing two proportions and
Section 10.4 on inference for regression.

2. generate replicates

FIGURE 8.19: Diagram of generate() replicates.

8.4 Constructing confidence intervals 263

After we specify() the variables of interest, we pipe the results into the
generate() function to generate replicates. Figure 8.19 shows how this is com-
bined with specify() to start the pipeline. In other words, repeat the resampling
process a large number of times. Recall in Sections 8.2.2 and 8.2.3 we did this
35 and 1000 times.

The generate() function’s first argument is reps, which sets the number of
replicates we would like to generate. Since we want to resample the 50 pennies
in pennies_sample with replacement 1000 times, we set reps = 1000. The second
argument type determines the type of computer simulation we’d like to perform.
We set this to type = "bootstrap" indicating that we want to perform bootstrap
resampling. You’ll see different options for type in Chapter 9.

pennies_sample %>%
specify(response = year) %>%
generate(reps = 1000, type = "bootstrap")

Response: year (numeric)
A tibble: 50,000 x 2
Groups: replicate [1,000]

replicate year
<int> <dbl>

1 1 1981
2 1 1988
3 1 2006
4 1 2016
5 1 2002
6 1 1985
7 1 1979
8 1 2000
9 1 2006
10 1 2016
... with 49,990 more rows

Observe that the resulting data frame has 50,000 rows. This is because we
performed resampling of 50 pennies with replacement 1000 times and 50,000
= 50 ⋅ 1000.
The variable replicate indicates which resample each row belongs to. So it has
the value 1 50 times, the value 2 50 times, all the way through to the value
1000 50 times. The default value of the type argument is "bootstrap" in this
scenario, so if the last line was written as generate(reps = 1000), we’d obtain
the same results.

264 8 Bootstrapping and Confidence Intervals

Comparing with original workflow: Note that the steps of the infer
workflow so far produce the same results as the original workflow using the
rep_sample_n() function we saw earlier. In other words, the following two code
chunks produce similar results:

infer workflow: # Original workflow:
pennies_sample %>% pennies_sample %>%
specify(response = year) %>% rep_sample_n(size = 50, replace = TRUE,
generate(reps = 1000) reps = 1000)

3. calculate summary statistics

FIGURE 8.20: Diagram of calculate() summary statistics.

After we generate() many replicates of bootstrap resampling with replacement,
we next want to summarize each of the 1000 resamples of size 50 to a single
sample statistic value. As seen in the diagram, the calculate() function does
this.

In our case, we want to calculate the mean year for each bootstrap resample
of size 50. To do so, we set the stat argument to "mean". You can also set the
stat argument to a variety of other common summary statistics, like "median",
"sum", "sd" (standard deviation), and "prop" (proportion). To see a list of all

8.4 Constructing confidence intervals 265

possible summary statistics you can use, type ?calculate and read the help
file.

Let’s save the result in a data frame called bootstrap_distribution and explore
its contents:

bootstrap_distribution <- pennies_sample %>%
specify(response = year) %>%
generate(reps = 1000) %>%
calculate(stat = "mean")

bootstrap_distribution

A tibble: 1,000 x 2
replicate stat

<int> <dbl>
1 1 1995.7
2 2 1994.04
3 3 1993.62
4 4 1994.5
5 5 1994.08
6 6 1993.6
7 7 1995.26
8 8 1996.64
9 9 1994.3
10 10 1995.94
... with 990 more rows

Observe that the resulting data frame has 1000 rows and 2 columns correspond-
ing to the 1000 replicate values. It also has the mean year for each bootstrap
resample saved in the variable stat.

Comparing with original workflow: You may have recognized at this point
that the calculate() step in the infer workflow produces the same output as
the group_by() %>% summarize() steps in the original workflow.

infer workflow: # Original workflow:
pennies_sample %>% pennies_sample %>%
specify(response = year) %>% rep_sample_n(size = 50, replace = TRUE,
generate(reps = 1000) %>% reps = 1000) %>%
calculate(stat = "mean") group_by(replicate) %>%

summarize(stat = mean(year))

266 8 Bootstrapping and Confidence Intervals

4. visualize the results

FIGURE 8.21: Diagram of visualize() results.

The visualize() verb provides a quick way to visualize the bootstrap distribution
as a histogram of the numerical stat variable’s values. The pipeline of the
main infer verbs used for exploring bootstrap distribution results is shown in
Figure 8.21.

visualize(bootstrap_distribution)

0

50

100

150

1992 1996 2000

stat

c
o
u
n
t

Simulation-Based Bootstrap Distribution

FIGURE 8.22: Bootstrap distribution.

8.4 Constructing confidence intervals 267

Comparing with original workflow: In fact, visualize() is a wrapper func-
tion for the ggplot() function that uses a geom_histogram() layer. Recall that
we illustrated the concept of a wrapper function in Figure 5.5 in Subsection
5.1.2.

infer workflow: # Original workflow:
visualize(bootstrap_distribution) ggplot(bootstrap_distribution,

aes(x = stat)) +
geom_histogram()

The visualize() function can take many other arguments which we’ll see
momentarily to customize the plot further. It also works with helper functions
to do the shading of the histogram values corresponding to the confidence
interval values.

Let’s recap the steps of the infer workflow for constructing a bootstrap distri-
bution and then visualizing it in Figure 8.23.

FIGURE 8.23: infer package workflow for confidence intervals.

Recall how we introduced two different methods for constructing 95% confidence
intervals for an unknown population parameter in Section 8.3: the percentile
method and the standard error method. Let’s now check out the infer package
code that explicitly constructs these. There are also some additional neat
functions to visualize the resulting confidence intervals built-in to the infer
package!

8.4.3 Percentile method with infer

Recall the percentile method for constructing 95% confidence intervals we
introduced in Subsection 8.3.1. This method sets the lower endpoint of the

268 8 Bootstrapping and Confidence Intervals

confidence interval at the 2.5th percentile of the bootstrap distribution and
similarly sets the upper endpoint at the 97.5th percentile. The resulting interval
captures the middle 95% of the values of the sample mean in the bootstrap
distribution.

We can compute the 95% confidence interval by piping bootstrap_distribution
into the get_confidence_interval() function from the infer package, with the
confidence level set to 0.95 and the confidence interval type to be "percentile".
Let’s save the results in percentile_ci.

percentile_ci <- bootstrap_distribution %>%
get_confidence_interval(level = 0.95, type = "percentile")

percentile_ci

A tibble: 1 x 2
`2.5%` `97.5%`
<dbl> <dbl>

1 1991.24 1999.42

Alternatively, we can visualize the interval (1991.24, 1999.42) by piping the
bootstrap_distribution data frame into the visualize() function and adding
a shade_confidence_interval() layer. We set the endpoints argument to be
percentile_ci.

visualize(bootstrap_distribution) +
shade_confidence_interval(endpoints = percentile_ci)

0

50

100

150

1992 1996 2000

stat

c
o
u
n
t

Simulation-Based Bootstrap Distribution

FIGURE 8.24: Percentile method 95% confidence interval shaded correspond-
ing to potential values.

8.4 Constructing confidence intervals 269

Observe in Figure 8.24 that 95% of the sample means stored in the stat
variable in bootstrap_distribution fall between the two endpoints marked with
the darker lines, with 2.5% of the sample means to the left of the shaded area
and 2.5% of the sample means to the right. You also have the option to change
the colors of the shading using the color and fill arguments.

You can also use the shorter named function shade_ci() and the results will be
the same. This is for folks who don’t want to type out all of confidence_interval
and prefer to type out ci instead. Try out the following code!

visualize(bootstrap_distribution) +
shade_ci(endpoints = percentile_ci, color = "hotpink", fill = "khaki")

8.4.4 Standard error method with infer

Recall the standard error method for constructing 95% confidence intervals we
introduced in Subsection 8.3.2. For any distribution that is normally shaped,
roughly 95% of the values lie within two standard deviations of the mean. In
the case of the bootstrap distribution, the standard deviation has a special
name: the standard error.

So in our case, 95% of values of the bootstrap distribution will lie within ±1.96
standard errors of 𝑥. Thus, a 95% confidence interval is𝑥 ± 1.96 ⋅ 𝑆𝐸 = (𝑥 − 1.96 ⋅ 𝑆𝐸, 𝑥 + 1.96 ⋅ 𝑆𝐸).
Computation of the 95% confidence interval can once again be done
by piping the bootstrap_distribution data frame we created into the
get_confidence_interval() function. However, this time we set the first type
argument to be "se". Second, we must specify the point_estimate argument in
order to set the center of the confidence interval. We set this to be the sample
mean of the original sample of 50 pennies of 1995.44.

x_bar

A tibble: 1 x 1
mean_year

<dbl>
1 1995.44

270 8 Bootstrapping and Confidence Intervals

standard_error_ci <- bootstrap_distribution %>%
get_confidence_interval(type = "se", point_estimate = x_bar)

standard_error_ci

A tibble: 1 x 2
lower upper
<dbl> <dbl>

1 1991.35 1999.53

If we would like to visualize the interval (1991.35, 1999.53), we can once
again pipe the bootstrap_distribution data frame into the visualize() function
and add a shade_confidence_interval() layer to our plot. We set the endpoints
argument to be standard_error_ci. The resulting standard-error method based
on a 95% confidence interval for 𝜇 can be seen in Figure 8.25.

visualize(bootstrap_distribution) +
shade_confidence_interval(endpoints = standard_error_ci)

0

50

100

150

1992 1996 2000

stat

c
o
u
n
t

Simulation-Based Bootstrap Distribution

FIGURE 8.25: Standard-error-method 95% confidence interval.

As noted in Section 8.3, both methods produce similar confidence intervals:

• Percentile method: (1991.24, 1999.42)
• Standard error method: (1991.35, 1999.53)

8.5 Interpreting confidence intervals 271

Learning check

(LC8.5) Construct a 95% confidence interval for the median year of minting
of all US pennies? Use the percentile method and, if appropriate, then use the
standard-error method.

8.5 Interpreting confidence intervals
Now that we’ve shown you how to construct confidence intervals using a
sample drawn from a population, let’s now focus on how to interpret their
effectiveness. The effectiveness of a confidence interval is judged by whether
or not it contains the true value of the population parameter. Going back to
our fishing analogy in Section 8.3, this is like asking, “Did our net capture the
fish?”.

So, for example, does our percentile-based confidence interval of (1991.24,
1999.42) “capture” the true mean year 𝜇 of all US pennies? Alas, we’ll never
know, because we don’t know what the true value of 𝜇 is. After all, we’re
sampling to estimate it!

In order to interpret a confidence interval’s effectiveness, we need to know what
the value of the population parameter is. That way we can say whether or not
a confidence interval “captured” this value.

Let’s revisit our sampling bowl from Chapter 7. What proportion of the bowl’s
2400 balls are red? Let’s compute this:

bowl %>%
summarize(p_red = mean(color == "red"))

A tibble: 1 x 1
p_red
<dbl>

1 0.375

In this case, we know what the value of the population parameter is: we know
that the population proportion 𝑝 is 0.375. In other words, we know that 37.5%
of the bowl’s balls are red.

272 8 Bootstrapping and Confidence Intervals

As we stated in Subsection 7.3.3, the sampling bowl exercise doesn’t really
reflect how sampling is done in real life, but rather was an idealized activity.
In real life, we won’t know what the true value of the population parameter is,
hence the need for estimation.

Let’s now construct confidence intervals for 𝑝 using our 33 groups of friends’
samples from the bowl in Chapter 7. We’ll then see if the confidence intervals
“captured” the true value of 𝑝, which we know to be 37.5%. That is to say,
“Did the net capture the fish?”.

8.5.1 Did the net capture the fish?

Recall that we had 33 groups of friends each take samples of size 50 from the
bowl and then compute the sample proportion of red balls ̂𝑝. This resulted in
33 such estimates of 𝑝. Let’s focus on Ilyas and Yohan’s sample, which is saved
in the bowl_sample_1 data frame in the moderndive package:

bowl_sample_1

A tibble: 50 x 1
color
<chr>

1 white
2 white
3 red
4 red
5 white
6 white
7 red
8 white
9 white
10 white
... with 40 more rows

They observed 21 red balls out of 50 and thus their sample proportion ̂𝑝 was
21/50 = 0.42 = 42%. Think of this as the “spear” from our fishing analogy.

Let’s now follow the infer package workflow from Subsection 8.4.2 to create a
percentile-method-based 95% confidence interval for 𝑝 using Ilyas and Yohan’s
sample. Think of this as the “net.”

1. specify variables

First, we specify() the response variable of interest color:

8.5 Interpreting confidence intervals 273

bowl_sample_1 %>%
specify(response = color)

Error: A level of the response variable `color` needs to be specified for the
`success` argument in `specify()`.

Whoops! We need to define which event is of interest! red or white balls? Since
we are interested in the proportion red, let’s set success to be "red":

bowl_sample_1 %>%
specify(response = color, success = "red")

Response: color (factor)
A tibble: 50 x 1

color
<fct>

1 white
2 white
3 red
4 red
5 white
6 white
7 red
8 white
9 white
10 white
... with 40 more rows

2. generate replicates

Second, we generate() 1000 replicates of bootstrap resampling with replacement
from bowl_sample_1 by setting reps = 1000 and type = "bootstrap".

bowl_sample_1 %>%
specify(response = color, success = "red") %>%
generate(reps = 1000, type = "bootstrap")

Response: color (factor)
A tibble: 50,000 x 2
Groups: replicate [1,000]

replicate color
<int> <fct>

274 8 Bootstrapping and Confidence Intervals

1 1 white
2 1 white
3 1 white
4 1 white
5 1 red
6 1 white
7 1 white
8 1 white
9 1 white
10 1 red
... with 49,990 more rows

Observe that the resulting data frame has 50,000 rows. This is because we
performed resampling of 50 balls with replacement 1000 times and thus 50,000
= 50 ⋅ 1000. The variable replicate indicates which resample each row belongs
to. So it has the value 1 50 times, the value 2 50 times, all the way through to
the value 1000 50 times.

3. calculate summary statistics

Third, we summarize each of the 1000 resamples of size 50 with the proportion
of successes. In other words, the proportion of the balls that are "red". We can
set the summary statistic to be calculated as the proportion by setting the
stat argument to be "prop". Let’s save the result as sample_1_bootstrap:

sample_1_bootstrap <- bowl_sample_1 %>%
specify(response = color, success = "red") %>%
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "prop")

sample_1_bootstrap

A tibble: 1,000 x 2
replicate stat

<int> <dbl>
1 1 0.32
2 2 0.42
3 3 0.44
4 4 0.4
5 5 0.44
6 6 0.52
7 7 0.38
8 8 0.44
9 9 0.34

8.5 Interpreting confidence intervals 275

10 10 0.42
... with 990 more rows

Observe there are 1000 rows in this data frame and thus 1000 values of the
variable stat. These 1000 values of stat represent our 1000 replicated values of
the proportion, each based on a different resample.

4. visualize the results

Fourth and lastly, let’s compute the resulting 95% confidence interval.

percentile_ci_1 <- sample_1_bootstrap %>%
get_confidence_interval(level = 0.95, type = "percentile")

percentile_ci_1

A tibble: 1 x 2
`2.5%` `97.5%`
<dbl> <dbl>

1 0.3 0.56

Let’s visualize the bootstrap distribution along with the percentile_ci_1
percentile-based 95% confidence interval for 𝑝 in Figure 8.26. We’ll adjust
the number of bins to better see the resulting shape. Furthermore, we’ll add a
dashed vertical line at Ilyas and Yohan’s observed ̂𝑝 = 21/50 = 0.42 = 42%
using geom_vline().

sample_1_bootstrap %>%
visualize(bins = 15) +
shade_confidence_interval(endpoints = percentile_ci_1) +
geom_vline(xintercept = 0.375, linetype = "dashed")

0

50

100

150

200

0.2 0.3 0.4 0.5 0.6 0.7

stat

c
o
u
n
t

Simulation-Based Bootstrap Distribution

FIGURE 8.26: Bootstrap distribution.

276 8 Bootstrapping and Confidence Intervals

Did Ilyas and Yohan’s net capture the fish? Did their 95% confidence interval
for 𝑝 based on their sample contain the true value of 𝑝 of 0.375? Yes! 0.375 is
between the endpoints of their confidence interval (0.3, 0.56).

However, will every 95% confidence interval for 𝑝 capture this value? In other
words, if we had a different sample of 50 balls and constructed a different
confidence interval, would it necessarily contain 𝑝 = 0.375 as well? Let’s see!

Let’s first take a different sample from the bowl, this time using the computer
as we did in Chapter 7:

bowl_sample_2 <- bowl %>% rep_sample_n(size = 50)
bowl_sample_2

A tibble: 50 x 3
Groups: replicate [1]

replicate ball_ID color
<int> <int> <chr>

1 1 1665 red
2 1 1312 red
3 1 2105 red
4 1 810 white
5 1 189 white
6 1 1429 white
7 1 2294 red
8 1 1233 white
9 1 1951 white
10 1 2061 white
... with 40 more rows

Let’s reapply the same infer functions on bowl_sample_2 to generate a different
95% confidence interval for 𝑝. First, we create the new bootstrap distribution
and save the results in sample_2_bootstrap:

sample_2_bootstrap <- bowl_sample_2 %>%
specify(response = color,

success = "red") %>%
generate(reps = 1000,

type = "bootstrap") %>%
calculate(stat = "prop")

sample_2_bootstrap

A tibble: 1,000 x 2

8.5 Interpreting confidence intervals 277

replicate stat
<int> <dbl>

1 1 0.48
2 2 0.38
3 3 0.32
4 4 0.32
5 5 0.34
6 6 0.26
7 7 0.3
8 8 0.36
9 9 0.44
10 10 0.36
... with 990 more rows

We once again compute a percentile-based 95% confidence interval for 𝑝:
percentile_ci_2 <- sample_2_bootstrap %>%
get_confidence_interval(level = 0.95, type = "percentile")

percentile_ci_2

A tibble: 1 x 2
`2.5%` `97.5%`
<dbl> <dbl>

1 0.2 0.48

Does this new net capture the fish? In other words, does the 95% confidence
interval for 𝑝 based on the new sample contain the true value of 𝑝 of 0.375?
Yes again! 0.375 is between the endpoints of our confidence interval (0.2, 0.48).

Let’s now repeat this process 100 more times: we take 100 virtual samples
from the bowl and construct 100 95% confidence intervals. Let’s visualize the
results in Figure 8.27 where:

1. We mark the true value of 𝑝 = 0.375 with a vertical line.
2. We mark each of the 100 95% confidence intervals with horizontal

lines. These are the “nets.”
3. The horizontal line is colored grey if the confidence interval “captures”

the true value of 𝑝 marked with the vertical line. The horizontal line
is colored black otherwise.

278 8 Bootstrapping and Confidence Intervals

0

25

50

75

100

0.2 0.4 0.6

Proportion of red balls

C
o
n
fi
d
e
n
c
e
 i
n
te

rv
a
l
n
u
m

b
e
r

Captured

TRUE

FALSE

FIGURE 8.27: 100 percentile-based 95% confidence intervals for 𝑝.
Of the 100 95% confidence intervals, 95 of them captured the true value𝑝 = 0.375, whereas 5 of them didn’t. In other words, 95 of our nets caught the
fish, whereas 5 of our nets didn’t.

This is where the “95% confidence level” we defined in Section 8.3 comes into
play: for every 100 95% confidence intervals, we expect that 95 of them will
capture 𝑝 and that five of them won’t.

Note that “expect” is a probabilistic statement referring to a long-run average.
In other words, for every 100 confidence intervals, we will observe about 95
confidence intervals that capture 𝑝, but not necessarily exactly 95. In Figure
8.27 for example, 95 of the confidence intervals capture 𝑝.
To further accentuate our point about confidence levels, let’s generate a figure
similar to Figure 8.27, but this time constructing 80% standard-error method
based confidence intervals instead. Let’s visualize the results in Figure 8.28 with
the scale on the x-axis being the same as in Figure 8.27 to make comparison
easy. Furthermore, since all standard-error method 95% confidence intervals
for 𝑝 are centered at their respective point estimates ̂𝑝, we mark this value on
each line with dots.

8.5 Interpreting confidence intervals 279

0

25

50

75

100

0.2 0.4 0.6

Proportion of red balls

C
o
n
fi
d
e
n
c
e
 i
n
te

rv
a
l
n
u
m

b
e
r

Captured

TRUE

FALSE

FIGURE 8.28: 100 SE-based 80% confidence intervals for 𝑝 with point
estimate center marked with dots.

Observe how the 80% confidence intervals are narrower than the 95% confidence
intervals, reflecting our lower degree of confidence. Think of this as using a
smaller “net.” We’ll explore other determinants of confidence interval width in
the upcoming Subsection 8.5.3.

Furthermore, observe that of the 100 80% confidence intervals, 82 of them
captured the population proportion 𝑝 = 0.375, whereas 18 of them did not.
Since we lowered the confidence level from 95% to 80%, we now have a much
larger number of confidence intervals that failed to “catch the fish.”

280 8 Bootstrapping and Confidence Intervals

8.5.2 Precise and shorthand interpretation

Let’s return our attention to 95% confidence intervals. The precise and mathe-
matically correct interpretation of a 95% confidence interval is a little long-
winded:

Precise interpretation: If we repeated our sampling procedure a large number
of times, we expect about 95% of the resulting confidence intervals to capture
the value of the population parameter.

This is what we observed in Figure 8.27. Our confidence interval construction
procedure is 95% reliable. That is to say, we can expect our confidence intervals
to include the true population parameter about 95% of the time.

A common but incorrect interpretation is: “There is a 95% probability that the
confidence interval contains 𝑝.” Looking at Figure 8.27, each of the confidence
intervals either does or doesn’t contain 𝑝. In other words, the probability is
either a 1 or a 0.

So if the 95% confidence level only relates to the reliability of the confidence
interval construction procedure and not to a given confidence interval itself,
what insight can be derived from a given confidence interval? For example,
going back to the pennies example, we found that the percentile method 95%
confidence interval for 𝜇 was (1991.24, 1999.42), whereas the standard error
method 95% confidence interval was (1991.35, 1999.53). What can be said
about these two intervals?

Loosely speaking, we can think of these intervals as our “best guess” of a
plausible range of values for the mean year 𝜇 of all US pennies. For the
rest of this book, we’ll use the following shorthand summary of the precise
interpretation.

Short-hand interpretation: We are 95% “confident” that a 95% confidence
interval captures the value of the population parameter.

We use quotation marks around “confident” to emphasize that while 95%
relates to the reliability of our confidence interval construction procedure,

8.5 Interpreting confidence intervals 281

ultimately a constructed confidence interval is our best guess of an interval
that contains the population parameter. In other words, it’s our best net.

So returning to our pennies example and focusing on the percentile method,
we are 95% “confident” that the true mean year of pennies in circulation in
2019 is somewhere between 1991.24 and 1999.42.

8.5.3 Width of confidence intervals

Now that we know how to interpret confidence intervals, let’s go over some
factors that determine their width.

Impact of confidence level

One factor that determines confidence interval widths is the pre-specified
confidence level. For example, in Figures 8.27 and 8.28, we compared the widths
of 95% and 80% confidence intervals and observed that the 95% confidence
intervals were wider. The quantification of the confidence level should match
what many expect of the word “confident.” In order to be more confident in
our best guess of a range of values, we need to widen the range of values.

To elaborate on this, imagine we want to guess the forecasted high temperature
in Seoul, South Korea on August 15th. Given Seoul’s temperate climate with
four distinct seasons, we could say somewhat confidently that the high tem-
perature would be between 50°F - 95°F (10°C - 35°C). However, if we wanted
a temperature range we were absolutely confident about, we would need to
widen it.

We need this wider range to allow for the possibility of anomalous weather,
like a freak cold spell or an extreme heat wave. So a range of temperatures
we could be near certain about would be between 32°F - 110°F (0°C - 43°C).
On the other hand, if we could tolerate being a little less confident, we could
narrow this range to between 70°F - 85°F (21°C - 30°C).

Let’s revisit our sampling bowl from Chapter 7. Let’s compare 10 ⋅ 3 = 30
confidence intervals for 𝑝 based on three different confidence levels: 80%, 95%,
and 99%.

Specifically, we’ll first take 30 different random samples of size 𝑛 = 50 balls
from the bowl. Then we’ll construct 10 percentile-based confidence intervals
using each of the three different confidence levels.

Finally, we’ll compare the widths of these intervals. We visualize the resulting
confidence intervals in Figure 8.29 along with a vertical line marking the true
value of 𝑝 = 0.375.

282 8 Bootstrapping and Confidence Intervals

80% 95% 99%

0.1 0.2 0.3 0.4 0.5 0.6 0.1 0.2 0.3 0.4 0.5 0.6 0.1 0.2 0.3 0.4 0.5 0.6

1

2

3

4

5

6

7

8

9

10

Proportion of red balls

FIGURE 8.29: Ten 80, 95, and 99% confidence intervals for 𝑝 based on𝑛 = 50.
Observe that as the confidence level increases from 80% to 95% to 99%, the
confidence intervals tend to get wider as seen in Table 8.2 where we compare
their average widths.

TABLE 8.2: Average width of 80, 95, and 99% confidence intervals

Confidence level Mean width

80% 0.162
95% 0.262
99% 0.338

So in order to have a higher confidence level, our confidence intervals must
be wider. Ideally, we would have both a high confidence level and narrow
confidence intervals. However, we cannot have it both ways. If we want to be
more confident, we need to allow for wider intervals. Conversely, if we would
like a narrow interval, we must tolerate a lower confidence level.

The moral of the story is: Higher confidence levels tend to produce
wider confidence intervals. When looking at Figure 8.29 it is important to
keep in mind that we kept the sample size fixed at 𝑛 = 50. Thus, all 10 ⋅ 3 = 30
random samples from the bowl had the same sample size. What happens if
instead we took samples of different sizes? Recall that we did this in Subsection
7.2.4 using virtual shovels with 25, 50, and 100 slots.

8.5 Interpreting confidence intervals 283

Impact of sample size

This time, let’s fix the confidence level at 95%, but consider three different
sample sizes for 𝑛: 25, 50, and 100. Specifically, we’ll first take 10 different
random samples of size 25, 10 different random samples of size 50, and 10
different random samples of size 100. We’ll then construct 95% percentile-based
confidence intervals for each sample. Finally, we’ll compare the widths of these
intervals. We visualize the resulting 30 confidence intervals in Figure 8.30. Note
also the vertical line marking the true value of 𝑝 = 0.375.

n = 25 n = 50 n = 100

0.1 0.2 0.3 0.4 0.5 0.6 0.70.1 0.2 0.3 0.4 0.5 0.6 0.70.1 0.2 0.3 0.4 0.5 0.6 0.7

1

2

3

4

5

6

7

8

9

10

Proportion of red balls

FIGURE 8.30: Ten 95% confidence intervals for 𝑝 with 𝑛 = 25, 50, and 100.
Observe that as the confidence intervals are constructed from larger and larger
sample sizes, they tend to get narrower. Let’s compare the average widths in
Table 8.3.
TABLE 8.3: Average width of 95% confidence intervals based on 𝑛 = 25, 50,
and 100

Sample size Mean width

n = 25 0.380
n = 50 0.268
n = 100 0.189

The moral of the story is: Larger sample sizes tend to produce narrower
confidence intervals. Recall that this was a key message in Subsection 7.3.3.
As we used larger and larger shovels for our samples, the sample proportions
red ̂𝑝 tended to vary less. In other words, our estimates got more and more
precise.

284 8 Bootstrapping and Confidence Intervals

Recall that we visualized these results in Figure 7.15, where we compared the
sampling distributions for ̂𝑝 based on samples of size 𝑛 equal 25, 50, and 100.
We also quantified the sampling variation of these sampling distributions using
their standard deviation, which has that special name: the standard error. So
as the sample size increases, the standard error decreases.

In fact, the standard error is another related factor in determining confidence
interval width. We’ll explore this fact in Subsection 8.7.2 when we discuss
theory-based methods for constructing confidence intervals using mathematical
formulas. Such methods are an alternative to the computer-based methods
we’ve been using so far.

8.6 Case study: Is yawning contagious?
Let’s apply our knowledge of confidence intervals to answer the question: “Is
yawning contagious?”. If you see someone else yawn, are you more likely to
yawn? In an episode of the US show Mythbusters4, the hosts conducted an
experiment to answer this question. The episode is available to view in the
United States on the Discovery Network website here5 and more information
about the episode is also available on IMDb6.

8.6.1 Mythbusters study data

Fifty adult participants who thought they were being considered for an ap-
pearance on the show were interviewed by a show recruiter. In the interview,
the recruiter either yawned or did not. Participants then sat by themselves
in a large van and were asked to wait. While in the van, the Mythbusters
team watched the participants using a hidden camera to see if they yawned.
The data frame containing the results of their experiment is available in the
mythbusters_yawn data frame included in the moderndive package:

mythbusters_yawn

A tibble: 50 x 3
subj group yawn
<int> <chr> <chr>

1 1 seed yes
4http://www.discovery.com/tv-shows/mythbusters/mythbusters-database/yawning-contagious/
5https://www.discovery.com/tv-shows/mythbusters/videos/is-yawning-contagious
6https://www.imdb.com/title/tt0768479/

8.6 Case study: Is yawning contagious? 285

2 2 control yes
3 3 seed no
4 4 seed yes
5 5 seed no
6 6 control no
7 7 seed yes
8 8 control no
9 9 control no
10 10 seed no
... with 40 more rows

The variables are:

• subj: The participant ID with values 1 through 50.
• group: A binary treatment variable indicating whether the participant was

exposed to yawning. "seed" indicates the participant was exposed to yawning
while "control" indicates the participant was not.

• yawn: A binary response variable indicating whether the participant ultimately
yawned.

Recall that you learned about treatment and response variables in Subsection
5.3.1 in our discussion on confounding variables.

Let’s use some data wrangling to obtain counts of the four possible outcomes:

mythbusters_yawn %>%
group_by(group, yawn) %>%
summarize(count = n())

A tibble: 4 x 3
Groups: group [2]

group yawn count
<chr> <chr> <int>

1 control no 12
2 control yes 4
3 seed no 24
4 seed yes 10

Let’s first focus on the "control" group participants who were not exposed to
yawning. 12 such participants did not yawn, while 4 such participants did. So
out of the 16 people who were not exposed to yawning, 4/16 = 0.25 = 25%
did yawn.

Let’s now focus on the "seed" group participants who were exposed to yawning
where 24 such participants did not yawn, while 10 such participants did yawn.

286 8 Bootstrapping and Confidence Intervals

So out of the 34 people who were exposed to yawning, 10/34 = 0.294 = 29.4%
did yawn. Comparing these two percentages, the participants who were exposed
to yawning yawned 29.4% - 25% = 4.4% more often than those who were not.

8.6.2 Sampling scenario

Let’s review the terminology and notation related to sampling we studied in
Subsection 7.3.1. In Chapter 7 our study population was the bowl of 𝑁 = 2400
balls. Our population parameter of interest was the population proportion of
these balls that were red, denoted mathematically by 𝑝. In order to estimate 𝑝,
we extracted a sample of 50 balls using the shovel and computed the relevant
point estimate: the sample proportion that were red, denoted mathematically
by ̂𝑝.
Who is the study population here? All humans? All the people who watch the
show Mythbusters? It’s hard to say! This question can only be answered if we
know how the show’s hosts recruited participants! In other words, what was the
sampling methodology used by the Mythbusters to recruit participants? We alas
are not provided with this information. Only for the purposes of this case study,
however, we’ll assume that the 50 participants are a representative sample of
all Americans given the popularity of this show. Thus, we’ll be assuming that
any results of this experiment will generalize to all 𝑁 = 327 million Americans
(2018 population).

Just like with our sampling bowl, the population parameter here will involve
proportions. However, in this case it will be the difference in population pro-
portions 𝑝𝑠𝑒𝑒𝑑 − 𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙, where 𝑝𝑠𝑒𝑒𝑑 is the proportion of all Americans who if
exposed to yawning will yawn themselves, and 𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙 is the proportion of all
Americans who if not exposed to yawning still yawn themselves. Correspond-
ingly, the point estimate/sample statistic based the Mythbusters’ sample of
participants will be the difference in sample proportions ̂𝑝𝑠𝑒𝑒𝑑 − ̂𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙. Let’s
extend Table 7.5 of scenarios of sampling for inference to include our latest
scenario.

TABLE 8.4: Scenarios of sampling for inference

Scenario Population parameter Notation Point estimate Symbol(s)

1 Population proportion 𝑝 Sample proportion 𝑝̂
2 Population mean 𝜇 Sample mean 𝑥 or 𝜇
3 Difference in population

proportions
𝑝1 − 𝑝2 Difference in sample

proportions
𝑝̂1 − 𝑝̂2

8.6 Case study: Is yawning contagious? 287

This is known as a two-sample inference situation since we have two separate
samples. Based on their two-samples of size 𝑛𝑠𝑒𝑒𝑑 = 34 and 𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 16, the
point estimate iŝ𝑝𝑠𝑒𝑒𝑑 − ̂𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 2434 − 1216 = 0.04411765 ≈ 4.4%
However, say the Mythbusters repeated this experiment. In other words, say
they recruited 50 new participants and exposed 34 of them to yawning and 16
not. Would they obtain the exact same estimated difference of 4.4%? Probably
not, again, because of sampling variation.

How does this sampling variation affect their estimate of 4.4%? In other words,
what would be a plausible range of values for this difference that accounts
for this sampling variation? We can answer this question with confidence
intervals! Furthermore, since the Mythbusters only have a single two-sample of
50 participants, they would have to construct a 95% confidence interval for𝑝𝑠𝑒𝑒𝑑 − 𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙 using bootstrap resampling with replacement.

We make a couple of important notes. First, for the comparison between the
"seed" and "control" groups to make sense, however, both groups need to be
independent from each other. Otherwise, they could influence each other’s
results. This means that a participant being selected for the "seed" or "control"
group has no influence on another participant being assigned to one of the two
groups. As an example, if there were a mother and her child as participants in
the study, they wouldn’t necessarily be in the same group. They would each
be assigned randomly to one of the two groups of the explanatory variable.

Second, the order of the subtraction in the difference doesn’t matter so long as
you are consistent and tailor your interpretations accordingly. In other words,
using a point estimate of ̂𝑝𝑠𝑒𝑒𝑑 − ̂𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙 or ̂𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙 − ̂𝑝𝑠𝑒𝑒𝑑 does not make a
material difference, you just need to stay consistent and interpret your results
accordingly.

8.6.3 Constructing the confidence interval

As we did in Subsection 8.4.2, let’s first construct the bootstrap distribution
for ̂𝑝𝑠𝑒𝑒𝑑 − ̂𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙 and then use this to construct 95% confidence intervals for𝑝𝑠𝑒𝑒𝑑 − 𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙. We’ll do this using the infer workflow again. However, since
the difference in proportions is a new scenario for inference, we’ll need to use
some new arguments in the infer functions along the way.

288 8 Bootstrapping and Confidence Intervals

1. specify variables

Let’s take our mythbusters_yawn data frame and specify() which variables are
of interest using the y ~ x formula interface where:

• Our response variable is yawn: whether or not a participant yawned. It has
levels "yes" and "no".

• The explanatory variable is group: whether or not a participant was exposed
to yawning. It has levels "seed" (exposed to yawning) and "control" (not
exposed to yawning).

mythbusters_yawn %>%
specify(formula = yawn ~ group)

Error: A level of the response variable `yawn` needs to be
specified for the `success` argument in `specify()`.

Alas, we got an error message similar to the one from Subsection 8.5.1: infer
is telling us that one of the levels of the categorical variable yawn needs to
be defined as the success. Recall that we define success to be the event of
interest we are trying to count and compute proportions of. Are we interested
in those participants who "yes" yawned or those who "no" didn’t yawn? This
isn’t clear to R or someone just picking up the code and results for the first
time, so we need to set the success argument to "yes" as follows to improve
the transparency of the code:

mythbusters_yawn %>%
specify(formula = yawn ~ group, success = "yes")

Response: yawn (factor)
Explanatory: group (factor)
A tibble: 50 x 2

yawn group
<fct> <fct>

1 yes seed
2 yes control
3 no seed
4 yes seed
5 no seed
6 no control
7 yes seed
8 no control
9 no control

8.6 Case study: Is yawning contagious? 289

10 no seed
... with 40 more rows

2. generate replicates

Our next step is to perform bootstrap resampling with replacement like we did
with the slips of paper in our pennies activity in Section 8.1. We saw how it
works with both a single variable in computing bootstrap means in Section
8.4 and in computing bootstrap proportions in Section 8.5, but we haven’t yet
worked with bootstrapping involving multiple variables.

In the infer package, bootstrapping with multiple variables means that each
row is potentially resampled. Let’s investigate this by focusing only on the first
six rows of mythbusters_yawn:

first_six_rows <- head(mythbusters_yawn)
first_six_rows

A tibble: 6 x 3
subj group yawn
<int> <chr> <chr>

1 1 seed yes
2 2 control yes
3 3 seed no
4 4 seed yes
5 5 seed no
6 6 control no

When we bootstrap this data, we are potentially pulling the subject’s readings
multiple times. Thus, we could see the entries of "seed" for group and "no" for
yawn together in a new row in a bootstrap sample. This is further seen by
exploring the sample_n() function in dplyr on this smaller 6-row data frame
comprised of head(mythbusters_yawn). The sample_n() function can perform this
bootstrapping procedure and is similar to the rep_sample_n() function in infer,
except that it is not repeated, but rather only performs one sample with or
without replacement.

first_six_rows %>%
sample_n(size = 6, replace = TRUE)

A tibble: 6 x 3
subj group yawn
<int> <chr> <chr>

290 8 Bootstrapping and Confidence Intervals

1 1 seed yes
2 6 control no
3 1 seed yes
4 5 seed no
5 4 seed yes
6 4 seed yes

We can see that in this bootstrap sample generated from the first six rows
of mythbusters_yawn, we have some rows repeated. The same is true when we
perform the generate() step in infer as done in what follows. Using this fact,
we generate 1000 replicates, or, in other words, we bootstrap resample the 50
participants with replacement 1000 times.

mythbusters_yawn %>%
specify(formula = yawn ~ group, success = "yes") %>%
generate(reps = 1000, type = "bootstrap")

Response: yawn (factor)
Explanatory: group (factor)
A tibble: 50,000 x 3
Groups: replicate [1,000]

replicate yawn group
<int> <fct> <fct>

1 1 yes seed
2 1 yes control
3 1 no control
4 1 no control
5 1 yes seed
6 1 yes seed
7 1 yes seed
8 1 yes seed
9 1 no seed
10 1 yes seed
... with 49,990 more rows

Observe that the resulting data frame has 50,000 rows. This is because we
performed resampling of 50 participants with replacement 1000 times and
50,000 = 1000 ⋅ 50. The variable replicate indicates which resample each row
belongs to. So it has the value 1 50 times, the value 2 50 times, all the way
through to the value 1000 50 times.

8.6 Case study: Is yawning contagious? 291

3. calculate summary statistics

After we generate() many replicates of bootstrap resampling with replacement,
we next want to summarize the bootstrap resamples of size 50 with a single
summary statistic, the difference in proportions. We do this by setting the stat
argument to "diff in props":

mythbusters_yawn %>%
specify(formula = yawn ~ group, success = "yes") %>%
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "diff in props")

Error: Statistic is based on a difference; specify the `order` in which to
subtract the levels of the explanatory variable.

We see another error here. We need to specify the order of the subtraction. Is
it ̂𝑝𝑠𝑒𝑒𝑑 − ̂𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙 or ̂𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙 − ̂𝑝𝑠𝑒𝑒𝑑. We specify it to be ̂𝑝𝑠𝑒𝑒𝑑 − ̂𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙 by
setting order = c("seed", "control"). Note that you could’ve also set order =
c("control", "seed"). As we stated earlier, the order of the subtraction does
not matter, so long as you stay consistent throughout your analysis and tailor
your interpretations accordingly.

Let’s save the output in a data frame bootstrap_distribution_yawning:

bootstrap_distribution_yawning <- mythbusters_yawn %>%
specify(formula = yawn ~ group, success = "yes") %>%
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "diff in props", order = c("seed", "control"))

bootstrap_distribution_yawning

A tibble: 1,000 x 2
replicate stat

<int> <dbl>
1 1 0.0357143
2 2 0.229167
3 3 0.00952381
4 4 0.0106952
5 5 0.00483092
6 6 0.00793651
7 7 -0.0845588
8 8 -0.00466200
9 9 0.164686
10 10 0.124777

292 8 Bootstrapping and Confidence Intervals

... with 990 more rows

Observe that the resulting data frame has 1000 rows and 2 columns corre-
sponding to the 1000 replicate ID’s and the 1000 differences in proportions
for each bootstrap resample in stat.

4. visualize the results

In Figure 8.31 we visualize() the resulting bootstrap resampling distribution.
Let’s also add a vertical line at 0 by adding a geom_vline() layer.

visualize(bootstrap_distribution_yawning) +
geom_vline(xintercept = 0)

0

50

100

150

-0.25 0.00 0.25 0.50

stat

c
o
u
n
t

Simulation-Based Bootstrap Distribution

FIGURE 8.31: Bootstrap distribution.

First, let’s compute the 95% confidence interval for 𝑝𝑠𝑒𝑒𝑑 − 𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙 using
the percentile method, in other words, by identifying the 2.5th and 97.5th
percentiles which include the middle 95% of values. Recall that this method
does not require the bootstrap distribution to be normally shaped.

bootstrap_distribution_yawning %>%
get_confidence_interval(type = "percentile", level = 0.95)

A tibble: 1 x 2
`2.5%` `97.5%`

8.6 Case study: Is yawning contagious? 293

<dbl> <dbl>
1 -0.238276 0.302464

Second, since the bootstrap distribution is roughly bell-shaped, we can construct
a confidence interval using the standard error method as well. Recall that to
construct a confidence interval using the standard error method, we need to
specify the center of the interval using the point_estimate argument. In our
case, we need to set it to be the difference in sample proportions of 4.4% that
the Mythbusters observed.

We can also use the infer workflow to compute this value by excluding the
generate() 1000 bootstrap replicates step. In other words, do not generate
replicates, but rather use only the original sample data. We can achieve this
by commenting out the generate() line, telling R to ignore it:

obs_diff_in_props <- mythbusters_yawn %>%
specify(formula = yawn ~ group, success = "yes") %>%
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "diff in props", order = c("seed", "control"))

obs_diff_in_props

A tibble: 1 x 1
stat
<dbl>

1 0.0441176

We thus plug this value in as the point_estimate argument.

myth_ci_se <- bootstrap_distribution_yawning %>%
get_confidence_interval(type = "se", point_estimate = obs_diff_in_props)

myth_ci_se

A tibble: 1 x 2
lower upper
<dbl> <dbl>

1 -0.227291 0.315526

Let’s visualize both confidence intervals in Figure 8.32, with the percentile-
method interval marked with black lines and the standard-error-method marked
with grey lines. Observe that they are both similar to each other.

294 8 Bootstrapping and Confidence Intervals

0

50

100

150

-0.25 0.00 0.25 0.50

stat

c
o
u
n
t

FIGURE 8.32: Two 95% confidence intervals: percentile method (black) and
standard error method (grey).

8.6.4 Interpreting the confidence interval

Given that both confidence intervals are quite similar, let’s focus our inter-
pretation to only the percentile-method confidence interval of (-0.238, 0.302).
Recall from Subsection 8.5.2 that the precise statistical interpretation of a
95% confidence interval is: if this construction procedure is repeated 100 times,
then we expect about 95 of the confidence intervals to capture the true value
of 𝑝𝑠𝑒𝑒𝑑 − 𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙. In other words, if we gathered 100 samples of 𝑛 = 50 partic-
ipants from a similar pool of people and constructed 100 confidence intervals
each based on each of the 100 samples, about 95 of them will contain the true
value of 𝑝𝑠𝑒𝑒𝑑 − 𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙 while about five won’t. Given that this is a little long
winded, we use the shorthand interpretation: we’re 95% “confident” that the
true difference in proportions 𝑝𝑠𝑒𝑒𝑑 − 𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙 is between (-0.238, 0.302).

There is one value of particular interest that this 95% confidence interval
contains: zero. If 𝑝𝑠𝑒𝑒𝑑 − 𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙 were equal to 0, then there would be no
difference in proportion yawning between the two groups. This would suggest
that there is no associated effect of being exposed to a yawning recruiter on
whether you yawn yourself.

In our case, since the 95% confidence interval includes 0, we cannot conclu-
sively say if either proportion is larger. Of our 1000 bootstrap resamples with

8.7 Conclusion 295

replacement, sometimes ̂𝑝𝑠𝑒𝑒𝑑 was higher and thus those exposed to yawning
yawned themselves more often. At other times, the reverse happened.

Say, on the other hand, the 95% confidence interval was entirely above zero.
This would suggest that 𝑝𝑠𝑒𝑒𝑑 −𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙 > 0, or, in other words 𝑝𝑠𝑒𝑒𝑑 > 𝑝𝑐𝑜𝑛𝑡𝑟𝑜𝑙,
and thus we’d have evidence suggesting those exposed to yawning do yawn
more often.

8.7 Conclusion
8.7.1 Comparing bootstrap and sampling distributions

Let’s talk more about the relationship between sampling distributions and
bootstrap distributions.

Recall back in Subsection 7.2.3, we took 1000 virtual samples from the bowl
using a virtual shovel, computed 1000 values of the sample proportion red ̂𝑝,
then visualized their distribution in a histogram. Recall that this distribution
is called the sampling distribution of ̂𝑝 . Furthermore, the standard deviation
of the sampling distribution has a special name: the standard error.

We also mentioned that this sampling activity does not reflect how sampling is
done in real life. Rather, it was an idealized version of sampling so that we
could study the effects of sampling variation on estimates, like the proportion
of the shovel’s balls that are red. In real life, however, one would take a single
sample that’s as large as possible, much like in the Obama poll we saw in
Section 7.4. But how can we get a sense of the effect of sampling variation on
estimates if we only have one sample and thus only one estimate? Don’t we
need many samples and hence many estimates?

The workaround to having a single sample was to perform bootstrap resampling
with replacement from the single sample. We did this in the resampling activity
in Section 8.1 where we focused on the mean year of minting of pennies. We
used pieces of paper representing the original sample of 50 pennies from the
bank and resampled them with replacement from a hat. We had 35 of our
friends perform this activity and visualized the resulting 35 sample means 𝑥 in
a histogram in Figure 8.11.

This distribution was called the bootstrap distribution of 𝑥. We stated at the
time that the bootstrap distribution is an approximation to the sampling
distribution of 𝑥 in the sense that both distributions will have a similar shape
and similar spread. Thus the standard error of the bootstrap distribution can
be used as an approximation to the standard error of the sampling distribution.

296 8 Bootstrapping and Confidence Intervals

Let’s show you that this is the case by now comparing these two types of
distributions. Specifically, we’ll compare

1. the sampling distribution of ̂𝑝 based on 1000 virtual samples from the
bowl from Subsection 7.2.3 to

2. the bootstrap distribution of ̂𝑝 based on 1000 virtual resamples with
replacement from Ilyas and Yohan’s single sample bowl_sample_1 from
Subsection 8.5.1.

Sampling distribution

Here is the code you saw in Subsection 7.2.3 to construct the sampling distri-
bution of ̂𝑝 shown again in Figure 8.33, with some changes to incorporate the
statistical terminology relating to sampling from Subsection 7.3.1.

Take 1000 virtual samples of size 50 from the bowl:
virtual_samples <- bowl %>%
rep_sample_n(size = 50, reps = 1000)

Compute the sampling distribution of 1000 values of p-hat
sampling_distribution <- virtual_samples %>%
group_by(replicate) %>%
summarize(red = sum(color == "red")) %>%
mutate(prop_red = red / 50)

Visualize sampling distribution of p-hat
ggplot(sampling_distribution, aes(x = prop_red)) +
geom_histogram(binwidth = 0.05, boundary = 0.4, color = "white") +
labs(x = "Proportion of 50 balls that were red",

title = "Sampling distribution")

0

100

200

300

0.2 0.3 0.4 0.5 0.6

Proportion of 50 balls that were red

c
o
u
n
t

Sampling distribution

FIGURE 8.33: Previously seen sampling distribution of sample proportion
red for 𝑛 = 1000.

8.7 Conclusion 297

An important thing to keep in mind is the default value for replace is FALSE
when using rep_sample_n(). This is because when sampling 50 balls with a
shovel, we are extracting 50 balls one-by-one without replacing them. This is
in contrast to bootstrap resampling with replacement, where we resample a
ball and put it back, and repeat this process 50 times.

Let’s quantify the variability in this sampling distribution by calculating the
standard deviation of the prop_red variable representing 1000 values of the
sample proportion ̂𝑝. Remember that the standard deviation of the sampling
distribution is the standard error, frequently denoted as se.

sampling_distribution %>% summarize(se = sd(prop_red))

A tibble: 1 x 1
se

<dbl>
1 0.0673987

Bootstrap distribution

Here is the code you previously saw in Subsection 8.5.1 to construct the
bootstrap distribution of ̂𝑝 based on Ilyas and Yohan’s original sample of 50
balls saved in bowl_sample_1.

bootstrap_distribution <- bowl_sample_1 %>%
specify(response = color, success = "red") %>%
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "prop")

0

50

100

150

200

0.2 0.3 0.4 0.5 0.6

Proportion of 50 balls that were red

c
o
u
n
t

Bootstrap distribution

FIGURE 8.34: Bootstrap distribution of proportion red for 𝑛 = 1000.

298 8 Bootstrapping and Confidence Intervals

bootstrap_distribution %>% summarize(se = sd(stat))

A tibble: 1 x 1
se

<dbl>
1 0.0712212

Comparison

Now that we have computed both the sampling distribution and the bootstrap
distributions, let’s compare them side-by-side in Figure 8.35. We’ll make both
histograms have matching scales on the x- and y-axes to make them more
comparable. Furthermore, we’ll add:

1. To the sampling distribution on the top: a solid line denoting the
proportion of the bowl’s balls that are red 𝑝 = 0.375.

2. To the bootstrap distribution on the bottom: a dashed line at the
sample proportion ̂𝑝 = 21/50 = 0.42 = 42% that Ilyas and Yohan
observed.

0

100

200

300

0

100

200

300

0.15 0.25 0.35 0.45 0.55 0.65

0.15 0.25 0.35 0.45 0.55 0.65

Proportion of 50 balls that were red

c
o
u
n
t

c
o
u
n
t

Sampling distribution

Bootstrap distribution: similar shape and spread but different center

FIGURE 8.35: Comparing the sampling and bootstrap distributions of ̂𝑝.

8.7 Conclusion 299

There is a lot going on in Figure 8.35, so let’s break down all the comparisons
slowly. First, observe how the sampling distribution on top is centered at 𝑝
= 0.375. This is because the sampling is done at random and in an unbiased
fashion. So the estimates ̂𝑝 are centered at the true value of 𝑝.
However, this is not the case with the following bootstrap distribution. The
bootstrap distribution is centered at 0.42, which is the proportion red of Ilyas
and Yohan’s 50 sampled balls. This is because we are resampling from the same
sample over and over again. Since the bootstrap distribution is centered at the
original sample’s proportion, it doesn’t necessarily provide a better estimate of𝑝 = 0.375. This leads us to our first lesson about bootstrapping:

The bootstrap distribution will likely not have the same center as the sampling
distribution. In other words, bootstrapping cannot improve the quality of an
estimate.

Second, let’s now compare the spread of the two distributions: they are some-
what similar. In the previous code, we computed the standard deviations of
both distributions as well. Recall that such standard deviations have a special
name: standard errors. Let’s compare them in Table 8.5.

TABLE 8.5: Comparing standard errors

Distribution type Standard error

Sampling distribution 0.067
Bootstrap distribution 0.071

Notice that the bootstrap distribution’s standard error is a rather good ap-
proximation to the sampling distribution’s standard error. This leads us to our
second lesson about bootstrapping:

Even if the bootstrap distribution might not have the same center as the
sampling distribution, it will likely have very similar shape and spread. In
other words, bootstrapping will give you a good estimate of the standard error.

300 8 Bootstrapping and Confidence Intervals

Thus, using the fact that the bootstrap distribution and sampling distributions
have similar spreads, we can build confidence intervals using bootstrapping as
we’ve done all throughout this chapter!

8.7.2 Theory-based confidence intervals

So far in this chapter, we’ve constructed confidence intervals using two methods:
the percentile method and the standard error method. Recall also from Sub-
section 8.3.2 that we can only use the standard-error method if the bootstrap
distribution is bell-shaped (i.e., normally distributed).

In a similar vein, if the sampling distribution is normally shaped, there is
another method for constructing confidence intervals that does not involve using
your computer. You can use a theory-based method involving a mathematical
formulas!

The formula uses the rule of thumb we saw in Appendix A.2 that 95% of values
in a normal distribution are within ±1.96 standard deviations of the mean.
In the case of sampling and bootstrap distributions, recall that the standard
deviation has a special name: the standard error.

Theory-based method for computing standard errors

There exists in many cases a formula that approximates the standard error! In
the case of our bowl where we used the sample proportion red ̂𝑝 to estimate
the proportion of the bowl’s balls that are red, the formula that approximates
the standard error is:

SE𝑝̂ ≈ √ ̂𝑝(1 − ̂𝑝)𝑛
For example, recall from bowl_sample_1 that Yohan and Ilyas sampled 𝑛 = 50
balls and observed a sample proportion ̂𝑝 of 21/50 = 0.42. So, using the formula,
an approximation of the standard error of ̂𝑝 is

SE𝑝̂ ≈ √0.42(1 − 0.42)50 = √0.004872 = 0.0698 ≈ 0.070
The key observation to make here is that there is an 𝑛 in the denominator. So as
the sample size 𝑛 increases, the standard error decreases. We’ve demonstrated
this fact using our virtual shovels in Subsection 7.3.3. If you don’t recall this
demonstration, we highly recommend you go back and read that subsection.

8.7 Conclusion 301

Let’s compare this theory-based standard error to the standard error of the
sampling and bootstrap distributions you computed previously in Subsection
8.7.1 in Table 8.6. Notice how they are all similar!

TABLE 8.6: Comparing standard errors

Distribution type Standard error

Sampling distribution 0.067
Bootstrap distribution 0.071
Formula approximation 0.070

Going back to Yohan and Ilyas’ sample proportion of ̂𝑝 of 21/50 = 0.42, say
this were based on a sample of size 𝑛 = 100 instead of 50. Then the standard
error would be:

SE𝑝̂ ≈ √0.42(1 − 0.42)100 = √0.002436 = 0.0494
Observe that the standard error has gone down from 0.0698 to 0.0494. In
other words, the “typical” error of our estimates using 𝑛 = 100 will go down
and hence be more precise. Recall that we illustrated the difference between
accuracy and precision of estimates in Figure 7.16.

Why is this formula true? Unfortunately, we don’t have the tools at this point
to prove this; you’ll need to take a more advanced course in probability and
statistics. (It is related to the concepts of Bernoulli and Binomial Distributions.
You can read more about its derivation here7 if you like.)

Theory-based method for constructing confidence intervals

Using these theory-based standard errors, let’s present a theory-based method
for constructing 95% confidence intervals that does not involve using a computer,
but rather mathematical formulas. Note that this theory-based method only
holds if the sampling distribution is normally shaped, so that we can use the
95% rule of thumb about normal distributions discussed in Appendix A.2.

1. Collect a single representative sample of size 𝑛 that’s as large as
possible.

2. Compute the point estimate: the sample proportion ̂𝑝. Think of this
as the center of your “net.”

3. Compute the approximation to the standard error
7http://onlinestatbook.com/2/sampling_distributions/samp_dist_p.html

302 8 Bootstrapping and Confidence Intervals

SE𝑝̂ ≈ √ ̂𝑝(1 − ̂𝑝)𝑛
4. Compute a quantity known as the margin of error (more on this later

after we list the five steps):

MoE𝑝̂ = 1.96 ⋅ SE𝑝̂ = 1.96 ⋅ √ ̂𝑝(1 − ̂𝑝)𝑛
5. Compute both endpoints of the confidence interval.

•The lower end-point. Think of this as the left end-point of the
net: ̂𝑝 − MoE𝑝̂ = ̂𝑝 − 1.96 ⋅ SE𝑝̂ = ̂𝑝 − 1.96 ⋅ √ ̂𝑝(1 − ̂𝑝)𝑛

•The upper endpoint. Think of this as the right end-point of the
net: ̂𝑝 + MoE𝑝̂ = ̂𝑝 + 1.96 ⋅ SE𝑝̂ = ̂𝑝 + 1.96 ⋅ √ ̂𝑝(1 − ̂𝑝)𝑛

•Alternatively, you can succinctly summarize a 95% confidence
interval for 𝑝 using the ± symbol:̂𝑝 ± MoE𝑝̂ = ̂𝑝 ± (1.96 ⋅ SE𝑝̂) = ̂𝑝 ± (1.96 ⋅ √ ̂𝑝(1 − ̂𝑝)𝑛)

So going back to Yohan and Ilyas’ sample of 𝑛 = 50 balls that had 21 red balls,
the 95% confidence interval for 𝑝 is0.41 ± 1.96 ⋅ 0.0698 = 0.41 ± 0.137= (0.41 − 0.137, 0.41 + 0.137)= (0.273, 0.547).
Yohan and Ilyas are 95% “confident” that the true proportion red of the bowl’s
balls is between 28.3% and 55.7%. Given that the true population proportion𝑝 was 0.375, in this case they successfully captured the fish.

In Step 4, we defined a statistical quantity known as the margin of error. You
can think of this quantity as how much the net extends to the left and to the
right of the center of our net. The 1.96 multiplier is rooted in the 95% rule of
thumb we introduced earlier and the fact that we want the confidence level
to be 95%. The value of the margin of error entirely determines the width of
the confidence interval. Recall from Subsection 8.5.3 that confidence interval

8.7 Conclusion 303

widths are determined by an interplay of the confidence level, the sample size𝑛, and the standard error.

Let’s revisit the poll of President Obama’s approval rating among young
Americans aged 18-29 which we introduced in Section 7.4. Pollsters found that
based on a representative sample of 𝑛 = 2089 young Americans, ̂𝑝 = 0.41 =
41% supported President Obama.

If you look towards the end of the article, it also states: “The poll’s margin of
error was plus or minus 2.1 percentage points.” This is precisely the MoE:

MoE = 1.96 ⋅ SE = 1.96 ⋅ √ ̂𝑝(1 − ̂𝑝)𝑛 = 1.96 ⋅ √0.41(1 − 0.41)2089= 1.96 ⋅ 0.0108 = 0.021 = 2.1%
Their poll results are based on a confidence level of 95% and the resulting 95%
confidence interval for the proportion of all young Americans who support
Obama is:̂𝑝 ± MoE = 0.41 ± 0.021 = (0.389, 0.431) = (38.9%, 43.1%).
Confidence intervals based on 33 tactile samples

Let’s revisit our 33 friends’ samples from the bowl from Subsection 7.1.3. We’ll
use their 33 samples to construct 33 theory-based 95% confidence intervals for𝑝. Recall this data was saved in the tactile_prop_red data frame included in
the moderndive package:

1. rename() the variable prop_red to p_hat, the statistical name of the
sample proportion ̂𝑝.

2. mutate() a new variable n making explicit the sample size of 50.
3. mutate() other new variables computing:

•The standard error SE for ̂𝑝 using the previous formula.
•The margin of error MoE by multiplying the SE by 1.96
•The left endpoint of the confidence interval lower_ci
•The right endpoint of the confidence interval upper_ci

conf_ints <- tactile_prop_red %>%
rename(p_hat = prop_red) %>%
mutate(

n = 50,
SE = sqrt(p_hat * (1 - p_hat) / n),

304 8 Bootstrapping and Confidence Intervals

MoE = 1.96 * SE,
lower_ci = p_hat - MoE,
upper_ci = p_hat + MoE

)

In Figure 8.36, let’s plot the 33 confidence intervals for 𝑝 saved in conf_ints
along with a vertical line at 𝑝 = 0.375 indicating the true proportion of the
bowl’s balls that are red. Furthermore, let’s mark the sample proportions ̂𝑝
with dots since they represent the centers of these confidence intervals.

Ilyas, Yohan

Morgan, Terrance

Martin, Thomas

Clark, Frank

Riddhi, Karina

Andrew, Tyler

Julia

Rachel, Lauren

Daniel, Caroline

Josh, Maeve

Emily, Emily

Conrad, Emily

Oliver, Erik

Isabel, Nam

X, Claire

Cindy, Kimberly

Kevin, James

Nam, Isabelle

Harry, Yuko

Yuki, Eileen

Ramses

Joshua, Elizabeth, Stanley

Siobhan, Jane

Jack, Will

Caroline, Katie

Griffin, Y

Kaitlin, Jordan

Ella, Garrett

Julie, Hailin

Katie, Caroline

Mallory, Damani, Melissa

Katie

Francis, Vignesh

0.1 0.2 0.3 0.4 0.5 0.6

Proportion of red balls

Captured

TRUE

FALSE

FIGURE 8.36: 33 confidence intervals at the 95% level based on 33 tactile
samples of size 𝑛 = 50.
Observe that 31 of the 33 confidence intervals “captured” the true value of𝑝, for a success rate of 31 / 33 = 93.94%. While this is not quite 95%, recall

8.7 Conclusion 305

that we expect about 95% of such confidence intervals to capture 𝑝. The actual
observed success rate will vary slightly.

Theory-based methods like this have largely been used in the past because we
didn’t have the computing power to perform simulation-based methods such
as bootstrapping. They are still commonly used, however, and if the sampling
distribution is normally distributed, we have access to an alternative method
for constructing confidence intervals as well as performing hypothesis tests as
we will see in Chapter 9.

The kind of computer-based statistical inference we’ve seen so far has a partic-
ular name in the field of statistics: simulation-based inference. This is because
we are performing statistical inference using computer simulations. In our
opinion, two large benefits of simulation-based methods over theory-based
methods are that (1) they are easier for people new to statistical inference to
understand and (2) they also work in situations where theory-based methods
and mathematical formulas don’t exist.

8.7.3 Additional resources

Solutions to all Learning checks can be found online in Appendix D8.

An R script file of all R code used in this chapter is available at https:
//www.moderndive.com/scripts/08-confidence-intervals.R.

If you want more examples of the infer workflow to construct confidence
intervals, we suggest you check out the infer package homepage, in particular,
a series of example analyses available at https://infer.netlify.com/articles/.

8.7.4 What’s to come?

Now that we’ve equipped ourselves with confidence intervals, in Chapter 9 we’ll
cover the other common tool for statistical inference: hypothesis testing. Just
like confidence intervals, hypothesis tests are used to infer about a population
using a sample. However, we’ll see that the framework for making such inferences
is slightly different.

8https://moderndive.com/D-appendixD.html

9
Hypothesis Testing

Now that we’ve studied confidence intervals in Chapter 8, let’s study another
commonly used method for statistical inference: hypothesis testing. Hypothesis
tests allow us to take a sample of data from a population and infer about the
plausibility of competing hypotheses. For example, in the upcoming “promo-
tions” activity in Section 9.1, you’ll study the data collected from a psychology
study in the 1970s to investigate whether gender-based discrimination in
promotion rates existed in the banking industry at the time of the study.

The good news is we’ve already covered many of the necessary concepts to
understand hypothesis testing in Chapters 7 and 8. We will expand further
on these ideas here and also provide a general framework for understanding
hypothesis tests. By understanding this general framework, you’ll be able to
adapt it to many different scenarios.

The same can be said for confidence intervals. There was one general framework
that applies to all confidence intervals and the infer package was designed
around this framework. While the specifics may change slightly for different
types of confidence intervals, the general framework stays the same.

We believe that this approach is much better for long-term learning than
focusing on specific details for specific confidence intervals using theory-based
approaches. As you’ll now see, we prefer this general framework for hypothesis
tests as well.

Needed packages

Let’s load all the packages needed for this chapter (this assumes you’ve already
installed them). Recall from our discussion in Section 4.4 that loading the
tidyverse package by running library(tidyverse) loads the following commonly
used data science packages all at once:

• ggplot2 for data visualization
• dplyr for data wrangling
• tidyr for converting data to “tidy” format
• readr for importing spreadsheet data into R
• As well as the more advanced purrr, tibble, stringr, and forcats packages

307

308 9 Hypothesis Testing

If needed, read Section 1.3 for information on how to install and load R
packages.

library(tidyverse)
library(infer)
library(moderndive)
library(nycflights13)
library(ggplot2movies)

9.1 Promotions activity
Let’s start with an activity studying the effect of gender on promotions at a
bank.

9.1.1 Does gender affect promotions at a bank?

Say you are working at a bank in the 1970s and you are submitting your
résumé to apply for a promotion. Will your gender affect your chances of
getting promoted? To answer this question, we’ll focus on data from a study
published in the Journal of Applied Psychology in 1974. This data is also used
in the OpenIntro1 series of statistics textbooks.

To begin the study, 48 bank supervisors were asked to assume the role of a
hypothetical director of a bank with multiple branches. Every one of the bank
supervisors was given a résumé and asked whether or not the candidate on the
résumé was fit to be promoted to a new position in one of their branches.

However, each of these 48 résumés were identical in all respects except one: the
name of the applicant at the top of the résumé. Of the supervisors, 24 were
randomly given résumés with stereotypically “male” names, while 24 of the
supervisors were randomly given résumés with stereotypically “female” names.
Since only (binary) gender varied from résumé to résumé, researchers could
isolate the effect of this variable in promotion rates.

While many people today (including us, the authors) disagree with such binary
views of gender, it is important to remember that this study was conducted at
a time where more nuanced views of gender were not as prevalent. Despite this
imperfection, we decided to still use this example as we feel it presents ideas
still relevant today about how we could study discrimination in the workplace.

1https://www.openintro.org/

9.1 Promotions activity 309

The moderndive package contains the data on the 48 applicants in the promotions
data frame. Let’s explore this data by looking at six randomly selected rows:

promotions %>%
sample_n(size = 6) %>%
arrange(id)

A tibble: 6 x 3
id decision gender

<int> <fct> <fct>
1 11 promoted male
2 26 promoted female
3 28 promoted female
4 36 not male
5 37 not male
6 46 not female

The variable id acts as an identification variable for all 48 rows, the decision
variable indicates whether the applicant was selected for promotion or not,
while the gender variable indicates the gender of the name used on the résumé.
Recall that this data does not pertain to 24 actual men and 24 actual women,
but rather 48 identical résumés of which 24 were assigned stereotypically “male”
names and 24 were assigned stereotypically “female” names.

Let’s perform an exploratory data analysis of the relationship between the
two categorical variables decision and gender. Recall that we saw in Subsection
2.8.3 that one way we can visualize such a relationship is by using a stacked
barplot.

ggplot(promotions, aes(x = gender, fill = decision)) +
geom_bar() +
labs(x = "Gender of name on résumé")

0

5

10

15

20

25

male female

Gender of name on résumé

c
o
u
n
t

decision

not

promoted

FIGURE 9.1: Barplot relating gender to promotion decision.

310 9 Hypothesis Testing

Observe in Figure 9.1 that it appears that résumés with female names were
much less likely to be accepted for promotion. Let’s quantify these promotion
rates by computing the proportion of résumés accepted for promotion for each
group using the dplyr package for data wrangling. Note the use of the tally()
function here which is a shortcut for summarize(n = n()) to get counts.

promotions %>%
group_by(gender, decision) %>%
tally()

A tibble: 4 x 3
Groups: gender [2]

gender decision n
<fct> <fct> <int>

1 male not 3
2 male promoted 21
3 female not 10
4 female promoted 14

So of the 24 résumés with male names, 21 were selected for promotion, for a
proportion of 21/24 = 0.875 = 87.5%. On the other hand, of the 24 résumés
with female names, 14 were selected for promotion, for a proportion of 14/24
= 0.583 = 58.3%. Comparing these two rates of promotion, it appears that
résumés with male names were selected for promotion at a rate 0.875 - 0.583
= 0.292 = 29.2% higher than résumés with female names. This is suggestive of
an advantage for résumés with a male name on it.

The question is, however, does this provide conclusive evidence that there is
gender discrimination in promotions at banks? Could a difference in promotion
rates of 29.2% still occur by chance, even in a hypothetical world where
no gender-based discrimination existed? In other words, what is the role of
sampling variation in this hypothesized world? To answer this question, we’ll
again rely on a computer to run simulations.

9.1.2 Shuffling once

First, try to imagine a hypothetical universe where no gender discrimination in
promotions existed. In such a hypothetical universe, the gender of an applicant
would have no bearing on their chances of promotion. Bringing things back
to our promotions data frame, the gender variable would thus be an irrelevant
label. If these gender labels were irrelevant, then we could randomly reassign
them by “shuffling” them to no consequence!

9.1 Promotions activity 311

To illustrate this idea, let’s narrow our focus to 6 arbitrarily chosen résumés
of the 48 in Table 9.1. The decision column shows that 3 résumés resulted in
promotion while 3 didn’t. The gender column shows what the original gender
of the résumé name was.

However, in our hypothesized universe of no gender discrimination, gender is
irrelevant and thus it is of no consequence to randomly “shuffle” the values of
gender. The shuffled_gender column shows one such possible random shuffling.
Observe in the fourth column how the number of male and female names
remains the same at 3 each, but they are now listed in a different order.

TABLE 9.1: One example of shuffling gender variable

résumé number decision gender shuffled gender

1 not male male
2 not female male
3 not female female
4 promoted male female
5 promoted male female
6 promoted female male

Again, such random shuffling of the gender label only makes sense in our
hypothesized universe of no gender discrimination. How could we extend this
shuffling of the gender variable to all 48 résumés by hand? One way would be
by using standard deck of 52 playing cards, which we display in Figure 9.2.

FIGURE 9.2: Standard deck of 52 playing cards.

Since half the cards are red (diamonds and hearts) and the other half are black
(spades and clubs), by removing two red cards and two black cards, we would

312 9 Hypothesis Testing

end up with 24 red cards and 24 black cards. After shuffling these 48 cards as
seen in Figure 9.3, we can flip the cards over one-by-one, assigning “male” for
each red card and “female” for each black card.

FIGURE 9.3: Shuffling a deck of cards.

We’ve saved one such shuffling in the promotions_shuffled data frame of the
moderndive package. If you compare the original promotions and the shuffled
promotions_shuffled data frames, you’ll see that while the decision variable is
identical, the gender variable has changed.

Let’s repeat the same exploratory data analysis we did for the original promotions
data on our promotions_shuffled data frame. Let’s create a barplot visualizing
the relationship between decision and the new shuffled gender variable and
compare this to the original unshuffled version in Figure 9.4.

ggplot(promotions_shuffled,
aes(x = gender, fill = decision)) +

geom_bar() +
labs(x = "Gender of résumé name")

9.1 Promotions activity 313

0

5

10

15

20

0

5

10

15

20

male female male female

Gender of résumé name Gender of résumé name

c
o
u
n
t

decision

not

promoted

Original Shuffled

FIGURE 9.4: Barplots of relationship of promotion with gender (left) and
shuffled gender (right).

It appears the difference in “male names” versus “female names” promotion
rates is now different. Compared to the original data in the left barplot, the
new “shuffled” data in the right barplot has promotion rates that are much
more similar.

Let’s also compute the proportion of résumés accepted for promotion for each
group:

promotions_shuffled %>%
group_by(gender, decision) %>%
tally() # Same as summarize(n = n())

A tibble: 4 x 3
Groups: gender [2]

gender decision n
<fct> <fct> <int>

1 male not 6
2 male promoted 18

314 9 Hypothesis Testing

3 female not 7
4 female promoted 17

So in this hypothetical universe of no discrimination, 18/24 = 0.75 = 75%
of “male” résumés were selected for promotion. On the other hand, 17/24 =0.708 = 70.8% of “female” résumés were selected for promotion.

Let’s next compare these two values. It appears that résumés with stereotypi-
cally male names were selected for promotion at a rate that was 0.75−0.708 =0.042 = 4.2% different than résumés with stereotypically female names.

Observe how this difference in rates is not the same as the difference in rates
of 0.292 = 29.2% we originally observed. This is once again due to sampling
variation. How can we better understand the effect of this sampling variation?
By repeating this shuffling several times!

9.1.3 Shuffling 16 times

We recruited 16 groups of our friends to repeat this shuffling exercise. They
recorded these values in a shared spreadsheet2; we display a snapshot of the
first 10 rows and 5 columns in Figure 9.5.

FIGURE 9.5: Snapshot of shared spreadsheet of shuffling results (m for male,
f for female).

For each of these 16 columns of shuffles, we computed the difference in promo-
tion rates, and in Figure 9.6 we display their distribution in a histogram. We
also mark the observed difference in promotion rate that occurred in real life
of 0.292 = 29.2% with a dark line.

2https://docs.google.com/spreadsheets/d/1Q-ENy3o5IrpJshJ7gn3hJ5A0TOWV2AZrKNHMsshQtiE/

9.1 Promotions activity 315

0.0

2.5

5.0

7.5

-0.2 0.0 0.2

Difference in promotion rates (male - female)

c
o
u
n
t

FIGURE 9.6: Distribution of shuffled differences in promotions.

Before we discuss the distribution of the histogram, we emphasize the key thing
to remember: this histogram represents differences in promotion rates that one
would observe in our hypothesized universe of no gender discrimination.

Observe first that the histogram is roughly centered at 0. Saying that the
difference in promotion rates is 0 is equivalent to saying that both genders
had the same promotion rate. In other words, the center of these 16 values
is consistent with what we would expect in our hypothesized universe of no
gender discrimination.

However, while the values are centered at 0, there is variation about 0. This
is because even in a hypothesized universe of no gender discrimination, you
will still likely observe small differences in promotion rates because of chance
sampling variation. Looking at the histogram in Figure 9.6, such differences
could even be as extreme as -0.292 or 0.208.

Turning our attention to what we observed in real life: the difference of 0.292
= 29.2% is marked with a vertical dark line. Ask yourself: in a hypothesized
world of no gender discrimination, how likely would it be that we observe
this difference? While opinions here may differ, in our opinion not often! Now
ask yourself: what do these results say about our hypothesized universe of no
gender discrimination?

316 9 Hypothesis Testing

9.1.4 What did we just do?

What we just demonstrated in this activity is the statistical procedure known
as hypothesis testing using a permutation test. The term “permutation” is the
mathematical term for “shuffling”: taking a series of values and reordering
them randomly, as you did with the playing cards.

In fact, permutations are another form of resampling, like the bootstrap
method you performed in Chapter 8. While the bootstrap method involves
resampling with replacement, permutation methods involve resampling without
replacement.

Think of our exercise involving the slips of paper representing pennies and the
hat in Section 8.1: after sampling a penny, you put it back in the hat. Now
think of our deck of cards. After drawing a card, you laid it out in front of you,
recorded the color, and then you did not put it back in the deck.

In our previous example, we tested the validity of the hypothesized universe of
no gender discrimination. The evidence contained in our observed sample of
48 résumés was somewhat inconsistent with our hypothesized universe. Thus,
we would be inclined to reject this hypothesized universe and declare that the
evidence suggests there is gender discrimination.

Recall our case study on whether yawning is contagious from Section 8.6. The
previous example involves inference about an unknown difference of population
proportions as well. This time, it will be 𝑝𝑚 − 𝑝𝑓, where 𝑝𝑚 is the population
proportion of résumés with male names being recommended for promotion and𝑝𝑓 is the equivalent for résumés with female names. Recall that this is one of
the scenarios for inference we’ve seen so far in Table 9.2.

TABLE 9.2: Scenarios of sampling for inference

Scenario Population
parameter

Notation Point estimate Symbol(s)

1 Population
proportion

𝑝 Sample
proportion

𝑝̂
2 Population

mean
𝜇 Sample mean 𝑥 or 𝜇

3 Difference
in
population
proportions

𝑝1 − 𝑝2 Difference in
sample
proportions

𝑝̂1 − 𝑝̂2

So, based on our sample of 𝑛𝑚 = 24 “male” applicants and 𝑛𝑤 = 24 “female”
applicants, the point estimate for 𝑝𝑚 −𝑝𝑓 is the difference in sample proportions

9.2 Understanding hypothesis tests 317̂𝑝𝑚 − ̂𝑝𝑓 = 0.875 - 0.583 = 0.292 = 29.2%. This difference in favor of “male”
résumés of 0.292 is greater than 0, suggesting discrimination in favor of men.

However, the question we asked ourselves was “is this difference meaningfully
greater than 0?”. In other words, is that difference indicative of true discrimi-
nation, or can we just attribute it to sampling variation? Hypothesis testing
allows us to make such distinctions.

9.2 Understanding hypothesis tests
Much like the terminology, notation, and definitions relating to sampling you
saw in Section 7.3, there are a lot of terminology, notation, and definitions
related to hypothesis testing as well. Learning these may seem like a very
daunting task at first. However, with practice, practice, and more practice,
anyone can master them.

First, a hypothesis is a statement about the value of an unknown population
parameter. In our résumé activity, our population parameter of interest is the
difference in population proportions 𝑝𝑚 − 𝑝𝑓. Hypothesis tests can involve any
of the population parameters in Table 7.5 of the five inference scenarios we’ll
cover in this book and also more advanced types we won’t cover here.

Second, a hypothesis test consists of a test between two competing hy-
potheses: (1) a null hypothesis 𝐻0 (pronounced “H-naught”) versus (2) an
alternative hypothesis 𝐻𝐴 (also denoted 𝐻1).
Generally the null hypothesis is a claim that there is “no effect” or “no difference
of interest.” In many cases, the null hypothesis represents the status quo or
a situation that nothing interesting is happening. Furthermore, generally the
alternative hypothesis is the claim the experimenter or researcher wants to
establish or find evidence to support. It is viewed as a “challenger” hypothesis
to the null hypothesis 𝐻0. In our résumé activity, an appropriate hypothesis
test would be:𝐻0 ∶ men and women are promoted at the same rate

vs 𝐻𝐴 ∶ men are promoted at a higher rate than women

Note some of the choices we have made. First, we set the null hypothesis 𝐻0 to
be that there is no difference in promotion rate and the “challenger” alternative
hypothesis 𝐻𝐴 to be that there is a difference. While it would not be wrong
in principle to reverse the two, it is a convention in statistical inference that
the null hypothesis is set to reflect a “null” situation where “nothing is going

318 9 Hypothesis Testing

on.” As we discussed earlier, in this case, 𝐻0 corresponds to there being no
difference in promotion rates. Furthermore, we set 𝐻𝐴 to be that men are
promoted at a higher rate, a subjective choice reflecting a prior suspicion
we have that this is the case. We call such alternative hypotheses one-sided
alternatives. If someone else however does not share such suspicions and only
wants to investigate that there is a difference, whether higher or lower, they
would set what is known as a two-sided alternative.

We can re-express the formulation of our hypothesis test using the mathematical
notation for our population parameter of interest, the difference in population
proportions 𝑝𝑚 − 𝑝𝑓: 𝐻0 ∶ 𝑝𝑚 − 𝑝𝑓 = 0

vs 𝐻𝐴 ∶ 𝑝𝑚 − 𝑝𝑓 > 0
Observe how the alternative hypothesis 𝐻𝐴 is one-sided with 𝑝𝑚 − 𝑝𝑓 > 0.
Had we opted for a two-sided alternative, we would have set 𝑝𝑚 − 𝑝𝑓 ≠ 0. To
keep things simple for now, we’ll stick with the simpler one-sided alternative.
We’ll present an example of a two-sided alternative in Section 9.5.

Third, a test statistic is a point estimate/sample statistic formula used for
hypothesis testing. Note that a sample statistic is merely a summary statistic
based on a sample of observations. Recall we saw in Section 3.3 that a summary
statistic takes in many values and returns only one. Here, the samples would
be the 𝑛𝑚 = 24 résumés with male names and the 𝑛𝑓 = 24 résumés with
female names. Hence, the point estimate of interest is the difference in sample
proportions ̂𝑝𝑚 − ̂𝑝𝑓.
Fourth, the observed test statistic is the value of the test statistic that
we observed in real life. In our case, we computed this value using the data
saved in the promotions data frame. It was the observed difference of ̂𝑝𝑚 − ̂𝑝𝑓 =0.875 − 0.583 = 0.292 = 29.2% in favor of résumés with male names.

Fifth, the null distribution is the sampling distribution of the test statistic
assuming the null hypothesis 𝐻0 is true. Ooof! That’s a long one! Let’s unpack
it slowly. The key to understanding the null distribution is that the null hy-
pothesis 𝐻0 is assumed to be true. We’re not saying that 𝐻0 is true at this
point, we’re only assuming it to be true for hypothesis testing purposes. In
our case, this corresponds to our hypothesized universe of no gender discrimi-
nation in promotion rates. Assuming the null hypothesis 𝐻0, also stated as
“Under 𝐻0,” how does the test statistic vary due to sampling variation? In
our case, how will the difference in sample proportions ̂𝑝𝑚 − ̂𝑝𝑓 vary due to
sampling under 𝐻0? Recall from Subsection 7.3.2 that distributions display-
ing how point estimates vary due to sampling variation are called sampling

9.2 Understanding hypothesis tests 319

distributions. The only additional thing to keep in mind about null distributions
is that they are sampling distributions assuming the null hypothesis 𝐻0 is true.

In our case, we previously visualized a null distribution in Figure 9.6, which
we re-display in Figure 9.7 using our new notation and terminology. It is the
distribution of the 16 differences in sample proportions our friends computed
assuming a hypothetical universe of no gender discrimination. We also mark
the value of the observed test statistic of 0.292 with a vertical line.

0.0

2.5

5.0

7.5

-0.2 0.0 0.2

Difference in sample proportions p̂m − p̂f

c
o
u
n
t

FIGURE 9.7: Null distribution and observed test statistic.

Sixth, the 𝑝-value is the probability of obtaining a test statistic just as extreme
or more extreme than the observed test statistic assuming the null hypothesis𝐻0 is true. Double ooof! Let’s unpack this slowly as well. You can think of the𝑝-value as a quantification of “surprise”: assuming 𝐻0 is true, how surprised
are we with what we observed? Or in our case, in our hypothesized universe of
no gender discrimination, how surprised are we that we observed a difference
in promotion rates of 0.292 from our collected samples assuming 𝐻0 is true?
Very surprised? Somewhat surprised?

The 𝑝-value quantifies this probability, or in the case of our 16 differences
in sample proportions in Figure 9.7, what proportion had a more “extreme”
result? Here, extreme is defined in terms of the alternative hypothesis 𝐻𝐴
that “male” applicants are promoted at a higher rate than “female” applicants.
In other words, how often was the discrimination in favor of men even more
pronounced than 0.875 − 0.583 = 0.292 = 29.2%?

In this case, 0 times out of 16, we obtained a difference in proportion greater
than or equal to the observed difference of 0.292 = 29.2%. A very rare (in fact,

320 9 Hypothesis Testing

not occurring) outcome! Given the rarity of such a pronounced difference in
promotion rates in our hypothesized universe of no gender discrimination, we’re
inclined to reject our hypothesized universe. Instead, we favor the hypothesis
stating there is discrimination in favor of the “male” applicants. In other words,
we reject 𝐻0 in favor of 𝐻𝐴.
Seventh and lastly, in many hypothesis testing procedures, it is commonly
recommended to set the significance level of the test beforehand. It is denoted
by the Greek letter 𝛼 (pronounced “alpha”). This value acts as a cutoff on the𝑝-value, where if the 𝑝-value falls below 𝛼, we would “reject the null hypothesis𝐻0.”
Alternatively, if the 𝑝-value does not fall below 𝛼, we would “fail to reject 𝐻0.”
Note the latter statement is not quite the same as saying we “accept 𝐻0.” This
distinction is rather subtle and not immediately obvious. So we’ll revisit it
later in Section 9.4.

While different fields tend to use different values of 𝛼, some commonly used
values for 𝛼 are 0.1, 0.01, and 0.05; with 0.05 being the choice people often make
without putting much thought into it. We’ll talk more about 𝛼 significance levels
in Section 9.4, but first let’s fully conduct the hypothesis test corresponding to
our promotions activity using the infer package.

9.3 Conducting hypothesis tests
In Section 8.4, we showed you how to construct confidence intervals. We
first illustrated how to do this using dplyr data wrangling verbs and the
rep_sample_n() function from Subsection 7.2.3 which we used as a virtual
shovel. In particular, we constructed confidence intervals by resampling with
replacement by setting the replace = TRUE argument to the rep_sample_n()
function.

We then showed you how to perform the same task using the infer package
workflow. While both workflows resulted in the same bootstrap distribution
from which we can construct confidence intervals, the infer package workflow
emphasizes each of the steps in the overall process in Figure 9.8. It does so
using function names that are intuitively named with verbs:

1. specify() the variables of interest in your data frame.
2. generate() replicates of bootstrap resamples with replacement.
3. calculate() the summary statistic of interest.

9.3 Conducting hypothesis tests 321

4. visualize() the resulting bootstrap distribution and confidence inter-
val.

FIGURE 9.8: Confidence intervals with the infer package.

In this section, we’ll now show you how to seamlessly modify the previously
seen infer code for constructing confidence intervals to conduct hypothesis tests.
You’ll notice that the basic outline of the workflow is almost identical, except
for an additional hypothesize() step between the specify() and generate() steps,
as can be seen in Figure 9.9.

FIGURE 9.9: Hypothesis testing with the infer package.

322 9 Hypothesis Testing

Furthermore, we’ll use a pre-specified significance level 𝛼 = 0.05 for this
hypothesis test. Let’s leave discussion on the choice of this 𝛼 value until later
on in Section 9.4.

9.3.1 infer package workflow
1. specify variables

Recall that we use the specify() verb to specify the response variable and,
if needed, any explanatory variables for our study. In this case, since we are
interested in any potential effects of gender on promotion decisions, we set
decision as the response variable and gender as the explanatory variable. We
do so using formula = response ~ explanatory where response is the name of
the response variable in the data frame and explanatory is the name of the
explanatory variable. So in our case it is decision ~ gender.

Furthermore, since we are interested in the proportion of résumés "promoted",
and not the proportion of résumés not promoted, we set the argument success
to "promoted".

promotions %>%
specify(formula = decision ~ gender, success = "promoted")

Response: decision (factor)
Explanatory: gender (factor)
A tibble: 48 x 2

decision gender
<fct> <fct>

1 promoted male
2 promoted male
3 promoted male
4 promoted male
5 promoted male
6 promoted male
7 promoted male
8 promoted male
9 promoted male
10 promoted male
... with 38 more rows

Again, notice how the promotions data itself doesn’t change, but the Response:
decision (factor) and Explanatory: gender (factor) meta-data do. This is similar
to how the group_by() verb from dplyr doesn’t change the data, but only adds
“grouping” meta-data, as we saw in Section 3.4.

9.3 Conducting hypothesis tests 323

2. hypothesize the null

In order to conduct hypothesis tests using the infer workflow, we need a new
step not present for confidence intervals: hypothesize(). Recall from Section 9.2
that our hypothesis test was 𝐻0 ∶ 𝑝𝑚 − 𝑝𝑓 = 0

vs. 𝐻𝐴 ∶ 𝑝𝑚 − 𝑝𝑓 > 0
In other words, the null hypothesis 𝐻0 corresponding to our “hypothesized
universe” stated that there was no difference in gender-based discrimination
rates. We set this null hypothesis 𝐻0 in our infer workflow using the null
argument of the hypothesize() function to either:

• "point" for hypotheses involving a single sample or
• "independence" for hypotheses involving two samples.

In our case, since we have two samples (the résumés with “male” and “female”
names), we set null = "independence".

promotions %>%
specify(formula = decision ~ gender, success = "promoted") %>%
hypothesize(null = "independence")

Response: decision (factor)
Explanatory: gender (factor)
Null Hypothesis: independence
A tibble: 48 x 2

decision gender
<fct> <fct>

1 promoted male
2 promoted male
3 promoted male
4 promoted male
5 promoted male
6 promoted male
7 promoted male
8 promoted male
9 promoted male
10 promoted male
... with 38 more rows

Again, the data has not changed yet. This will occur at the upcoming generate()
step; we’re merely setting meta-data for now.

324 9 Hypothesis Testing

Where do the terms "point" and "independence" come from? These are two
technical statistical terms. The term “point” relates from the fact that for a
single group of observations, you will test the value of a single point. Going
back to the pennies example from Chapter 8, say we wanted to test if the mean
year of all US pennies was equal to 1993 or not. We would be testing the value
of a “point” 𝜇, the mean year of all US pennies, as follows𝐻0 ∶ 𝜇 = 1993

vs 𝐻𝐴 ∶ 𝜇 ≠ 1993
The term “independence” relates to the fact that for two groups of observations,
you are testing whether or not the response variable is independent of the
explanatory variable that assigns the groups. In our case, we are testing whether
the decision response variable is “independent” of the explanatory variable
gender that assigns each résumé to either of the two groups.

3. generate replicates

After we hypothesize() the null hypothesis, we generate() replicates of “shuf-
fled” datasets assuming the null hypothesis is true. We do this by repeating
the shuffling exercise you performed in Section 9.1 several times. Instead of
merely doing it 16 times as our groups of friends did, let’s use the computer
to repeat this 1000 times by setting reps = 1000 in the generate() function.
However, unlike for confidence intervals where we generated replicates using
type = "bootstrap" resampling with replacement, we’ll now perform shuffles/per-
mutations by setting type = "permute". Recall that shuffles/permutations are a
kind of resampling, but unlike the bootstrap method, they involve resampling
without replacement.

promotions_generate <- promotions %>%
specify(formula = decision ~ gender, success = "promoted") %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute")

nrow(promotions_generate)

[1] 48000

Observe that the resulting data frame has 48,000 rows. This is because we
performed shuffles/permutations for each of the 48 rows 1000 times and48, 000 = 1000 ⋅ 48. If you explore the promotions_generate data frame with
View(), you’ll notice that the variable replicate indicates which resample each
row belongs to. So it has the value 1 48 times, the value 2 48 times, all the way
through to the value 1000 48 times.

9.3 Conducting hypothesis tests 325

4. calculate summary statistics

Now that we have generated 1000 replicates of “shuffles” assuming the null
hypothesis is true, let’s calculate() the appropriate summary statistic for each
of our 1000 shuffles. From Section 9.2, point estimates related to hypothesis
testing have a specific name: test statistics. Since the unknown population
parameter of interest is the difference in population proportions 𝑝𝑚 − 𝑝𝑓, the
test statistic here is the difference in sample proportions ̂𝑝𝑚 − ̂𝑝𝑓.
For each of our 1000 shuffles, we can calculate this test statistic by setting stat
= "diff in props". Furthermore, since we are interested in ̂𝑝𝑚 − ̂𝑝𝑓 we set order
= c("male", "female"). As we stated earlier, the order of the subtraction does
not matter, so long as you stay consistent throughout your analysis and tailor
your interpretations accordingly.

Let’s save the result in a data frame called null_distribution:

null_distribution <- promotions %>%
specify(formula = decision ~ gender, success = "promoted") %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute") %>%
calculate(stat = "diff in props", order = c("male", "female"))

null_distribution

A tibble: 1,000 x 2
replicate stat

<int> <dbl>
1 1 -0.0416667
2 2 -0.125
3 3 -0.125
4 4 -0.0416667
5 5 -0.0416667
6 6 -0.125
7 7 -0.125
8 8 -0.125
9 9 -0.0416667
10 10 -0.0416667
... with 990 more rows

Observe that we have 1000 values of stat, each representing one instance of̂𝑝𝑚 − ̂𝑝𝑓 in a hypothesized world of no gender discrimination. Observe as
well that we chose the name of this data frame carefully: null_distribution.
Recall once again from Section 9.2 that sampling distributions when the null
hypothesis 𝐻0 is assumed to be true have a special name: the null distribution.

326 9 Hypothesis Testing

What was the observed difference in promotion rates? In other words, what was
the observed test statistic ̂𝑝𝑚 − ̂𝑝𝑓? Recall from Section 9.1 that we computed
this observed difference by hand to be 0.875 - 0.583 = 0.292 = 29.2%. We can
also compute this value using the previous infer code but with the hypothesize()
and generate() steps removed. Let’s save this in obs_diff_prop:

obs_diff_prop <- promotions %>%
specify(decision ~ gender, success = "promoted") %>%
calculate(stat = "diff in props", order = c("male", "female"))

obs_diff_prop

A tibble: 1 x 1
stat

<dbl>
1 0.291667

5. visualize the p-value

The final step is to measure how surprised we are by a promotion difference of
29.2% in a hypothesized universe of no gender discrimination. If the observed
difference of 0.292 is highly unlikely, then we would be inclined to reject the
validity of our hypothesized universe.

We start by visualizing the null distribution of our 1000 values of ̂𝑝𝑚 − ̂𝑝𝑓
using visualize() in Figure 9.10. Recall that these are values of the difference
in promotion rates assuming 𝐻0 is true. This corresponds to being in our
hypothesized universe of no gender discrimination.

visualize(null_distribution, bins = 10)

0

100

200

-0.25 0.00 0.25

stat

c
o
u
n
t

Simulation-Based Null Distribution

FIGURE 9.10: Null distribution.

Let’s now add what happened in real life to Figure 9.10, the observed difference
in promotion rates of 0.875 - 0.583 = 0.292 = 29.2%. However, instead of merely

9.3 Conducting hypothesis tests 327

adding a vertical line using geom_vline(), let’s use the shade_p_value() function
with obs_stat set to the observed test statistic value we saved in obs_diff_prop.

Furthermore, we’ll set the direction = "right" reflecting our alternative hy-
pothesis 𝐻𝐴 ∶ 𝑝𝑚 − 𝑝𝑓 > 0. Recall our alternative hypothesis 𝐻𝐴 is that𝑝𝑚 − 𝑝𝑓 > 0, stating that there is a difference in promotion rates in favor of
résumés with male names. “More extreme” here corresponds to differences
that are “bigger” or “more positive” or “more to the right.” Hence we set the
direction argument of shade_p_value() to be "right".

On the other hand, had our alternative hypothesis 𝐻𝐴 been the other possible
one-sided alternative 𝑝𝑚 −𝑝𝑓 < 0, suggesting discrimination in favor of résumés
with female names, we would’ve set direction = "left". Had our alternative
hypothesis 𝐻𝐴 been two-sided 𝑝𝑚 − 𝑝𝑓 ≠ 0, suggesting discrimination in either
direction, we would’ve set direction = "both".

visualize(null_distribution, bins = 10) +
shade_p_value(obs_stat = obs_diff_prop, direction = "right")

0

100

200

-0.25 0.00 0.25

stat

c
o
u
n
t

Simulation-Based Null Distribution

FIGURE 9.11: Shaded histogram to show 𝑝-value.
In the resulting Figure 9.11, the solid dark line marks 0.292 = 29.2%. However,
what does the shaded-region correspond to? This is the 𝑝-value. Recall the
definition of the 𝑝-value from Section 9.2:

328 9 Hypothesis Testing

A 𝑝-value is the probability of obtaining a test statistic just as or more extreme
than the observed test statistic assuming the null hypothesis 𝐻0 is true.

So judging by the shaded region in Figure 9.11, it seems we would somewhat
rarely observe differences in promotion rates of 0.292 = 29.2% or more in a
hypothesized universe of no gender discrimination. In other words, the 𝑝-value
is somewhat small. Hence, we would be inclined to reject this hypothesized
universe, or using statistical language we would “reject 𝐻0.”
What fraction of the null distribution is shaded? In other words, what is the
exact value of the 𝑝-value? We can compute it using the get_p_value() function
with the same arguments as the previous shade_p_value() code:

null_distribution %>%
get_p_value(obs_stat = obs_diff_prop, direction = "right")

A tibble: 1 x 1
p_value
<dbl>

1 0.027

Keeping the definition of a 𝑝-value in mind, the probability of observing a
difference in promotion rates as large as 0.292 = 29.2% due to sampling
variation alone in the null distribution is 0.027 = 2.7%. Since this 𝑝-value is
smaller than our pre-specified significance level 𝛼 = 0.05, we reject the null
hypothesis 𝐻0 ∶ 𝑝𝑚 − 𝑝𝑓 = 0. In other words, this 𝑝-value is sufficiently small
to reject our hypothesized universe of no gender discrimination. We instead
have enough evidence to change our mind in favor of gender discrimination
being a likely culprit here. Observe that whether we reject the null hypothesis𝐻0 or not depends in large part on our choice of significance level 𝛼. We’ll
discuss this more in Subsection 9.4.3.

9.3.2 Comparison with confidence intervals

One of the great things about the infer package is that we can jump seamlessly
between conducting hypothesis tests and constructing confidence intervals with
minimal changes! Recall the code from the previous section that creates the
null distribution, which in turn is needed to compute the 𝑝-value:

9.3 Conducting hypothesis tests 329

null_distribution <- promotions %>%
specify(formula = decision ~ gender, success = "promoted") %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute") %>%
calculate(stat = "diff in props", order = c("male", "female"))

To create the corresponding bootstrap distribution needed to construct a 95%
confidence interval for 𝑝𝑚 − 𝑝𝑓, we only need to make two changes. First, we
remove the hypothesize() step since we are no longer assuming a null hypothesis𝐻0 is true. We can do this by deleting or commenting out the hypothesize()
line of code. Second, we switch the type of resampling in the generate() step to
be "bootstrap" instead of "permute".

bootstrap_distribution <- promotions %>%
specify(formula = decision ~ gender, success = "promoted") %>%
Change 1 - Remove hypothesize():
hypothesize(null = "independence") %>%
Change 2 - Switch type from "permute" to "bootstrap":
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "diff in props", order = c("male", "female"))

Using this bootstrap_distribution, let’s first compute the percentile-based con-
fidence intervals, as we did in Section 8.4:

percentile_ci <- bootstrap_distribution %>%
get_confidence_interval(level = 0.95, type = "percentile")

percentile_ci

A tibble: 1 x 2
`2.5%` `97.5%`
<dbl> <dbl>

1 0.0444444 0.538542

Using our shorthand interpretation for 95% confidence intervals from Sub-
section 8.5.2, we are 95% “confident” that the true difference in pop-
ulation proportions 𝑝𝑚 − 𝑝𝑓 is between (0.044, 0.539). Let’s visualize
bootstrap_distribution and this percentile-based 95% confidence interval for𝑝𝑚 − 𝑝𝑓 in Figure 9.12.

330 9 Hypothesis Testing

visualize(bootstrap_distribution) +
shade_confidence_interval(endpoints = percentile_ci)

0

50

100

150

200

-0.2 0.0 0.2 0.4 0.6 0.8

stat

c
o
u
n
t

Simulation-Based Bootstrap Distribution

FIGURE 9.12: Percentile-based 95% confidence interval.

Notice a key value that is not included in the 95% confidence interval for𝑝𝑚 − 𝑝𝑓: the value 0. In other words, a difference of 0 is not included in our
net, suggesting that 𝑝𝑚 and 𝑝𝑓 are truly different! Furthermore, observe how
the entirety of the 95% confidence interval for 𝑝𝑚 − 𝑝𝑓 lies above 0, suggesting
that this difference is in favor of men.

Since the bootstrap distribution appears to be roughly normally shaped, we
can also use the standard error method as we did in Section 8.4. In this case,
we must specify the point_estimate argument as the observed difference in
promotion rates 0.292 = 29.2% saved in obs_diff_prop. This value acts as the
center of the confidence interval.

se_ci <- bootstrap_distribution %>%
get_confidence_interval(level = 0.95, type = "se",

point_estimate = obs_diff_prop)
se_ci

A tibble: 1 x 2
lower upper
<dbl> <dbl>

1 0.0514129 0.531920

9.3 Conducting hypothesis tests 331

Let’s visualize bootstrap_distribution again, but now the standard error based
95% confidence interval for 𝑝𝑚 − 𝑝𝑓 in Figure 9.13. Again, notice how the value
0 is not included in our confidence interval, again suggesting that 𝑝𝑚 and 𝑝𝑓
are truly different!

visualize(bootstrap_distribution) +
shade_confidence_interval(endpoints = se_ci)

0

50

100

150

200

-0.2 0.0 0.2 0.4 0.6 0.8

stat

c
o
u
n
t

Simulation-Based Bootstrap Distribution

FIGURE 9.13: Standard error-based 95% confidence interval.

Learning check

(LC9.1) Conduct the same hypothesis test and confidence interval analysis
comparing male and female promotion rates using the median rating instead
of the mean rating. What was different and what was the same?

(LC9.2) Why are we relatively confident that the distributions of the sample
proportions will be good approximations of the population distributions of
promotion proportions for the two genders?

(LC9.3) Using the definition of p-value, write in words what the 𝑝-value
represents for the hypothesis test comparing the promotion rates for males
and females.

332 9 Hypothesis Testing

9.3.3 “There is only one test”

Let’s recap the steps necessary to conduct a hypothesis test using the termi-
nology, notation, and definitions related to sampling you saw in Section 9.2
and the infer workflow from Subsection 9.3.1:

1. specify() the variables of interest in your data frame.
2. hypothesize() the null hypothesis 𝐻0. In other words, set a “model for

the universe” assuming 𝐻0 is true.
3. generate() shuffles assuming 𝐻0 is true. In other words, simulate data

assuming 𝐻0 is true.
4. calculate() the test statistic of interest, both for the observed data

and your simulated data.
5. visualize() the resulting null distribution and compute the 𝑝-value by

comparing the null distribution to the observed test statistic.

While this is a lot to digest, especially the first time you encounter hypothesis
testing, the nice thing is that once you understand this general framework,
then you can understand any hypothesis test. In a famous blog post, computer
scientist Allen Downey called this the “There is only one test”3 framework, for
which he created the flowchart displayed in Figure 9.14.

FIGURE 9.14: Allen Downey’s hypothesis testing framework.

Notice its similarity with the “hypothesis testing with infer” diagram you saw
in Figure 9.9. That’s because the infer package was explicitly designed to
match the “There is only one test” framework. So if you can understand the
framework, you can easily generalize these ideas for all hypothesis testing sce-
narios. Whether for population proportions 𝑝, population means 𝜇, differences
in population proportions 𝑝1 −𝑝2, differences in population means 𝜇1 −𝜇2, and
as you’ll see in Chapter 10 on inference for regression, population regression

3http://allendowney.blogspot.com/2016/06/there-is-still-only-one-test.html

9.4 Interpreting hypothesis tests 333

slopes 𝛽1 as well. In fact, it applies more generally even than just these examples
to more complicated hypothesis tests and test statistics as well.

Learning check

(LC9.4) Describe in a paragraph how we used Allen Downey’s diagram to
conclude if a statistical difference existed between the promotion rate of males
and females using this study.

9.4 Interpreting hypothesis tests
Interpreting the results of hypothesis tests is one of the more challenging
aspects of this method for statistical inference. In this section, we’ll focus
on ways to help with deciphering the process and address some common
misconceptions.

9.4.1 Two possible outcomes

In Section 9.2, we mentioned that given a pre-specified significance level 𝛼
there are two possible outcomes of a hypothesis test:

• If the 𝑝-value is less than 𝛼, then we reject the null hypothesis 𝐻0 in favor
of 𝐻𝐴.

• If the 𝑝-value is greater than or equal to 𝛼, we fail to reject the null hypothesis𝐻0.
Unfortunately, the latter result is often misinterpreted as “accepting the null
hypothesis 𝐻0.” While at first glance it may seem that the statements “failing
to reject 𝐻0” and “accepting 𝐻0” are equivalent, there actually is a subtle
difference. Saying that we “accept the null hypothesis 𝐻0” is equivalent to
stating that “we think the null hypothesis 𝐻0 is true.” However, saying that
we “fail to reject the null hypothesis 𝐻0” is saying something else: “While 𝐻0
might still be false, we don’t have enough evidence to say so.” In other words,
there is an absence of enough proof. However, the absence of proof is not proof
of absence.

To further shed light on this distinction, let’s use the United States criminal
justice system as an analogy. A criminal trial in the United States is a similar
situation to hypothesis tests whereby a choice between two contradictory claims
must be made about a defendant who is on trial:

334 9 Hypothesis Testing

1. The defendant is truly either “innocent” or “guilty.”
2. The defendant is presumed “innocent until proven guilty.”
3. The defendant is found guilty only if there is strong evidence that the

defendant is guilty. The phrase “beyond a reasonable doubt” is often
used as a guideline for determining a cutoff for when enough evidence
exists to find the defendant guilty.

4. The defendant is found to be either “not guilty” or “guilty” in the
ultimate verdict.

In other words, not guilty verdicts are not suggesting the defendant is innocent,
but instead that “while the defendant may still actually be guilty, there wasn’t
enough evidence to prove this fact.” Now let’s make the connection with
hypothesis tests:

1. Either the null hypothesis 𝐻0 or the alternative hypothesis 𝐻𝐴 is
true.

2. Hypothesis tests are conducted assuming the null hypothesis 𝐻0 is
true.

3. We reject the null hypothesis 𝐻0 in favor of 𝐻𝐴 only if the evidence
found in the sample suggests that 𝐻𝐴 is true. The significance level𝛼 is used as a guideline to set the threshold on just how strong of
evidence we require.

4. We ultimately decide to either “fail to reject 𝐻0” or “reject 𝐻0.”
So while gut instinct may suggest “failing to reject 𝐻0” and “accepting 𝐻0” are
equivalent statements, they are not. “Accepting 𝐻0” is equivalent to finding a
defendant innocent. However, courts do not find defendants “innocent,” but
rather they find them “not guilty.” Putting things differently, defense attorneys
do not need to prove that their clients are innocent, rather they only need to
prove that clients are not “guilty beyond a reasonable doubt”.

So going back to our résumés activity in Section 9.3, recall that our hypothesis
test was 𝐻0 ∶ 𝑝𝑚 − 𝑝𝑓 = 0 versus 𝐻𝐴 ∶ 𝑝𝑚 − 𝑝𝑓 > 0 and that we used a
pre-specified significance level of 𝛼 = 0.05. We found a 𝑝-value of 0.027. Since
the 𝑝-value was smaller than 𝛼 = 0.05, we rejected 𝐻0. In other words, we
found needed levels of evidence in this particular sample to say that 𝐻0 is
false at the 𝛼 = 0.05 significance level. We also state this conclusion using
non-statistical language: we found enough evidence in this data to suggest that
there was gender discrimination at play.

9.4 Interpreting hypothesis tests 335

9.4.2 Types of errors

Unfortunately, there is some chance a jury or a judge can make an incorrect
decision in a criminal trial by reaching the wrong verdict. For example, finding
a truly innocent defendant “guilty”. Or on the other hand, finding a truly guilty
defendant “not guilty.” This can often stem from the fact that prosecutors don’t
have access to all the relevant evidence, but instead are limited to whatever
evidence the police can find.

The same holds for hypothesis tests. We can make incorrect decisions about
a population parameter because we only have a sample of data from the
population and thus sampling variation can lead us to incorrect conclusions.

There are two possible erroneous conclusions in a criminal trial: either (1) a
truly innocent person is found guilty or (2) a truly guilty person is found not
guilty. Similarly, there are two possible errors in a hypothesis test: either (1)
rejecting 𝐻0 when in fact 𝐻0 is true, called a Type I error or (2) failing to
reject 𝐻0 when in fact 𝐻0 is false, called a Type II error. Another term used
for “Type I error” is “false positive,” while another term for “Type II error” is
“false negative.”

This risk of error is the price researchers pay for basing inference on a sample
instead of performing a census on the entire population. But as we’ve seen in
our numerous examples and activities so far, censuses are often very expensive
and other times impossible, and thus researchers have no choice but to use a
sample. Thus in any hypothesis test based on a sample, we have no choice but
to tolerate some chance that a Type I error will be made and some chance
that a Type II error will occur.

To help understand the concepts of Type I error and Type II errors, we apply
these terms to our criminal justice analogy in Figure 9.15.

FIGURE 9.15: Type I and Type II errors in criminal trials.

Thus a Type I error corresponds to incorrectly putting a truly innocent person
in jail, whereas a Type II error corresponds to letting a truly guilty person go
free. Let’s show the corresponding table in Figure 9.16 for hypothesis tests.

336 9 Hypothesis Testing

FIGURE 9.16: Type I and Type II errors in hypothesis tests.

9.4.3 How do we choose alpha?

If we are using a sample to make inferences about a population, we run the
risk of making errors. For confidence intervals, a corresponding “error” would
be constructing a confidence interval that does not contain the true value of
the population parameter. For hypothesis tests, this would be making either a
Type I or Type II error. Obviously, we want to minimize the probability of
either error; we want a small probability of making an incorrect conclusion:

• The probability of a Type I Error occurring is denoted by 𝛼. The value of𝛼 is called the significance level of the hypothesis test, which we defined in
Section 9.2.

• The probability of a Type II Error is denoted by 𝛽. The value of 1 − 𝛽 is
known as the power of the hypothesis test.

In other words, 𝛼 corresponds to the probability of incorrectly rejecting 𝐻0
when in fact 𝐻0 is true. On the other hand, 𝛽 corresponds to the probability
of incorrectly failing to reject 𝐻0 when in fact 𝐻0 is false.

Ideally, we want 𝛼 = 0 and 𝛽 = 0, meaning that the chance of making either
error is 0. However, this can never be the case in any situation where we are
sampling for inference. There will always be the possibility of making either
error when we use sample data. Furthermore, these two error probabilities
are inversely related. As the probability of a Type I error goes down, the
probability of a Type II error goes up.

What is typically done in practice is to fix the probability of a Type I error by
pre-specifying a significance level 𝛼 and then try to minimize 𝛽. In other words,
we will tolerate a certain fraction of incorrect rejections of the null hypothesis𝐻0, and then try to minimize the fraction of incorrect non-rejections of 𝐻0.
So for example if we used 𝛼 = 0.01, we would be using a hypothesis testing
procedure that in the long run would incorrectly reject the null hypothesis 𝐻0
one percent of the time. This is analogous to setting the confidence level of a
confidence interval.

9.5 Case study: Are action or romance movies rated higher? 337

So what value should you use for 𝛼? Different fields have different conventions,
but some commonly used values include 0.10, 0.05, 0.01, and 0.001. However,
it is important to keep in mind that if you use a relatively small value of 𝛼,
then all things being equal, 𝑝-values will have a harder time being less than 𝛼.
Thus we would reject the null hypothesis less often. In other words, we would
reject the null hypothesis 𝐻0 only if we have very strong evidence to do so.
This is known as a “conservative” test.

On the other hand, if we used a relatively large value of 𝛼, then all things
being equal, 𝑝-values will have an easier time being less than 𝛼. Thus we would
reject the null hypothesis more often. In other words, we would reject the null
hypothesis 𝐻0 even if we only have mild evidence to do so. This is known as a
“liberal” test.

Learning check

(LC9.5) What is wrong about saying, “The defendant is innocent.” based on
the US system of criminal trials?

(LC9.6) What is the purpose of hypothesis testing?

(LC9.7) What are some flaws with hypothesis testing? How could we alleviate
them?

(LC9.8) Consider two 𝛼 significance levels of 0.1 and 0.01. Of the two, which
would lead to a more liberal hypothesis testing procedure? In other words, one
that will, all things being equal, lead to more rejections of the null hypothesis𝐻0.

9.5 Case study: Are action or romance movies rated higher?
Let’s apply our knowledge of hypothesis testing to answer the question: “Are
action or romance movies rated higher on IMDb?”. IMDb4 is a database
on the internet providing information on movie and television show casts,
plot summaries, trivia, and ratings. We’ll investigate if, on average, action or
romance movies get higher ratings on IMDb.

4https://www.imdb.com/

338 9 Hypothesis Testing

9.5.1 IMDb ratings data

The movies dataset in the ggplot2movies package contains information on 58,788
movies that have been rated by users of IMDb.com.

movies

A tibble: 58,788 x 24
title year length budget rating votes r1 r2 r3 r4 r5
<chr> <int> <int> <int> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl>

1 $ 1971 121 NA 6.4 348 4.5 4.5 4.5 4.5 14.5
2 $100~ 1939 71 NA 6 20 0 14.5 4.5 24.5 14.5
3 $21 ~ 1941 7 NA 8.200 5 0 0 0 0 0
4 $40,~ 1996 70 NA 8.200 6 14.5 0 0 0 0
5 $50,~ 1975 71 NA 3.4 17 24.5 4.5 0 14.5 14.5
6 $pent 2000 91 NA 4.3 45 4.5 4.5 4.5 14.5 14.5
7 $win~ 2002 93 NA 5.3 200 4.5 0 4.5 4.5 24.5
8 '15' 2002 25 NA 6.7 24 4.5 4.5 4.5 4.5 4.5
9 '38 1987 97 NA 6.6 18 4.5 4.5 4.5 0 0
10 '49-~ 1917 61 NA 6 51 4.5 0 4.5 4.5 4.5
... with 58,778 more rows, and 13 more variables: r6 <dbl>, r7 <dbl>,
r8 <dbl>, r9 <dbl>, r10 <dbl>, mpaa <chr>, Action <int>,
Animation <int>, Comedy <int>, Drama <int>, Documentary <int>,
Romance <int>, Short <int>

We’ll focus on a random sample of 68 movies that are classified as either
“action” or “romance” movies but not both. We disregard movies that are
classified as both so that we can assign all 68 movies into either category.
Furthermore, since the original movies dataset was a little messy, we provide a
pre-wrangled version of our data in the movies_sample data frame included in
the moderndive package. If you’re curious, you can look at the necessary data
wrangling code to do this on GitHub5.

movies_sample

A tibble: 68 x 4
title year rating genre
<chr> <int> <dbl> <chr>

1 Underworld 1985 3.1 Action
2 Love Affair 1932 6.3 Romance
3 Junglee 1961 6.8 Romance

5https://github.com/moderndive/moderndive/blob/master/data-raw/process_data_sets.R

9.5 Case study: Are action or romance movies rated higher? 339

4 Eversmile, New Jersey 1989 5 Romance
5 Search and Destroy 1979 4 Action
6 Secreto de Romelia, El 1988 4.9 Romance
7 Amants du Pont-Neuf, Les 1991 7.4 Romance
8 Illicit Dreams 1995 3.5 Action
9 Kabhi Kabhie 1976 7.7 Romance
10 Electric Horseman, The 1979 5.8 Romance
... with 58 more rows

The variables include the title and year the movie was filmed. Furthermore,
we have a numerical variable rating, which is the IMDb rating out of 10 stars,
and a binary categorical variable genre indicating if the movie was an Action
or Romance movie. We are interested in whether Action or Romance movies got a
higher rating on average.

Let’s perform an exploratory data analysis of this data. Recall from Subsection
2.7.1 that a boxplot is a visualization we can use to show the relationship
between a numerical and a categorical variable. Another option you saw in
Section 2.6 would be to use a faceted histogram. However, in the interest of
brevity, let’s only present the boxplot in Figure 9.17.

ggplot(data = movies_sample, aes(x = genre, y = rating)) +
geom_boxplot() +
labs(y = "IMDb rating")

2

4

6

8

Action Romance

genre

IM
D

b
 r

a
ti
n
g

FIGURE 9.17: Boxplot of IMDb rating vs. genre.

Eyeballing Figure 9.17, romance movies have a higher median rating. Do we
have reason to believe, however, that there is a significant difference between
the mean rating for action movies compared to romance movies? It’s hard to

340 9 Hypothesis Testing

say just based on this plot. The boxplot does show that the median sample
rating is higher for romance movies.

However, there is a large amount of overlap between the boxes. Recall that the
median isn’t necessarily the same as the mean either, depending on whether
the distribution is skewed.

Let’s calculate some summary statistics split by the binary categorical variable
genre: the number of movies, the mean rating, and the standard deviation split
by genre. We’ll do this using dplyr data wrangling verbs. Notice in particular
how we count the number of each type of movie using the n() summary
function.

movies_sample %>%
group_by(genre) %>%
summarize(n = n(), mean_rating = mean(rating), std_dev = sd(rating))

A tibble: 2 x 4
genre n mean_rating std_dev
<chr> <int> <dbl> <dbl>

1 Action 32 5.275 1.36121
2 Romance 36 6.32222 1.60963

Observe that we have 36 movies with an average rating of 6.322 stars and 32
movies with an average rating of 5.275 stars. The difference in these average
ratings is thus 6.322 - 5.275 = 1.047. So there appears to be an edge of 1.047
stars in favor of romance movies. The question is, however, are these results
indicative of a true difference for all romance and action movies? Or could we
attribute this difference to chance sampling variation?

9.5.2 Sampling scenario

Let’s now revisit this study in terms of terminology and notation related to
sampling we studied in Subsection 7.3.1. The study population is all movies
in the IMDb database that are either action or romance (but not both). The
sample from this population is the 68 movies included in the movies_sample
dataset.

Since this sample was randomly taken from the population movies, it is repre-
sentative of all romance and action movies on IMDb. Thus, any analysis and
results based on movies_sample can generalize to the entire population. What
are the relevant population parameter and point estimates? We introduce the
fourth sampling scenario in Table 9.3.

9.5 Case study: Are action or romance movies rated higher? 341

TABLE 9.3: Scenarios of sampling for inference

Scenario Population
parameter

Notation Point estimate Symbol(s)

1 Population
proportion

𝑝 Sample
proportion

𝑝̂
2 Population

mean
𝜇 Sample mean 𝑥 or 𝜇

3 Difference
in
population
proportions

𝑝1 − 𝑝2 Difference in
sample
proportions

𝑝̂1 − 𝑝̂2
4 Difference

in
population
means

𝜇1 − 𝜇2 Difference in
sample means

𝑥1 − 𝑥2
So, whereas the sampling bowl exercise in Section 7.1 concerned proportions,
the pennies exercise in Section 8.1 concerned means, the case study on whether
yawning is contagious in Section 8.6 and the promotions activity in Section 9.1
concerned differences in proportions, we are now concerned with differences in
means.

In other words, the population parameter of interest is the difference in popula-
tion mean ratings 𝜇𝑎 − 𝜇𝑟, where 𝜇𝑎 is the mean rating of all action movies on
IMDb and similarly 𝜇𝑟 is the mean rating of all romance movies. Additionally
the point estimate/sample statistic of interest is the difference in sample means𝑥𝑎 − 𝑥𝑟, where 𝑥𝑎 is the mean rating of the 𝑛𝑎 = 32 movies in our sample
and 𝑥𝑟 is the mean rating of the 𝑛𝑟 = 36 in our sample. Based on our earlier
exploratory data analysis, our estimate 𝑥𝑎 − 𝑥𝑟 is 5.275 − 6.322 = −1.047.
So there appears to be a slight difference of -1.047 in favor of romance movies.
The question is, however, could this difference of -1.047 be merely due to chance
and sampling variation? Or are these results indicative of a true difference
in mean ratings for all romance and action movies on IMDb? To answer this
question, we’ll use hypothesis testing.

9.5.3 Conducting the hypothesis test

We’ll be testing: 𝐻0 ∶ 𝜇𝑎 − 𝜇𝑟 = 0
vs 𝐻𝐴 ∶ 𝜇𝑎 − 𝜇𝑟 ≠ 0

In other words, the null hypothesis 𝐻0 suggests that both romance and action
movies have the same mean rating. This is the “hypothesized universe” we’ll

342 9 Hypothesis Testing

assume is true. On the other hand, the alternative hypothesis 𝐻𝐴 suggests that
there is a difference. Unlike the one-sided alternative we used in the promotions
exercise 𝐻𝑎 ∶ 𝑝𝑚 − 𝑝𝑓 > 0, we are now considering a two-sided alternative of𝐻𝐴 ∶ 𝜇𝑎 − 𝜇𝑟 ≠ 0.
Furthermore, we’ll pre-specify a low significance level of 𝛼 = 0.001. By setting
this value low, all things being equal, there is a lower chance that the 𝑝-value
will be less than 𝛼. Thus, there is a lower chance that we’ll reject the null
hypothesis 𝐻0 in favor of the alternative hypothesis 𝐻𝐴. In other words, we’ll
reject the hypothesis that there is no difference in mean ratings for all action
and romance movies, only if we have quite strong evidence. This is known as a
“conservative” hypothesis testing procedure.

1. specify variables

Let’s now perform all the steps of the infer workflow. We first specify() the
variables of interest in the movies_sample data frame using the formula rating
~ genre. This tells infer that the numerical variable rating is the outcome
variable, while the binary variable genre is the explanatory variable. Note that
unlike previously when we were interested in proportions, since we are now
interested in the mean of a numerical variable, we do not need to set the
success argument.

movies_sample %>%
specify(formula = rating ~ genre)

Response: rating (numeric)
Explanatory: genre (factor)
A tibble: 68 x 2

rating genre
<dbl> <fct>

1 3.1 Action
2 6.3 Romance
3 6.8 Romance
4 5 Romance
5 4 Action
6 4.9 Romance
7 7.4 Romance
8 3.5 Action
9 7.7 Romance
10 5.8 Romance
... with 58 more rows

9.5 Case study: Are action or romance movies rated higher? 343

Observe at this point that the data in movies_sample has not changed. The only
change so far is the newly defined Response: rating (numeric) and Explanatory:
genre (factor) meta-data.

2. hypothesize the null

We set the null hypothesis 𝐻0 ∶ 𝜇𝑎 −𝜇𝑟 = 0 by using the hypothesize() function.
Since we have two samples, action and romance movies, we set null to be
"independence" as we described in Section 9.3.

movies_sample %>%
specify(formula = rating ~ genre) %>%
hypothesize(null = "independence")

Response: rating (numeric)
Explanatory: genre (factor)
Null Hypothesis: independence
A tibble: 68 x 2

rating genre
<dbl> <fct>

1 3.1 Action
2 6.3 Romance
3 6.8 Romance
4 5 Romance
5 4 Action
6 4.9 Romance
7 7.4 Romance
8 3.5 Action
9 7.7 Romance
10 5.8 Romance
... with 58 more rows

3. generate replicates

After we have set the null hypothesis, we generate “shuffled” replicates assuming
the null hypothesis is true by repeating the shuffling/permutation exercise you
performed in Section 9.1.

We’ll repeat this resampling without replacement of type = "permute" a total
of reps = 1000 times. Feel free to run the code below to check out what the
generate() step produces.

344 9 Hypothesis Testing

movies_sample %>%
specify(formula = rating ~ genre) %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute") %>%
View()

4. calculate summary statistics

Now that we have 1000 replicated “shuffles” assuming the null hypothesis 𝐻0
that both Action and Romance movies on average have the same ratings on IMDb,
let’s calculate() the appropriate summary statistic for these 1000 replicated
shuffles. From Section 9.2, summary statistics relating to hypothesis testing
have a specific name: test statistics. Since the unknown population parameter
of interest is the difference in population means 𝜇𝑎 − 𝜇𝑟, the test statistic of
interest here is the difference in sample means 𝑥𝑎 − 𝑥𝑟.
For each of our 1000 shuffles, we can calculate this test statistic by setting
stat = "diff in means". Furthermore, since we are interested in 𝑥𝑎 − 𝑥𝑟, we set
order = c("Action", "Romance"). Let’s save the results in a data frame called
null_distribution_movies:

null_distribution_movies <- movies_sample %>%
specify(formula = rating ~ genre) %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute") %>%
calculate(stat = "diff in means", order = c("Action", "Romance"))

null_distribution_movies

A tibble: 1,000 x 2
replicate stat

<int> <dbl>
1 1 0.511111
2 2 0.345833
3 3 -0.327083
4 4 -0.209028
5 5 -0.433333
6 6 -0.102778
7 7 0.387153
8 8 0.16875
9 9 0.257292
10 10 0.334028
... with 990 more rows

9.5 Case study: Are action or romance movies rated higher? 345

Observe that we have 1000 values of stat, each representing one instance of𝑥𝑎 − 𝑥𝑟. The 1000 values form the null distribution, which is the technical term
for the sampling distribution of the difference in sample means 𝑥𝑎−𝑥𝑟 assuming𝐻0 is true. What happened in real life? What was the observed difference in
promotion rates? What was the observed test statistic 𝑥𝑎 − 𝑥𝑟? Recall from our
earlier data wrangling, this observed difference in means was 5.275 − 6.322 =−1.047. We can also achieve this using the code that constructed the null
distribution null_distribution_movies but with the hypothesize() and generate()
steps removed. Let’s save this in obs_diff_means:

obs_diff_means <- movies_sample %>%
specify(formula = rating ~ genre) %>%
calculate(stat = "diff in means", order = c("Action", "Romance"))

obs_diff_means

A tibble: 1 x 1
stat

<dbl>
1 -1.04722

5. visualize the p-value

Lastly, in order to compute the 𝑝-value, we have to assess how “extreme” the
observed difference in means of -1.047 is. We do this by comparing -1.047 to
our null distribution, which was constructed in a hypothesized universe of no
true difference in movie ratings. Let’s visualize both the null distribution and
the 𝑝-value in Figure 9.18. Unlike our example in Subsection 9.3.1 involving
promotions, since we have a two-sided 𝐻𝐴 ∶ 𝜇𝑎 − 𝜇𝑟 ≠ 0, we have to allow for
both possibilities for more extreme, so we set direction = "both".

visualize(null_distribution_movies, bins = 10) +
shade_p_value(obs_stat = obs_diff_means, direction = "both")

0

100

200

-1 0 1

stat

c
o
u
n
t

Simulation-Based Null Distribution

FIGURE 9.18: Null distribution, observed test statistic, and 𝑝-value.

346 9 Hypothesis Testing

Let’s go over the elements of this plot. First, the histogram is the null distri-
bution. Second, the solid line is the observed test statistic, or the difference
in sample means we observed in real life of 5.275 − 6.322 = −1.047. Third,
the two shaded areas of the histogram form the 𝑝-value, or the probability
of obtaining a test statistic just as or more extreme than the observed test
statistic assuming the null hypothesis 𝐻0 is true.

What proportion of the null distribution is shaded? In other words, what is the
numerical value of the 𝑝-value? We use the get_p_value() function to compute
this value:

null_distribution_movies %>%
get_p_value(obs_stat = obs_diff_means, direction = "both")

A tibble: 1 x 1
p_value
<dbl>

1 0.004

This 𝑝-value of 0.004 is very small. In other words, there is a very small chance
that we’d observe a difference of 5.275 - 6.322 = -1.047 in a hypothesized
universe where there was truly no difference in ratings.

But this 𝑝-value is larger than our (even smaller) pre-specified 𝛼 significance
level of 0.001. Thus, we are inclined to fail to reject the null hypothesis𝐻0 ∶ 𝜇𝑎 − 𝜇𝑟 = 0. In non-statistical language, the conclusion is: we do not have
the evidence needed in this sample of data to suggest that we should reject the
hypothesis that there is no difference in mean IMDb ratings between romance
and action movies. We, thus, cannot say that a difference exists in romance
and action movie ratings, on average, for all IMDb movies.

Learning check

(LC9.9) Conduct the same analysis comparing action movies versus romantic
movies using the median rating instead of the mean rating. What was different
and what was the same?

(LC9.10) What conclusions can you make from viewing the faceted histogram
looking at rating versus genre that you couldn’t see when looking at the
boxplot?

(LC9.11) Describe in a paragraph how we used Allen Downey’s diagram to
conclude if a statistical difference existed between mean movie ratings for
action and romance movies.

9.6 Conclusion 347

(LC9.12) Why are we relatively confident that the distributions of the sample
ratings will be good approximations of the population distributions of ratings
for the two genres?

(LC9.13) Using the definition of 𝑝-value, write in words what the 𝑝-value
represents for the hypothesis test comparing the mean rating of romance to
action movies.

(LC9.14) What is the value of the 𝑝-value for the hypothesis test comparing
the mean rating of romance to action movies?

(LC9.15) Test your data wrangling knowledge and EDA skills:

• Use dplyr and tidyr to create the necessary data frame focused on only
action and romance movies (but not both) from the movies data frame in the
ggplot2movies package.

• Make a boxplot and a faceted histogram of this population data comparing
ratings of action and romance movies from IMDb.

• Discuss how these plots compare to the similar plots produced for the
movies_sample data.

9.6 Conclusion
9.6.1 Theory-based hypothesis tests

Much as we did in Subsection 8.7.2 when we showed you a theory-based method
for constructing confidence intervals that involved mathematical formulas, we
now present an example of a traditional theory-based method to conduct
hypothesis tests. This method relies on probability models, probability dis-
tributions, and a few assumptions to construct the null distribution. This is
in contrast to the approach we’ve been using throughout this book where we
relied on computer simulations to construct the null distribution.

These traditional theory-based methods have been used for decades mostly
because researchers didn’t have access to computers that could run thousands
of calculations quickly and efficiently. Now that computing power is much
cheaper and more accessible, simulation-based methods are much more feasible.
However, researchers in many fields continue to use theory-based methods.
Hence, we make it a point to include an example here.

As we’ll show in this section, any theory-based method is ultimately an ap-
proximation to the simulation-based method. The theory-based method we’ll

348 9 Hypothesis Testing

focus on is known as the two-sample 𝑡-test for testing differences in sample
means. However, the test statistic we’ll use won’t be the difference in sample
means 𝑥1 − 𝑥2, but rather the related two-sample 𝑡-statistic. The data we’ll
use will once again be the movies_sample data of action and romance movies
from Section 9.5.

Two-sample t-statistic

A common task in statistics is the process of “standardizing a variable.” By
standardizing different variables, we make them more comparable. For example,
say you are interested in studying the distribution of temperature recordings
from Portland, Oregon, USA and comparing it to that of the temperature
recordings in Montreal, Quebec, Canada. Given that US temperatures are
generally recorded in degrees Fahrenheit and Canadian temperatures are
generally recorded in degrees Celsius, how can we make them comparable? One
approach would be to convert degrees Fahrenheit into Celsius, or vice versa.
Another approach would be to convert them both to a common “standardized”
scale, like degrees Kelvin.

One common method for standardizing a variable from probability and statistics
theory is to compute the 𝑧-score: 𝑧 = 𝑥 − 𝜇𝜎
where 𝑥 represents one value of a variable, 𝜇 represents the mean of that
variable, and 𝜎 represents the standard deviation of that variable. You first
subtract the mean 𝜇 from each value of 𝑥 and then divide 𝑥 − 𝜇 by the
standard deviation 𝜎. These operations will have the effect of re-centering
your variable around 0 and re-scaling your variable 𝑥 so that they have what
are known as “standard units.” Thus for every value that your variable can
take, it has a corresponding 𝑧-score that gives how many standard units away
that value is from the mean 𝜇. 𝑧-scores are normally distributed with mean 0
and standard deviation 1. This curve is called a “𝑧-distribution” or “standard
normal” curve and has the common, bell-shaped pattern from Figure 9.19
discussed in Appendix A.2.

-4 -2 0 2 4

FIGURE 9.19: Standard normal z curve.

9.6 Conclusion 349

Bringing these back to the difference of sample mean ratings 𝑥𝑎 − 𝑥𝑟 of action
versus romance movies, how would we standardize this variable? By once again
subtracting its mean and dividing by its standard deviation. Recall two facts
from Subsection 7.3.3. First, if the sampling was done in a representative
fashion, then the sampling distribution of 𝑥𝑎 − 𝑥𝑟 will be centered at the
true population parameter 𝜇𝑎 − 𝜇𝑟. Second, the standard deviation of point
estimates like 𝑥𝑎 − 𝑥𝑟 has a special name: the standard error.

Applying these ideas, we present the two-sample 𝑡-statistic:𝑡 = (̄𝑥𝑎 − ̄𝑥𝑟) − (𝜇𝑎 − 𝜇𝑟)
SE𝑥̄𝑎−𝑥̄𝑟 = (̄𝑥𝑎 − ̄𝑥𝑟) − (𝜇𝑎 − 𝜇𝑟)√𝑠𝑎2𝑛𝑎 + 𝑠𝑟2𝑛𝑟

Oofda! There is a lot to try to unpack here! Let’s go slowly. In the numerator,̄𝑥𝑎 − ̄𝑥𝑟 is the difference in sample means, while 𝜇𝑎 − 𝜇𝑟 is the difference in
population means. In the denominator, 𝑠𝑎 and 𝑠𝑟 are the sample standard
deviations of the action and romance movies in our sample movies_sample. Lastly,𝑛𝑎 and 𝑛𝑟 are the sample sizes of the action and romance movies. Putting this
together under the square root gives us the standard error SE𝑥̄𝑎−𝑥̄𝑟 .
Observe that the formula for SE𝑥̄𝑎−𝑥̄𝑟 has the sample sizes 𝑛𝑎 and 𝑛𝑟 in them.
So as the sample sizes increase, the standard error goes down. We’ve seen this
concept numerous times now, in particular in our simulations using the three
virtual shovels with 𝑛 = 25, 50, and 100 slots in Figure 7.15 and in Subsection
8.5.3 where we studied the effect of using larger sample sizes on the widths of
confidence intervals.

So how can we use the two-sample 𝑡-statistic as a test statistic in our hypothesis
test? First, assuming the null hypothesis 𝐻0 ∶ 𝜇𝑎 − 𝜇𝑟 = 0 is true, the right-
hand side of the numerator (to the right of the − sign), 𝜇𝑎 − 𝜇𝑟, becomes
0.

Second, similarly to how the Central Limit Theorem from Subsection 7.5.2
states that sample means follow a normal distribution, it can be mathematically
proven that the two-sample 𝑡-statistic follows a 𝑡 distribution with degrees of
freedom “roughly equal” to 𝑑𝑓 = 𝑛𝑎 + 𝑛𝑟 − 2. To better understand this
concept of degrees of freedom, we next display three examples of 𝑡-distributions
in Figure 9.20 along with the standard normal 𝑧 curve.

350 9 Hypothesis Testing

t: df = 1

t: df = 3

t: df = 10

z

-4 -2 0 2 4

FIGURE 9.20: Examples of t-distributions and the z curve.

Begin by looking at the center of the plot at 0 on the horizontal axis. As you
move up from the value of 0, follow along with the labels and note that the
bottom curve corresponds to 1 degree of freedom, the curve above it is for
3 degrees of freedom, the curve above that is for 10 degrees of freedom, and
lastly the dotted curve is the standard normal 𝑧 curve.

Observe that all four curves have a bell shape, are centered at 0, and that as
the degrees of freedom increase, the 𝑡-distribution more and more resembles
the standard normal 𝑧 curve. The “degrees of freedom” measures how different
the 𝑡 distribution will be from a normal distribution. 𝑡-distributions tend to
have more values in the tails of their distributions than the standard normal 𝑧
curve.

This “roughly equal” statement indicates that the equation 𝑑𝑓 = 𝑛𝑎 + 𝑛𝑟 − 2
is a “good enough” approximation to the true degrees of freedom. The true
formula6 is a bit more complicated than this simple expression, but we’ve
found the formula to be beyond the reach of those new to statistical inference
and it does little to build the intuition of the 𝑡-test.
The message to retain, however, is that small sample sizes lead to small degrees
of freedom and thus small sample sizes lead to 𝑡-distributions that are different

6https://en.wikipedia.org/wiki/Student%27s_t-test#Equal_or_unequal_sample_sizes,_unequal_
variances

9.6 Conclusion 351

than the 𝑧 curve. On the other hand, large sample sizes correspond to large
degrees of freedom and thus produce 𝑡 distributions that closely align with the
standard normal 𝑧-curve.
So, assuming the null hypothesis 𝐻0 is true, our formula for the test statistic
simplifies a bit: 𝑡 = (̄𝑥𝑎 − ̄𝑥𝑟) − 0√𝑠𝑎2𝑛𝑎 + 𝑠𝑟2𝑛𝑟

= ̄𝑥𝑎 − ̄𝑥𝑟√𝑠𝑎2𝑛𝑎 + 𝑠𝑟2𝑛𝑟
Let’s compute the values necessary for this two-sample 𝑡-statistic. Recall the
summary statistics we computed during our exploratory data analysis in Section
9.5.1.

movies_sample %>%
group_by(genre) %>%
summarize(n = n(), mean_rating = mean(rating), std_dev = sd(rating))

A tibble: 2 x 4
genre n mean_rating std_dev
<chr> <int> <dbl> <dbl>

1 Action 32 5.275 1.36121
2 Romance 36 6.32222 1.60963

Using these values, the observed two-sample 𝑡-test statistic is̄𝑥𝑎 − ̄𝑥𝑟√𝑠𝑎2𝑛𝑎 + 𝑠𝑟2𝑛𝑟
= 5.28 − 6.32√1.36232 + 1.61236 = −2.906

Great! How can we compute the 𝑝-value using this theory-based test statistic?
We need to compare it to a null distribution, which we construct next.

Null distribution

Let’s revisit the null distribution for the test statistic ̄𝑥𝑎 − ̄𝑥𝑟 we constructed
in Section 9.5. Let’s visualize this in the left-hand plot of Figure 9.21.

Construct null distribution of xbar_a - xbar_m:
null_distribution_movies <- movies_sample %>%
specify(formula = rating ~ genre) %>%

352 9 Hypothesis Testing

hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute") %>%
calculate(stat = "diff in means", order = c("Action", "Romance"))

visualize(null_distribution_movies, bins = 10)

The infer package also includes some built-in theory-based test statistics as
well. So instead of calculating the test statistic of interest as the "diff in means"̄𝑥𝑎 − ̄𝑥𝑟, we can calculate this defined two-sample 𝑡-statistic by setting stat =
"t". Let’s visualize this in the right-hand plot of Figure 9.21.

Construct null distribution of t:
null_distribution_movies_t <- movies_sample %>%
specify(formula = rating ~ genre) %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute") %>%
Notice we switched stat from "diff in means" to "t"
calculate(stat = "t", order = c("Action", "Romance"))

visualize(null_distribution_movies_t, bins = 10)

0

100

200

0

100

200

300

-1 0 1 -2 0 2 4

stat stat

c
o
u
n
t

c
o
u
n
t

Difference in means Two-sample t-statistic

FIGURE 9.21: Comparing the null distributions of two test statistics.

Observe that while the shape of the null distributions of both the difference in
means ̄𝑥𝑎 − ̄𝑥𝑟 and the two-sample 𝑡-statistics are similar, the scales on the
x-axis are different. The two-sample 𝑡-statistic values are spread out over a
larger range.

9.6 Conclusion 353

However, a traditional theory-based 𝑡-test doesn’t look at the simulated his-
togram in null_distribution_movies_t, but instead it looks at the 𝑡-distribution
curve with degrees of freedom equal to roughly 65.85. This calculation is based
on the complicated formula referenced previously, which we approximated with𝑑𝑓 = 𝑛𝑎 + 𝑛𝑟 − 2 = 32 + 36 − 2 = 66. Let’s overlay this 𝑡-distribution curve
over the top of our simulated two-sample 𝑡-statistics using the method = "both"
argument in visualize().

visualize(null_distribution_movies_t, bins = 10, method = "both")

0.0

0.1

0.2

0.3

0.4

-2 0 2 4

t stat

d
e
n
s
it
y

Simulation-Based and Theoretical t Null Distributions

FIGURE 9.22: Null distribution using t-statistic and t-distribution.

Observe that the curve does a good job of approximating the histogram here.
To calculate the 𝑝-value in this case, we need to figure out how much of the total
area under the 𝑡-distribution curve is at or “more extreme” than our observed
two-sample 𝑡-statistic. Since 𝐻𝐴 ∶ 𝜇𝑎 − 𝜇𝑟 ≠ 0 is a two-sided alternative, we
need to add up the areas in both tails.

We first compute the observed two-sample 𝑡-statistic using infer verbs. This
shortcut calculation further assumes that the null hypothesis is true: that the
population of action and romance movies have an equal average rating.

obs_two_sample_t <- movies_sample %>%
specify(formula = rating ~ genre) %>%
calculate(stat = "t", order = c("Action", "Romance"))

obs_two_sample_t

A tibble: 1 x 1
stat

<dbl>
1 -2.90589

354 9 Hypothesis Testing

We want to find the percentage of values that are at or above obs_two_sample_t= −2.906 or at or below -obs_two_sample_t = 2.906. We use the shade_p_value()
function with the direction argument set to "both" to do this:

visualize(null_distribution_movies_t, method = "both") +
shade_p_value(obs_stat = obs_two_sample_t, direction = "both")

Warning: Check to make sure the conditions have been met for the
theoretical method. {infer} currently does not check these for you.

0.0

0.1

0.2

0.3

0.4

-2 0 2

t stat

d
e
n
s
it
y

Simulation-Based and Theoretical t Null Distributions

FIGURE 9.23: Null distribution using t-statistic and t-distribution with𝑝-value shaded.

(We’ll discuss this warning message shortly.) What is the 𝑝-value? We apply
get_p_value() to our null distribution saved in null_distribution_movies_t:

null_distribution_movies_t %>%
get_p_value(obs_stat = obs_two_sample_t, direction = "both")

A tibble: 1 x 1
p_value
<dbl>

1 0.002

We have a very small 𝑝-value, and thus it is very unlikely that these results
are due to sampling variation. Thus, we are inclined to reject 𝐻0.
Let’s come back to that earlier warning message: Check to make sure the
conditions have been met for the theoretical method. {infer} currently does
not check these for you. To be able to use the 𝑡-test and other such theoretical
methods, there are always a few conditions to check. The infer package does
not automatically check these conditions, hence the warning message we
received. These conditions are necessary so that the underlying mathematical

9.6 Conclusion 355

theory holds. In order for the results of our two-sample 𝑡-test to be valid, three
conditions must be met:

1. Nearly normal populations or large sample sizes. A general rule of
thumb that works in many (but not all) situations is that the sample
size 𝑛 should be greater than 30.

2. Both samples are selected independently of each other.
3. All observations are independent from each other.

Let’s see if these conditions hold for our movies_sample data:

1. This is met since 𝑛𝑎 = 32 and 𝑛𝑟 = 36 are both larger than 30,
satisfying our rule of thumb.

2. This is met since we sampled the action and romance movies at
random and in an unbiased fashion from the database of all IMDb
movies.

3. Unfortunately, we don’t know how IMDb computes the ratings. For
example, if the same person rated multiple movies, then those obser-
vations would be related and hence not independent.

Assuming all three conditions are roughly met, we can be reasonably certain
that the theory-based 𝑡-test results are valid. If any of the conditions were
clearly not met, we couldn’t put as much trust into any conclusions reached.
On the other hand, in most scenarios, the only assumption that needs to be
met in the simulation-based method is that the sample is selected at random.
Thus, in our experience, we prefer simulation-based methods as they have fewer
assumptions, are conceptually easier to understand, and since computing power
has recently become easily accessible, they can be run quickly. That being
said since much of the world’s research still relies on traditional theory-based
methods, we also believe it is important to understand them.

You may be wondering why we chose reps = 1000 for these simulation-based
methods. We’ve noticed that after around 1000 replicates for the null distri-
bution and the bootstrap distribution for most problems you can start to get
a general sense for how the statistic behaves. You can change this value to
something like 10,000 though for reps if you would like even finer detail but
this will take more time to compute. Feel free to iterate on this as you like to
get an even better idea about the shape of the null and bootstrap distributions
as you wish.

356 9 Hypothesis Testing

9.6.2 When inference is not needed

We’ve now walked through several different examples of how to use the infer
package to perform statistical inference: constructing confidence intervals and
conducting hypothesis tests. For each of these examples, we made it a point
to always perform an exploratory data analysis (EDA) first; specifically, by
looking at the raw data values, by using data visualization with ggplot2, and
by data wrangling with dplyr beforehand. We highly encourage you to always
do the same. As a beginner to statistics, EDA helps you develop intuition as
to what statistical methods like confidence intervals and hypothesis tests can
tell us. Even as a seasoned practitioner of statistics, EDA helps guide your
statistical investigations. In particular, is statistical inference even needed?

Let’s consider an example. Say we’re interested in the following question: Of
all flights leaving a New York City airport, are Hawaiian Airlines flights in
the air for longer than Alaska Airlines flights? Furthermore, let’s assume that
2013 flights are a representative sample of all such flights. Then we can use the
flights data frame in the nycflights13 package we introduced in Section 1.4 to
answer our question. Let’s filter this data frame to only include Hawaiian and
Alaska Airlines using their carrier codes HA and AS:

flights_sample <- flights %>%
filter(carrier %in% c("HA", "AS"))

There are two possible statistical inference methods we could use to answer
such questions. First, we could construct a 95% confidence interval for the
difference in population means 𝜇𝐻𝐴 − 𝜇𝐴𝑆, where 𝜇𝐻𝐴 is the mean air time
of all Hawaiian Airlines flights and 𝜇𝐴𝑆 is the mean air time of all Alaska
Airlines flights. We could then check if the entirety of the interval is greater
than 0, suggesting that 𝜇𝐻𝐴 − 𝜇𝐴𝑆 > 0, or, in other words suggesting that𝜇𝐻𝐴 > 𝜇𝐴𝑆. Second, we could perform a hypothesis test of the null hypothesis𝐻0 ∶ 𝜇𝐻𝐴 − 𝜇𝐴𝑆 = 0 versus the alternative hypothesis 𝐻𝐴 ∶ 𝜇𝐻𝐴 − 𝜇𝐴𝑆 > 0.
However, let’s first construct an exploratory visualization as we suggested
earlier. Since air_time is numerical and carrier is categorical, a boxplot can
display the relationship between these two variables, which we display in Figure
9.24.

ggplot(data = flights_sample, mapping = aes(x = carrier, y = air_time)) +
geom_boxplot() +
labs(x = "Carrier", y = "Air Time")

9.6 Conclusion 357

300

400

500

600

700

AS HA

Carrier

A
ir
 T

im
e

FIGURE 9.24: Air time for Hawaiian and Alaska Airlines flights departing
NYC in 2013.

This is what we like to call “no PhD in Statistics needed” moments. You don’t
have to be an expert in statistics to know that Alaska Airlines and Hawaiian
Airlines have significantly different air times. The two boxplots don’t even
overlap! Constructing a confidence interval or conducting a hypothesis test
would frankly not provide much more insight than Figure 9.24.

Let’s investigate why we observe such a clear cut difference between these two
airlines using data wrangling. Let’s first group by the rows of flights_sample
not only by carrier but also by destination dest. Subsequently, we’ll compute
two summary statistics: the number of observations using n() and the mean
airtime:

flights_sample %>%
group_by(carrier, dest) %>%
summarize(n = n(), mean_time = mean(air_time, na.rm = TRUE))

A tibble: 2 x 4
Groups: carrier [2]

carrier dest n mean_time
<chr> <chr> <int> <dbl>

1 AS SEA 714 325.618
2 HA HNL 342 623.088

It turns out that from New York City in 2013, Alaska only flew to SEA (Seattle)
from New York City (NYC) while Hawaiian only flew to HNL (Honolulu) from
NYC. Given the clear difference in distance from New York City to Seattle

358 9 Hypothesis Testing

versus New York City to Honolulu, it is not surprising that we observe such
different (statistically significantly different, in fact) air times in flights.

This is a clear example of not needing to do anything more than a simple
exploratory data analysis using data visualization and descriptive statistics to
get an appropriate conclusion. This is why we highly recommend you perform
an EDA of any sample data before running statistical inference methods like
confidence intervals and hypothesis tests.

9.6.3 Problems with p-values

On top of the many common misunderstandings about hypothesis testing
and 𝑝-values we listed in Section 9.4, another unfortunate consequence of
the expanded use of 𝑝-values and hypothesis testing is a phenomenon known
as “p-hacking.” p-hacking is the act of “cherry-picking” only results that are
“statistically significant” while dismissing those that aren’t, even if at the
expense of the scientific ideas. There are lots of articles written recently about
misunderstandings and the problems with 𝑝-values. We encourage you to check
some of them out:

1. Misunderstandings of 𝑝-values7

2. What a nerdy debate about 𝑝-values shows about science - and how
to fix it8

3. Statisticians issue warning over misuse of 𝑃 values9

4. You Can’t Trust What You Read About Nutrition10

5. A Litany of Problems with p-values11

Such issues were getting so problematic that the American Statistical Asso-
ciation (ASA) put out a statement in 2016 titled, “The ASA Statement on
Statistical Significance and 𝑃-Values,”12 with six principles underlying the
proper use and interpretation of 𝑝-values. The ASA released this guidance on𝑝-values to improve the conduct and interpretation of quantitative science and
to inform the growing emphasis on reproducibility of science research.

We as authors much prefer the use of confidence intervals for statistical inference,
since in our opinion they are much less prone to large misinterpretation.
However, many fields still exclusively use 𝑝-values for statistical inference and

7https://en.wikipedia.org/wiki/Misunderstandings_of_p-values
8https://www.vox.com/science-and-health/2017/7/31/16021654/p-values-statistical-

significance-redefine-0005
9https://www.nature.com/news/statisticians-issue-warning-over-misuse-of-p-values-1.19503

10https://fivethirtyeight.com/features/you-cant-trust-what-you-read-about-nutrition/
11http://www.fharrell.com/post/pval-litany/
12https://www.amstat.org/asa/files/pdfs/P-ValueStatement.pdf

9.6 Conclusion 359

this is one reason for including them in this text. We encourage you to learn
more about “p-hacking” as well and its implication for science.

9.6.4 Additional resources

Solutions to all Learning checks can be found online in Appendix D13.

An R script file of all R code used in this chapter is available at https:
//www.moderndive.com/scripts/09-hypothesis-testing.R.

If you want more examples of the infer workflow for conducting hypothesis
tests, we suggest you check out the infer package homepage, in particular, a
series of example analyses available at https://infer.netlify.com/articles/.

9.6.5 What’s to come

We conclude with the infer pipeline for hypothesis testing in Figure 9.25.

FIGURE 9.25: infer package workflow for hypothesis testing.

Now that we’ve armed ourselves with an understanding of confidence intervals
from Chapter 8 and hypothesis tests from this chapter, we’ll now study inference
for regression in the upcoming Chapter 10.

We’ll revisit the regression models we studied in Chapter 5 on basic regression
and Chapter 6 on multiple regression. For example, recall Table 5.2 (shown again
here in Table 9.4), corresponding to our regression model for an instructor’s
teaching score as a function of their “beauty” score.

Fit regression model:
score_model <- lm(score ~ bty_avg, data = evals)

13https://moderndive.com/D-appendixD.html

360 9 Hypothesis Testing

Get regression table:
get_regression_table(score_model)

TABLE 9.4: Linear regression table

term estimate std_error statistic p_value lower_ci upper_ci

intercept 3.880 0.076 50.96 0 3.731 4.030
bty_avg 0.067 0.016 4.09 0 0.035 0.099

We previously saw in Subsection 5.1.2 that the values in the estimate column
are the fitted intercept 𝑏0 and fitted slope for beauty score 𝑏1. In Chapter 10,
we’ll unpack the remaining columns: std_error which is the standard error,
statistic which is the observed standardized test statistic to compute the
p_value, and the 95% confidence intervals as given by lower_ci and upper_ci.

10
Inference for Regression

In our penultimate chapter, we’ll revisit the regression models we first studied
in Chapters 5 and 6. Armed with our knowledge of confidence intervals and
hypothesis tests from Chapters 8 and 9, we’ll be able to apply statistical
inference to further our understanding of relationships between outcome and
explanatory variables.

Needed packages

Let’s load all the packages needed for this chapter (this assumes you’ve already
installed them). Recall from our discussion in Section 4.4 that loading the
tidyverse package by running library(tidyverse) loads the following commonly
used data science packages all at once:

• ggplot2 for data visualization
• dplyr for data wrangling
• tidyr for converting data to “tidy” format
• readr for importing spreadsheet data into R
• As well as the more advanced purrr, tibble, stringr, and forcats packages

If needed, read Section 1.3 for information on how to install and load R
packages.

library(tidyverse)
library(moderndive)
library(infer)

10.1 Regression refresher
Before jumping into inference for regression, let’s remind ourselves of the
University of Texas Austin teaching evaluations analysis in Section 5.1.

361

362 10 Inference for Regression

10.1.1 Teaching evaluations analysis

Recall using simple linear regression we modeled the relationship between

1. A numerical outcome variable 𝑦 (the instructor’s teaching score) and
2. A single numerical explanatory variable 𝑥 (the instructor’s “beauty”

score).

We first created an evals_ch5 data frame that selected a subset of variables
from the evals data frame included in the moderndive package. This evals_ch5
data frame contains only the variables of interest for our analysis, in particular
the instructor’s teaching score and the “beauty” rating bty_avg:

evals_ch5 <- evals %>%
select(ID, score, bty_avg, age)

glimpse(evals_ch5)

Observations: 463
Variables: 4
$ ID <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,...
$ score <dbl> 4.7, 4.1, 3.9, 4.8, 4.6, 4.3, 2.8, 4.1, 3.4, 4.5, 3.8,...
$ bty_avg <dbl> 5.00, 5.00, 5.00, 5.00, 3.00, 3.00, 3.00, 3.33, 3.33, ...
$ age <int> 36, 36, 36, 36, 59, 59, 59, 51, 51, 40, 40, 40, 40, 40...

In Subsection 5.1.1, we performed an exploratory data analysis of the relation-
ship between these two variables of score and bty_avg. We saw there that a
weakly positive correlation of 0.187 existed between the two variables.

This was evidenced in Figure 10.1 of the scatterplot along with the “best-
fitting” regression line that summarizes the linear relationship between the
two variables of score and bty_avg. Recall in Subsection 5.3.2 that we defined a
“best-fitting” line as the line that minimizes the sum of squared residuals.

ggplot(evals_ch5,
aes(x = bty_avg, y = score)) +

geom_point() +
labs(x = "Beauty Score",

y = "Teaching Score",
title = "Relationship between teaching and beauty scores") +

geom_smooth(method = "lm", se = FALSE)

10.1 Regression refresher 363

3

4

5

2 4 6 8

Beauty Score

T
e
a
c
h
in

g
 S

c
o
re

Relationship between teaching and beauty scores

FIGURE 10.1: Relationship with regression line.

Looking at this plot again, you might be asking, “Does that line really have
all that positive of a slope?”. It does increase from left to right as the bty_avg
variable increases, but by how much? To get to this information, recall that
we followed a two-step procedure:

1. We first “fit” the linear regression model using the lm() function with
the formula score ~ bty_avg. We saved this model in score_model.

2. We get the regression table by applying the get_regression_table()
function from the moderndive package to score_model.

Fit regression model:
score_model <- lm(score ~ bty_avg, data = evals_ch5)
Get regression table:
get_regression_table(score_model)

TABLE 10.1: Previously seen linear regression table

term estimate std_error statistic p_value lower_ci upper_ci

intercept 3.880 0.076 50.96 0 3.731 4.030
bty_avg 0.067 0.016 4.09 0 0.035 0.099

Using the values in the estimate column of the resulting regression table in
Table 10.1, we could then obtain the equation of the “best-fitting” regression
line in Figure 10.1:

364 10 Inference for Regression̂𝑦 = 𝑏0 + 𝑏1 ⋅ 𝑥
ŝcore = 𝑏0 + 𝑏bty_avg ⋅ bty_avg= 3.880 + 0.067 ⋅ bty_avg

where 𝑏0 is the fitted intercept and 𝑏1 is the fitted slope for bty_avg. Recall the
interpretation of the 𝑏1 = 0.067 value of the fitted slope:

For every increase of one unit in “beauty” rating, there is an associated increase,
on average, of 0.067 units of evaluation score.

Thus, the slope value quantifies the relationship between the 𝑦 variable score
and the 𝑥 variable bty_avg. We also discussed the intercept value of 𝑏0 = 3.88
and its lack of practical interpretation, since the range of possible “beauty”
scores does not include 0.

10.1.2 Sampling scenario

Let’s now revisit this study in terms of the terminology and notation related
to sampling we studied in Subsection 7.3.1.

First, let’s view the instructors for these 463 courses as a representative sample
from a greater study population. In our case, let’s assume that the study
population is all instructors at UT Austin and that the sample of instructors
who taught these 463 courses is a representative sample. Unfortunately, we
can only assume these two facts without more knowledge of the sampling
methodology used by the researchers.

Since we are viewing these 𝑛 = 463 courses as a sample, we can view our fitted
slope 𝑏1 = 0.067 as a point estimate of the population slope 𝛽1. In other words,𝛽1 quantifies the relationship between teaching score and “beauty” average
bty_avg for all instructors at UT Austin. Similarly, we can view our fitted
intercept 𝑏0 = 3.88 as a point estimate of the population intercept 𝛽0 for all
instructors at UT Austin.

Putting these two ideas together, we can view the equation of the fitted linê𝑦 = 𝑏0 + 𝑏1 ⋅ 𝑥 = 3.880 + 0.067 ⋅ bty_avg as an estimate of some true and
unknown population line 𝑦 = 𝛽0 + 𝛽1 ⋅ 𝑥. Thus we can draw parallels between
our teaching evaluations analysis and all the sampling scenarios we’ve seen
previously. In this chapter, we’ll focus on the final scenario of regression slopes
as shown in Table 10.2.

10.2 Interpreting regression tables 365

TABLE 10.2: Scenarios of sampling for inference

Scenario Population
parameter

Notation Point estimate Symbol(s)

1 Population
proportion

𝑝 Sample
proportion

𝑝̂
2 Population

mean
𝜇 Sample mean 𝑥 or 𝜇

3 Difference
in
population
proportions

𝑝1 − 𝑝2 Difference in
sample
proportions

𝑝̂1 − 𝑝̂2
4 Difference

in
population
means

𝜇1 − 𝜇2 Difference in
sample means

𝑥1 − 𝑥2
5 Population

regression
slope

𝛽1 Fitted regression
slope

𝑏1 or 𝛽1
Since we are now viewing our fitted slope 𝑏1 and fitted intercept 𝑏0 as point
estimates based on a sample, these estimates will again be subject to sampling
variability. In other words, if we collected a new sample of data on a different
set of 𝑛 = 463 courses and their instructors, the new fitted slope 𝑏1 will likely
differ from 0.067. The same goes for the new fitted intercept 𝑏0. But by how
much will these estimates vary? This information is in the remaining columns
of the regression table in Table 10.1. Our knowledge of sampling from Chapter
7, confidence intervals from Chapter 8, and hypothesis tests from Chapter 9
will help us interpret these remaining columns.

10.2 Interpreting regression tables
We’ve so far focused only on the two leftmost columns of the regression table
in Table 10.1: term and estimate. Let’s now shift our attention to the remaining
columns: std_error, statistic, p_value, lower_ci and upper_ci in Table 10.3.

TABLE 10.3: Previously seen regression table

term estimate std_error statistic p_value lower_ci upper_ci

intercept 3.880 0.076 50.96 0 3.731 4.030
bty_avg 0.067 0.016 4.09 0 0.035 0.099

366 10 Inference for Regression

Given the lack of practical interpretation for the fitted intercept 𝑏0, in this
section we’ll focus only on the second row of the table corresponding to the
fitted slope 𝑏1. We’ll first interpret the std_error, statistic, p_value, lower_ci
and upper_ci columns. Afterwards in the upcoming Subsection 10.2.5, we’ll
discuss how R computes these values.

10.2.1 Standard error

The third column of the regression table in Table 10.1 std_error corresponds to
the standard error of our estimates. Recall the definition of standard error
we saw in Subsection 7.3.2:

The standard error is the standard deviation of any point estimate computed
from a sample.

So what does this mean in terms of the fitted slope 𝑏1 = 0.067? This value is
just one possible value of the fitted slope resulting from this particular sample
of 𝑛 = 463 pairs of teaching and beauty scores. However, if we collected a
different sample of 𝑛 = 463 pairs of teaching and beauty scores, we will almost
certainly obtain a different fitted slope 𝑏1. This is due to sampling variability.

Say we hypothetically collected 1000 such samples of pairs of teaching and
beauty scores, computed the 1000 resulting values of the fitted slope 𝑏1, and
visualized them in a histogram. This would be a visualization of the sampling
distribution of 𝑏1, which we defined in Subsection 7.3.2. Further recall that the
standard deviation of the sampling distribution of 𝑏1 has a special name: the
standard error.

Recall that we constructed three sampling distributions for the sample propor-
tion ̂𝑝 using shovels of size 25, 50, and 100 in Figure 7.12. We observed that as
the sample size increased, the standard error decreased as evidenced by the
narrowing sampling distribution.

The standard error of 𝑏1 similarly quantifies how much variation in the fitted
slope 𝑏1 one would expect between different samples. So in our case, we can
expect about 0.016 units of variation in the bty_avg slope variable. Recall that
the estimate and std_error values play a key role in inferring the value of the
unknown population slope 𝛽1 relating to all instructors.

In Section 10.4, we’ll perform a simulation using the infer package to construct
the bootstrap distribution for 𝑏1 in this case. Recall from Subsection 8.7.1 that

10.2 Interpreting regression tables 367

the bootstrap distribution is an approximation to the sampling distribution
in that they have a similar shape. Since they have a similar shape, they
have similar standard errors. However, unlike the sampling distribution, the
bootstrap distribution is constructed from a single sample, which is a practice
more aligned with what’s done in real life.

10.2.2 Test statistic

The fourth column of the regression table in Table 10.1 statistic corresponds
to a test statistic relating to the following hypothesis test:𝐻0 ∶ 𝛽1 = 0

vs 𝐻𝐴 ∶ 𝛽1 ≠ 0.
Recall our terminology, notation, and definitions related to hypothesis tests
we introduced in Section 9.2.

A hypothesis test consists of a test between two competing hypotheses: (1) a
null hypothesis 𝐻0 versus (2) an alternative hypothesis 𝐻𝐴.

A test statistic is a point estimate/sample statistic formula used for hypothesis
testing.

Here, our null hypothesis 𝐻0 assumes that the population slope 𝛽1 is 0. If
the population slope 𝛽1 is truly 0, then this is saying that there is no true
relationship between teaching and “beauty” scores for all the instructors in
our population. In other words, 𝑥 = “beauty” score would have no associated
effect on 𝑦 = teaching score. The alternative hypothesis 𝐻𝐴, on the other hand,
assumes that the population slope 𝛽1 is not 0, meaning it could be either positive
or negative. This suggests either a positive or negative relationship between
teaching and “beauty” scores. Recall we called such alternative hypotheses two-
sided. By convention, all hypothesis testing for regression assumes two-sided
alternatives.

Recall our “hypothesized universe” of no gender discrimination we assumed
in our promotions activity in Section 9.1. Similarly here when conducting
this hypothesis test, we’ll assume a “hypothesized universe” where there is
no relationship between teaching and “beauty” scores. In other words, we’ll
assume the null hypothesis 𝐻0 ∶ 𝛽1 = 0 is true.

368 10 Inference for Regression

The statistic column in the regression table is a tricky one, however. It
corresponds to a standardized t-test statistic, much like the two-sample 𝑡
statistic we saw in Subsection 9.6.1 where we used a theory-based method
for conducting hypothesis tests. In both these cases, the null distribution can
be mathematically proven to be a 𝑡-distribution. Since such test statistics
are tricky for individuals new to statistical inference to study, we’ll skip this
and jump into interpreting the 𝑝-value. If you’re curious, we have included a
discussion of this standardized t-test statistic in Subsection 10.5.1.

10.2.3 p-value

The fifth column of the regression table in Table 10.1 p_value corresponds to
the p-value of the hypothesis test 𝐻0 ∶ 𝛽1 = 0 versus 𝐻𝐴 ∶ 𝛽1 ≠ 0.
Again recalling our terminology, notation, and definitions related to hypothesis
tests we introduced in Section 9.2, let’s focus on the definition of the 𝑝-value:

A p-value is the probability of obtaining a test statistic just as extreme or
more extreme than the observed test statistic assuming the null hypothesis𝐻0 is true.

Recall that you can intuitively think of the 𝑝-value as quantifying how “extreme”
the observed fitted slope of 𝑏1 = 0.067 is in a “hypothesized universe” where
there is no relationship between teaching and “beauty” scores.

Following the hypothesis testing procedure we outlined in Section 9.4, since the𝑝-value in this case is 0, for any choice of significance level 𝛼 we would reject𝐻0 in favor of 𝐻𝐴. Using non-statistical language, this is saying: we reject the
hypothesis that there is no relationship between teaching and “beauty” scores
in favor of the hypothesis that there is. That is to say, the evidence suggests
there is a significant relationship, one that is positive.

More precisely, however, the 𝑝-value corresponds to how extreme the observed
test statistic of 4.09 is when compared to the appropriate null distribution. In
Section 10.4, we’ll perform a simulation using the infer package to construct
the null distribution in this case.

An extra caveat here is that the results of this hypothesis test are only valid if
certain “conditions for inference for regression” are met, which we’ll introduce
shortly in Section 10.3.

10.2 Interpreting regression tables 369

10.2.4 Confidence interval

The two rightmost columns of the regression table in Table 10.1 (lower_ci and
upper_ci) correspond to the endpoints of the 95% confidence interval for the
population slope 𝛽1. Recall our analogy of “nets are to fish” what “confidence
intervals are to population parameters” from Section 8.3. The resulting 95%
confidence interval for 𝛽1 of (0.035, 0.099) can be thought of as a range of
plausible values for the population slope 𝛽1 of the linear relationship between
teaching and “beauty” scores.

As we introduced in Subsection 8.5.2 on the precise and shorthand interpre-
tation of confidence intervals, the statistically precise interpretation of this
confidence interval is: “if we repeated this sampling procedure a large number
of times, we expect about 95% of the resulting confidence intervals to capture
the value of the population slope 𝛽1.” However, we’ll summarize this using our
shorthand interpretation that “we’re 95% ‘confident’ that the true population
slope 𝛽1 lies between 0.035 and 0.099.”

Notice in this case that the resulting 95% confidence interval for 𝛽1 of(0.035, 0.099) does not contain a very particular value: 𝛽1 equals 0. Recall we
mentioned that if the population regression slope 𝛽1 is 0, this is equivalent to
saying there is no relationship between teaching and “beauty” scores. Since 𝛽1
= 0 is not in our plausible range of values for 𝛽1, we are inclined to believe that
there, in fact, is a relationship between teaching and “beauty” scores and a
positive one at that. So in this case, the conclusion about the population slope𝛽1 from the 95% confidence interval matches the conclusion from the hypothesis
test: evidence suggests that there is a meaningful relationship between teaching
and “beauty” scores.

Recall from Subsection 8.5.3, however, that the confidence level is one of many
factors that determine confidence interval widths. So for example, say we used
a higher confidence level of 99% instead of 95%. The resulting confidence
interval for 𝛽1 would be wider and thus might now include 0. The lesson to
remember here is that any confidence-interval-based conclusion depends highly
on the confidence level used.

What are the calculations that went into computing the two endpoints of the
95% confidence interval for 𝛽1?
Recall our sampling bowl example from Subsection 8.7.2 discussing lower_ci
and upper_ci. Since the sampling and bootstrap distributions of the sample
proportion ̂𝑝 were roughly normal, we could use the rule of thumb for bell-
shaped distributions from Appendix A.2 to create a 95% confidence interval
for 𝑝 with the following equation:

370 10 Inference for Regression

̂𝑝 ± MoE𝑝̂ = ̂𝑝 ± 1.96 ⋅ SE𝑝̂ = ̂𝑝 ± 1.96 ⋅ √ ̂𝑝(1 − ̂𝑝)𝑛
We can generalize this to other point estimates that have roughly normally
shaped sampling and/or bootstrap distributions:

point estimate ± MoE = point estimate ± 1.96 ⋅ SE.
We’ll show in Section 10.4 that the sampling/bootstrap distribution for the
fitted slope 𝑏1 is in fact bell-shaped as well. Thus we can construct a 95%
confidence interval for 𝛽1 with the following equation:𝑏1 ± MoE𝑏1 = 𝑏1 ± 1.96 ⋅ SE𝑏1 .
What is the value of the standard error SE𝑏1? It is in fact in the third column
of the regression table in Table 10.1: 0.016. Thus𝑏1 ± 1.96 ⋅ SE𝑏1 = 0.067 ± 1.96 ⋅ 0.016 = 0.067 ± 0.031= (0.036, 0.098)
This closely matches the (0.035, 0.099) confidence interval in the last two
columns of Table 10.1.

Much like hypothesis tests, however, the results of this confidence interval also
are only valid if the “conditions for inference for regression” to be discussed in
Section 10.3 are met.

10.2.5 How does R compute the table?

Since we didn’t perform the simulation to get the values of the standard error,
test statistic, 𝑝-value, and endpoints of the 95% confidence interval in Table
10.1, you might be wondering how were these values computed. What did R do
behind the scenes? Does R run simulations like we did using the infer package
in Chapters 8 and 9 on confidence intervals and hypothesis testing?

The answer is no! Much like the theory-based method for constructing confi-
dence intervals you saw in Subsection 8.7.2 and the theory-based hypothesis
test you saw in Subsection 9.6.1, there exist mathematical formulas that allow
you to construct confidence intervals and conduct hypothesis tests for inference
for regression. These formulas were derived in a time when computers didn’t
exist, so it would’ve been impossible to run the extensive computer simula-
tions we have in this book. We present these formulas in Subsection 10.5.1 on
“theory-based inference for regression.”

10.3 Conditions for inference for regression 371

In Section 10.4, we’ll go over a simulation-based approach to constructing
confidence intervals and conducting hypothesis tests using the infer package.
In particular, we’ll convince you that the bootstrap distribution of the fitted
slope 𝑏1 is indeed bell-shaped.

10.3 Conditions for inference for regression
Recall in Subsection 8.3.2 we stated that we could only use the standard-error-
based method for constructing confidence intervals if the bootstrap distribution
was bell shaped. Similarly, there are certain conditions that need to be met
in order for the results of our hypothesis tests and confidence intervals we
described in Section 10.2 to have valid meaning. These conditions must be met
for the assumed underlying mathematical and probability theory to hold true.

For inference for regression, there are four conditions that need to be met. Note
the first four letters of these conditions are highlighted in bold in what follows:
LINE. This can serve as a nice reminder of what to check for whenever you
perform linear regression.

1. Linearity of relationship between variables
2. Independence of the residuals
3. Normality of the residuals
4. Equality of variance of the residuals

Conditions L, N, and E can be verified through what is known as a residual
analysis. Condition I can only be verified through an understanding of how
the data was collected.

In this section, we’ll go over a refresher on residuals, verify whether each of
the four LINE conditions hold true, and then discuss the implications.

10.3.1 Residuals refresher

Recall our definition of a residual from Subsection 5.1.3: it is the observed value
minus the fitted value denoted by 𝑦 − ̂𝑦. Recall that residuals can be thought
of as the error or the “lack-of-fit” between the observed value 𝑦 and the fitted
value ̂𝑦 on the regression line in Figure 10.1. In Figure 10.2, we illustrate one
particular residual out of 463 using an arrow, as well as its corresponding
observed and fitted values using a circle and a square, respectively.

372 10 Inference for Regression

3

4

5

2 4 6 8

Beauty Score

T
e
a
c
h
in

g
 S

c
o
re

Relationship of teaching and beauty scores

FIGURE 10.2: Example of observed value, fitted value, and residual.

Furthermore, we can automate the calculation of all 𝑛 = 463 residuals by
applying the get_regression_points() function to our saved regression model
in score_model. Observe how the resulting values of residual are roughly equal
to score - score_hat (there is potentially a slight difference due to rounding
error).

Fit regression model:
score_model <- lm(score ~ bty_avg, data = evals_ch5)
Get regression points:
regression_points <- get_regression_points(score_model)
regression_points

A tibble: 463 x 5
ID score bty_avg score_hat residual

<int> <dbl> <dbl> <dbl> <dbl>
1 1 4.7 5 4.214 0.486
2 2 4.100 5 4.214 -0.114
3 3 3.9 5 4.214 -0.314
4 4 4.8 5 4.214 0.586
5 5 4.600 3 4.08 0.52
6 6 4.3 3 4.08 0.22
7 7 2.8 3 4.08 -1.28

10.3 Conditions for inference for regression 373

8 8 4.100 3.333 4.102 -0.002
9 9 3.4 3.333 4.102 -0.702
10 10 4.5 3.16700 4.091 0.40900
... with 453 more rows

A residual analysis is used to verify conditions L, N, and E and can be
performed using appropriate data visualizations. While there are more sophis-
ticated statistical approaches that can also be done, we’ll focus on the much
simpler approach of looking at plots.

10.3.2 Linearity of relationship

The first condition is that the relationship between the outcome variable 𝑦 and
the explanatory variable 𝑥 must be Linear. Recall the scatterplot in Figure 10.1
where we had the explanatory variable 𝑥 as “beauty” score and the outcome
variable 𝑦 as teaching score. Would you say that the relationship between 𝑥
and 𝑦 is linear? It’s hard to say because of the scatter of the points about the
line. In the authors’ opinions, we feel this relationship is “linear enough.”

Let’s present an example where the relationship between 𝑥 and 𝑦 is clearly not
linear in Figure 10.3. In this case, the points clearly do not form a line, but
rather a U-shaped polynomial curve. In this case, any results from an inference
for regression would not be valid.

-5

0

5

10

2 4 6 8

Beauty Score

T
e
a
c
h
in

g
 S

c
o
re

FIGURE 10.3: Example of a clearly non-linear relationship.

374 10 Inference for Regression

10.3.3 Independence of residuals

The second condition is that the residuals must be Independent. In other words,
the different observations in our data must be independent of one another.

For our UT Austin data, while there is data on 463 courses, these 463 courses
were actually taught by 94 unique instructors. In other words, the same
professor is often included more than once in our data. The original evals
data frame that we used to construct the evals_ch5 data frame has a variable
prof_ID, which is an anonymized identification variable for the professor:

evals %>%
select(ID, prof_ID, score, bty_avg)

A tibble: 463 x 4
ID prof_ID score bty_avg

<int> <int> <dbl> <dbl>
1 1 1 4.7 5
2 2 1 4.100 5
3 3 1 3.9 5
4 4 1 4.8 5
5 5 2 4.600 3
6 6 2 4.3 3
7 7 2 2.8 3
8 8 3 4.100 3.333
9 9 3 3.4 3.333
10 10 4 4.5 3.16700
... with 453 more rows

For example, the professor with prof_ID equal to 1 taught the first 4 courses in
the data, the professor with prof_ID equal to 2 taught the next 3, and so on.
Given that the same professor taught these first four courses, it is reasonable to
expect that these four teaching scores are related to each other. If a professor
gets a high score in one class, chances are fairly good they’ll get a high score
in another. This dataset thus provides different information than if we had 463
unique instructors teaching the 463 courses.

In this case, we say there exists dependence between observations. The first
four courses taught by professor 1 are dependent, the next 3 courses taught by
professor 2 are related, and so on. Any proper analysis of this data needs to
take into account that we have repeated measures for the same profs.

10.3 Conditions for inference for regression 375

So in this case, the independence condition is not met. What does this mean
for our analysis? We’ll address this in Subsection 10.3.6 coming up, after we
check the remaining two conditions.

10.3.4 Normality of residuals

The third condition is that the residuals should follow a Normal distribution.
Furthermore, the center of this distribution should be 0. In other words,
sometimes the regression model will make positive errors: 𝑦 − ̂𝑦 > 0. Other
times, the regression model will make equally negative errors: 𝑦 − ̂𝑦 < 0.
However, on average the errors should equal 0 and their shape should be
similar to that of a bell.

The simplest way to check the normality of the residuals is to look at a
histogram, which we visualize in Figure 10.4.

ggplot(regression_points, aes(x = residual)) +
geom_histogram(binwidth = 0.25, color = "white") +
labs(x = "Residual")

0

30

60

90

-2 -1 0 1

Residual

c
o
u
n
t

FIGURE 10.4: Histogram of residuals.

This histogram shows that we have more positive residuals than negative. Since
the residual 𝑦 − ̂𝑦 is positive when 𝑦 > ̂𝑦, it seems our regression model’s fitted

376 10 Inference for Regression

teaching scores ̂𝑦 tend to underestimate the true teaching scores 𝑦. Furthermore,
this histogram has a slight left-skew in that there is a tail on the left. This is
another way to say the residuals exhibit a negative skew.

Is this a problem? Again, there is a certain amount of subjectivity in the
response. In the authors’ opinion, while there is a slight skew to the residuals,
we feel it isn’t drastic. On the other hand, others might disagree with our
assessment.

Let’s present examples where the residuals clearly do and don’t follow a normal
distribution in Figure 10.5. In this case of the model yielding the clearly
non-normal residuals on the right, any results from an inference for regression
would not be valid.

Clearly normal Clearly not normal

-1 0 1 0.0 0.5 1.0 1.5

0

100

200

0

20

40

60

Residual

c
o
u
n
t

FIGURE 10.5: Example of clearly normal and clearly not normal residuals.

10.3.5 Equality of variance

The fourth and final condition is that the residuals should exhibit Equal
variance across all values of the explanatory variable 𝑥. In other words, the
value and spread of the residuals should not depend on the value of the
explanatory variable 𝑥.
Recall the scatterplot in Figure 10.1: we had the explanatory variable 𝑥 of
“beauty” score on the x-axis and the outcome variable 𝑦 of teaching score on
the y-axis. Instead, let’s create a scatterplot that has the same values on the
x-axis, but now with the residual 𝑦 − ̂𝑦 on the y-axis as seen in Figure 10.6.

10.3 Conditions for inference for regression 377

ggplot(regression_points, aes(x = bty_avg, y = residual)) +
geom_point() +
labs(x = "Beauty Score", y = "Residual") +
geom_hline(yintercept = 0, col = "blue", size = 1)

-2

-1

0

1

2 4 6 8

Beauty Score

R
e
s
id

u
a
l

FIGURE 10.6: Plot of residuals over beauty score.

You can think of Figure 10.6 as a modified version of the plot with the regression
line in Figure 10.1, but with the regression line flattened out to 𝑦 = 0. Looking
at this plot, would you say that the spread of the residuals around the line at𝑦 = 0 is constant across all values of the explanatory variable 𝑥 of “beauty”
score? This question is rather qualitative and subjective in nature, thus different
people may respond with different answers. For example, some people might
say that there is slightly more variation in the residuals for smaller values of𝑥 than for higher ones. However, it can be argued that there isn’t a drastic
non-constancy.

In Figure 10.7 let’s present an example where the residuals clearly do not have
equal variance across all values of the explanatory variable 𝑥.

378 10 Inference for Regression

-2

0

2

2 4 6 8

Beauty Score

R
e
s
id

u
a
l

FIGURE 10.7: Example of clearly non-equal variance.

Observe how the spread of the residuals increases as the value of 𝑥 increases.
This is a situation known as heteroskedasticity. Any inference for regression
based on a model yielding such a pattern in the residuals would not be valid.

10.3.6 What’s the conclusion?

Let’s list our four conditions for inference for regression again and indicate
whether or not they were satisfied in our analysis:

1. Linearity of relationship between variables: Yes
2. Independence of residuals: No
3. Normality of residuals: Somewhat
4. Equality of variance: Yes

So what does this mean for the results of our confidence intervals and hypothesis
tests in Section 10.2?

First, the Independence condition. The fact that there exist dependencies
between different rows in evals_ch5 must be addressed. In more advanced
statistics courses, you’ll learn how to incorporate such dependencies into your
regression models. One such technique is called hierarchical/multilevel modeling.

Second, when conditions L, N, E are not met, it often means there is a
shortcoming in our model. For example, it may be the case that using only a

10.4 Simulation-based inference for regression 379

single explanatory variable is insufficient, as we did with “beauty” score. We
may need to incorporate more explanatory variables in a multiple regression
model as we did in Chapter 6.

In our case, the best we can do is view the results suggested by our confidence
intervals and hypothesis tests as preliminary. While a preliminary analysis
suggests that there is a significant relationship between teaching and “beauty”
scores, further investigation is warranted; in particular, by improving the
preliminary score ~ bty_avg model so that the four conditions are met. When
the four conditions are roughly met, then we can put more faith into our
confidence intervals and 𝑝-values.
The conditions for inference in regression problems are a key part of regression
analysis that are of vital importance to the processes of constructing confidence
intervals and conducting hypothesis tests. However, it is often the case with
regression analysis in the real world that not all the conditions are completely
met. Furthermore, as you saw, there is a level of subjectivity in the residual
analyses to verify the L, N, and E conditions. So what can you do? We as
authors advocate for transparency in communicating all results. This lets the
stakeholders of any analysis know about a model’s shortcomings or whether
the model is “good enough.” So while this checking of assumptions has lead
to some fuzzy “it depends” results, we decided as authors to show you these
scenarios to help prepare you for difficult statistical decisions you may need to
make down the road.

Learning check

(LC10.1) Continuing with our regression using age as the explanatory variable
and teaching score as the outcome variable.

• Use the get_regression_points() function to get the observed values, fitted
values, and residuals for all 463 instructors.

• Perform a residual analysis and look for any systematic patterns in the
residuals. Ideally, there should be little to no pattern but comment on what
you find here.

10.4 Simulation-based inference for regression
Recall in Subsection 10.2.5 when we interpreted the third through seventh
columns of a regression table, we stated that R doesn’t do simulations to

380 10 Inference for Regression

compute these values. Rather R uses theory-based methods that involve math-
ematical formulas.

In this section, we’ll use the simulation-based methods you previously learned
in Chapters 8 and 9 to recreate the values in the regression table in Table 10.1.
In particular, we’ll use the infer package workflow to

• Construct a 95% confidence interval for the population slope 𝛽1 using boot-
strap resampling with replacement. We did this previously in Sections 8.4
with the pennies data and 8.6 with the mythbusters_yawn data.

• Conduct a hypothesis test of 𝐻0 ∶ 𝛽1 = 0 versus 𝐻𝐴 ∶ 𝛽1 ≠ 0 using a
permutation test. We did this previously in Sections 9.3 with the promotions
data and 9.5 with the movies_sample IMDb data.

10.4.1 Confidence interval for slope

We’ll construct a 95% confidence interval for 𝛽1 using the infer workflow
outlined in Subsection 8.4.2. Specifically, we’ll first construct the bootstrap
distribution for the fitted slope 𝑏1 using our single sample of 463 courses:

1. specify() the variables of interest in evals_ch5 with the formula: score
~ bty_avg.

2. generate() replicates by using bootstrap resampling with replacement
from the original sample of 463 courses. We generate reps = 1000
replicates using type = "bootstrap".

3. calculate() the summary statistic of interest: the fitted slope 𝑏1.
Using this bootstrap distribution, we’ll construct the 95% confidence interval
using the percentile method and (if appropriate) the standard error method
as well. It is important to note in this case that the bootstrapping with
replacement is done row-by-row. Thus, the original pairs of score and bty_avg
values are always kept together, but different pairs of score and bty_avg values
may be resampled multiple times. The resulting confidence interval will denote
a range of plausible values for the unknown population slope 𝛽1 quantifying
the relationship between teaching and “beauty” scores for all professors at UT
Austin.

Let’s first construct the bootstrap distribution for the fitted slope 𝑏1:
bootstrap_distn_slope <- evals_ch5 %>%
specify(formula = score ~ bty_avg) %>%
generate(reps = 1000, type = "bootstrap") %>%

10.4 Simulation-based inference for regression 381

calculate(stat = "slope")
bootstrap_distn_slope

A tibble: 1,000 x 2
replicate stat

<int> <dbl>
1 1 0.0651055
2 2 0.0382313
3 3 0.108056
4 4 0.0666601
5 5 0.0715932
6 6 0.0854565
7 7 0.0624868
8 8 0.0412859
9 9 0.0796269
10 10 0.0761299
... with 990 more rows

Observe how we have 1000 values of the bootstrapped slope 𝑏1 in the stat
column. Let’s visualize the 1000 bootstrapped values in Figure 10.8.

visualize(bootstrap_distn_slope)

0

50

100

150

0.025 0.050 0.075 0.100 0.125

stat

c
o
u
n
t

Simulation-Based Bootstrap Distribution

FIGURE 10.8: Bootstrap distribution of slope.

Observe how the bootstrap distribution is roughly bell-shaped. Recall from
Subsection 8.7.1 that the shape of the bootstrap distribution of 𝑏1 closely
approximates the shape of the sampling distribution of 𝑏1.

382 10 Inference for Regression

Percentile-method

First, let’s compute the 95% confidence interval for 𝛽1 using the percentile
method. We’ll do so by identifying the 2.5th and 97.5th percentiles which
include the middle 95% of values. Recall that this method does not require
the bootstrap distribution to be normally shaped.

percentile_ci <- bootstrap_distn_slope %>%
get_confidence_interval(type = "percentile", level = 0.95)

percentile_ci

A tibble: 1 x 2
`2.5%` `97.5%`
<dbl> <dbl>

1 0.0323411 0.0990027

The resulting percentile-based 95% confidence interval for 𝛽1 of (0.032, 0.099)
is similar to the confidence interval in the regression Table 10.1 of (0.035,
0.099).

Standard error method

Since the bootstrap distribution in Figure 10.8 appears to be roughly bell-
shaped, we can also construct a 95% confidence interval for 𝛽1 using the
standard error method.

In order to do this, we need to first compute the fitted slope 𝑏1, which will act
as the center of our standard error-based confidence interval. While we saw in
the regression table in Table 10.1 that this was 𝑏1 = 0.067, we can also use the
infer pipeline with the generate() step removed to calculate it:

observed_slope <- evals %>%
specify(score ~ bty_avg) %>%
calculate(stat = "slope")

observed_slope

A tibble: 1 x 1
stat
<dbl>

1 0.0666370

We then use the get_ci() function with level = 0.95 to compute the 95%
confidence interval for 𝛽1. Note that setting the point_estimate argument to
the observed_slope of 0.067 sets the center of the confidence interval.

10.4 Simulation-based inference for regression 383

se_ci <- bootstrap_distn_slope %>%
get_ci(level = 0.95, type = "se", point_estimate = observed_slope)

se_ci

A tibble: 1 x 2
lower upper
<dbl> <dbl>

1 0.0333767 0.0998974

The resulting standard error-based 95% confidence interval for 𝛽1 of (0.033, 0.1)
is slightly different than the confidence interval in the regression Table 10.1 of(0.035, 0.099).
Comparing all three

Let’s compare all three confidence intervals in Figure 10.9, where the percentile-
based confidence interval is marked with solid lines, the standard error based
confidence interval is marked with dashed lines, and the theory-based confidence
interval (0.035, 0.099) from the regression table in Table 10.1 is marked with
dotted lines.

visualize(bootstrap_distn_slope) +
shade_confidence_interval(endpoints = percentile_ci, fill = NULL,

linetype = "solid", color = "grey90") +
shade_confidence_interval(endpoints = se_ci, fill = NULL,

linetype = "dashed", color = "grey60") +
shade_confidence_interval(endpoints = c(0.035, 0.099), fill = NULL,

linetype = "dotted", color = "black")

0

50

100

150

0.025 0.050 0.075 0.100 0.125

stat

c
o
u
n
t

Simulation-Based Bootstrap Distribution

FIGURE 10.9: Comparing three confidence intervals for the slope.

384 10 Inference for Regression

Observe that all three are quite similar! Furthermore, none of the three con-
fidence intervals for 𝛽1 contain 0 and are entirely located above 0. This is
suggesting that there is in fact a meaningful positive relationship between
teaching and “beauty” scores.

10.4.2 Hypothesis test for slope

Let’s now conduct a hypothesis test of 𝐻0 ∶ 𝛽1 = 0 vs. 𝐻𝐴 ∶ 𝛽1 ≠ 0. We will
use the infer package, which follows the hypothesis testing paradigm in the
“There is only one test” diagram in Figure 9.14.

Let’s first think about what it means for 𝛽1 to be zero as assumed in the
null hypothesis 𝐻0. Recall we said if 𝛽1 = 0, then this is saying there is no
relationship between the teaching and “beauty” scores. Thus assuming this
particular null hypothesis 𝐻0 means that in our “hypothesized universe” there
is no relationship between score and bty_avg. We can therefore shuffle/permute
the bty_avg variable to no consequence.

We construct the null distribution of the fitted slope 𝑏1 by performing the
steps that follow. Recall from Section 9.2 on terminology, notation, and def-
initions related to hypothesis testing where we defined the null distribution:
the sampling distribution of our test statistic 𝑏1 assuming the null hypothesis𝐻0 is true.

1. specify() the variables of interest in evals_ch5 with the formula: score
~ bty_avg.

2. hypothesize() the null hypothesis of independence. Recall from Section
9.3 that this is an additional step that needs to be added for hypothesis
testing.

3. generate() replicates by permuting/shuffling values from the original
sample of 463 courses. We generate reps = 1000 replicates using type
= "permute" here.

4. calculate() the test statistic of interest: the fitted slope 𝑏1.
In this case, we permute the values of bty_avg across the values of score 1000
times. We can do this shuffling/permuting since we assumed a “hypothesized
universe” of no relationship between these two variables. Then we calculate
the "slope" coefficient for each of these 1000 generated samples.

null_distn_slope <- evals %>%
specify(score ~ bty_avg) %>%
hypothesize(null = "independence") %>%

10.4 Simulation-based inference for regression 385

generate(reps = 1000, type = "permute") %>%
calculate(stat = "slope")

Observe the resulting null distribution for the fitted slope 𝑏1 in Figure 10.10.

0

50

100

150

200

-0.05 0.00 0.05

stat

c
o
u
n
t

Simulation-Based Null Distribution

FIGURE 10.10: Null distribution of slopes.

Notice how it is centered at 𝑏1 = 0. This is because in our hypothesized universe,
there is no relationship between score and bty_avg and so 𝛽1 = 0. Thus, the
most typical fitted slope 𝑏1 we observe across our simulations is 0. Observe,
furthermore, how there is variation around this central value of 0.

Let’s visualize the 𝑝-value in the null distribution by comparing it to the
observed test statistic of 𝑏1 = 0.067 in Figure 10.11. We’ll do this by adding a
shade_p_value() layer to the previous visualize() code.

0

50

100

150

200

-0.08 -0.04 0.00 0.04

stat

c
o
u
n
t

Simulation-Based Null Distribution

FIGURE 10.11: Null distribution and 𝑝-value.

386 10 Inference for Regression

Since the observed fitted slope 0.067 falls far to the right of this null distribution
and thus the shaded region doesn’t overlap it, we’ll have a 𝑝-value of 0. For
completeness, however, let’s compute the numerical value of the 𝑝-value anyways
using the get_p_value() function. Recall that it takes the same inputs as the
shade_p_value() function:

null_distn_slope %>%
get_p_value(obs_stat = observed_slope, direction = "both")

A tibble: 1 x 1
p_value
<dbl>

1 0

This matches the 𝑝-value of 0 in the regression table in Table 10.1. We therefore
reject the null hypothesis 𝐻0 ∶ 𝛽1 = 0 in favor of the alternative hypothesis𝐻𝐴 ∶ 𝛽1 ≠ 0. We thus have evidence that suggests there is a significant
relationship between teaching and “beauty” scores for all instructors at UT
Austin.

When the conditions for inference for regression are met and the null distribution
has a bell shape, we are likely to see similar results between the simulation-
based results we just demonstrated and the theory-based results shown in the
regression table in Table 10.1.

Learning check

(LC10.2) Repeat the inference but this time for the correlation coefficient
instead of the slope. Note the implementation of stat = "correlation" in the
calculate() function of the infer package.

10.5 Conclusion
10.5.1 Theory-based inference for regression

Recall in Subsection 10.2.5 when we interpreted the regression table in Table
10.1, we mentioned that R does not compute its values using simulation-based
methods for constructing confidence intervals and conducting hypothesis tests
as we did in Chapters 8 and 9 using the infer package. Rather, R uses a
theory-based approach using mathematical formulas, much like the theory-

10.5 Conclusion 387

based confidence intervals you saw in Subsection 8.7.2 and the theory-based
hypothesis tests you saw in Subsection 9.6.1. These formulas were derived
in a time when computers didn’t exist, so it would’ve been incredibly labor
intensive to run extensive simulations.

In particular, there is a formula for the standard error of the fitted slope 𝑏1:
SE𝑏1 = 𝑠𝑦𝑠𝑥 ⋅ √1 − 𝑟2√𝑛 − 2

As with many formulas in statistics, there’s a lot going on here, so let’s first break
down what each symbol represents. First 𝑠𝑥 and 𝑠𝑦 are the sample standard
deviations of the explanatory variable bty_avg and the response variable score,
respectively. Second, 𝑟 is the sample correlation coefficient between score and
bty_avg. This was computed as 0.187 in Chapter 5. Lastly, 𝑛 is the number of
pairs of points in the evals_ch5 data frame, here 463.

To put this formula into words, the standard error of 𝑏1 depends on the
relationship between the variability of the response variable and the variability
of the explanatory variable as measured in the 𝑠𝑦/𝑠𝑥 term. Next, it looks into
how the two variables relate to each other in the

√1 − 𝑟2 term.

However, the most important observation to make in the previous formula
is that there is an 𝑛 − 2 in the denominator. In other words, as the sample
size 𝑛 increases, the standard error SE𝑏1 decreases. Just as we demonstrated
in Subsection 7.3.3 when we used shovels with 𝑛 = 25, 50, and 100 slots,
the amount of sampling variation of the fitted slope 𝑏1 will depend on the
sample size 𝑛. In particular, as the sample size increases, both the sampling
and bootstrap distributions narrow and the standard error SE𝑏1 decreases.
Hence, our estimates of 𝑏1 for the true population slope 𝛽1 get more and more
precise.

R then uses this formula for the standard error of 𝑏1 in the third column of the
regression table and subsequently to construct 95% confidence intervals. But
what about the hypothesis test? Much like with our theory-based hypothesis
test in Subsection 9.6.1, R uses the following 𝑡-statistic as the test statistic for
hypothesis testing: 𝑡 = 𝑏1 − 𝛽1

SE𝑏1
And since the null hypothesis 𝐻0 ∶ 𝛽1 = 0 is assumed during the hypothesis
test, the 𝑡-statistic becomes

388 10 Inference for Regression𝑡 = 𝑏1 − 0
SE𝑏1 = 𝑏1

SE𝑏1
What are the values of 𝑏1 and SE𝑏1? They are in the estimate and std_error
column of the regression table in Table 10.1. Thus the value of 4.09 in the
table is computed as 0.067/0.016 = 4.188. Note there is a difference due to
some rounding error here.

Lastly, to compute the 𝑝-value, we need to compare the observed test statistic
of 4.09 to the appropriate null distribution. Recall from Section 9.2, that a
null distribution is the sampling distribution of the test statistic assuming the
null hypothesis 𝐻0 is true. Much like in our theory-based hypothesis test in
Subsection 9.6.1, it can be mathematically proven that this distribution is a𝑡-distribution with degrees of freedom equal to 𝑑𝑓 = 𝑛 − 2 = 463 − 2 = 461.
Don’t worry if you’re feeling a little overwhelmed at this point. There is
a lot of background theory to understand before you can fully make sense
of the equations for theory-based methods. That being said, theory-based
methods and simulation-based methods for constructing confidence intervals
and conducting hypothesis tests often yield consistent results. As mentioned
before, in our opinion, two large benefits of simulation-based methods over
theory-based are that (1) they are easier for people new to statistical inference
to understand, and (2) they also work in situations where theory-based methods
and mathematical formulas don’t exist.

10.5.2 Summary of statistical inference

We’ve finished the last two scenarios from the “Scenarios of sampling for
inference” table in Subsection 7.5.1, which we re-display in Table 10.4.

TABLE 10.4: Scenarios of sampling for inference

Scenario Population parameter Notation Point estimate Symbol(s)

1 Population proportion 𝑝 Sample proportion 𝑝̂
2 Population mean 𝜇 Sample mean 𝑥 or 𝜇
3 Difference in population

proportions
𝑝1 − 𝑝2 Difference in sample

proportions
𝑝̂1 − 𝑝̂2

4 Difference in population
means

𝜇1 − 𝜇2 Difference in sample
means

𝑥1 − 𝑥2
5 Population regression

slope
𝛽1 Fitted regression slope 𝑏1 or 𝛽1

Armed with the regression modeling techniques you learned in Chapters 5
and 6, your understanding of sampling for inference in Chapter 7, and the

10.5 Conclusion 389

tools for statistical inference like confidence intervals and hypothesis tests in
Chapters 8 and 9, you’re now equipped to study the significance of relationships
between variables in a wide array of data! Many of the ideas presented here
can be extended into multiple regression and other more advanced modeling
techniques.

10.5.3 Additional resources

Solutions to all Learning checks can be found online in Appendix D1.

An R script file of all R code used in this chapter is available at https:
//www.moderndive.com/scripts/10-inference-for-regression.R.

10.5.4 What’s to come

You’ve now concluded the last major part of the book on “Statistical Inference
with infer.” The closing Chapter 11 concludes this book with various short
case studies involving real data, such as house prices in the city of Seattle,
Washington in the US. You’ll see how the principles in this book can help you
become a great storyteller with data!

1https://moderndive.com/D-appendixD.html

Part IV

Conclusion

11
Tell Your Story with Data

Recall in the Preface and at the end of chapters throughout this book, we
displayed the “ModernDive flowchart” mapping your journey through this
book.

FIGURE 11.1: ModernDive flowchart.

11.1 Review
Let’s go over a refresher of what you’ve covered so far. You first got started
with data in Chapter 1 where you learned about the difference between R and
RStudio, started coding in R, installed and loaded your first R packages, and

393

394 11 Tell Your Story with Data

explored your first dataset: all domestic departure flights from a major New
York City airport in 2013. Then you covered the following three parts of this
book (Parts 2 and 4 are combined into a single portion):

1. Data science with tidyverse. You assembled your data science toolbox
using tidyverse packages. In particular, you

•Ch.2: Visualized data using the ggplot2 package.
•Ch.3: Wrangled data using the dplyr package.
•Ch.4: Learned about the concept of “tidy” data as a standard-
ized data frame input and output format for all packages in the
tidyverse. Furthermore, you learned how to import spreadsheet
files into R using the readr package.

2. Data modeling with moderndive. Using these data science tools and
helper functions from the moderndive package, you fit your first data
models. In particular, you

•Ch.5: Discovered basic regression models with only one explana-
tory variable.

•Ch.6: Examined multiple regression models with more than one
explanatory variable.

3. Statistical inference with infer. Once again using your newly acquired
data science tools, you unpacked statistical inference using the infer
package. In particular, you

•Ch.7: Learned about the role that sampling variability plays in
statistical inference and the role that sample size plays in this
sampling variability.

•Ch.8: Constructed confidence intervals using bootstrapping.
•Ch.9: Conducted hypothesis tests using permutation.

4. Data modeling with moderndive (revisited): Armed with your under-
standing of statistical inference, you revisited and reviewed the models
you constructed in Ch.5 and Ch.6. In particular, you

•Ch.10: Interpreted confidence intervals and hypothesis tests in a
regression setting.

We’ve guided you through your first experiences of “thinking with data,”1 an
expression originally coined by Dr. Diane Lambert. The philosophy underlying
this expression guided your path in the flowchart in Figure 11.1.

This philosophy is also well-summarized in “Practical Data Science for Stats”2:
a collection of pre-prints focusing on the practical side of data science work-

1https://arxiv.org/pdf/1410.3127.pdf
2https://peerj.com/collections/50-practicaldatascistats/

11.1 Review 395

flows and statistical analysis curated by Dr. Jennifer Bryan3 and Dr. Hadley
Wickham4. They quote:

There are many aspects of day-to-day analytical work that are almost absent
from the conventional statistics literature and curriculum. And yet these
activities account for a considerable share of the time and effort of data
analysts and applied statisticians. The goal of this collection is to increase
the visibility and adoption of modern data analytical workflows. We aim to
facilitate the transfer of tools and frameworks between industry and academia,
between software engineering and statistics and computer science, and across
different domains.

In other words, to be equipped to “think with data” in the 21st century,
analysts need practice going through the “data/science pipeline”5 we saw in
the Preface (re-displayed in Figure 11.2). It is our opinion that, for too long,
statistics education has only focused on parts of this pipeline, instead of going
through it in its entirety.

FIGURE 11.2: Data/science pipeline.

To conclude this book, we’ll present you with some additional case studies of
working with data. In Section 11.2 we’ll take you through a full-pass of the
“Data/Science Pipeline” in order to analyze the sale price of houses in Seattle,
WA, USA. In Section 11.3, we’ll present you with some examples of effective data
storytelling drawn from the data journalism website, FiveThirtyEight.com6.
We present these case studies to you because we believe that you should not

3https://twitter.com/jennybryan
4https://twitter.com/hadleywickham
5http://r4ds.had.co.nz/explore-intro.html
6https://fivethirtyeight.com/

396 11 Tell Your Story with Data

only be able to “think with data,” but also be able to “tell your story with
data.” Let’s explore how to do this!

Needed packages

Let’s load all the packages needed for this chapter (this assumes you’ve already
installed them). Read Section 1.3 for information on how to install and load R
packages.

library(tidyverse)
library(moderndive)
library(skimr)
library(fivethirtyeight)

11.2 Case study: Seattle house prices
Kaggle.com7 is a machine learning and predictive modeling competition website
that hosts datasets uploaded by companies, governmental organizations, and
other individuals. One of their datasets is the “House Sales in King County,
USA”8. It consists of sale prices of homes sold between May 2014 and May
2015 in King County, Washington, USA, which includes the greater Seattle
metropolitan area. This dataset is in the house_prices data frame included in
the moderndive package.

The dataset consists of 21,613 houses and 21 variables describing these houses
(for a full list and description of these variables, see the help file by running
?house_prices in the console). In this case study, we’ll create a multiple regression
model where:

• The outcome variable 𝑦 is the sale price of houses.
• Two explanatory variables:

1. A numerical explanatory variable 𝑥1: house size sqft_living as mea-
sured in square feet of living space. Note that 1 square foot is about
0.09 square meters.

2. A categorical explanatory variable 𝑥2: house condition, a categorical
variable with five levels where 1 indicates “poor” and 5 indicates
“excellent.”

7https://www.kaggle.com/
8https://www.kaggle.com/harlfoxem/housesalesprediction

11.2 Case study: Seattle house prices 397

11.2.1 Exploratory data analysis: Part I

As we’ve said numerous times throughout this book, a crucial first step when
presented with data is to perform an exploratory data analysis (EDA). Ex-
ploratory data analysis can give you a sense of your data, help identify
issues with your data, bring to light any outliers, and help inform model
construction.

Recall the three common steps in an exploratory data analysis we introduced
in Subsection 5.1.1:

1. Looking at the raw data values.
2. Computing summary statistics.
3. Creating data visualizations.

First, let’s look at the raw data using View() to bring up RStudio’s spreadsheet
viewer and the glimpse() function from the dplyr package:

View(house_prices)
glimpse(house_prices)

Observations: 21,613
Variables: 21
$ id <chr> "7129300520", "6414100192", "5631500400", "24872...
$ date <date> 2014-10-13, 2014-12-09, 2015-02-25, 2014-12-09,...
$ price <dbl> 221900, 538000, 180000, 604000, 510000, 1225000,...
$ bedrooms <int> 3, 3, 2, 4, 3, 4, 3, 3, 3, 3, 3, 2, 3, 3, 5, 4, ...
$ bathrooms <dbl> 1.00, 2.25, 1.00, 3.00, 2.00, 4.50, 2.25, 1.50, ...
$ sqft_living <int> 1180, 2570, 770, 1960, 1680, 5420, 1715, 1060, 1...
$ sqft_lot <int> 5650, 7242, 10000, 5000, 8080, 101930, 6819, 971...
$ floors <dbl> 1.0, 2.0, 1.0, 1.0, 1.0, 1.0, 2.0, 1.0, 1.0, 2.0...
$ waterfront <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,...
$ view <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, ...
$ condition <fct> 3, 3, 3, 5, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3, ...
$ grade <fct> 7, 7, 6, 7, 8, 11, 7, 7, 7, 7, 8, 7, 7, 7, 7, 9,...
$ sqft_above <int> 1180, 2170, 770, 1050, 1680, 3890, 1715, 1060, 1...
$ sqft_basement <int> 0, 400, 0, 910, 0, 1530, 0, 0, 730, 0, 1700, 300...
$ yr_built <int> 1955, 1951, 1933, 1965, 1987, 2001, 1995, 1963, ...
$ yr_renovated <int> 0, 1991, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
$ zipcode <fct> 98178, 98125, 98028, 98136, 98074, 98053, 98003,...
$ lat <dbl> 47.5, 47.7, 47.7, 47.5, 47.6, 47.7, 47.3, 47.4, ...
$ long <dbl> -122, -122, -122, -122, -122, -122, -122, -122, ...
$ sqft_living15 <int> 1340, 1690, 2720, 1360, 1800, 4760, 2238, 1650, ...

398 11 Tell Your Story with Data

$ sqft_lot15 <int> 5650, 7639, 8062, 5000, 7503, 101930, 6819, 9711...

Here are some questions you can ask yourself at this stage of an EDA: Which
variables are numerical? Which are categorical? For the categorical variables,
what are their levels? Besides the variables we’ll be using in our regression
model, what other variables do you think would be useful to use in a model
for house price?

Observe, for example, that while the condition variable has values 1 through
5, these are saved in R as fct standing for “factors.” This is one of R’s ways
of saving categorical variables. So you should think of these as the “labels” 1
through 5 and not the numerical values 1 through 5.

Let’s now perform the second step in an EDA: computing summary statistics.
Recall from Section 3.3 that summary statistics are single numerical values
that summarize a large number of values. Examples of summary statistics
include the mean, the median, the standard deviation, and various percentiles.

We could do this using the summarize() function in the dplyr package along
with R’s built-in summary functions, like mean() and median(). However, recall
in Section 3.5, we saw the following code that computes a variety of summary
statistics of the variable gain, which is the amount of time that a flight makes
up mid-air:

gain_summary <- flights %>%
summarize(

min = min(gain, na.rm = TRUE),
q1 = quantile(gain, 0.25, na.rm = TRUE),
median = quantile(gain, 0.5, na.rm = TRUE),
q3 = quantile(gain, 0.75, na.rm = TRUE),
max = max(gain, na.rm = TRUE),
mean = mean(gain, na.rm = TRUE),
sd = sd(gain, na.rm = TRUE),
missing = sum(is.na(gain))

)

To repeat this for all three price, sqft_living, and condition variables would be
tedious to code up. So instead, let’s use the convenient skim() function from
the skimr package we first used in Subsection 6.1.1, being sure to only select()
the variables of interest for our model:

11.2 Case study: Seattle house prices 399

house_prices %>%
select(price, sqft_living, condition) %>%
skim()

Skim summary statistics
n obs: 21613
n variables: 3

── Variable type:factor
variable missing complete n n_unique top_counts ordered

condition 0 21613 21613 5 3: 14031, 4: 5679, 5: 1701, 2: 172 FALSE

── Variable type:integer
variable missing complete n mean sd p0 p25 p50 p75 p100

sqft_living 0 21613 21613 2079.9 918.44 290 1427 1910 2550 13540

── Variable type:numeric
variable missing complete n mean sd p0 p25 p50 p75 p100

price 0 21613 21613 540088.14 367127.2 75000 321950 450000 645000 7700000

Observe that the mean price of $540,088 is larger than the median of $450,000.
This is because a small number of very expensive houses are inflating the
average. In other words, there are “outlier” house prices in our dataset. (This
fact will become even more apparent when we create our visualizations next.)

However, the median is not as sensitive to such outlier house prices. This is
why news about the real estate market generally report median house prices
and not mean/average house prices. We say here that the median is more
robust to outliers than the mean. Similarly, while both the standard deviation
and interquartile-range (IQR) are both measures of spread and variability, the
IQR is more robust to outliers.

Let’s now perform the last of the three common steps in an exploratory data
analysis: creating data visualizations. Let’s first create univariate visualiza-
tions. These are plots focusing on a single variable at a time. Since price and
sqft_living are numerical variables, we can visualize their distributions using a
geom_histogram() as seen in Section 2.5 on histograms. On the other hand, since
condition is categorical, we can visualize its distribution using a geom_bar().
Recall from Section 2.8 on barplots that since condition is not “pre-counted”,
we use a geom_bar() and not a geom_col().

400 11 Tell Your Story with Data

Histogram of house price:
ggplot(house_prices, aes(x = price)) +
geom_histogram(color = "white") +
labs(x = "price (USD)", title = "House price")

Histogram of sqft_living:
ggplot(house_prices, aes(x = sqft_living)) +
geom_histogram(color = "white") +
labs(x = "living space (square feet)", title = "House size")

Barplot of condition:
ggplot(house_prices, aes(x = condition)) +
geom_bar() +
labs(x = "condition", title = "House condition")

In Figure 11.3, we display all three of these visualizations at once.

0

2000

4000

6000

8000

0

1000

2000

3000

4000

5000

0

5000

10000

0 2000000 4000000 6000000 8000000 0 5000 10000

1 2 3 4 5

price (USD) living space (square feet)

condition

c
o
u
n
t

c
o
u
n
t

c
o
u
n
t

House price House size

House condition

FIGURE 11.3: Exploratory visualizations of Seattle house prices data.

11.2 Case study: Seattle house prices 401

First, observe in the bottom plot that most houses are of condition “3”, with
a few more of conditions “4” and “5”, and almost none that are “1” or “2”.

Next, observe in the histogram for price in the top-left plot that a majority of
houses are less than two million dollars. Observe also that the x-axis stretches
out to 8 million dollars, even though there does not appear to be any houses
close to that price. This is because there are a very small number of houses
with prices closer to 8 million. These are the outlier house prices we mentioned
earlier. We say that the variable price is right-skewed as exhibited by the long
right tail.

Further, observe in the histogram of sqft_living in the middle plot as well that
most houses appear to have less than 5000 square feet of living space. For
comparison, a football field in the US is about 57,600 square feet, whereas a
standard soccer/association football field is about 64,000 square feet. Observe
also that this variable is also right-skewed, although not as drastically as the
price variable.

For both the price and sqft_living variables, the right-skew makes distinguish-
ing houses at the lower end of the x-axis hard. This is because the scale of the
x-axis is compressed by the small number of quite expensive and immensely-
sized houses.

So what can we do about this skew? Let’s apply a log10 transformation to
these variables. If you are unfamiliar with such transformations, we highly
recommend you read Appendix A.3 on logarithmic (log) transformations. In
summary, log transformations allow us to alter the scale of a variable to focus
on multiplicative changes instead of additive changes. In other words, they
shift the view to be on relative changes instead of absolute changes. Such
multiplicative/relative changes are also called changes in orders of magnitude.

Let’s create new log10 transformed versions of the right-skewed variable price
and sqft_living using the mutate() function from Section 3.5, but we’ll give the
latter the name log10_size, which is shorter and easier to understand than the
name log10_sqft_living.

house_prices <- house_prices %>%
mutate(

log10_price = log10(price),
log10_size = log10(sqft_living)
)

Let’s display the before and after effects of this transformation on these variables
for only the first 10 rows of house_prices:

402 11 Tell Your Story with Data

house_prices %>%
select(price, log10_price, sqft_living, log10_size)

A tibble: 21,613 x 4
price log10_price sqft_living log10_size
<dbl> <dbl> <int> <dbl>

1 221900 5.34616 1180 3.07188
2 538000 5.73078 2570 3.40993
3 180000 5.25527 770 2.88649
4 604000 5.78104 1960 3.29226
5 510000 5.70757 1680 3.22531
6 1225000 6.08814 5420 3.73400
7 257500 5.41078 1715 3.23426
8 291850 5.46516 1060 3.02531
9 229500 5.36078 1780 3.25042
10 323000 5.50920 1890 3.27646
... with 21,603 more rows

Observe in particular the houses in the sixth and third rows. The house in the
sixth row has price $1,225,000, which is just above one million dollars. Since106 is one million, its log10_price is around 6.09.

Contrast this with all other houses with log10_price less than six, since they all
have price less than $1,000,000. The house in the third row is the only house
with sqft_living less than 1000. Since 1000 = 103, it’s the lone house with
log10_size less than 3.

Let’s now visualize the before and after effects of this transformation for price
in Figure 11.4.

Before log10 transformation:
ggplot(house_prices, aes(x = price)) +
geom_histogram(color = "white") +
labs(x = "price (USD)", title = "House price: Before")

After log10 transformation:
ggplot(house_prices, aes(x = log10_price)) +
geom_histogram(color = "white") +
labs(x = "log10 price (USD)", title = "House price: After")

11.2 Case study: Seattle house prices 403

0

2000

4000

6000

8000

0

1000

2000

0 2000000 4000000 6000000 8000000 5.0 5.5 6.0 6.5 7.0

price (USD) log10 price (USD)

c
o
u
n
t

c
o
u
n
t

House price: Before House price: After

FIGURE 11.4: House price before and after log10 transformation.

Observe that after the transformation, the distribution is much less skewed,
and in this case, more symmetric and more bell-shaped. Now you can more
easily distinguish the lower priced houses.

Let’s do the same for house size, where the variable sqft_living was log10
transformed to log10_size.

Before log10 transformation:
ggplot(house_prices, aes(x = sqft_living)) +
geom_histogram(color = "white") +
labs(x = "living space (square feet)", title = "House size: Before")

After log10 transformation:
ggplot(house_prices, aes(x = log10_size)) +
geom_histogram(color = "white") +
labs(x = "log10 living space (square feet)", title = "House size: After")

0

1000

2000

3000

4000

5000

0

1000

2000

0 5000 10000 2.5 3.0 3.5 4.0

living space (square feet) log10 living space (square feet)

c
o
u
n
t

c
o
u
n
t

House size: Before House size: After

FIGURE 11.5: House size before and after log10 transformation.

404 11 Tell Your Story with Data

Observe in Figure 11.5 that the log10 transformation has a similar effect
of unskewing the variable. We emphasize that while in these two cases the
resulting distributions are more symmetric and bell-shaped, this is not always
necessarily the case.

Given the now symmetric nature of log10_price and log10_size, we are going
to revise our multiple regression model to use our new variables:

1. The outcome variable 𝑦 is the sale log10_price of houses.
2. Two explanatory variables:

1. A numerical explanatory variable 𝑥1: house size log10_size as
measured in log base 10 square feet of living space.

2. A categorical explanatory variable 𝑥2: house condition, a cate-
gorical variable with five levels where 1 indicates “poor” and 5
indicates “excellent.”

11.2.2 Exploratory data analysis: Part II

Let’s now continue our EDA by creating multivariate visualizations. Unlike the
univariate histograms and barplot in the earlier Figures 11.3, 11.4, and 11.5,
multivariate visualizations show relationships between more than one variable.
This is an important step of an EDA to perform since the goal of modeling is
to explore relationships between variables.

Since our model involves a numerical outcome variable, a numerical explanatory
variable, and a categorical explanatory variable, we are in a similar regression
modeling situation as in Section 6.1 where we studied the UT Austin teaching
scores dataset. Recall in that case the numerical outcome variable was teaching
score, the numerical explanatory variable was instructor age, and the categorical
explanatory variable was (binary) gender.

We thus have two choices of models we can fit: either (1) an interaction model
where the regression line for each condition level will have both a different slope
and a different intercept or (2) a parallel slopes model where the regression line
for each condition level will have the same slope but different intercepts.

Recall from Subsection 6.1.3 that the geom_parallel_slopes() function is a
special purpose function that Evgeni Chasnovski created and included in the
moderndive package, since the geom_smooth() method in the ggplot2 package does
not have a convenient way to plot parallel slopes models. We plot both resulting
models in Figure 11.6, with the interaction model on the left.

Plot interaction model
ggplot(house_prices,

11.2 Case study: Seattle house prices 405

aes(x = log10_size, y = log10_price, col = condition)) +
geom_point(alpha = 0.05) +
geom_smooth(method = "lm", se = FALSE) +
labs(y = "log10 price",

x = "log10 size",
title = "House prices in Seattle")

Plot parallel slopes model
ggplot(house_prices,

aes(x = log10_size, y = log10_price, col = condition)) +
geom_point(alpha = 0.05) +
geom_parallel_slopes(se = FALSE) +
labs(y = "log10 price",

x = "log10 size",
title = "House prices in Seattle")

5.0

5.5

6.0

6.5

5.0

5.5

6.0

6.5

2.5 3.0 3.5 4.0 2.5 3.0 3.5 4.0

log10 size log10 size

lo
g
1
0
 p

ri
c
e

condition

1

2

3

4

5

House prices in Seattle

FIGURE 11.6: Interaction and parallel slopes models.

In both cases, we see there is a positive relationship between house price and
size, meaning as houses are larger, they tend to be more expensive. Furthermore,
in both plots it seems that houses of condition 5 tend to be the most expensive
for most house sizes as evidenced by the fact that the line for condition 5 is
highest, followed by conditions 4 and 3. As for conditions 1 and 2, this pattern

406 11 Tell Your Story with Data

isn’t as clear. Recall from the univariate barplot of condition in Figure 11.3,
there are only a few houses of condition 1 or 2.

Let’s also show a faceted version of just the interaction model in Figure 11.7.
It is now much more apparent just how few houses are of condition 1 or 2.

ggplot(house_prices,
aes(x = log10_size, y = log10_price, col = condition)) +

geom_point(alpha = 0.4) +
geom_smooth(method = "lm", se = FALSE) +
labs(y = "log10 price",

x = "log10 size",
title = "House prices in Seattle") +

facet_wrap(~ condition)

4 5

1 2 3

2.5 3.0 3.5 4.0 2.5 3.0 3.5 4.0

2.5 3.0 3.5 4.0

5.0

5.5

6.0

6.5

5.0

5.5

6.0

6.5

log10 size

lo
g
1
0
 p

ri
c
e

condition

1

2

3

4

5

House prices in Seattle

FIGURE 11.7: Faceted plot of interaction model.

Which exploratory visualization of the interaction model is better, the one in
the left-hand plot of Figure 11.6 or the faceted version in Figure 11.7? There
is no universal right answer. You need to make a choice depending on what
you want to convey, and own that choice, with including and discussing both
also as an option as needed.

11.2 Case study: Seattle house prices 407

11.2.3 Regression modeling

Which of the two models in Figure 11.6 is “better”? The interaction model in
the left-hand plot or the parallel slopes model in the right-hand plot?

We had a similar discussion in Subsection 6.3.1 on model selection. Recall that
we stated that we should only favor more complex models if the additional
complexity is warranted. In this case, the more complex model is the interaction
model since it considers five intercepts and five slopes total. This is in contrast
to the parallel slopes model which considers five intercepts but only one common
slope.

Is the additional complexity of the interaction model warranted? Looking at
the left-hand plot in Figure 11.6, we’re of the opinion that it is, as evidenced by
the slight x-like pattern to some of the lines. Therefore, we’ll focus the rest of
this analysis only on the interaction model. This visual approach is somewhat
subjective, however, so feel free to disagree! What are the five different slopes
and five different intercepts for the interaction model? We can obtain these
values from the regression table. Recall our two-step process for getting the
regression table:

Fit regression model:
price_interaction <- lm(log10_price ~ log10_size * condition,

data = house_prices)

Get regression table:
get_regression_table(price_interaction)

TABLE 11.1: Regression table for interaction model

term estimate std_error statistic p_value lower_ci upper_ci

intercept 3.330 0.451 7.380 0.000 2.446 4.215
log10_size 0.690 0.148 4.652 0.000 0.399 0.980
condition2 0.047 0.498 0.094 0.925 -0.930 1.024
condition3 -0.367 0.452 -0.812 0.417 -1.253 0.519
condition4 -0.398 0.453 -0.879 0.380 -1.286 0.490
condition5 -0.883 0.457 -1.931 0.053 -1.779 0.013
log10_size:condition2 -0.024 0.163 -0.148 0.882 -0.344 0.295
log10_size:condition3 0.133 0.148 0.893 0.372 -0.158 0.424
log10_size:condition4 0.146 0.149 0.979 0.328 -0.146 0.437
log10_size:condition5 0.310 0.150 2.067 0.039 0.016 0.604

Recall we saw in Subsection 6.1.2 how to interpret a regression table when
there are both numerical and categorical explanatory variables. Let’s now do
the same for all 10 values in the estimate column of Table 11.1.

408 11 Tell Your Story with Data

In this case, the “baseline for comparison” group for the categorical variable
condition are the condition 1 houses, since “1” comes first alphanumerically.
Thus, the intercept and log10_size values are the intercept and slope for
log10_size for this baseline group. Next, the condition2 through condition5
terms are the offsets in intercepts relative to the condition 1 intercept. Finally,
the log10_size:condition2 through log10_size:condition5 are the offsets in slopes
for log10_size relative to the condition 1 slope for log10_size.

Let’s simplify this by writing out the equation of each of the five regression
lines using these 10 estimate values. We’ll write out each line in the following
format: ̂log 10(price) = ̂𝛽0 + ̂𝛽size ⋅ log 10(size)

1. Condition 1: ̂log 10(price) = 3.33 + 0.69 ⋅ log 10(size)
2. Condition 2:̂log 10(price) = (3.33 + 0.047) + (0.69 − 0.024) ⋅ log 10(size)= 3.377 + 0.666 ⋅ log 10(size)
3. Condition 3:̂log 10(price) = (3.33 − 0.367) + (0.69 + 0.133) ⋅ log 10(size)= 2.963 + 0.823 ⋅ log 10(size)
4. Condition 4:̂log 10(price) = (3.33 − 0.398) + (0.69 + 0.146) ⋅ log 10(size)= 2.932 + 0.836 ⋅ log 10(size)
5. Condition 5:̂log 10(price) = (3.33 − 0.883) + (0.69 + 0.31) ⋅ log 10(size)= 2.447 + 1 ⋅ log 10(size)

These correspond to the regression lines in the left-hand plot of Figure 11.6
and the faceted plot in Figure 11.7. For homes of all five condition types, as

11.2 Case study: Seattle house prices 409

the size of the house increases, the price increases. This is what most would
expect. However, the rate of increase of price with size is fastest for the homes
with conditions 3, 4, and 5 of 0.823, 0.836, and 1, respectively. These are the
three largest slopes out of the five.

11.2.4 Making predictions

Say you’re a realtor and someone calls you asking you how much their home
will sell for. They tell you that it’s in condition = 5 and is sized 1900 square
feet. What do you tell them? Let’s use the interaction model we fit to make
predictions!

We first make this prediction visually in Figure 11.8. The predicted log10_price
of this house is marked with a black dot. This is where the following two lines
intersect:

• The regression line for the condition = 5 homes and
• The vertical dashed black line at log10_size equals 3.28, since our predictor

variable is the log10 transformed square feet of living space of log 10(1900) =3.28.

5.0

5.5

6.0

6.5

2.5 3.0 3.5 4.0

log10 size

lo
g
1
0
 p

ri
c
e

condition

1

2

3

4

5

House prices in Seattle

FIGURE 11.8: Interaction model with prediction.

410 11 Tell Your Story with Data

Eyeballing it, it seems the predicted log10_price seems to be around 5.75. Let’s
now obtain the exact numerical value for the prediction using the equation
of the regression line for the condition = 5 houses, being sure to log10() the
square footage first.

2.45 + 1 * log10(1900)

[1] 5.73

This value is very close to our earlier visually made prediction of 5.75. But
wait! Is our prediction for the price of this house $5.75? No! Remember that we
are using log10_price as our outcome variable! So, if we want a prediction in
dollar units of price, we need to unlog this by taking a power of 10 as described
in Appendix A.3.

10^(2.45 + 1 * log10(1900))

[1] 535493

So our predicted price for this home of condition 5 and of size 1900 square feet
is $535,493.

Learning check

(LC11.1) Repeat the regression modeling in Subsection 11.2.3 and the pre-
diction making you just did on the house of condition 5 and size 1900 square
feet in Subsection 11.2.4, but using the parallel slopes model you visualized in
Figure 11.6. Show that it’s $524,807!

11.3 Case study: Effective data storytelling
As we’ve progressed throughout this book, you’ve seen how to work with
data in a variety of ways. You’ve learned effective strategies for plotting data
by understanding which types of plots work best for which combinations of
variable types. You’ve summarized data in spreadsheet form and calculated
summary statistics for a variety of different variables. Furthermore, you’ve
seen the value of statistical inference as a process to come to conclusions
about a population by using sampling. Lastly, you’ve explored how to fit linear
regression models and the importance of checking the conditions required so

11.3 Case study: Effective data storytelling 411

that all confidence intervals and hypothesis tests have valid interpretation. All
throughout, you’ve learned many computational techniques and focused on
writing R code that’s reproducible.

We now present another set of case studies, but this time on the “effective
data storytelling” done by data journalists around the world. Great data
stories don’t mislead the reader, but rather engulf them in understanding the
importance that data plays in our lives through storytelling.

11.3.1 Bechdel test for Hollywood gender representation

We recommend you read and analyze Walt Hickey’s FiveThirtyEight.com article,
“The Dollar-And-Cents Case Against Hollywood’s Exclusion of Women.”9 In it,
Walt completed a multidecade study of how many movies pass the Bechdel
test10, an informal test of gender representation in a movie that was created
by Alison Bechdel.

As you read over the article, think carefully about howWalt Hickey is using data,
graphics, and analyses to tell the reader a story. In the spirit of reproducibility,
FiveThirtyEight have also shared the data and R code11 that they used for
this article. You can also find the data used in many more of their articles on
their GitHub12 page.

ModernDive co-authors Chester Ismay and Albert Y. Kim along with Jennifer
Chunn went one step further by creating the fivethirtyeight package which
provides access to these datasets more easily in R. For a complete list of all 127
datasets included in the fivethirtyeight package, check out the package web-
page at https://fivethirtyeight-r.netlify.com/articles/fivethirtyeight.html.

Furthermore, example “vignettes” of fully reproducible start-to-finish analyses
of some of these data using dplyr, ggplot2, and other packages in the tidyverse
are available here13. For example, a vignette showing how to reproduce one of
the plots at the end of the article on the Bechdel test is available here14.

11.3.2 US Births in 1999

The US_births_1994_2003 data frame included in the fivethirtyeight package
provides information about the number of daily births in the United States

9http://fivethirtyeight.com/features/the-dollar-and-cents-case-against-hollywoods-
exclusion-of-women/

10https://bechdeltest.com/
11https://github.com/fivethirtyeight/data/tree/master/bechdel
12https://github.com/fivethirtyeight/data
13https://fivethirtyeight-r.netlify.com/articles/
14https://fivethirtyeight-r.netlify.com/articles/bechdel.html

412 11 Tell Your Story with Data

between 1994 and 2003. For more information on this data frame including a
link to the original article on FiveThirtyEight.com, check out the help file by
running ?US_births_1994_2003 in the console.

It’s always a good idea to preview your data, either by using RStudio’s
spreadsheet View() function or using glimpse() from the dplyr package:

glimpse(US_births_1994_2003)

Observations: 3,652
Variables: 6
$ year <int> 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, ...
$ month <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
$ date_of_month <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1...
$ date <date> 1994-01-01, 1994-01-02, 1994-01-03, 1994-01-04,...
$ day_of_week <ord> Sat, Sun, Mon, Tues, Wed, Thurs, Fri, Sat, Sun, ...
$ births <int> 8096, 7772, 10142, 11248, 11053, 11406, 11251, 8...

We’ll focus on the number of births for each date, but only for births that
occurred in 1999. Recall from Section 3.2 we can do this using the filter()
function from the dplyr package:

US_births_1999 <- US_births_1994_2003 %>%
filter(year == 1999)

As discussed in Section 2.4, since date is a notion of time and thus has sequential
ordering to it, a linegraph would be a more appropriate visualization to use
than a scatterplot. In other words, we should use a geom_line() instead of
geom_point(). Recall that such plots are called time series plots.

ggplot(US_births_1999, aes(x = date, y = births)) +
geom_line() +
labs(x = "Date",

y = "Number of births",
title = "US Births in 1999")

11.3 Case study: Effective data storytelling 413

8000

10000

12000

14000

Jan 1999 Apr 1999 Jul 1999 Oct 1999 Jan 2000

Date

N
u
m

b
e
r

o
f
b
ir
th

s
US Births in 1999

FIGURE 11.9: Number of births in the US in 1999.

We see a big dip occurring just before January 1st, 2000, most likely due to
the holiday season. However, what about the large spike of over 14,000 births
occurring just before October 1st, 1999? What could be the reason for this
anomalously high spike?

Let’s sort the rows of US_births_1999 in descending order of the number of
births. Recall from Section 3.6 that we can use the arrange() function from the
dplyr function to do this, making sure to sort births in descending order:

US_births_1999 %>%
arrange(desc(births))

414 11 Tell Your Story with Data

A tibble: 365 x 6
year month date_of_month date day_of_week births
<int> <int> <int> <date> <ord> <int>

1 1999 9 9 1999-09-09 Thurs 14540
2 1999 12 21 1999-12-21 Tues 13508
3 1999 9 8 1999-09-08 Wed 13437
4 1999 9 21 1999-09-21 Tues 13384
5 1999 9 28 1999-09-28 Tues 13358
6 1999 7 7 1999-07-07 Wed 13343
7 1999 7 8 1999-07-08 Thurs 13245
8 1999 8 17 1999-08-17 Tues 13201
9 1999 9 10 1999-09-10 Fri 13181
10 1999 12 28 1999-12-28 Tues 13158
... with 355 more rows

The date with the highest number of births (14,540) is in fact 1999-09-09. If
we write down this date in month/day/year format (a standard format in the
US), the date with the highest number of births is 9/9/99! All nines! Could
it be that parents deliberately induced labor at a higher rate on this date?
Maybe? Whatever the cause may be, this fact makes a fun story!

Learning check

(LC11.2) What date between 1994 and 2003 has the fewest number of births
in the US? What story could you tell about why this is the case?

Time to think with data and further tell your story with data! How could
statistical modeling help you here? What types of statistical inference would
be helpful? What else can you find and where can you take this analysis? What
assumptions did you make in this analysis? We leave these questions to you as
the reader to explore and examine.

Remember to get in touch with us via our contact info in the Preface. We’d
love to see what you come up with!

Please check out additional problem sets and labs at https://moderndive.com/labs
as well.

11.3.3 Scripts of R code

An R script file of all R code used in this chapter is available at https:
//www.moderndive.com/scripts/11-tell-your-story-with-data.R.

11.3 Case study: Effective data storytelling 415

R code files saved as *.R files for all relevant chapters throughout the entire
book are in the following table.

chapter link
1 https://moderndive.com/scripts/01-getting-started.R
2 https://moderndive.com/scripts/02-visualization.R
3 https://moderndive.com/scripts/03-wrangling.R
4 https://moderndive.com/scripts/04-tidy.R
5 https://moderndive.com/scripts/05-regression.R
6 https://moderndive.com/scripts/06-multiple-regression.R
7 https://moderndive.com/scripts/07-sampling.R
8 https://moderndive.com/scripts/08-confidence-intervals.R
9 https://moderndive.com/scripts/09-hypothesis-testing.R

10 https://moderndive.com/scripts/10-inference-for-regression.R
11 https://moderndive.com/scripts/11-tell-your-story-with-data.R

Concluding remarks
Now that you’ve made it to this point in the book, we suspect that you know
a thing or two about how to work with data in R! You’ve also gained a lot
of knowledge about how to use simulation-based techniques for statistical
inference and how these techniques help build intuition about traditional
theory-based inferential methods like the 𝑡-test.
The hope is that you’ve come to appreciate the power of data in all respects,
such as data wrangling, tidying datasets, data visualization, data modeling,
and statistical inference. In our opinion, while each of these is important, data
visualization may be the most important tool for a citizen or professional data
scientist to have in their toolbox. If you can create truly beautiful graphics
that display information in ways that the reader can clearly understand, you
have great power to tell your tale with data. Let’s hope that these skills help
you tell great stories with data into the future. Thanks for coming along this
journey as we dove into modern data analysis using R and the tidyverse!

A
Statistical Background

A.1 Basic statistical terms
Note that all the following statistical terms apply only to numerical variables,
except the distribution which can exist for both numerical and categorical
variables.

A.1.1 Mean

The mean is the most commonly reported measure of center. It is commonly
called the average though this term can be a little ambiguous. The mean is
the sum of all of the data elements divided by how many elements there are. If
we have 𝑛 data points, the mean is given by:𝑀𝑒𝑎𝑛 = 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛𝑛
A.1.2 Median

The median is calculated by first sorting a variable’s data from smallest to
largest. After sorting the data, the middle element in the list is the median. If
the middle falls between two values, then the median is the mean of those two
middle values.

A.1.3 Standard deviation

We will next discuss the standard deviation (𝑠𝑑) of a variable. The formula
can be a little intimidating at first but it is important to remember that it is
essentially a measure of how far we expect a given data value will be from its
mean: 𝑠𝑑 = √(𝑥1 − 𝑀𝑒𝑎𝑛)2 + (𝑥2 − 𝑀𝑒𝑎𝑛)2 + ⋯ + (𝑥𝑛 − 𝑀𝑒𝑎𝑛)2𝑛 − 1

417

418 A Statistical Background

A.1.4 Five-number summary

The five-number summary consists of five summary statistics: the minimum,
the first quantile AKA 25th percentile, the second quantile AKA median or
50th percentile, the third quantile AKA 75th, and the maximum. The five-
number summary of a variable is used when constructing boxplots, as seen in
Section 2.7.

The quantiles are calculated as

• first quantile (𝑄1): the median of the first half of the sorted data
• third quantile (𝑄3): the median of the second half of the sorted data

The interquartile range (IQR) is defined as 𝑄3 − 𝑄1 and is a measure of how
spread out the middle 50% of values are. The IQR corresponds to the length
of the box in a boxplot.

The median and the IQR are not influenced by the presence of outliers in the
ways that the mean and standard deviation are. They are, thus, recommended
for skewed datasets. We say in this case that the median and IQR are more
robust to outliers.

A.1.5 Distribution

The distribution of a variable shows how frequently different values of a variable
occur. Looking at the visualization of a distribution can show where the values
are centered, show how the values vary, and give some information about
where a typical value might fall. It can also alert you to the presence of
outliers.

Recall from Chapter 2 that we can visualize the distribution of a numerical
variable using binning in a histogram and that we can visualize the distribution
of a categorical variable using a barplot.

A.1.6 Outliers

Outliers correspond to values in the dataset that fall far outside the range of
“ordinary” values. In the context of a boxplot, by default they correspond to
values below 𝑄1 − (1.5 ⋅ 𝐼𝑄𝑅) or above 𝑄3 + (1.5 ⋅ 𝐼𝑄𝑅).
A.2 Normal distribution
Let’s next discuss one particular kind of distribution: normal distributions.
Such bell-shaped distributions are defined by two values: (1) the mean 𝜇 (“mu”)

A.2 Normal distribution 419

which locates the center of the distribution and (2) the standard deviation 𝜎
(“sigma”) which determines the variation of the distribution. In Figure A.1,
we plot three normal distributions where:

1. The solid normal curve has mean 𝜇 = 5 & standard deviation 𝜎 = 2.
2. The dotted normal curve has mean 𝜇 = 5 & standard deviation 𝜎 = 5.
3. The dashed normal curve has mean 𝜇 = 15 & standard deviation𝜎 = 2.

mu = 5, sigma = 2

mu = 5, sigma = 5

mu = 15, sigma = 2

-10 0 10 20

FIGURE A.1: Three normal distributions.

Notice how the solid and dotted line normal curves have the same center due
to their common mean 𝜇 = 5. However, the dotted line normal curve is wider
due to its larger standard deviation of 𝜎 = 5. On the other hand, the solid
and dashed line normal curves have the same variation due to their common
standard deviation 𝜎 = 2. However, they are centered at different locations.

When the mean 𝜇 = 0 and the standard deviation 𝜎 = 1, the normal distri-
bution has a special name. It’s called the standard normal distribution or the𝑧-curve.

Furthermore, if a variable follows a normal curve, there are three rules of thumb
we can use:

1. 68% of values will lie within ± 1 standard deviation of the mean.
2. 95% of values will lie within ± 1.96 ≈ 2 standard deviations of the

mean.

420 A Statistical Background

3. 99.7% of values will lie within ± 3 standard deviations of the mean.

Let’s illustrate this on a standard normal curve in Figure A.2. The dashed
lines are at -3, -1.96, -1, 0, 1, 1.96, and 3. These 7 lines cut up the x-axis into
8 segments. The areas under the normal curve for each of the 8 segments are
marked and add up to 100%. For example:

1. The middle two segments represent the interval -1 to 1. The shaded
area above this interval represents 34% + 34% = 68% of the area
under the curve. In other words, 68% of values.

2. The middle four segments represent the interval -1.96 to 1.96. The
shaded area above this interval represents 13.5% + 34% + 34% +
13.5%= 95% of the area under the curve. In other words, 95% of
values.

3. The middle six segments represent the interval -3 to 3. The shaded
area above this interval represents 2.35% + 13.5% + 34% + 34% +
13.5% + 2.35% = 99.7% of the area under the curve. In other words,
99.7% of values.

0.15% 2.35% 13.5% 34% 34% 13.5% 2.35% 0.15%

-3 -2 -1 0 1 2 3

z

FIGURE A.2: Rules of thumb about areas under normal curves.

Learning check

Say you have a normal distribution with mean 𝜇 = 6 and standard deviation𝜎 = 3.
(LCA.1) What proportion of the area under the normal curve is less than 3?
Greater than 12? Between 0 and 12?

A.3 log10 transformations 421

(LCA.2) What is the 2.5th percentile of the area under the normal curve?
The 95th percentile? The 100th percentile?

A.3 log10 transformations
At its simplest, log10 transformations return base 10 logarithms. For example,
since 1000 = 103, running log10(1000) returns 3 in R. To undo a log10 trans-
formation, we raise 10 to this value. For example, to undo the previous log10
transformation and return the original value of 1000, we raise 10 to the power
of 3 by running 10^(3) = 1000 in R.

Log transformations allow us to focus on changes in orders of magnitude. In
other words, they allow us to focus on multiplicative changes instead of additive
ones. Let’s illustrate this idea in Table A.1 with examples of prices of consumer
goods in 2019 US dollars.

TABLE A.1: log10 transformed prices, orders of magnitude, and examples

Price log10(Price) Order of magnitude Examples

$1 0 Singles Cups of coffee
$10 1 Tens Books
$100 2 Hundreds Mobile phones
$1,000 3 Thousands High definition TVs
$10,000 4 Tens of thousands Cars
$100,000 5 Hundreds of thousands Luxury cars and houses
$1,000,000 6 Millions Luxury houses

Let’s make some remarks about log10 transformations based on Table A.1:

1. When purchasing a cup of coffee, we tend to think of prices ranging
in single dollars, such as $2 or $3. However, when purchasing a mobile
phone, we don’t tend to think of their prices in units of single dollars
such as $313 or $727. Instead, we tend to think of their prices in units
of hundreds of dollars like $300 or $700. Thus, cups of coffee and
mobile phones are of different orders of magnitude in price.

2. Let’s say we want to know the log10 transformed value of $76. This
would be hard to compute exactly without a calculator. However, since
$76 is between $10 and $100 and since log10(10) = 1 and log10(100)

422 A Statistical Background

= 2, we know log10(76) will be between 1 and 2. In fact, log10(76) is
1.880814.

3. log10 transformations are monotonic, meaning they preserve orders.
So if Price A is lower than Price B, then log10(Price A) will also be
lower than log10(Price B).

4. Most importantly, increments of one in log10-scale correspond to
relative multiplicative changes in the original scale and not absolute
additive changes. For example, increasing a log10(Price) from 3 to
4 corresponds to a multiplicative increase by a factor of 10: $100 to
$1000.

B
Versions of R Packages Used

If you are seeing different results than what is in the book, we recommend
installing the exact version of the packages we used. This can be done by
first installing the remotes package via install.packages("remotes"). Then, use
install_version() replacing the package argument with the package name in
quotes and the version argument with the particular version number to install.1

remotes::install_version(package = "skimr", version = "1.0.6")

package version

bookdown 0.16
broom 0.5.2
dplyr 0.8.3
fivethirtyeight 0.5.0
forcats 0.4.0
gapminder 0.3.0
ggplot2 3.2.1
ggplot2movies 0.0.1
infer 0.5.1
ISLR 1.2
janitor 1.2.0
kableExtra 1.1.0
knitr 1.26
moderndive 0.4.0
mvtnorm 1.0-11
nycflights13 1.0.1
patchwork 0.0.1
purrr 0.3.3
readr 1.3.1
scales 1.1.0
skimr 1.0.6
stringr 1.4.0
tibble 2.1.3
tidyr 1.0.0
tidyverse 1.3.0
viridis 0.5.1
viridisLite 0.3.0

1As of November 2019, the patchwork package is not on CRAN and needs to be installed
via remotes::install_github("thomasp85/patchwork") instead of using install_version().

423

Bibliography

Bray, A., Ismay, C., Chasnovski, E., Baumer, B., and Cetinkaya-Rundel, M.
(2019). infer: Tidy Statistical Inference. R package version 0.5.1.

Chihara, L. M. and Hesterberg, T. C. (2011). Mathematical Statistics with
Resampling and R. John Wiley & Sons, Hoboken, NJ, first edition.

Diez, D. M., Barr, C. D., and Çetinkaya Rundel, M. (2014). Introductory
Statistics with Randomization and Simulation. CreateSpace Independent
Publishing Platform, Scotts Valley, CA, first edition.

Firke, S. (2019). janitor: Simple Tools for Examining and Cleaning Dirty Data.
R package version 1.2.0.

Grolemund, G. and Wickham, H. (2017). R for Data Science. O’Reilly Media,
Sebastopol, CA, first edition.

Ismay, C. and Kennedy, P. C. (2016). Getting Used to R, RStudio, and R
Markdown.

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2017). An Introduction
to Statistical Learning: with Applications in R. Springer, New York, NY,
first edition.

Kim, A. Y. and Ismay, C. (2019). moderndive: Tidyverse-Friendly Introductory
Linear Regression. R package version 0.4.0.

Kim, A. Y., Ismay, C., and Chunn, J. (2019). fivethirtyeight: Data and Code
Behind the Stories and Interactives at ’FiveThirtyEight’. R package version
0.5.0.

Quinn, M., McNamara, A., Arino de la Rubia, E., Zhu, H., and Ellis, S. (2019).
skimr: Compact and Flexible Summaries of Data. R package version 1.0.6.

Robbins, N. (2013). Creating More Effective Graphs. Chart House, New York,
NY, first edition.

Robinson, D. and Hayes, A. (2019). broom: Convert Statistical Analysis Objects
into Tidy Tibbles. R package version 0.5.2.

Wickham, H. (2014). Tidy data. Journal of Statistical Software, Volume
59(Issue 10).

425

426 Bibliography

Wickham, H. (2019a). nycflights13: Flights that Departed NYC in 2013. R
package version 1.0.1.

Wickham, H. (2019b). tidyverse: Easily Install and Load the ’Tidyverse’. R
package version 1.3.0.

Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi, K., Wilke, C.,
Woo, K., and Yutani, H. (2019a). ggplot2: Create Elegant Data Visualisations
Using the Grammar of Graphics. R package version 3.2.1.

Wickham, H., François, R., Henry, L., and Müller, K. (2019b). dplyr: A
Grammar of Data Manipulation. R package version 0.8.3.

Wickham, H. and Henry, L. (2019). tidyr: Tidy Messy Data. R package version
1.0.0.

Wickham, H., Hester, J., and Francois, R. (2018). readr: Read Rectangular
Text Data. R package version 1.3.1.

Wilkinson, L. (2005). The Grammar of Graphics (Statistics and Computing).
Springer-Verlag, Secaucus, NJ, first edition.

Xie, Y. (2019). bookdown: Authoring Books and Technical Documents with R
Markdown. R package version 0.16.

Index

Abelson, Hal, xx
accuracy, 222
adding transparency to plots, 32

Baggerly, Keith, xxii
barplot

faceted, 59
side-by-side, 57
stacked, 56

Bechdel, Alison, 411
bias, 228
bivariate, 128
bookdown, xxvii
Boolean algebra, 5
bootstrap, 246

colloquial definition, 258
distribution, 246, 295
approximation of sampling
distribution, 295

statistical reference, 258
boxplots, 45

side-by-side, 47
whiskers, 47

Bryan, Jenny, 395

categorical, 15
Central Limit Theorem, 231
Cobb, George, xxv
collinearity, 179
colors(), 41
computational reproducibility, xxii
conditionals, 5
confidence interval, 254

analogy to fishing, 254
confidence level, 255

impact of confidence level on
interval width, 282

impact of sample size on interval
width, 283

interpretation, 280
confounding variable, 153, 191
console, 4
correlation (coefficient), 128, 178, 188
CSV file, 100

data analysis, xxi
exploratory, 124

data frame, 5, 12, 99
data science pipeline, xxiv
data types, 4
degrees of freedom, 350
distribution, 23, 38, 199

normal, 418
standard normal, 419

dplyr
arrange(), 84
desc(), 86
filter, 69
filter(), 36
glimpse(), 15
group_by(), 76
inner_join(), 87
by, 88

mutate(), 81
n(), 78
rename(), 93
sample_n(), 126
select(), 92
summarize(), 72
top_n(), 93
ungroup(), 77

427

428 Index

dummy variable, 149

explanatory variable, 35

factors, 5, 48
five named graphs, 27, 60
FiveThirtyEight, 395
frequencies, 50
functions, 5

argument order, 61
na.rm argument, 73
wrapper, 136

generalizability, 227
geom_histogram()

bins, 42
binwidth, 42

ggplot2
+, 30
aes(), 26
alpha, 32
data, 26
diamonds, 76
facet, 26
facet_wrap(), 44, 143
fill, 41
geom, 26
geom_bar(), 51
geom_col(), 52
geom_histogram(), 40
geom_jitter(), 33
geom_line(), 36, 115
geom_point(), 33
geom_smooth(), 131
ggplot(), 27, 29
mapping, 29
position, 26, 57

GitHub issues, xxvi
Grammar of Graphics, The, 24
Grolemund, Garrett, xxi, 84

heteroskedasticity, 378
Hickey, Walt, 411

histograms, 39
bins, 39

hypothesis testing, 317
alternative hypothesis, 317
hypothesis, 317
null distribution, 318
null hypothesis, 317
observed test statistic, 318
one-sided alternative, 318
p-value, 319
reject the null hypothesis, 320
significance level, 320
test statistic, 318
tradeoff between alpha and beta,

337
two-sided alternative, 318
Type I error, 335
Type II error, 335
US criminal trial analogy, 333

infer
calculate(), 264, 325
generate(), 263, 324
get_confidence_interval(), 268
get_p_value(), 328
hypothesize(), 323
observed statistic shortcut, 260
rep_sample_n(), 249
shade_confidence_interval(), 268
shade_p_value(), 327
specify(), 261, 322
switching between tests and

confidence intervals, 329
visualize(), 266, 326

interaction model, 166
interquartile range (IQR), 47, 418

joining data
key variable, 87

knitr
kable(), 17

Lambert, Diane, 394

Index 429

levels, 50
linegraphs, 35
literate programming, xx
lm(), 135
log transformations, 401, 421
long data format, 106

margin of error, 302
mean(), 73
meta-data, 76, 100, 261
missing values, 73
model selection, 187
moderndive

geom_parallel_slopes(), 170
get_correlation(), 129
get_regression_points(), 159
get_regression_table(), 133, 363
mythbusters_yawn, 284
pennies_sample, 236

objects, 4
observational unit, 15, 125
Occam’s Razor, 184
offset, 147, 167
operators, 69

==, 69
?, 18
assignment (<-), 28
dollar sign, 17
in, 71
logical, 5
not, 70
or, 71
pipe, 67, 260

outliers, 49, 399
overplotting, 31

p-hacking, 358
parallel slopes model, 170
permutation, 316
pie charts, 54

problems with, 55
plots, 23

point estimate, 227
precision, 224
programming language basics, 4

quantitative, 15

R, 1
errors, 6
formula notation, 129
installation, 2
messages, 6
packages, 8
warnings, 6

R Markdown, xxvii
R packages, 8

broom
augment(), 159
tidy(), 158

dplyr, 8
fivethirtyeight, 103, 411
gapminder
gapminder data frame, 139

ggplot2, 8, 24
infer, 8
installation, 9
ISLR
Credit data frame, 176

janitor
clean_names(), 158

loading, 11
loading error, 11
moderndive, 8, 123
nycflights13, 13, 28, 35, 68, 356
readr
read_csv(), 101

skimr
skim(), 127, 164, 398

tidyr, 108
utils
View(), 14

regression
basic, 122

430 Index

conditions for inference (LINE),
371

equation of a line, 133
intercept, 134
slope, 134

fitted value, 133
interpretation of the slope, 134
line, 132
linear, 122
multiple linear, 162
interactions model, 169
parallel slopes model, 171

observed values, 151
regression plane, 180
residual, 137
simple linear, 124, 362

resampling, 241
residual analysis, 371
Robinson, David, xxv
RStudio, 1

import data, 102
installation, 2

sample statistic, 227
sampling, 201, 227

census, 227
population, 226
population parameter, 227
random, 228
representative, 227
variation, 201
with replacement, 248

sampling distributions, 220, 295
relationship to sample size, 220

sampling methodology, 228, 229, 286,
364

scatterplots, 28
sd(), 73
Simpson’s Paradox, 182, 189
simulation-based inference, 305
skew, 143, 237, 376, 401
standard deviation, 215

standard error, 221, 247, 366
statistics, xxi
sum of squared residuals, 155, 180
summary statistics, 72, 123

tibble, 14
tidy data, 106
tidyr

pivot_longer(), 108
pivot_wider(), 111

time series plots, 35, 412
two-sample inference, 231, 260, 287
two-sample t-statistic, 349

univariate, 128
using == instead of =, 28

variables
confounding, 153
explanatory / predictor /

independent, 121
response, 285
response / outcome / dependent,

121, 153
treatment, 153, 285

vectors, 5, 17, 71, 90

Wickham, Hadley, xxi, 84, 106
wide data format, 105
Wilkinson, Leland, 23

Xie, Yihui, xxii, xxvii

z-score, 348

	Cover�������������������������������
	Half Title��
	Title Page��
	Copyright Page��
	Dedication��
	Table of Contents���
	Foreword��
	Preface�������������������������������������
	About the authors���
	1: Getting Started with Data in R
	1.1 What are R and RStudio?���
	1.1.1 Installing R and RStudio��
	1.1.2 Using R via RStudio���

	1.2 How do I code in R?���
	1.2.1 Basic programming concepts and terminology��
	1.2.2 Errors, warnings, and messages��
	1.2.3 Tips on learning to code��

	1.3 What are R packages?��
	1.3.1 Package installation��
	1.3.2 Package loading���
	1.3.3 Package use���

	1.4 Explore your first datasets���
	1.4.1 nycflights13 package��
	1.4.2 flights data frame��
	1.4.3 Exploring data frames���
	1.4.4 Identification and measurement variables��
	1.4.5 Help files��

	1.5 Conclusion��
	1.5.1 Additional resources��
	1.5.2 What’s to come?���

	I: Data Science with tidyverse
	2: Data Visualization
	2.1 The grammar of graphics���
	2.1.1 Components of the grammar���
	2.1.2 Gapminder data��
	2.1.3 Other components��
	2.1.4 ggplot2 package���

	2.2 Five named graphs - the 5NG���
	2.3 5NG#1: Scatterplots���
	2.3.1 Scatterplots via geom_point���
	2.3.2 Overplotting��
	2.3.3 Summary���

	2.4 5NG#2: Linegraphs���
	2.4.1 Linegraphs via geom_line��
	2.4.2 Summary���

	2.5 5NG#3: Histograms���
	2.5.1 Histograms via geom_histogram���
	2.5.2 Adjusting the bins��
	2.5.3 Summary���

	2.6 Facets��
	2.7 5NG#4: Boxplots���
	2.7.1 Boxplots via geom_boxplot���
	2.7.2 Summary���

	2.8 5NG#5: Barplots���
	2.8.1 Barplots via geom_bar or geom_col���
	2.8.2 Must avoid pie charts!��
	2.8.3 Two categorical variables���
	2.8.4 Summary���

	2.9 Conclusion��
	2.9.1 Summary table���
	2.9.2 Function argument specification���
	2.9.3 Additional resources��
	2.9.4 What’s to come��

	3: Data Wrangling
	3.1 The pipe operator: %>%��
	3.2 filter rows���
	3.3 summarize variables���
	3.4 group_by rows���
	3.4.1 Grouping by more than one variable��

	3.5 mutate existing variables���
	3.6 arrange and sort rows���
	3.7 join data frames��
	3.7.1 Matching “key” variable names���
	3.7.2 Different “key” variable names��
	3.7.3 Multiple “key” variables��
	3.7.4 Normal forms��

	3.8 Other verbs���
	3.8.1 select variables��
	3.8.2 rename variables��
	3.8.3 top_n values of a variable��

	3.9 Conclusion��
	3.9.1 Summary table���
	3.9.2 Additional resources��
	3.9.3 What’s to come?���

	4: Data Importing and “Tidy” Data
	4.1 Importing data��
	4.1.1 Using the console���
	4.1.2 Using RStudio’s interface���

	4.2 “Tidy” data���
	4.2.1 Definition of “tidy” data���
	4.2.2 Converting to “tidy” data���
	4.2.3 nycflights13 package��

	4.3 Case study: Democracy in Guatemala��
	4.4 tidyverse package���
	4.5 Conclusion��
	4.5.1 Additional resources��
	4.5.2 What’s to come?���

	II: Data Modeling with moderndive
	5: Basic Regression
	5.1 One numerical explanatory variable��
	5.1.1 Exploratory data analysis���
	5.1.2 Simple linear regression��
	5.1.3 Observed/fitted values and residuals��

	5.2 One categorical explanatory variable��
	5.2.1 Exploratory data analysis���
	5.2.2 Linear regression���
	5.2.3 Observed/fitted values and residuals��

	5.3 Related topics��
	5.3.1 Correlation is not necessarily causation��
	5.3.2 Best-fitting line���
	5.3.3 get_regression_x() functions��

	5.4 Conclusion��
	5.4.1 Additional resources��
	5.4.2 What’s to come?���

	6: Multiple Regression
	6.1 One numerical and one categorical explanatory variable��
	6.1.1 Exploratory data analysis���
	6.1.2 Interaction model���
	6.1.3 Parallel slopes model���
	6.1.4 Observed/fitted values and residuals��

	6.2 Two numerical explanatory variables���
	6.2.1 Exploratory data analysis���
	6.2.2 Regression plane��
	6.2.3 Observed/fitted values and residuals��

	6.3 Related topics��
	6.3.1 Model selection���
	6.3.2 Correlation coefficient���
	6.3.3 Simpson’s Paradox���

	6.4 Conclusion��
	6.4.1 Additional resources��
	6.4.2 What’s to come?���

	III: Statistical Inference with infer
	7: Sampling
	7.1 Sampling bowl activity��
	7.1.1 What proportion of this bowl’s balls are red?���
	7.1.2 Using the shovel once���
	7.1.3 Using the shovel 33 times���
	7.1.4 What did we just do?��

	7.2 Virtual sampling��
	7.2.1 Using the virtual shovel once���
	7.2.2 Using the virtual shovel 33 times���
	7.2.3 Using the virtual shovel 1000 times���
	7.2.4 Using different shovels���

	7.3 Sampling framework��
	7.3.1 Terminology and notation��
	7.3.2 Statistical definitions���
	7.3.3 The moral of the story��

	7.4 Case study: Polls���
	7.5 Conclusion��
	7.5.1 Sampling scenarios��
	7.5.2 Central Limit Theorem���
	7.5.3 Additional resources��
	7.5.4 What’s to come?���

	8: Bootstrapping and Confidence Intervals
	8.1 Pennies activity��
	8.1.1 What is the average year on US pennies in 2019?���
	8.1.2 Resampling once���
	8.1.3 Resampling 35 times���
	8.1.4 What did we just do?��

	8.2 Computer simulation of resampling���
	8.2.1 Virtually resampling once���
	8.2.2 Virtually resampling 35 times���
	8.2.3 Virtually resampling 1000 times���

	8.3 Understanding confidence intervals��
	8.3.1 Percentile method���
	8.3.2 Standard error method���

	8.4 Constructing confidence intervals���
	8.4.1 Original workflow���
	8.4.2 infer package workflow��
	8.4.3 Percentile method with infer��
	8.4.4 Standard error method with infer��

	8.5 Interpreting confidence intervals���
	8.5.1 Did the net capture the fish?���
	8.5.2 Precise and shorthand interpretation��
	8.5.3 Width of confidence intervals���

	8.6 Case study: Is yawning contagious?��
	8.6.1 Mythbusters study data��
	8.6.2 Sampling scenario���
	8.6.3 Constructing the confidence interval��
	8.6.4 Interpreting the confidence interval��

	8.7 Conclusion��
	8.7.1 Comparing bootstrap and sampling distributions��
	8.7.2 Theory-based confidence intervals���
	8.7.3 Additional resources��
	8.7.4 What’s to come?���

	9: Hypothesis Testing
	9.1 Promotions activity���
	9.1.1 Does gender affect promotions at a bank?��
	9.1.2 Shuffling once��
	9.1.3 Shuffling 16 times��
	9.1.4 What did we just do?��

	9.2 Understanding hypothesis tests��
	9.3 Conducting hypothesis tests���
	9.3.1 infer package workflow��
	9.3.2 Comparison with confidence intervals��
	9.3.3 “There is only one test”��

	9.4 Interpreting hypothesis tests���
	9.4.1 Two possible outcomes���
	9.4.2 Types of errors���
	9.4.3 How do we choose alpha?���

	9.5 Case study: Are action or romance movies rated higher?��
	9.5.1 IMDb ratings data���
	9.5.2 Sampling scenario���
	9.5.3 Conducting the hypothesis test��

	9.6 Conclusion��
	9.6.1 Theory-based hypothesis tests���
	9.6.2 When inference is not needed��
	9.6.3 Problems with p-values��
	9.6.4 Additional resources��
	9.6.5 What’s to come��

	10: Inference for Regression
	10.1 Regression refresher���
	10.1.1 Teaching evaluations analysis��
	10.1.2 Sampling scenario��

	10.2 Interpreting regression tables���
	10.2.1 Standard error���
	10.2.2 Test statistic���
	10.2.3 p-value��
	10.2.4 Confidence interval��
	10.2.5 How does R compute the table?��

	10.3 Conditions for inference for regression��
	10.3.1 Residuals refresher��
	10.3.2 Linearity of relationship��
	10.3.3 Independence of residuals��
	10.3.4 Normality of residuals���
	10.3.5 Equality of variance���
	10.3.6 What’s the conclusion?���

	10.4 Simulation-based inference for regression��
	10.4.1 Confidence interval for slope��
	10.4.2 Hypothesis test for slope��

	10.5 Conclusion���
	10.5.1 Theory-based inference for regression��
	10.5.2 Summary of statistical inference���
	10.5.3 Additional resources���
	10.5.4 What’s to come���

	IV: Conclusion
	11: Tell Your Story with Data
	11.1 Review���
	11.2 Case study: Seattle house prices���
	11.2.1 Exploratory data analysis: Part I��
	11.2.2 Exploratory data analysis: Part II���
	11.2.3 Regression modeling��
	11.2.4 Making predictions���

	11.3 Case study: Effective data storytelling��
	11.3.1 Bechdel test for Hollywood gender representation���
	11.3.2 US Births in 1999��
	11.3.3 Scripts of R code��

	Appendix A: Statistical Background
	A.1 Basic statistical terms���
	A.1.1 Mean��
	A.1.2 Median��
	A.1.3 Standard deviation��
	A.1.4 Five-number summary���
	A.1.5 Distribution��
	A.1.6 Outliers��

	A.2 Normal distribution���
	A.3 log10 transformations���

	Appendix B: Versions of R Packages Used
	Bibliography��
	Index�������������������������������

