

STATISTICAL
MODELS IN

EDITED BY

John M. Chambers
Trevor J. Hastie

AT&T Bell Laboratories

CHAPMAN & HALL
London· Weinheim ·New York· Tokyo· Melbourne· Maaras

Published in Great Britain by
Chapman & Hall
2-6 Boundary Row
London SE1 8HN

Reprinted 1996, 1997

© 1993 AT & T Bell Laboratories

Printed in Great Britain by St Edmundsbury Press Ltd, Bury St Edmunds, Suffolk

All rights reserved. No part of this book may be reprinted or reproduced or utilized
in any form or by any electronic, mechanical or other means, now known or
hereafter invented, including photocopying and recording, or by an information
storage or retrieval system, without permission in writing from the publishers.

Library or Congress Cataloging-In-Publication Data

Statistical models inS I edited by John M. Chambers, Trevor J. Hastie.
p. em.

Includes bibliographical references and index.
ISBN 0-412-05291-l(hb) ISBN 0-412-05301-2 (pb)
I. Mathematical statistics-Data processing. 2. Linear models (Statistics)

3. S (Computer program language) I. Chambers, John M .• 1941-
II. Hastie, Trevor J., 1953-
QA276.4.S65 1991

519.5'0285'5133-dc20 91-17646
CIP

British Library Cataloguing in Publication Data also available.

This book was typeset by the authors using a PostScript-based phototypesetter
(Linotronic 200P). Figures were generated in PostScript by S and directly
incorporated into the typeset document The text was formatted using the LATEX
document preparation system (Leslie Lamport, Addison-Wesley, 1986).

UNIX is a registered trademark of AT&T in the USA.and other-countries.
PostScript is a trademark of Adobe Systems Incorporated. · .
The automobile frequency-of-repair data is copyrighted 1990 by Consumers Union
of United States Inc., Yonkers, NY 10703. Reprinted by permission from
CONSUMER REPORTS, April 1990.

Preface

Scientific models - simplified descriptions, frequently mathematical - are central
to studying natural or human phenomena. Advances in computing over the last
quarter-century have vastly increased the scope of models in statistics. Models
can be applied to datasets that, in the past, were too large even to analyze, and
whole classes of models have arisen usil)g intensive, iterative calculations that would
previously have been out of the question. Modern computing can make an even more
important contribution by providing a flexible, natural way to express models and
to compute with them. Conceptually simple, "standard" operations in fitting and
analyzing models should be simple to state. Creating nonstandard computations for
special applications or for research should require a modest effort based on natural
extensions of the standard software.

This book presents software extending the S language to fit and analyze a variety
of statistical models: linear models, analysis of variance, generalized linear models,
additive models, local regression, tree-based models, and nonlinear models. Models
of all types are organized around a few key concepts:

• data frame objects to hold the data;

• formula objects to represent the structure of models.

The unity such concepts p~ovide over the whole range of models lets us reuse ideas
and much of the software.

Fitted models are objects, created by expressions such as:

mymodel <- tree(Reliability "' . , cars)

In this expression, cars is a dataset containing the variable Reliability and other
variables. Calling the function tree() says to fit a tree-based model and the formula

Reliability "' .

says to fit Reliability to all the other variables. The resulting object mymodel has
all the information about the fit. Giving it to functions such as plot() or summary()

produces descriptions, including various diagnostics. Giving it to update 0, along

v

VI PREFACE

with changes to the formula, data, or anythi11g else about the lit produces a new
fitted model. The goal is to let the data anqJyst think about the content of the
model, not about the details of the computat.ilm.

Many users will want to go on to develop iclc~as of their own, by using and mod
ifying the underlying software. Making such c•xtensions easy was one of the main
goals of our software design and of the book's organization. The functions provided
should be a base on which to build to suit your own interests. The material cov
ered here is far from the whole story. We hope to see many new ideas worked out:
improvements in efficiency and generality of the existing functions; specialization of
the software to applications areas; extensions to new statistical techniques; and dif
ferent user interfaces building on this software. In writing the book and distributing
the software, we hope many of you will become involved in these exciting projects.

Reading the Book

The book is designed to accommodate different interests and needs. Each chapter
covers a topic from beginning to a fair degree of depth. If your interests center on
one topic, you can read right through that chapter, referring back to other chapters
occasionally if you need to. If your interests are more general, you will be better off

_ reading the beginning of several chapters (the first section to get the general ideas,
or the first two if you want to do some computing). Skip the later sections of the
chapters at first; they are likely to seem a bit heavy.

The book begins with three chapters of general and introductory material, in
cluding a first chapter that informally shows off the style by presenting a sizable
example. However you plan to read the rest of the book, we strongly recommend
reading this chapter first, to make later motivation dear. If you aren't sure whether
the book is for you or not, the first chapter should help there also. The heart of the
book, Chapters 4 through 10, deals with the statistical models, from linear models
to tree-based models. Finally, the material in the appendices gives computational
details related to all the previous techniques. In particular, Appendix A presents the
computational core of our approach, a new system of object-oriented programming
inS.

The chapters on specific kinds of models are organized into four sections, treating
the topic of the chapter in successively greater detail. The first section introduces
the statistical concepts, the terminology, and the range of techniques we intend to
cover in the chapter. The intent is to let readers acquainted with the statistical
topic match their understanding to the terminology and context we will be treating
in later sections. Reading just the first section of each such chapter will give an
overview of the contents of the book. The second section of each chapter introduces
the basic S software with examples. Reading the first two sections of a chapter
should allow you to start applying the ideas to your own data.

The third and fourth sections of thP chapters introduce more advanced use of

PREFACE VII

the software and explain some of the computational and statistical ideas behind the
software. One or both of these sections will be recommended if you plan to extend
the software or to use it in nonstandard ways, but you should probably wait to read
them until you are familiar with the basic ideas.

As ideas from previous chapters come up, some back-referencing may be needed.
However, once you have a grasp of the basic ideas about models and data, the
individual chapters should be largely self-contained.

For purposes of learning the statistical methods-for example, in a course-this
book should be combined with one or more texts treating the kinds of model being
discussed. Bibliographic notes at the end of each chapter suggest some possibilities.
For purposes of learning about statistical computing, the later sections of the chap
ters introduce numerical and other computational techniques, again with references
for further reading.

The Plots

Although graphics is not an explicit topic of this book, good plotting is essential
to our approach. We believe that examining the data and the models graphically
contributes more than any single technique to using the models well. Skimming
through the book anywhere between Chapter 5 and Chapter 9 should suggest the
importance of the plots. We emphasize simple graphics expressions; for example,

plot(object)

should produce something helpful, for all sorts of objects. The plots in the book
can all be done in S; we show them in PostScript output, but the software is device··
independent. Several of the chapters feature new graphical techniques, such as a
conditioning plot to show gradual changes in patterns. There are also plots with
mouse-based interactive control, including a flexible plotting toolbox for additive
models and interactive plotting for tree-based models.

The New Software

The software for statistical models to be described in this book is part of the 1991
version of the S language. The 1991 version is a major revision that incorporates,
in addition to the statistical models software itself:

• A mechanism'ior object-oriented programming, using classes and methods.
This new programming style pervades all the modeling software. It makes
possible a simpler approach for ordinary computation, with a few generic
functions applicable to all the kinds of model. Extensions of the software
are easier and cleaner through the use of classes and methods. Appendix A
describes the use of classes and methods in S.

VIII PREFACE

• Extensions to the treatment of S objects in databases. There are a number
of these extensions. the most important for the modeling software being the
ability to attach S objects as databases. This capability allows formulas in
models to be interpreted in terms of the variables in a single data object. The
riatabase extensions are described in Section 3.3.2.

• A new facility for interactive help. This you should find useful right away. The
character "?" invokes interactive help about a particular object or expression:

?lm would give you help about the lmO function;

?myfit for some object myfit gives help concerning that class of objects;

?plot (myfit) gives you information in advance about using the function plot()

on myfit.

Typing ? alone gives help on the on-line help facility itself.

• A new set of debugging tools. These are chiefly new versions of the functions
trace() and browser().

• A "split-screen" graphics system that allows flexible arrangements of multiple
plots on a single frame.

• A large number of extensions to numerical_methods, graphics, functions for
statistical distributions, and other areas.

Relevant new features will be described as they arise throughout the book.
Some basic familiarity with simple use of S will be needed for this book, but you

should be able to learn what you need either as you read the book or by spending
a little while learning S beforehand. S is a large, interactive language for data
analysis, graphics, and scientific computing. Other than the material in the present
book, Sis described in The NewS Language, (Becker, Chambers, and Wilks, 1988).
We will refer to this book by the symbol ~, usually followed by a page or section
number. The first two chapters of ~ will be. enough to get you started.

Detailed Documentation

Appendix B contains detailed documentation for a selected subset of the functions,
methods and classes of objects. Online documentation is available for these, and
for all the other functions discussed in the book, by using the "?" operator.

Obtaining the Software

The S software is licensed by AT&T. Information on orderingS can be obtained by
calling 1-800-462-8146. Sis available either in source form or in compiled (binary)

PREFACE ix

form. There is one version only of the source, while the binary comes compiled for a
particular computer. For most use, we recommend a binary version, with support.
Several independent companies provideS in this form; call the phone number above
for more information. If you want S in source form, you can order it directly from
AT&T.

The software you get must be the 1991 version or later. The version date should
be shown when you receive the software, or you can check it before running S, by
typing

S VERSION

The response should be a date. If the command isn't there or t.he date is earlier
than 1991, you won't be able to run the software in this book. Check with the
supplier of the software about getting an updated version.

The statistical modeling software is available as a library of S functions, plus
some c and FORTRAN code. Depending on the local installation, you may get the
statistics material automatically or may need to use a special command. In S, type
the expression

> library(help=statistics)

to get the local documentation about the library.
As you read through the book, we recommend pausing frequently to play with

the software, either on your own data or on the examples in the text. The majority
of the datasets used in the book have been collected in the S library data:

> library (data)

will make them available. The figures in the book were produced using a PostScript
device driver in S; the same S commands will produce plots on your own graphics
device, though device details may cause some of them to look different.

Acknowledgements

This book represents the results of research in both the computational and statistical
aspects of modeling data. Ten authors have been involved in writing the book. All
are in the statistics research departments at AT&T Bell Laboratories, with the
exceptions of Douglas Bates of the University of Wisconsin, Madison, and Richard
Heiberger of Temple University, Philadelphia. The project has been exciting and
challenging.

The authors have greatly benefited from the experience and suggestions of the
users of preliminary versions of this material. All of our colleagues in the statistics
research departments at AT&T Bell Laboratories have been helpful and remark
ably patient. The various beta test sites for S software, both inside and outside

X PREFACE

AT&T, have provided essential assistance in uncovering and fixing bugs, as well as
in suggesting general improvements.

Special thanks are due to llick Becker and Allan Wilks for their detailed review
of both the text and the underlying S functions. Comments from many other
readers and users have helped greatly: special mention should be made of Pat Burns,
Bill Dunlap, Abbe Herzig, Diane Lambert, David Lubinsky, llitei Shibata, Terry
Therneau, Rob Tibshirani, Scott Vander Wiel, and Alan Zaslavsky. In addition to
the authors, several people made valuable contributions to the software: Marilyn
Becker for the analysis of variance and the tree-based models; David James for
the multifigure graphics; Mike lliley for the algorithms underlying the tree-based
models; and Irma Terpening for the local regression models. Lorinda Cherry and
llich Dreschler provided valuable software and advice in the production of the book.

Thanks also to those who helped supply the data used in the examples. For the
wave-soldering experiments, we are indebted to Don Rudy and his AT&T colleagues
for the data, and to Anne Freeny and Diane Lambert for help in organizing the data
and for the models used. Thanks to Consumers Union for permission to use the
automobile data published in the April, 1990 issue of Consumer Reports. Thanks
to James Watson of AT&T for providing the long-distance marketing data and to
Colin Mallows for the table tennis data.

It has been a pleasure to work with the editorial staff at Wadsworth/Brooks Cole
on the preparation of the book; special thanks to Carol Dondrea, John Kimmel,
and Kay Mikel for their efforts.

JMC & TJH

Contents

1 An Appetizer 1
John M. Chambers, Trevor J. Hastie
1.1 A Manufacturing Experiment 1
1.2 Models for the Experimental Results 4
1.3 A Second Experiment 7
1.4 Summary ... • • • 0 •••••••• 11

2 Statistical Models 13
John M. Chambers, Trevor J. Hastie
2.1 Thinking about Models •• 0 ••• 15

2.1.1 Models and Data 15
2.1.2 Creating Statistical Models 16

2.2 Model Formulas in S 18
2.2.1 Data of Different Types in Formulas 20
2.2.2 Interactions 22
2.2.3 Combining Data and Formula . 23

2.3 More on Models •• 0 0 ••••••• 24
2.3.1 Formulas in Detail ••• 0 •• 24
2.3.2 Coding Factors by Contrasts 32

2.4 Internal Organization of Models . . . 37
2.4.1 R~ for C.lding Expanded Formulas 37
2.4.2 Fo ulas and Terms 4G
2.4.3 Terms and the Model Matrix 42

Bibliographic Notes ' 44

3 Data for Models 45
John M. Chambers
3.1 Examples of Data Frames • •• 0 0 •• 0 0 •• 0 • 45

3.1.1 Example: Automobile Data 4t:
3.1.2 Example: A Manufacturing Experiment 41

xi

xii

3.1.3 Example: A Marketing Study . . .
3.2 Computations on Data Frames

3.2.1 Variables in Data Frames; Factors
3.2.2 Creating Data Frames
3.2.3 Using and Modifying Data Frames
3.2.4 Summaries and Plots

3.3 Advanced Computations on Data
3.3.1 Methods for Data Frames
3.3.2 Data Frames as Databases or Evaluation Frames
3.3.3 Model Frames and Model Matrices
3.3.4 Parametrized Data Frames

CONTENTS

49
51
52
54
64
G9
85
85
87
90
93

4 Linear Models 95
John M. Chambers
4.1 Linear Models in Statistics 96
4.2 S Functiolll:l and Objects . 99

4.2.1 Fitting the Model 100
4.2.2 Basic Summaries . 104
4.2.3 Prediction 106
4.2.4 Options in Fitting 109
4.2.5 Updating Models . 116

4.3 Specializing and Extending the Computations . 117
4.3.1 Repeated Fitting of Similar Models. 118
4.3.2 Adding and Dropping Terms 124
4.3.3 Influence of Individual Observations 129

4.4 Numerical and Statistical Methods 131
4.4.1 Mathematical and Statistical Results . 132
4.4.2 Numerical Methods 135
4.4.3 Overdetermined and Ill-determined Models 138

) Analysis of Variance; Designed Experiments 145
John M. Chambers, Anne E. Freeny, Richard M. Heiberger
5.1 Models for Experiments: The Analysis of Variance 146
5.2 S Functions and Objects 150

5.2.1 Analysis of Variance Models 150
5.2.2 Graphical Methods and Diagnostics 163
5.2.3 Generating Designs. 169

5.3 The S Functions: Advanced Use . 176
5.3.1 Parametrization; Contrasts 176
5.3.2 More on Aliasing 178
5.3.3 Anova Models as Projections 181

5.4 Computational Techniques 184

CONTENTS

5.4.1
5.4.2
5.4.3
5.4.4

Basic Computational Theory
Aliasing; Rank-deficiency . .
Error Terms
Computations for Projection

6 Generalized Linear Models
Trevor J. Hastie, Daryl Pregibon
6.1 Statistical Methods
6.2 S Functions and Objects

6.2.1 Fitting the Model
6.2.2 Specifying the Link and Variance Functions
).2.3 Updating Models
6.2.4 Analysis of Deviance Tables .
6.2.5 Chi-squared Analyses
6.2.6 Plotting

6.3 Specializing and Extending the Computations .
6.3.1 Other Arguments to glm()
6.3.2 Coding Factors for GLMs .
6.3.3 More on Families
6.3.4 Diagnostics
6.3.5 Stepwise Model Selection
6.3.6 Prediction

6.4 Statistical and Numerical Methods
6 .4.1 Likelihood Inference
6.4.2 Quadratic Approximations
6.4.3 Algorithms
6.4.4 Initial Values

7 Generalized Additive Models
Trevor J. Hastie
7.1 Statistical Methods

7 .1.1 Data Analysis and Additive Models
7.1.2 Fitting Generalized Additive Models

7.2 S Functions and Objects
7.2.1 Fitting the Models
7.2.2 Plotting the Fitted Models
7.2.3 Further Details on gam()
7.2.4 Parametric Additive Models: bs () and ns ()
7.2.5 An Example in Detail

7.3 Specializing and Extending the Computations .
7.3.1 Stepwise Model Selection
7.3.2 Missing Data

xiii

185
187
188
190

195

196
199
199
206
209
210
213
216
221
221
223
225
230
233
238
241
242
244
245
246

249

250
251
252
253
253
264
268
270
273
280
280
286

xiv

7.3.3 Prediction
7 .3.4 Smoothers in gam 0
7.3.5 More on Plotting ..

7.4 Numerical and Computational Details
7.4.1 Scatterplot Smoothing
7.4.2 Fitting Simple Additive Models .
7.4.3 Fitting Generalized Additive Models
7.4.4 Standard Errors and Degrees of Freedom
7.4.5 Implementation Details

8 Local Regression Models
William S. Cleveland, Eric Grosse, William M. Shyu
8.1 Statistical Models and Fitting

8.1.1 Definition of Local Regression Models .
8.1.2 Loess: Fitting Local Regression Models

8.2 S Functions and Objects .
8.2.1 Gas Data ..
8.2.2 Ethanol Data ...
8.2.3 Air Data
8.2.4 Galaxy Velocities .
8.2.5 Fuel Comparison Data .

8.3 Specializing and Extending the Computations .
8.3.1 Computation
8.3.2 Inference
8.3.3 Graphics

8.4 Statistical and Computational Methods
8.4.1 Statistical Inference ...
8.4.2 Computational Methods .

9 Tree-Based Models
Linda A. Clark, Daryl Pregibon
9.1 Tree-Based Models in Statistics

9.1.1 Numeric Response and a Single Numeric Predictor
9.1.2 Factor Response and Numeric Predictors
9.1.3 Factor Response and Mixed Predictor Variables.

9.2 S Functions and Objects
9.2.1 Growing a Tree
9.2.2 FUnctions for Diagnosis
9.2.3 Examining Subtrees
9.2.4 Examining Nodes .
9.2.5 Examining Splits .
9.2.6 Examining Leaves

CONTENTS

288
293
295
298
298
300
302
303
304

309

312
312
314
316
322
331
348
352
359
366
366
367
368
368
368
373

377

377
378
380
382
382
382
395
396
398
402
405

CONTENTS

9.3 Specializing the Computations
9.4 Numerical and Statistical Methods

9.4.1 Handling Missing Values ..
9.4.2 Some Computational Issues
9.4.3 Extending the Computations

XV

406
412
415
417
417

10 Nonlinear Models 421
Douglas M. Bates, John M. Chambers
10.1 Statistical Methods 422
10.2 S Functions 427

10.2.1 Fitting the Models 428
10.2.2 Summaries 432
10.2.3 Derivatives 433
10.2.4 Profiling the Objective Function 438
10.2.5 Partially Linear Models 440

10.3 Some Details 444
10.3.1 Controlling the Fitting . 444
10.3.2 Examining the Model . 446
10.3.3 Weighted Nonlinear Regression 450

10.4 Programming Details 452
10.4.1 Optimization Algorithm 452
10.4.2 Nonlinear Least-Squares Algorithm . 453

A Classes and Methodst Object-oriented Programming in S 455
John M. Chambers
A.1 Motivation . . . 456
A.2 Background . . . 457
A.3 The Mechanism . 460
A.4 An Example of Designing a Class . 461
A.5 Inheritance 463
A.6 The Frames for Methods 467
A.7 i:koup Methods; Methods for Operators 471
A.8 Replacement Methods 475
A.9 Assignment Methods . 477
A.10 Generic Functions 478
A.ll Comment 479

B S Functions and Classes 481

References 589

Index 595

Chapter 1

An Appetizer

John M. Chambers
Trevor J. Hastie

This book is about data and statistical models that try to explain data. It is an
enormous topic, and we will discuss many aspects of it. Before getting down to
details, however, we present an appetizer to give the flavor of the large meal to
come. The rest of this chapter presents an example of models used in the analysis
of some data. The data are "real," the analysis provided insight, and the results
were relevant to the application. We think the story is interesting. Besides that, it
should give you a feeling for the style of the book, for our approach to statistical
models, and for how you can use the software we are presenting. Don't be concerned
if details are not explained here; all should become clear later on. ·

1.1 A Manufacturing Experiment

In 1988 an experiment was designed and implemented at one of AT&T's factories to
investigate alternatives in the "wave-soldering" procedure for mounting electronic
components on printed circuit boards. The experiment varied a number of factors
relevant to the engineering of wave-soldering. The response, measured by eye, is
a count of the number of visible solder skips for a board soldered under a par
ticular choice of levels for the experimental factors. The S object containing the
design, solder. balance, consists of 720 measurements of the response skips in a
balanced subset of all the experimental runs, with the corresponding value~ for five
experimental factors. Here is a sample of 10 runs from the total of 720.

1

2 CHAPTER 1. AN APPETIZER

> sample.runs <- sample(seq(720),10)
> solder.balance[sample.runs,]

Opening Solder Mask PadType Panel skips
162 s Thin A1.5 06 3 6
75 s Thick A1.5 L6 3 1

653 L Thin B3 L8 2 4
117 L Thin A1.5 W9 3 0
40 M Thick A1.5 06 1 0

569 L Thick B3 L9 2 0
229 M Thick A3 L7 1 0
788 s Thick 86 L4 2 30
655 L Thin 83 W9 1 0
129 M Thin A1.5 L4 3 1

We can also summarize each of the factors and the response:

> summary(solder.balance)
Opening Solder Mask
S:240 Thin :360 A1.5:180
M:240 Thick:360 A3 :180
L:240 83 :180

86 :180

PadType
L9 72
W9 72
L8 72
L7 72
07 72
L6 72
(Other):288

Panel
1:240
2:240
3:240

skips
Min. 0.000
1st Qu.: 0.000
Median : 2.000
Mean 4.965
3rd Qu.: 6.000
Max. :48.000

The physical and statistical background to these experiments is fascinating, but a
bit beyond our scope. The paper by Comizzoii, Landwehr, and Sinclair {1990) gives
a readable, general discussion. Here is a brief description of the factors:

Opening: amount of clearance around the mounting pad;

Solder: amount of solder;

Mask: type and thickness of the material used for the solder mask;

PadType: the geometry and size of the mounting pad; and

Panel: each board was divided into three panels, with three runs on a board.

Much useful information about the experiment can be seen without any formal
modeling, particularly using plots. Figure 1.1, produced by the expression

plot(solder.balance)

is a graphical summary of the relationship between the response and the factors,
showing the mean value of the response at each level of each factor. It is immediately
obvious that the factor Opening has a very strong effect on the response: for levels

1.1. A MANUFACTURING EXPERIMENT

f
0
:ij CD
CD
E

N

s

M
L

Thin

83

Thick A3

A1.5

L4

lA

06

L7

1::8

W9

2
3

Opening Solder Mask PadType Panel

Factors

Figure 1.1: A plot of the mean of skip~ at each of the levels of the factors in the sold
experiment. The plot is produced by the expression plot (solder. balance).

M and L, only about two skips were seen on average, while level s produced abo
six times as many. If you guessed that the levels stand for small, medium, a:
large openings, you were right, and the obvious conclusion that the chosen sm
opening was too small (produced too many skips) was an important result oft
experiment.

A more detailed preliminary plot can be obtained by attaching the solder. bala

data and plotting skips against the factors, using boxplots:

plot (skips "' Opening + Mask)

We have selected two of the factors for this plot, shown in Figure 1.2, and they b<
exhibit the same behavior: the variance of the response increases with the me
The response values are counts, and therefore are likely to exhibit such behav!
since counts are often well described by a Poisson distribution.

3

4

0

0 I 0

T
0 I
M I

"' a. I
:i'

"' 0

"'
I 0
I

~

0 B
0 0
8 0

' ' ~ c==J

s M

Opening

0

0
M

0

CHAPTER 1. AN APPETIZER

0
0

8

' E3

A1.5

0

0
0

i
0

8 ;
~ I

8 ' :

' I 8 ~Q
A3 93 96

Mask

Figure 1.2: A factor plot gives a separate boxp/ot of skips at each of the levels of the factors
in the solder experiment. The left panel shows how the distribution of skips varies with
the levels of Opening, and the right shows similarly how it varies with levels of mask.

1.2 Models for the Experimental Results

Now let's start the process of modeling the data. We can, and will, represent the
Poisson behavior mentioned above. To begin, however, we will use as_ a response
sqrt (skips), since square roots often produce a good approximation to an additive
model with normal errors when applied to counts. Since the data form a balanced
design, the classical analysis of variance model is attractive. As a first attempt, we
fit all the fa.~:tors, main effects only. This model is described by the formula

sqrt (skips) ~ .

where the "." saves us writing out all the factor names. We read "~" as "is modeled
as"; it separates the response from the predictors. The fit is computed by

> fitl <- aov(sqrt(skips) ~ . , data= solder.balance)

The object fitl represents the fitted model. As with any S object, typing its name
invokes a method for printing it:

> fitl
Call:

aov(formula ~ sqrt(skips) ~ Opening + Solder + Mask + PadType +

1.2. MODELS FOR THE EXPERlMENTAL RESULTS

Panel, data = solder.balance)

Terms:

Sum of Squares
Deg. of Freedom

Opening Solder Mask PadType
593.97 233.31 359.63 113.44

2 1 3 9

Residual standard error: 0.83806
Estimated effects are balanced

CD

0

____ .. -----------

-2 0 2 4 6 8

fitted(fit1)

0

... ········

-2

Panel Residuals
14.56 493.05

2 702

.-~

0 2 4

fitted(fit2)

5

6 8

Figure 1.3: The left panel shows the observed values for the square root of skips, plotted
against the fitted values from ihe main-effects model. The dotted line represents a perfect
fit. The fit seems poor in the upper range. The right panel is the same plot for the model
having main effects and all second-order interactions. The fit appears acceptable.

Once again, plots give more information. The expression

plot(fitted(fit1), sqrt(skips))

shown on the left in Figure 1.3, plots the observed skips against the fitted values,
both on the square-root scale. The square-root transformation has apparently done
a fair job of stabilizing the variance. However, the main-effects model consistently
underestimates the large values of skips. With 702 degrees of freedom for residuals,
we can afford to try a more extensive modeL The formula

sqrt(skips) ~ ."2 ·

fi CHAPTER 1. AN APPETIZER

deH!:rih!:H 11 ,,,,d!:l t.hat includes all main effects and all second-order interactions.
W•: fit. t.laiH m•,fld next:

tit2 <- ~·•v(aqrt(skips), ."2, solder.balance)

lu~t,!:ad of Jlllut.ing the fitted object, we produce a statistical summary of the model
liHaug Ht.audiLid Ht.atistical assumptions, in this case an analysis of variance table as
Hhowu iu 'lhlol•· 1.1, with mean squares and F-statistic values.

> summary (t l t, 2)
Df Sum of Sq Mean Sq F Value Pr(F)

Opoualr1R 2 594 297 766 0.00
Sol<ltor 1 233 233 602 0.00

Hn.k 3 360 120 309 0.00
Pad Type 9 113 13 33 0.00

Plllltol 2 15 7 19 0.00
Dpening:Solder 2 42 21 54 0.00

Opening:M~tak 6 89 15 38 0.00
Opening:PadType 18 34 2 5 0.00

Opening:Panol 4 1 0 1 0.66
Solder: Mlllak 3 20 7 17 0.00

Solder:PadType 9 20 2 6 0.00
Solder:P~tntol 2 7 4 9 0.00
Hask:PadType 27 28 1 3 0.00

Haak:PIInel 6 9 1 4 0.00
PadType:Panel 18 10 1 1 0.14

Residunla 607 235 0

Table 1.1: Au rmtilysis of variance table for the model f1t2, including all main effects and
·'e.cond-ordf'.1' i11l.t·ractions. The columns give degrees of freedom, sums of squares, mean
squares, P ·''""·•l.ics, and their tail probabilities, nearly all zero here because of the very
lmyc numbf'.,. of observations.

The funl't.iou summary() is generic, in that it automatically behaves differently,
according to the class of its argument. In this case fit2 has class "aov" and so a
particular mo•t.hod for summarizing aov objects is automatically used. The earlier
use of summary () produced a result appropriate for data. frame objects. The modeling
software abounds with generic functions; besides summary(), others include plot(),
predict(), print(), and update().

The fitted values are plotted in the right panel of Figure 1.3, and the improve
~lent is clear. Of course, we really expect an improvement; including all the pairwise
Interactions ('O .. 'lts us 95 degrees of freedom! We can see from the table that the F
statistic column varies greatly for the second-order terms in the model. The three

1.3. A SECOND EXPERIMENT 7

largest values, interestingly, are the interactions of three of the factors, Opening,
Solder, and Mask. So an interesting intermediate model could be formed from just
these interactions:

sqrt(skips) ~ . + (Opening + Solder + Mask)A2

This time we gave three factors, explicitly, for which we wanted interactions:

> fit3
Call:

aov(formula = sqrt(skips) ~ Opening + Solder + Mask + PadType
+ Panel + (Opening + Solder + Mask)A2, data • solder.balance)

Terms:

Sum of Squares
Deg. of Freedom

Sum of Squares
Deg. of Freedom

Opening Solder Mask PadType Panel Opening:Solder
593.97 233.31 359.63 113.44 14.56 41.62

2 1 3 9 2 2

Opening:Mask Solder:Mask Residuals
88.66 19.86 342.90

6 3 691

Residual standard error: 0.70445
Estimated effects are balanced

The left panel of Figure 1.4 shows the observed/fitted values for this second-orde
submodel, which is comparable to the right plot of Figure 1.3. It uses far fewer d€
grees of freedom, achieves almost as good a fit, and also accounts for the departure
missed by the main-effects model.

1.3 A Second Experiment

The results from the first experiment were valuable in the application, and subs•
quently a similar experiment was run at another AT&T factory. The results a;
recorded in the design object solder2. In part, the intention was to apply some·
the lessons learned in the first experiment. The design was nearly the same as ·
the first experiment, and we can use summary() and plot() as before:

CHAPTER 1. AN APPETIZER

co co .·

si .· .. ··
CD flo"Cj CD .·

~~
a ~a ./

a '0 ./ ~; ~: a. ~ :;;: I;····(· Ul a Ul

r- a r-
g "' g "' .·a~ a

0 0 ~ .., ..
.•

<)' <)'

·2 0 2 4 6 8 -2 0 2 4 6 8

fitted(fit3) fitted(fit3.2)

~igure 1.4: The left panel is a plot of the square root of skips from the first AT&T solder
:xperiment against the fitted values for the second-order submodel. The right panel is the
;arne plot using the data from the second solder experiment.

> summary(solder2)
Opening Solder Mask Pad Type Panel skips
S:300 Thin :450 A1.5:180 L9 90 1:300 Min. 0.0
M:300 Thick:450 A3 :270 W9 90 2:300 1st Qu.: 0.0
L:300 A6 : 90 L8 90 3:300 Median : o.o

B3 :180 L7 90 Mean 1.2
B6 :180 07 90 3rd Qu.: 0.0

L6 90 Max. :32.0
(Other):360 NA's· :150

L'he summaries show some striking differences, especially that there are far fewer
kips overall in this experiment. Only 17% of the runs from the second experiment
tad skips, compared to 66% from the first. Figure 1.5 shows a plot of the design,
-reated by the expression plot (solder2). The plot suggests that in this case, factor
:ask appears to have the largest. effect. At first it may appear that the two experi
ilents are almost unrelated-a little discouraging for the statistician, although the
·ngineer is likely to be happy that the overall performance is substantially improved.
\s for modeling, if we start with the last model considered for the first experiment,

> fit3.2 <- update(fit3, data = solder2, na = na.omit)

nd plot its fit in the right panel of Figure 1.4, the model does not appear to fit
hese data well at all. Notice the use of the na.action'" argument in the call to

1.3. A SECOND EXPERIMENT 9

AS

UJ ... c.
:0: 04
UJ

0
c: ..
"' E s

N
Thin ..w

1l
M Di'· ~1

Thick ~ ~
0 L A1.5

L7
W9

Opening Solder Mask PadType Panel

Factors

Figure 1.5: A plot of the mean of skips at each of the levels of the factors in the second
wave-soldering experiment. Compare with Figure 1.1.

update 0; in any model-fitting computation, this causes the 150 cases with skips
missing to be omitted. Since we can't handle these missing values in any of our
models, we have assigned solder2 as na. omit (solder2) in the remaining examples.

Interestingly, more careful analysis shows that the two experiments are not as
unrelated as they initially appear to be. We must keep in mind that we can no
longer use the square-root transformation with so many zero responses. More fun
damentally, the statistical model should reflect more closely the way engineers would
likely view the process. When (as one would certainly prefer) solder skips are a rare
event, it is natural to imagine that the solder process has two states: a "perfect"
state where no skips will be observed, and an "imperfect" state in which skips may
or may not occur. From the view of the application, one is particularly interested
in factors that relate to keeping the process in the perfect state.

10 CHAPTER 1. AN APPETIZER

When this more complicated but more plausible model is worked out in detail,
it shows patterns in the second experiment that are largely consistent with those in
the first. To see these results in detail, you will have to read on in the book. Some
of the ideas, however, we can sketch here as a final appetizer.

Suppose we are only concerned with whether there are any skips, as measured
by the logical variable

skips > 0

Although this variable is very different from the quantitative variable sqrt(skips)
that we have studied so far, models for it can be handled in a very similar style.
Specifically, a generalized linear model (GLM) using the binomial distribution is a
natural way to treat such TRUE, FALSE or equivalently 1, 0 variables:

fit3.binary <- glm(skips > 0 ~ . + (Opening + Solder + Mask)A2,
data = solder2, family = binomial)

What has changed here? The function glmO has replaced aovO to do the fitting,
the response is now a logical expression, and a new argument

family a binomial

has been added. As you can imagine, glmO fits generalized linear models, and the
new argument tells it that the fit should use the binomial family within the GLM

models. Otherwise, the specification of model and data remain the same. Also, the
object returned can be treated similarly to those we computed before using aovO,
applyfng the various generic functions to summarize the model and study how well
it works.

Another idea, somewhat complementary to using a binomial model, is to treat
the response directly as counts, rather than using the square-root transformation.
As we said early on in our discussion, the Poisson distribution is a natural model for
counts, and usually works better than the transformation when the typical number
of counts is small. The same generalized linear models allow us to model the mean
of a Poisson distribution by the structural formula we used earlier. Let's apply this
to the data from both experiments to compare the results:

> expl.pois <- glm(skips ~ . + (Opening +Solder+ Mask)A2,
aata = solder.balance, family = poisson)

> exp2.pois <- update(expl.pois, data= solder2)

We display the fits in Figure 1.6, using the square-root scale as before to compare
these fits with those in Figure 1.4. The Poisson model appears to be an improvement
over those in Figure 1.4, especially for the second experiment; the systematic bias
for large counts is gone.

This is still not the end of the story. There are more zero values in the data
from the second experiment than the Poisson model predicts. The binomial model

1.4. SUMMARY

Cl)

.......,
0 .-~

0 2

0

0

___ -····
q,o'b{,
oo_/o oo

Cb;'ff iffo
~0

4 6 8

sqrt(filled(exp1.pols)

11

Cl)

"'
u;-
c.
~
t
S"

"'
0

0 2 4 6 8

sqrt(fllled(exp2.polsl

Figure 1.6: The second-order model of Figure 1..4, treating the response skips as Poisson
and using a log-linear link. The data are plotted on the square-root scale for comparison
with Figure 1..4. The plot on the left corresponds to the first experiment, the right the
second.

handles this aspect, but we clearly can't just apply both binomial and Poisson
models since they imply two incompatible explanations. An answer is to use a
mixture of the two models, as the idea of perfect and imperfect states for the process
suggests. Some runs are in the perfect state, and the binomial model lets us treat
the probability of this; others are in the imperfect state, and for those the Poisson
model can be applied. This model, called the Zero-Inflated Poisson, cannot be
described as a single linear or generalized linear model. A full statistical discussion
by the inventor of the technique is in the reference Lambert (1991). One version is
described in Section 10.3, as an example of a general nonlinear model.

1.4 Summary

This has been a large plate of appetizers, and we will finish here. All the same,
we have touched on only a few of the kinds of models that appear in the book,
mainly the analysis of variance and generalized linear models. The book discusses
models that fit smooth curves and surfaces, generalized additive models, models
that fit tree structures by successive splitting, and models fit by arbitrary nonlinear
regression or optimization. We also showed only a small sample of the diagnostic
summaries and plots appearing in the rest of the book.

12 CHAPTER 1. AN APPETIZER

However, the general style to be followed throughout has been illustrated by the
examples:

• The structural form of models is defined by simple, general formulas.

• Many kinds of data for use in model-fitting can be organized by data frames
and related classes of objects.

• Different kinds of models can be fitted by similar calls, typically specifying
the formula and data.

• The objects containing the fits can then be used by generic functions for print
ing, summaries, plotting, and other computations, including fitting updated
models.

• The computations are designed to be very flexible, and users are encouraged
to adapt our software to their own needs and interests.

In presenting our appetizer, we did not emphasize the last point heavily, but it
is central to the philosophy behind this book. Even though a large number of
functions and methods are presented, we intend these to be a starting point for the
computations you want, rather than some rigid prescription of how to use statistical
models.

Chapter 2

Statistical Models

John M. Chambers
Trevor J. Hastie

This is a book about statistical models - how to think about them, specify them,
fit them, and analyze them. Statistical models are simplified descriptions of data,
usually,constructed from some mathematically or numerically defined relationships.
Modern data analysis provides an extremely rich choice of modeling techniques;
later chapters will introduce many of these, along with S functions and classes of
S objects to implement them. All these techniques benefit from some general ideas
about data and models that allow us to express what data should be used in the
model and what relationships the model postulates among the data. You should
read this chapter (at least the first two sections) for a general notion of how models
are represented. You can do this either before you start to work with specific
kinds of models or after you have experimented a little. Getting some hands-on
experience first is probably a good idea-for example, by looking at the first two
sections of Chapter 4 on linear models, or by experimenting with whatever kind of
model interests you most.

The first two sections of this chapter introduce our way of representing models,
and are likely to be all you need for direct use of the software in later chapters.
When and if you come to modify our software to suit your own ideas, as we hope
many users will do, then you should eventually read further into Sections 2.3 and
2.4.

Throughout the book, we will be expressing statistical models in three parts:

• a formula that defines the structural part of the model-that is, what data
are being modeled and by what other data, in what form;

13

14 CHAPTER 2. STATISTICAL MODELS

• data to which the modeling should be applied;

• the stochastic part of the model-that is, how to regard the discrepancy or
residuals between the data and the fit.

This chapter and the next concentrate on the first two of these. They discuss how
formulas are represented, what objects hold the data, and how the two are brought
together. The rest of the book then brings together the three parts in the context
of different kinds of models.

Formulas are S expressions that state the structural form of a model in terms of
the variables involved. For example, the formula

Fuel ~ Pover + Weight

reads "Fuel is modeled as Pover plus Weight." More precise\y, it tells us that the
response, Fuel, is to be represented by an additive model in the two predictors,
Pover and Weight. There is no information about what method should be used to
fit the model. Formulas of this general style are capable of representing a very wide
range of structural model information; for example,

100/Mileage ~ poly(Weight, 3) + sqrt(Pover)

says to fit the derived variable 100/Mileage to a third-order polynomial in Weight

plus the square-root of the Pover variable. Transformations are used directly in
the formula, and the basis for the polynomial regression in Weight is generated
automatically from the formula. Here is a formula to fit separate B-spline regression
curves within the two levels of Pover obtained by cutting Pover at its midrange:

Fuel ~ cut(Pover, 2) I bs(Weight,df=5)

In the next example, nonparametric smooth curves will be used to model the trans
formed Fuel additively in Weight and Pover, using 5 degrees of freedom for each
term:

sqrt(Fuel-min(Fuel)) ~ s(Weight, df=5) + s(Pover, dfs5)

The details of these formulas will be explained later in the chapter.
The models above imply the presence of some data on Fuel, Pover and Weight;

in fact, reasonable models are inspired by data, since models without data are hard
to think about. These data actually do exist, and form part of a large collection
of data on automobiles described in Chapter 3 and used throughout the book; the
present model relates fuel consumption to two vehicle characteristics. Part of the
model-building process is collecting and organizing the relevant dataset, and looking
at it in many different ways. Some of the useful views are simple, such as summaries
and plots. The next chapter is about tools for organizing data into objects that are
convenient both for studying the data directly and as input for more sophisticated
procedures. For the moment we assume that such data organization has already
taken place, and that all the variables referred to in formulas are available.

2.1. THINKING ABOUT MODELS 15

2.1 Thinking about Models

Models are objects that imitate the properties of other, "real" ol.)o>(:ts, hut. In a
simpler or more convenient form. We make inferences from the mo. I Pis and ILJIJIIY
them to the real objects, for which the same inferences would be irnpooHihll• or
inconvenient. The differences between model and reality, the resid.,,ls, oft."u 1lrr.
the key to reaching for a deeper understanding and perhaps a better model.

2.1.1 Models and Data

A road map models part of the earth's surface, attempting to imitate the rdative
position of towns, roads, and other features. We use the map to make inferences
about where real features are and how to get to them. Architects use both paper
drawings and small-scale physical models to imitate the properties of a building.
The appearance and some of the practical characteristics of the actual building can
be inferred from the models. Chemists use "wire frame" models of molecules (by
either constructing them or displaying them through computer graphics) to imitate
theoretical properties of the molecules that, in turn, can be used to predict the
behavior of the real objects.

A good model reproduces as accurately as possible the relevant properties of
the real object, while being convenient to use. Good road maps draw roads in the
correct geographical position, in a representation that suggests to the driver the
important curves and intersections. Good road maps must also be easy to read.
Any good model must facilitate both aceurate and convenient inferences. A large
diorama or physical model of a town could provide more information than a road
map, and more accurate information, but since it can be used only by traveling to
the site of the model, its practical value is limited. The cost of creating or using the
model also limits us in some cases, as this example illustrates: building dioramas
corresponding to every desirable road map is unlikely to be practical. Finally, a
model may be attractive because of aesthetic features - because it is in some sense
beautiful to its users. Aesthetic appeal may make a model attractive beyond its
accuracy and convenience (although these often go along with aesthetic appeal).

Statistical models allow inferences to be made about an object, or activity.
or process, by modeling some associated observable data. A model that represents
gasoline mileage as a linear function of the weight and engine displacement of various
automobiles,

Mileage ~ Weight + Disp.

is directly modeling some observed data on these three variables. Indirectly, though.
it represents our attempt to understand better the physical process of fuel consump
tion. The accuracy of the model will be measured in terms of its ability to imitate
the data, but the relevant accuracy is actually that of inferences made about the

16 CHAPTER 2. STATISTICAL MODELS

real object or process. In most applications the goal is also to use the model to
understand or predict beyond the context of the current data. {For these reasons,
useful statistical modeling cannot be separated from questions of the design of the
experiment, survey, or other data-collection activity that produces the data.) The
test data we. have on fuel consumption do not cover all the automobiles of interest;
perhaps we can use the model to predict mileage for other automobiles.

The convenience of statistical models depends, of course, on the application and
on the kinds of inference the users need to make. Generally applied criteria include
simplicity; for example, a model is simpler if it requires fewer parameters or ex
planatory variables. A model that used many variables in addition to weight and
displacement would have to pay us back with substantially more accurate predic
tions, especially if the additional variables were harder to measure.

Less quantifiable but extremely important is that the model should correspond as
well as possible to concepts or theories that the user has about the real object, such
as physical theories that the user may expect to be applicable to some observed
process. Instead of modeling mileage, we could model its inverse, say the fuel
consumption in gallons per 100 miles driven:

·tOO/Mileage "' Weight + Disp.

This may or may not be a better fit to the data, but most people who have studied
physics are likely to feel that fuel consumption is more natural than mileage as a
variable to relate linearly to weight. '

2.1.2 Creating Statistical Models

Statistical modeling is a multistage process that involves (often repeated use of)
the following steps:

• obtaining data suitable for representing the process to be modeled;

• choosing a candidate model that, for the moment, will be used to describe
some relation in the data;

• fitting the model, usually by estimating some parameters;

• summarizing the model to see what it says about the data;

• using diagnostics to see in what relevant ways the model fails to fit as well as
it should.

The summaries and diagnostics can involve tables, verbal descriptions, and graph
ical displays. These may suggest that the model fails to predict all the relevant
properties of the data, or we may want to consider a simpler model that may be

2.1. THINKING ABOUT MODELS 17

nearly as good a fit. In either case, the model will be modified, and the fitting and
analysis carried out again.

If we started out with a model for mileage as a linear function of weight and
displacement, we would then want to look at some d.iagnostics to examine how well
the model worked. The left panel of Figure 2.1 shows Mileage plotted against the
values predicted by the model. The model is not doing very well for cars with high

0 , , 0 , , ,
It) 0 , , It) 0

, .,.,
o,'

.,.,
0 ,

0 000 , Ot!ID , ,
0 0 , , 0 ;'," ,

0 0 , 0 0
, .,.,

o' (") ., ., , 0

"' ,Go "' ,6 0

"' 0(1)o "' CD q, '0
~ oo,-o <D ~
::E It) ::E It)

<D , 0 00
N 0 ,o 0 0 p' 0

,' 0 0 N coo coo , <ID 0 0 0 odD
0 .d:>o

o..rc;~
0

0 "00 <DO
0 ,coo 0 N

00' 0 N OJI 0

000 0 0 00 , op'oo ,

20 25 30 35 20 25 30 35

Fitted: Weight + Disp. Fitted: Weight+ Disp. + Type

Figure 2.1: Mileage for 60 automobiles plotted against the values predicted by a linear model
in weight and displacement {the left panel) or weight, displacement and type of automobile
(the right panel}.

mileage: they all fall above the line. The change to 100/Mileage helps some (there
is a plot on page 104). If we add in a coefficient for each type of car (compact,
large, sporty, van, etc.) the fit improves further. In practice, we would continue to
study diagnostics and try alternative models, seeking a better understanding of the
underlying process. This model is our most commonly used simple example, and
will recur many times, to introduce various techniques.

Research in statistics has led to a wide range of possible models. Later chapters
in this book deal with specific classes of models: traditional models such as lin
ear regression; recent innovations, such as models involving nonparametric smooth
curves or tree structures; important specializations such as models for designed ex
periments, and general computational techniques such as minimization, which can
be used to fit models not belonging to any of the standard classes. This rich choice
of possible models is of real benefit in analyzing data. Whenever we can specify

18 CHAPTER 2. STATISTICAL MODELS

a model that is close to our intuitive understanding or is able to respond to some
observed failure of a standard model, chances are we will more easily discover what
is really going on. A limited computational or statistical framework that requires
us to distort or approximate the model we would like to fit makes such discovery
more difficult. It can also hide from us some important information about the data.
The methods presented in this book and the functions that implement the methods
are designed to give the widest possible scope in creating and examining statistical
models.

Of course, all this rich variety will only be helpful if we can use it easily enough.
We must be able to carry out the steps in specifying the models without too much
effort on our part. The fitting must be accurate and efficient enough to be used in
practical problems. There must be appropriate summaries and diagnostics so that
we can assess the adequacy of the models. In later chapters, each of these questions
will be considered for the various classes of models.

Fortunately, many different classes of models share a substantial common struc
ture. The steps we listed above apply to many models, and important summaries
and diagnostics can be shared directly or, at worst, adapted straightforwardly from
one class of models to another. The organization of the S computations for the
various classes of models is designed to take advantage of this common structure.

This chapter describes a way to express the structural formula for the model.
What about the data? For the moment we can assume the data are around in
our global environment, and simply refer to variables by name. In Chapter 3 we
describe data frames, a more systematic way of organizing and providing the data
for a model. Depending on the class of models, formulas and data frames may
be all we need to specify; for example, if we are using linear least-squares fitting,
there is not much more to say in step 3. Other kinds of models may require some
further specifications; generalized linear models, for example, require choosing link
and variance functions. The choice of the kind of model and the provision of these
additional specifications fix the stochastic ·part of the model to be fit.

2.2 Model Formulas inS

The modeling formula defines the structural form of the model, and is used by the
model-fitting functions to carry out the actual fitting. Most readers will already be
familiar with conventional modeling formulas, such as those used in textbooks or
research papers to describe statistical models, as in (2.1) below. The formulas used
in this book have evolved from mathematical formulas as a simpler and in some
ways more flexible approach to be used when computing with models.

A formula in S is a symbolic expression. For example,

Fuel ~ Weight + Disp.

2.2. MODEL FORMULAS INS 19

just stands for the structural part of a model. If you evaluate the formula, you
will just get the formula. In particular, use of a formula such as the one above
does not ~epend on the values of the named variables; indeed, the variables need
not even exist! The expression to the left of the ""'" is the response, sometimes
called the dependent variable. In this case the response is simply the name Fuel.
The right side is the expression used to fit the response, made up in an additive
model of terms separated by "+". The variables appearing in the terms are called
the predictors. Experienced S users are by now probably very curious, so this
comment is for their benefit: ""'" 0 is an S function that does nothing but save the
formula as an unevaluated S expression, a formula object.

The formula above expresses most of the ingredients of a statistical model of the
form

Fuel = a + W eight{31 + Disp./32 + e {2.1)

For most of the models in this book, the formula does not specifically refer to the
parameters !3i in the linear model. These can be inferred and so we save typing
them. In a sense, we also avoid mental clutter, in that the names of the parameters
are not relevant to the model itself. When we come to general nonlinear models in
Chapter 10, however, the formula will have to be completely explicit, since it is no
longer additive.

The formula makes no reference to the errors e either. These, of course, are the
stochastic part of the model specification. When formulas are used in a call, say to
the linear regression model-fitting function

lm(Fuel "' Weight + Disp.)

we complete the rest of the modeling specification; lmO assumes the mean of Fuel
is being modeled by the linear predictor, and uses least squares to compute the fit.
Expressions such as the one above were encountered in Chapter 1; in fact all the
model-fitting functions take a formula as their first argument, and in most cases
the same formula can be used interchangeably among them (hopefully with different
consequences!).

The formula above is equivalent to

Fuel "' 1 + Weight + Disp.

where the 1 indicates that an intercept a is present in the model. Since we usually
want an intercept, it is included by default; on the other hand, we can explicitly
exclude an intercept by using -1 in the formula

Fuel "' -1 + Weight + Disp.

In using formulas it is important to keep in mind that we are writing a shorthand
for the complete model expression. In particular, there is no operation going on
that adds Weight and Disp·.; the operator "+" is being used in a special sense, to

20 CHAPTER 2. STATISTICAL MODELS

separate items in a list of terms to be included in the model. The formula expression
is, in fact, used to generate such a list, from which the terms and the order in which
they appear in the model will be inferred. This inference poses no problem for most
models, but with complicated formulas, some care may be needed to understand
the model implied. The remainder of this section gives enough information for most
uses of model formulas; Section 2.3.1 provides a complete description.

2.2.1 Data of Different Types in Formulas

The terms in a formula are not restricted to names: they can be any S expression
that, when evaluated, can be interpreted as a variable. For example, if we wanted
to model the logarithm of Fuel rather than Fuel itself, we could simply use that
transformation in the formula

log(Fuel) "' Weight + Disp.

A variable may be a factor, rather than numeric. A factor is an object that
represents values from some specified set of possible levels. For example, a factor
Sex· might represent one of two values, "Male" or "Female". Readers familiar with S
might wonder what happened to the category, which is also an object with levels.
Factors have all the features of categories, with some added class distinctions; in
particular there is a distinction between factors and ordered factors. Factors can be
created in a number of ways, as will be discussed in Section 3.2. For the moment
the distinction between factors and categories is not important, and we will simply
refer to them as factors.

Factors enter the formula in the same way as numeric variables, but the inter
pretation of the corresponding term in the model is different. In a linear model,
one fits a set of coefficients corresponding to a factor. Consider the model

Salary ~ Age + Sex

where Salary and Age are numeric vectors and Sex is a two-level factor. This is now
shorthand for a model of the form

{
aM if Sex; is Male

Salary; = J..l. + Age;(3 + "f S . F 1 + e;
aF 1 ex; IS ema e (2.2)

where aF and aM are two parameters representing the two levels of Sex. The
coding of factors proceeds from observing that this model is equivalent to one in
which the factor is replaced by one "dummy" variable for each level-namely, a
numeric variable taking value 1 wherever the factor takes on that level, and ·o for
all other observations. In this case, for example, suppose XMale is a dummy variable
set to 1 for all Male observations and XFemale is set to 1 for all Female observations.
The original model is then equivalent to

2.2. MODEL FORMULAS IN S 21

Salary ~ Age + XMale +XFemale

Often in models such as this not all of the coefficients can be determined numerically;
for example, in {2.2) we could ~eplace J.L by J.L+6, and then compensate by replacing
Oi.F and Oi.M by Oi.F - 6 and Oi.M - 6. Numerically such indeterminacies can be
detected by collinearities in the variables used to represent the terms (Xmale and
Xfemale add to a vector of ones, which is also used to represent the constant J.L),
and will be handled automatically during the model-fitting. Occasionally, you may
want to control the parametrization of a term explicitly; Section 2.3.2 will show
how.

Other non-numeric variables enter into the models by being interpreted as fac
tors. A logical variable is a factor with levels "TRUE" and "FALSE". A character
vector is interpreted as a factor with levels equal to the set of distinct character
strings. A category object inS will be treated ·as a factor in the modeling software.
Section 3.2.1 deals with these issues in more detail.

A term in a formula can also refer to a matrix. Each of the variables repre
sented by the columns of the matrix will appear linearly in the model with its own
coefficient. However, the entire matrix is interpreted as a single term.

To sum up so far, the followingS data types can appear as a term in a formula:

1. a numeric vector, implying a single coefficient;

2. a factor or ordered factor, implying one coefficient for each level;

3. a matrix, implying a coefficient for each column.

Transformations increase the flexibility greatly, since the final element in this list is

4. any S expression that evaluates to a variable corresponding to one of the three
types above.

To appreciate this last item, consider these examples of valid expressions that
can appear as terms within a formula:

• (Age > 40), which evaluates to a logical variable;

• cut(Age,3), which evaluates to a three-level category;

• poly(Age,3), which evaluates to a three-column matrix of orthogonal polyno-
mials in Age.

The classical computational model for regression is an X matrix and a coefficient
vector {3. The rich syntax of our modeling language allows us instead to think of
each of the terms as an entity, even though they eventually will be expanded into
one or more columns of a model matrix X in most of the models discussed. But
the formulas and the modeling language put no restrictions on the form of a term

22 CHAPTER 2. STATISTICAL MODELS

or on the interpretation given to the term by a particular model-fitting function.
The cOntribution of a term to the fit can often be thought of as a function of the
underlying predictor; factors produce step functions, and terms based on functions
like poly() produce smooth functions. See Sectiori 2.3.1 and Cl}apter 6. For other
models, like local regression and tree-based models, the contribution of the terms
is interpreted differently. In particular, the contribution of a term to a tree-based
model is invariant under monotone transformations of the variable.

2.2.2 Interactions

Terms representing the interaction of two or more variables lead to further shorthand
in formulas. We may suspect that the effect of a variable in a model will be different
depending on the level of some factor variable. . In this case we need to fit an
additional term in the model. ·

As an example, we consider some factors that describe the solder experiment in
Chapter 1(these data are described in more detail in Chapter 3 and used throughout
the book). Opening and M<!Bk are two factors in the experiment, having three and
five levels respectively. To allow for interactions, we will fit a term for each of the
individual factors and in addition a coefficient for each level of the interaction
that is, for each combination of levels for the two factors. This is expressed in the
formula language as

Opening + Mask + Opening:Mask

which implies fitting coefficients for the 3 levels of Opening, the 5 levels of Mask, and
the 15 levels of their combination. The idea behind this separation into main effects
and interaction effects is that for simplicity, we would prefer the interactions to be
absent; by fitting them separately, we can examine the additional contribution of
the interaction terms. (Once again, not all these cpefficients can be determined
independently.)

Rather than writing out the three terms, we allow a special use of the "•"
operator in formulas to imply the inclusion of the two terms that are operands of
the "•" and of their interaction. Thus

Opening • Mask

is equivalent to the previous expression.
When one of the variables is numeric, the interaction notation is still recognized,

but it reduces to fitting coefficients for the factor variable and separate coefficients
for the numeric variable within each level of the factor (see Section 2.3.1 for details).

Interactions may be defined between more than two variables; for example,

Opening • Mask • Samt

2.2. MODEL FORMULAS INS 23

is interpreted to produce terms for each of the individual variables, for each of the
two-way combinations, and for the three-way combination (that is, a coefficient for
each of the 3 x 5 x 2 levels of the factor defined jointly by all three variables).
Another form of interaction is known as nesting, which we discuss in Section 2.3.1.

The full repertoire of special operators in formulas is discussed in Section 2.3.1.
The same section discusses how formulas are interpreted, which may be relevant if
your application is very specialized. Try, however, to build up formulas in as simple
and unambiguous a way as possible.

2.2.3 Combining Data and Formula

The data and the formula for a model come together when we actually fit a par
ticular model-e.g., when we estimate coefficients. The model-fitting functions will
generate an appropriate internal form for the data in preparation for the fitting.
For linear models and most of their extensions, this form is the model matrix or
X matrix, in which one or more columns correspond to each of the terms in the
model. Experienced modelers may have imagined the construction of this model
matrix while reading the previous section, a tedious task traditionally regarded as
part of the "art" of regression. The function model.matrix() does just this; in its
simplest form it takes a single formula argument (with or without a response) and
produces a matrix. Try it on a simple formula and see what happens! While it
might be comforting for you to read Section 2.3-4 to see how we construct the in
gredients of this matrix, such detailed knowledge is not necessary for standard use
of the techniques we present in later chapters.

Nonstandard situations that may make model matrices of more interest include
the handling of very large problems, where the size of the model matrix may force the
use of special techniques, and various kinds of updating, subsampling, and iterative
computations using wme of the observations in the data. In these computations,
practical considerations may require working directly with the model matrix.

The columns of model matrices contain coded versions of the factors and inter
actions in the model. The particular choice of coding will be of concern only if you
want to interpret particular coefficients; Section 2.3.2 discusses how to control the
coding. Section 2.4.3 contains further discussion of model matrix objects. That sec
tion is intended for those who need or want to know how the computations actually
take place. In particular, to develop a new approach to fitting models, not covered
by any of the chapters of the book, you would need to understand something about
the steps that go into creating a model matrix.

24 CHAPTER 2. STATISTICAL MODELS

2.3 More on Models

The third section of each chapter in this book expands on the S functions and
objects provided in the chapter. Here we discuss the options and extended versions
available that add new capabilities to the basic ideas. The material in section 3
should usually be looked at after you have tried out the essentials presented in
section 2 on a few examples. Experience shows that, after trying out the ideas for a
while, you will have a better feeling for how to make use of the functions, and will
begin to think "This would be a bit better if only " Section 3 is intended to
handle most of the "if-only." When the extra feature needed is not here, and there
is no obvious way to create it by writing some function yourself, the next step is to
look at section 4, which reveals how it all works. There you can learn what would
be involved in modifying the basics. However, you should not take that step before
thoroughly understanding what can be done more directly.

2.3.1 Formulas in Detail

In Section 2.2 we introduced model formulas and gave some examples of typical S
expressions that can be used to give a compact description of the structural form of a
model. Simple model-fitting situations can often be handled by the simple formulas
shown there, but the full scope of model formulas allows much more detailed control.
In this section, we give the full syntax available and explain how it is interpreted to
generate the terms in the resulting model. Unless otherwise stated, we will always
be talking about linear or additive models, in which the coefficients to be fitted
do not have to appear explicitly in the formula. Formulas as discussed here follow
generally the style introduced by Wilkinson and Rogers (1973), and subsequently
adopted in many statistical programs such as GLIM and GENSTAT. While originally
introduced in the context of the analysis of variance, the notation is in fact just a
shorthand for expressing the set of terms defined separately and jointly by a number
of variables. typically factors. Its application is therefore much more general; for
example, it works for tree-based models (Chapter 9), where there is no direct link
to linear models. Two additional extensions appear in our use of formulas:

• a "variable" can in fact be an arbitrary S expression, and

• the response in the model is included in the formula.

Of course the "any expression" in the first item had better evaluate to one of the
permissible data types: numeric vector, factor (including categories and logicals),
or matrices. The discussion here focuses on special operators for the predictors, and
so, in the examples below, we will omit the response expressions.

A model formula defines a list of terms to appear in a model. Each term identifies
some S expression involving the data. This expression, in a linear model, generates

2.3. MORE ON MODELS 25

one or more columns in a model matrix. These columns, each multiplied by the
appropriate coefficient, are the contribution of this term to the fit. For other types
of models, the contribution of the term may be computed in a slightly different way,
but in any case the expanded definition of the model corresponds to this list of terms.
A corresponding expanded formula:· has one expression for each term, separated by
+ operators. You will hardly ever write fully expanded formulas, but any formula
you do write will first be expanded (and simplified) before being evaluated. In this
section we proceed by first discussing the meaning of expanded formulas. Then we
give the complete rules by which arbitrary formulas are expanded.

Interaction and Nesting

Expanding a formula reverses the process shown in Section 2.2 of choosing a short
hand for a formula. For example, the formula.

Opening • Mask

says that we want a model which fits coefficients for Opening, for Mask, and for the
interaction of the two. When Opening and Mask are factors, this means a coefficient
for each level of the factor; if either is a numeric variable or a numeric matrix, there
will instead be one coefficient for the variable or for each column of the matrix.
(We will discuss the meaning of interaction in this case later in this section.) In the
more customary textbook notation,

• a factor: factor interaction represents a term of the form /ij, which is a set
of I J constants for each cell in the two-way table obtained by crossing the
two factors (assuming the factors have I and J levels, respectively);

• a factor:numeric interaction represents a term of the form /3jx, or a varying
slope model, in which the coefficient of the numeric variable x is different for
each of the J levels of the factor;

• a numeric :numeric interaction represents a term /3xz, where xz is simply the
pointwise product of the variable x with the variable z. This is probably the
least meaningful form of interaction, but of course the syntax allows far more
meaningful terms to be created in cases such as this. For example, poly(x,z,2)
will specify a bivariate quadratic surface in the two numeric variables x and
z.

The formula Opening • Mask in expanded form is then

1 + Opening + Mask + Opening:Mask

The formula above brings in factors in a crossed model; that is, the model says that
the individual factors should be included and, in addition, that the contribution of
one factor to the fit may change depending on the level of the other factors.

26 CHAPTER 2. STATISTICAL MODELS

Nested terms in a model, on the other hand, arise when the levels of one factor
are only meaningful within a particular level for some other factor or combination of
factors. For example, suppose we have some geographic data in which the variable
state defines the state for each location and the factor county indexes counties
within each state. Clearly, county was generated by coding whatever county names
appeared for each state, so that level 1 of county means something different in
different states. In this context, a main effect for county is meaningless, and a
typical model will fit a main effect for state and then look at the coefficients for
county within each level of state. In expanded form this could be written

1 + state + county:state

However, to emphasize that the last term is thought of as a nested term, not an
interaction, we allow (and encourage) writing the model as

1 + state + county 7.in7. state

The formula written above in expanded form has the shorthand notation

state I county

meaning "state and then county within state." Notice that while factors joined
by • can be permuted without changing the meaning (except for the order of the
expanded terms}, factors joined by I can never be meaningfully permuted: if county
is nested in state, then state cannot be nested in county.

While the model implies a coefficient for each level of each term, in practice
the coefficients have built-in dependencies. When a model matrix is created that
represents a particular model, columns coding each term are included for all the
coefficients that can be estimated; this is the condition for a valid coding of the
model. One would like the individual coefficients to be meaningful in terms of
the overall model and to avoid too many redundant coefficients that will have to be
removed in the fitting. In Section 2.4.1, the general rules for coding will be outlined,
but for practical purposes you need not worry about the coding unless you want to
understand or control the specific choice of coefficients.

The coding of factors depends on the overall model. In the two-factor crossed
model, main effects are included for both of the factors in the interaction term. All
the possible coefficients for the interliction term can be estimated by representing
each factor by contrasts among the levels of the individual factors. The contrasts will
be chosen by default in a standard way, but the coding can be controlled, as shown
in the next section. Unordered factors are coded as successive differences using the
Helmert contrasts (Section 2.3.2}, and ordered factors are coded to give a polynomial
fit to a hypothetical underlying numeric variable. In the nested model, there is no
main effect for county, so that the coding of county 7.in7. state proceeds differently:
state is coded by dummy variables and county by contrasts. This produces the

2.3. MORE ON MODELS 27

computational equivalent of "county within state" and also guarantees that the
model will fit as many coefficients as can be meaningfully defined. The details of
coding affect only the meaning of the individual coefficients estimated. Any valid
representation will give the same contribution to the overall tit in the model for each
of the terms. If you don't care about the individual coefficients, leave the default
coding in place; if you do care, look at page 32 to see how to change it.

When one of the variables in an interaction is numeric, the term will be computed
formally the same way, but some extra remarks are needed on how crossed and
nested interactions are interpreted. A numeric factor is always "coded" as itself. In
interactions, the numeric factor will be multiplied by either the dummy variables
or the contrasts for a factor. Consider a simple example using the automobile data:
suppose Weight is numeric and Foreign is a logical variable, which will be turned
into a factor with two levels corresponding to FALSE and TRUE. Both the crossed
formula

Foreign • Weight

and the nested one

Foreign I Weight

make sense, but they mean something different. Consider the nested version. As
before, this expands into the main effects for Foreign followed by Weight within each
level of Foreign. In terms of the actual coefficients, one coefficient will be fitted for
Weight using only data from level 1 of Foreign and one using data for level 2. There
will only be one coefficient for Foreign, estimating the contrast between the two
levels. This is equivalent to fitting a model to observations for which Foreign is
TRUE as

p, + Otp + f3l X Weight

and another model to observations for which Foreign is FALSE as

p,- Otp + /32 X Weight

There are four coefficients: the intercept p,, the contrast Otp for Foreign, and coeffi
cients {3; for Weight within each level of Foreign. This formula therefore corresponds
to the concept of fitting "separate slopes" to the different levels of the factor.

The crossed formula fits main effects for both Foreign and Weight, and then fits
the product of Weight with the coded contrasts of levels for the factor. In terms of
specific coefficients this is

p, + Otp + {3 X Weight + "'(X Weight

when Foreign is TRUE and

J.L- Otp + {3 X Weight - "'(X Weight

28 CHAPTER 2. STATISTICAL MODELS

when Foreign is FALSE. Again there are four coefficients, but this time there is an
overall slope {3 for Weight and a contrast 1 estimating the interaction of Foreign
and Weight. This is an appropriate way to code the model if we want to look at an
overall fit to Weight and then to examine whether something substantial would be
added to the model by allowing the regression to depend on the level of the factor.
The distinction between the crossed and nested versions is not so strong here as
when both predictors are factors, because a numeric factor is always just itself, but
the treatment is entirely analogous. (Section 2.4.1, where we discuss how the coding
works, will show why the computations can be the same.)

When both factors in an interaction are numeric, the formula expands as usual;
now the pure interaction x:z amounts to fitting an ordinary product. In this case,
however, you may really have wanted to use • or I in its ordinary S sense, in which
case you ought to have protected the expression with the identity function I 0, as
we will show when we go into details about general formulas next.

Syntax of Formulas

We now give the full rules for writing model formulas. A model formula is created
by separating a response term from the predictor terms by the operator "'; the
response can be absent. Expressions appearing in a model formula are interpreted
as ordinary S expressions, except for the following operators:

+ * I %in% 1\

The operator - is used to delete terms; for example,

Padtype • Opening * Mask - Padtype:Opening:Mask

deletes the third-order interaction term that was implied by the expansion of the •
operator, so that the formula expands to

Padtype + Opening + Mask + Padtype:Opening + Padtype:Mask + Opening:Mask

As in this example, the - operator is useful for compactly dropping a few inter
actions, when we are prepared to assume these particular terms are negligible. A
simple use of - is to exclude the intercept from a model:

Yield "' Mass - 1

In Chapter 1 we describe the update 0 function for changing fitted models, typ
ically by altering the formula. The "-" operator plays a special role there as well
(illustrated again in the first example in the list below).

The use of ":" to denote interaction is a break from the traditional Wilkinson
and Rogers syntax, where "." is used instead. A "." is a valid part of a name in
S, as in vind.speed, so it could not serve as an interaction operator. A single"."

2.3. MORE ON MODELS 29

does have a special meaning though; it serves as the default left or right side of a
formula wherever that makes sense. We made use of "." in some of the examples
in Chapter 1. Other examples are

• update(lmob, . ~ . - Age) is used to update the fitted linear-model object
lmob by modifying its formula and then refittipg it. The "." on the left of ~
implies that the response is the same as in lmob, while the "." on the right of
~ gets replaced by whatever was on the right in the formula used to fit lmob.

• lm(Mileage ~ . , data = car. test. frame); here the "." is interpreted relative
to the data frame- car. test. frame, which is a dataset to be used in fitting
the linear model. Data frames are described in Chapter 3. The "." here
means that all the variables in car. test. frame, except Mileage, are to be used
additively, which is equivalent to the explicit formula

Mileage ~ Price + Country + Reliability + Type + Weight + Disp. + HP

• lm(skips ~ ."2, data= solder.balance); similar to the previous item, ex
cept all the main effects and second-order interactions of the variables in
solder. balance are to be used.

The following table summarizes the special meanings of the operators in formu
las:

Expression Meaning
TrvF T is modeled as F
Fa.+ Fb Include both Fa. and Fb
Fa.- Fb Include all Fa. except what is in Fb
Fa.* Fb Fa. + Fb + Fa. : Fb
Fa. I Fb Fa. + Fb Y.inY. (Fa)
Fa.: Fb or The factor jointly indexed by Fa. and
Fb Y.inY. Fa Fb
pAm All the terms in F crossed to order m

The expression T is a term (with no special operators included), but F, Fa., and
Fb can be arbitrary formulas, not just single terms. The operators in the table
are special in their semantics (that is, in the way that S interprets them) but they
otherwise act as they would in ordinary expressions, with the same precedence and
association they would normally have (see lj, Section 3.2.6). Parentheses can be
used to change the grouping implied by precedence rules-for example, to force a
combination of terms to act like one term. The formula

Panel I (Opening * Mask)

says to fit all the terms in Opening * Mask, within each level of Panel.

Slightly more subtle is

30 CHAPTER 2. STATISTICAL MODELS

(Panel + Mask)/ Opening

which expands to

1 + Panel + Mask + Opening %in% (Panel + Mask)

The parentheses around Panel + Mask here do not get expanded further, and the
last term is equivalent to

Opening:Panel:Mask

The last item in the table is a shorthand for creating interactions. For example

(Opening + Mask + Panel)A2

expands to the same formula constructed from using "-":

Padtype + Opening + Mask + Padtype:Opening + Padtype:Mask + Opening:Mask

Composite Terms in Formulas

The special meaning of the operators applies only at the top level in the formula
expressions, and only on the right of the "~". If the operators appear as the
arguments to other functions, they behave as they always do in S. As the user
certainly intended, the term

atan(Length I Width)

fits a single coefficient to the ordinary value of the S expression, and does not treat
I as a nesting operator. Similarly,

sqrt (x - min(x))

does not treat - specially. It is also possible to force the operators to be treated
in an ordinary way, by using the identity function, I 0. This function returns its
argument and exists only to protect special operators. For example, to fit as a single
term the product of Length and Width, use

I(Length * Width)

to prevent the operator * from getting its special interpretation.
As emphasized before, any variables in the formula (either the response or the

factors in the terms) can be arbitrary S expressions, so long as they evaluate to
objects having a valid data type, namely: numeric variables or matrices, factors
including ordered factors, and non-numeric variables which will be converted into
factors.

Matrices that appear in the formula are treated as a single factor. This is
how special curves can most easily be generated, and functions are provided that
generate suitable matrices for common kinds of curves. The following are some
examples:

2.3. MORE ON MODELS 31

• The expression poly(x, degree) returns a matrix whose columns are an or
thogonal basis for fitting a polynomial of degree degree in the numeric variable
x. Similarly poly(x,y, degree) returns the matrix of bivariate polynomial
terms of degree no more than degree, and so on. ·

• The expression bs(x, df) returns a matrix which is a B-spline basis for piece
wise-cubic regression on x. The parameter df is the degrees of freedom, which
determines the number of interior knots. These knots are automatically placed
by the function; otherwise, the knots argument can be used to place them
explicitly.

See Chapters 6 and 7 for a general discussion of composite terms such as these.
Functions can be used that produce factors and categories as well; for example,

ordered(x,breaks) will return an ordered factor cutting the numeric variable x at
the breakpoints breaks. This is similar to the S function cutO, which produces a
category. Expressions that produce factors or categories can be used in conjunction
with the special operators, so that

cut(Weight,5) * Country

creates a five-level category from the numeric variable Weight and then uses it in a
crossed model with the factor Country. Similarly

(Age < 45) * Cholesterol

creates different linear trends in Cholesterol for people under and over 45. The
function codes() produces numbers to represent the levels in a factor or ordered
factor; so if Opening is an ordered factor with levels Large, Medium, and Small, then
the expression

codes(Opening)

implies a term linear in the numbers 1, 2, and 3, coding the three levels.
As always in S, you can write any functions of your own to create other suitable

variables. The expressions can be more complicated than function calls as well:

group • (if(all(x)>O)log(x) else log(x-min(x)+.Ol))

Exotic expressions like this are perfectly legal but hard to read and not good pro
gramming style. A better approach is to define a function, say

plus.log <- function(x)
if(all(x)>O)log(x) else log(x-min(x)+.Ol)

and then write the formula as group • plus .log(x).

32 CHAPTER 2. STATISTICAL MODELS

2.3.2 Coding Factors by Contrasts

On page 21 we noted that factors entering a model normally produce more coef
ficients than can be estimated. This is true regardless of the data being used; for
example, the sum of all the dummy variables for any factor is a vector of all ones.
This is identical to the variable used implicitly to fit an intercept term. This is
functional overparametrization, as opposed to data-dependent overparametrization
in which the number of observations is not large enough to estimate coefficients or in
which some of the variables turn out to be linearly related. The functional problem
is removed in most cases before any model-fitting occurs, by replacing the dummy
variables by a set of functionally independent linear combination of those variables,
which is arranged to be independent also of the sum of the dummy variables. For a
factor with k levels, k- 1 such linear combinations are possible. We call a particular
choice of these linear combinations a set of contrasts, using the terminology of the
analysis of variance. Computationally, the contrasts are represented as a k by k- 1
matrix.

Any choice of contrasts for factors alters the specific individual coefficients in a
model but does not change the overall contribution of the term to the fit. All the
model-fitting functions choose contrasts automatically, but users can also specify
the contrasts desired, either in the formula for the model or in the factor variable
itself. By default, contrasts are chosen as follows:

• unordered factors are coded by what are known as the Helmert contrasts,
which effectively contrast the second level with the first, then the third with
the average of the first and second, and so on;

• ordered factors are coded so that individual coefficients represent orthogonal
polynomials if the levels of the factor were actually equally spaced numeric
values.

If this choice of contrasts is adequate, no user action is needed.
The simiJlest way to alter the choice of contrasts is to use the function co ,

with usage C(factor, contrast) in the formula. The first argument is a factor, the
second a choice of contrast. It returns factor with the appropriate contrast matrix
attached as an attribute. The choice can be made in three ways:

• By giving the name of a built-in choice for contrasts: helmert, poly, sum, or
treatment. For example, C(Opening, sum) uses the function contr. sum() to
generate the appropriate sized contrast matrix. We will explain the meaning
of these choices below.

• By giving a function, which when called with either a factor or the number of
levels of the factor as its argument, returns the k by k-1 matrix of constraints:
C(Opening, myfun) calls myfun(Opening) to generate the contrast matrix (if
myfun exists as a function).

2.3. MORE ON MODELS 33

• By giving the contrast matrix or some columns for the contrast matrix.
C(Opening, mymat) uses the matrix mymat as the contrast matrix.

The function CO tests for each of these cases to determine how it has been called.
The four standard choices correspond to four functions to generate particu

lar flavors of contrasts. The polynomial contrasts are the result of the function
contr.poly():

> contr.poly(4)
L Q c

[1,] -0.6708204 0.5 -0.2236068
[2,] -0.2236068 -0.5 0.6708204
[3,] 0.2236068 -0.5 -0.6708204
[4,] 0.6708204 0.5 0.2236068

The coefficients produced by this transformation of the dummy variables correspond
· ·to linear, quadratic, and cubic terms in a hypothetical underlying numeric variable

that takes on equally spaced values for the four levels of the factor. In general,
contr. poly produces k - 1 orthogonal contrasts representing polynomials of degree
1tok-1.

Similarly, the function contr. helmert 0 returns the Helmert parametrization.
The first linear combination is the difference between the second and first levels,
the second is the difference between the third level and the average of the first and
second, and the jth linear combination is the difference between the level j + 1 and
the average of the first j-for example,

> contr.helmert(4)
[,1] [,2] [,3]

1 -1 -1 -1
2 1 -1 -1
3 0 2 -1
4 0 0 3

These two are the default choices.
The sum choice and the corresponding function contr.sumO produce contrasts

between each of the first k - 1 levels and level k.

> contr.sum(4)
[,1] [,2] [,3]

1 1 0 0
2 0 1 0
3 0 0
4 -1 -1 -1

This corresponds to a parametrization got by applying the constraint that the sum
of the coefficients be zero.

34 CHAPTER 2. STATISTICAL MODELS

The treatment form of coding is commonly used in models for which the first
level of all the factors is considered to be the standard or control case, and in
which one is interested in differences between any of the nonstandard or treatment
situations. As constraints on the coefficients, this is usually expressed as saying that
any coefficient in which any of the factors appears at its first level is set to 0. The
equivalent coding uses the dummy variables for levels 2 through k. The function
contr. treatment 0 gives this coding:

> contr.treatment(4)
2 3 4

1 0 0 0
2 1 0 0
3 0 1 0
4 0 0 1

This is a legitimate coding, in that it captures all the coefficients. However, it is not
a set of contrasts, in that the columns do not sum to zero and so are not orthogonal
to the vector of ones. For applications to linear models in designed experiments,
the coefficients will not be statistically independent for balanced experiments. This
complicates the interpretation of techniques such as the analysis of variance, so that
the control-treatment coding should generally not be used in this context. For some
other models, such as the GLM models in Chapter 6, the lack of orthogonality is less
obviously a defect, since the assumptions of the models do not produce statistical
independence of the estimated coefficients anyway. Probably for this reason, the
control-treatment coding is popular among'GLM modelers, since what it lacks in
orthogonality it gains in simplicity.

Any of these can be selected in a formula to override the default. You can also
implement any function you like, perhaps by modifying one of the four standard
functions, to produce a different set of contrasts. The matrix must be of the right
dimension and the columns must be linearly independent of each other and of the
vector of all ones. If this fails, model-fitting with complete data will produce singular
models. An easy way to test this condition is to bind a column of 1 to the matrix
and pass the result to the qr 0 function. The value of this function has a component
rank that is the computed numerical rank of the matrix. For a set of contrasts on
k levels, the rank should be k-for example

> qr(cbind(1,contr.treatment(4)))$rank
[1] 4

A function to generate contrasts must also, by convention, take either the levels of
the factor or the number of levels as its argument. See any of the four standard
functions for code to copy.

The third way to specify contrasts is directly by numeric data. You can start
from the value of one of the functions, but a more typical situation in practice is that

2.3. MORE ON MODELS 35

you want to estimate one or more specific contrasts, but will take anything suitable
for the remainder of the k- 1 columns. Suppose quality is a factor (unordered)
with four levels:

> levels(quality)
[1] "tested-low" "low" "high" "tested-high"

Suppose that we want the first contrast of quality to measure the difference between
tested and nontested-that is, levels 1 and 4 versus levels 2 and 3-and we don't
care about the other contrasts. Then we can give the factor in the formula as

C(quality, c(1, -1, -1, 1))

Two additional contrasts will be chosen to be orthogonal to the specified contrast.
If we had wanted the second contrast to be between the two low and the two high
levels, we would have supplied CO with the matrix

[.1] [.2]
[1 ,] 1 1
[2,] -1 1
[3,] -1 -1
[4,] 1 -1

and one further column would be supplied.
One additional detail is sometimes needed. Sometimes the user is willing to

assert that only some specified contrasts in the levels of a factor can be important;
the others should be regarded as known to be zero and omitted from the model.
This is risky, of course, but is done in some experiments where the number of runs
is limited and the user has considerable prior knowledge about the response. The
specification can be done by giving co a third argument, the number of contrasts to
fit. For example, suppose we are fitting polynomial contrasts to an ordered factor,
Reliability, and assert that no more than quadratic effects are important. The
corresponding expression in the model would be

C(Reliability, poly, 2)

Since the ith contrast generated by contr .poly() corresponds to an orthogonal
polynomial of degree i, this term retains only linell.r and quadratic effects.

The function cO combines a factor and a specification for the contrasts wanted,
and returns a factor with those contrasts explicitly assigned as an attribute. The
companion function contrasts() extracts the contrasts from a factor, and returns
them as a matrix. The contrasts may have been explicitly assigned as an attribute
or may be the appropriate default, according to whether the factor is ordered or
not. If you want to set the contrasts for a particular factor whenever it appears,
the function contrasts 0 on the left of an assignment does this. In the example of
one specific contrast,

36 CHAPTER 2. STATISTICAL MODELS

> contrasts(quality) <- c(1, -1, -1, 1)
> contrasts(quality)

[. 1] [, 2] [, 3]

tested-lov 1 -0.1 -0.7
lov -1 -0.7 0.1

high -1 0.7 -0.1
tested-high 1 0.1 0.7

two additional linear combinations have been added to give a full contrast specifi
cation. Now, quality will have this parametrization by default in any formula, with
the opportunity still available to use the CO function to override. As with cO, the
function contrasts 0 on the left of an assignment takes an optional additional ar
gument, hov.many, that says to assign fewer than the maximum number of contrasts
to the factor.

You can also change the default choice of contrasts for all factors using the
options() command inS, once you know a little more about how coding is done.

> options()$contrasts
factor ordered

"contr.helmert" "contr.poly"

shows us what the defaults are. These options are the names of functions that
provide contrasts for unordered and ordered contrasts, respectively. To reset the
defaults, use:

options(contrasts=c("contr.treatment","contr.poly"))

Redefining one or both of the elements changes the default choice of contrasts. The
effect of using options() to change the default contrast functions lasts as long as the
S session; each time S is started up, the permanent default is assumed. If you really
want to have your own private default coding every time you run S, you can invoke
options() automatically via the .First() function (lj, Section 3.4.9). Notice that
explicit choices for individual factors can still be used to override the new default
coding by assigning the contrasts as before.

Strictly speaking, the term contrast implies that all the linear combinations are
contrasts of levels. In this case, the sum of the numbers in any column of the
matrix should be zero. Orthogonal contrasts have the additional property that the
inner products of any two column11 of the contrast matrix is also zero. The Helmert
and polynomial contrasts have bot.h these properties. The contrast and orthog
onal contrast properties are particularly important for linear models in designed
experiments. Otherwise, the choice~ of contrasts can introduce artificial correlations
between coefficient estimates, even if the design is balanced. Additional details on
the implications of contrasts for fittc~d models appear in Section 5.3.1 in the context
of analysis of variance, and in Section 6.3.2 in the context of GLMs.

2.4. INTERNAL ORGANIZATION OF MODELS 37

2.4 Internal Organization of Models

In this section, as in the fourth section of later chapters, we will reveal how things
work: the internal structure of the objects that have appeared earlier in the chapter
and the computational techniques used in the functions. This section is not required
reading if you only want to use the functions described so far. It will be useful,
however, for those who want to extend the capabilities and/or to specialize them
in a serious way for particular applications. Extensions and modification of the
software we provide is not only allowed but is one of the goals of our approach to
statistical software in this book. Rather than trying to provide a complete approach
to the topics we cover (probably an impossible task anyway), we present functions
and objects that form a kernel containing the essential computations. The functions
include what we see as the natural approach to common, general use of the statistical
methods. The classes of objects organize the key information involved, with the goal
of making subsequent use of the information as easy and general as possible.

Users with special needs, and researchers who want to extend the statistical
techniques themselves, will want to go beyond what we provide. Understanding the
material in this section will likely help.

2.4.1 Rules for Coding Expanded Formulas

This section gives the'rules underlying the coding of factors in the expanded for
mulas of Section 2.3.1. To produce a model matrix for use in linear models, factors
and their interactions are represented by columns of numeric data, either dummy
variables or contrasts. To be valid, the representation must estimate the full linear
model. Since such models are generally overparametrized, there will be many dif
ferent valid representations in this sense. The goal of a particular representation is
to be meaningful and reasonably parsimonious. The actual coefficients estimated
should mean something in the application of the model. For example, a coefficient
value significantly different from zero should say something useful about the data.
A parsimonious parametrization is desirable numerically, since the size of the model
matrix can in some cases be much larger than necessary. The mathematical discus
sion that follows provides the basis for understanding how the representation can
be chosen for various models.

Each term in an expanded formula can be written using only one special oper
ator, ":". Suppose we have an expanded formula with p factors:

Ft,F2,···,F,

and m terms:
Tt +T2 +··· +Tm

The F; need not be simple variables, but can be essentially arbitrary S expressions.
The expanded term Ti can always be written as an interaction of 0, 1, or more of

38 CHAPTER 2. STATISTICAL MODELS

F;, : F;2 : • • • : F;.,

where 1 :::; i; :::; p. The value of o; is the order of 1i-that is, the number of factors.
We will assume that the expanded formula is sorted by the order of the terms, so
that all terms of order 1 appear first, then all terms of order 2, and so on.1 The
intercept term is the only term of order 0, and is written as 1. If it is present, it
comes first.

As discussed in Section 2.2, a factor corresponding to Fi can be represented
in the model by a matrix whose columns are the dummy variables corresponding
to each level of F;. The interaction of Fil and Fh is represented by the matrix
containing all possible products of pairs of columns from the matrices representing
the main effects. A three-way interaction is represented by all products of columns
of this matrix and columns of the matrix representing F;., and so on. For details,
see the function column. prods 0, which carries out just this computation.

If all factors were represented by dummy variables, there would be nothing more
to the inte\"pretation of expanded formulas. However, both numerical and statistical
arguments require more careful coding of factors. Usually, coefficients cannot be
estimated for all the levels of the factor. For example, the sum of all the dummy
variables for any main effect is the constant 1, and so is functionally equivalent
to the intercept. Coding all levels by dummy variables would produce a model
matrix with more columns than necessary (in some cases many more), and the
model matrix would nearly always be singular, so that numerical solutions would
not produce estimates for all the requested coefficients. These are the numerical
reasons for choosing a good coding for the terms, but the statistical reason is more
important-namely, to allow a meaningful choice of coefficients for the particular
model. The functional dependencies among the dummy variables in the terms imply
that only certain linear combinations of the coefficients for the dummy variables are
estimable. The goal is to represent those linear combinations so that the individual
computed coefficients are useful for the particular model. Section 2.3.2 showed how
this coding could be controlled.

The following rule specifies which factors should be coded by dummy variables
and which should be coded by contrasts in producing the columns of the model
matrix:

Suppose F; is any factor included in term T;. Let T;(il denote the maryin
ofT; for factor F;-that is, the term obtained by dropping F; from T;.
We say that T;(j) has appeared in the formula if there is some term T;•
for i' < i such that T;t contains all the factors appearing in Ti(j)· The
usual case is that T;w itself is one of the preceding terms. Then F; is

1The only ordering that we actually need is. that any term T; appear in the formula after its
margins. It does not make sense for a factor to appear in the formula after some interaction
including that same factor.

2.4. INTERNAL ORGANIZATION OF MODELS

coded by contrasts if T;(;) has appeared in the formula and by dummy
variables if it has not.

In interpreting this rule, the empty term is taken to be the intercept.

39

The application of this rule corresponds to generating a matrix-the model
matrix-with n rows and some number of columns, to represent the whole model.
This matrix comes from binding together the columns of the matrices produced by
the rule for each term. We can compare this matrix with the overspecified but valid
coding we would get if we used dummy variables for all the factors. Our rule is
valid if the dummy variables, say x•, introduced for term T; in this overspecified
coding, can be represented as a linear combination of columns from the matrices
produced by our rule for terms up to and including T;, for all i.

Here is an informal proof that the rule is valid. Start with an inductive as
sumption: suppose that the rule is valid for terms of order less than the order of
T;; specifically, for any such term, assume that its dummy matrix can be written
as a linear combination of the matrices given by our rule for that term and those
of its margins that are in the formula. Suppose F; is one of the factors for which
the rule says we can use contrasts. Let X; be the n by k; - 1 matrix of contrast
variables for F;, and Xj the corresponding n by k; matrix of dummy variables. We
will need to refer to the lth columns of these matrices; let's call them x;,1 and xj,1•

Any column of x• can be written as the product of one column from each of the
dummy matrices, Xj, for factors J in T;, so in particular it can be written as:

Note that this is ordinary multiplication of the n-vectors, not matrix product. Now
look at the two parts of the above expression ~arately, the left part in parentheses
and the single vector on the right.

1. By the inductive assumption, the left part is a linear combination of our
matrices for T;(;) and its margins.

2. From the definition of a valid coding of the individual factors, the right part
is a linear combination of 1 and the x;:r

If we were to expand these two linear combinations, the result would be a linear
combination of column products from our coding for T; and for its various margins.
Therefore, the inductive assumption holds forT; as well. By looking directly at the
cases of the empty term and terms of order 1, the inductive assumption holds for
these cases, and so is believable in general. This is not quite precise; in particular,
extra arguing needs to be added for the (somewhat strange) case that T;w is not in
the model, but is contained in some other preceding term of order equal that of T;.

10 CHAPTER 2. STATISTICAL MODELS

The argument above should nevertheless be sufficiently convincing for our purposes
1ere.

The rule does not always produce a minimal coding; that is, in some cases there
·nay be functional dependencies between columns of the matrix representing T; and
·.hose representing earlier T;· . In particular, this will be the case again when there
.s no Ti' that is exactly equal to T;(i)· However, models of that form are usually
1uestionable; for most sensible model formulas, the rule above produces a minimal
md meaningful coding of the terms.

Numeric variables appear in the computations as themselves, uncoded. There
'ore, the rule does not do anything special for them, and it remains valid, in a trivial
;ense, whenever any of the F; is numeric rather than categorical.

~.4.2 Formulas and Terms

<'ormula objects pass through an intermediate stage before being combined with
he data. This stage produces objects of class "terms", which contain the formula
tfter it is processed to have, in a convenient form, all the information needed to
:reate the model. Users of model-fitting functions will not see this intermediate
;tage, but those of you who want to modify model-fitting techniques or to create a
1ew class of models may find it helpful to know what information the terms objects
:ontain. A terms object is an object of mode "expression" with extra attributes.
fhe elements of the expression are the individual terms in the expanded right side
>f the formula:

> forml <- skips ~ Panel * Opening
> termsl <- terms(forml)
> as.vector(termsl)
expression(skips, Panel, Opening, Panel:Opening)

-low let's consider the attributes:

> names(attributes(termsl))
(1] "formula" "factors" "order"
[5] "term.labels" "intercept" "response"

<'he meaning of the attributes is as follows:

"variables"
"class"

·formula": the actual formula used to construct terms, in this case the contents of
forml:

> attr(termsl,"formula")
skips ~ Panel • Opening

There is a generic function formula() for extracting formulas from a variety
of objects; in this case, formula(termsl) would extract the formula from the
terms object.

2.4. INTERNAL ORGANIZATION OF MODELS 41

"factors": a matrix with factors along the rows and terms along the columns. The
jth column says what factors appear in the jth term and also whether they
are coded as contrasts or dummy variables. Values in the column are 1 for
contrasts, 2 for dummy variables, and 0 if the factor does not appear in the
term:

> attr(terms1, "factors")

skips
Panel

Opening

Panel Opening Panel:Opening
0 0 0
1
0

0
1

1
1

The coding is specified according to the general rule in the previous section.

"order": a vector giving the order of each term: 1 for main effects, 2 for second
order interactions, and so on:

> attr(termsl,"order")
[1) 1 1 2

"variables": an expression whose elements are the expressions for each of the vari
ables, including the response (remember that these need not simply be names):

> attr(termsl, "variables")
expression(skips, Panel, Opening)

"term.labels": the character form of the terms, only included to save repeated
deparsing later:

> attr(terms1,"term.labels")
[1) "Panel" "Opening" "Panel:Opening"

which can also be extracted using the labels() generic function.

"intercept": a logical variable that will be TRUE unless the term -1 appears in the
formula. Notice that the intercept term does not appear in the expression
vector itself nor in the term labels. The label "(Intercept)" is used to label
coefficients, etc. corresponding to the intercept.

"response": which variable in the "variables" attribute is the response {o if there
is no response specified).

Since all the model-fitting functions include the terms object for a particular model
in the object that represents the fitted model, you can use the information above
to conveniently get at information about pieces of the model when designing new
summary functions or modifying the model-fitting. Section 7.4 describes some ad
ditional arguments in the call to terms that add to its flexibility.

42 CHAPTER 2. STATISTICAL MODELS

2.4.3 Terms and the Model Matrix

The process of putting together data and formula to construct a model matrix
involves three basic steps:

1. Convert the formula into a terms object, in which all the interactions and
nested terms have been expanded, and any simplifications resulting from sub
tractions, parentheses, dots, and powers have been applied.

2. Compute a model frame from the terms and the data, containing variables
corresponding to the expressions needed to compute the terms defined in step
2.

3. Generate the model matrix itself from the model frame.

A model frame is a special type of data frame, described in the next chapter. For
the moment, simply think of it as a list of the response variable and variables corre
sponding to all the terms in the formula. The function model. frame() uses the terms
object, specifically its attribute variables, to determine which expressions will be
used in· generating the model matrix. It returns a special data frame containing
those variables. Notice that there is no restriction on the expressions appearing in
the formula for the terms. The names of the variables will not necessarily be syntac
tic names inS; if one of the terms is log(Fuel) then the corresponding variable will
have name "log(Fuel)". Two other, optional computations take place during the
evaluation of the model frame. If a subset argument is supplied, the corresponding
subset will be extracted from each computed variable before it is inserted into the
model frame. Similarly, if ana. action function is supplied either as an argument or
as an attribute to the data frame, this function will be applied to the model frame.
See Section 3.3.3 for further details.

Once the model frame has been computed, it is used to generate a model matrix,
with columns corresponding to each of the terms in the model formula. A model
matrix is a numeric matrix of suitably coded dummy variables, contrasts, or numeric
variables, plus some attributes related to the model.

We don't have to worry about the steps described above; the fitting functions
such as lmO do the work for us, and will return both the model frame and model
matrix if requested. On the other hand, we can create a model matrix from some
data directly from the model.matrixO function. To illustrate the structure in model
matrices, we will compute a model matrix from a market study data frame described
in the next chapter. The model chosen will use the numeric variable usage along
with a complete model (main effects and interaction} for two factors, nonpub and
education:

2.4. INTERNAL ORGANIZATION OF MODELS

> model1 <- model.matrix(~ usage + nonpub • education)
> print(model1[1:6,], abbreviate • T)

(lntrc) usage nonpub educationl education2 education3
1 1 9 1 1 -1 -1
2
7
8

10

1

1
1
1

2 1
3 -1
1 -1
2 -1

1 -1 -1
-1 -1 -1

-1 -1
-1 -1 -1

education4
-1
-1
-1
-1
-1

educationS nnp:edc1 nnp:edc2 nnp:edc3 nnp:edc4 nnp:edcS
1
2
7
8

10

-1

-1
-1

-1
-1

> dim(modell)
[1] 1000 13

1 -1
1 -1
1 1

.-1 1
1 1

-1 -1 -1
-1 -1 -1

1
1
1 1 1

43

Notice we used no response in the formula; had one been there it would have been
ignored. The model matrix has as many columns as are required by the coding
of the expanded formula. The abbreviate= argument to the printing method for
matrix objects abbreviates the column labels. The unabbreviated column labels are

> dimnames(model1)[[2)]
[1] "(Intercept)" "usage"
[4) "education1" "education2"
[7) "education4" "educationS"

[10] "nonpub:education2" "nonpub:education3"
[13] "non pub: educationS"

Model matrices have additional attributes:

> names(attributes(model1))
[1] "dim" "formula"
(6] "assign" ••dimnames••

11 class 11

"nonpub"
"education3"
"nonpub:education1"
"nonpub:education4"

"order" "term.labels"

The class attribute has value c("model.matrix", "matrix"), which means that
model matrices inherit from the more general class "matrix". The formula, order
and term.labels attributes are retained from the terms object. The assign attribute
is a list, with length equal to the nwnber of terms. The elements of assign define
which columns of the matrix belong to the corresponding terms:

> attr(modell, "assign")
$"(Intercept)":
[1] 1

44

$usage:
[1] 2

$nonpub:
[1] 3

$education:
1 2 3 4 5
4 5 6 7 8

$"nonpub:education":
1 2 3 4 5
9 10 11 12 13

CHAPTER 2. STATISTICAL MODELS

The model. matrix function produces the matrix of predictors for linear and gen
eralized linear regression and anova model-fitting routines; other model-fitting func
tions, such as those that build trees, require other constructions. These are discussed
further in the relevant chapters, as well as in Section 3.3.3. There we also expand on
the sequence of steps needed to create model frames and model matrices, to allow
facilities for weights, missing data, and subsets.

Bibliographic Notes

The formula language described in this chapter was inspired by the the Wilkinson
and Rogers (1973) formula language used in the package GLIM. Several of the
enhancements introduced here, such as poly(), for example, were mentioned in the
Wilkinson and Rogers paper, but not fully implemented in GLIM.

Chapter 3

Data for Models

John M. Chambers

This chapter describes the general structure for data that will be used throughout
the book. In particular, it introduces the data frame, a class of objects to represent
the data typically encountered in fitting models.

Section 3.1 presents some datasets that recur as examples throughout the book.
S functions to create, manipulate, modify, and study data frames are described
in Section 3.2. Section 3.3 discusses the computations on data frames and related
classes of objects at a detailed level, suitable if you want to modify functions dealing
with these objects.

As with Chapter 2, the ideas in this chapter underlie all the computations for
various models in the following chapters. To get a general view of our approach
to data, you should read some of this chapter before going on to specific models.
Sections 3.1 and 3.2 should be plenty. Your data analysis will benefit from studying
graphical and other summaries of the data before any commitment to a particular
model. This chapter describes a number of such summaries and also shows how
to apply S functions generally to the data in data frames. Therefore, we recom
mend reading through the first two sections of the chapter before fitting particular
models.

3.1 Examples of Data Frames

The statistical models discussed in this book nearly always think of the underlying
observational data as being organized by variables-statistical abstractions for dif
ferent things that can be observed. Values on these variables can be recorded for a

45

46 CHAPTER 3. DATA FOR MODELS

number of observations-points in time or space, for example. A data frame is an
object that represents a sequence of observations on some chosen variables. In later
sections of the chapter we will describe functions to create, modify, and use these
objects. Here, we are only concerned with the concepts involved, not the specific
functions.

Data frames clearly have the flavor of matrices; in particular, in thinking and
in computing both, the variables can be treated as columns and the observations
as rows of a matrix-like structure. Data frames can also act as frames in S; that
is, the variables can be thought of as separate objects, named by the corresponding
variable name in the data frame. In particular, model formulas as discussed in
Chapter 2 use variable names in just this way. Data frames are more general than
matrices in the sense that matrices in S assume all the elements to be of the same
mode-all numeric, all logical, all character string, etc. In contrast, the variables
in a data frame can be anything at all, so long as each variable is indexed by the
same observations. The variables can even be matrices; in fact, matrix variables in
data frames are very useful in model-fitting.

The essential concept to keep in mind throughout the book is that data frames
support matrix-like computations, with variables as columns and observations as
rows, and that, in addition, they allow computations in which the variables act like
separate objects, referred to by name.

Time now for some examples. Statistical software for models, as for any other
data analysis, can only be fully appreciated when it is seen working on substantial
applications. In this book, we present both examples that are as realistic as practi
cable as well as the usual small examples that illustrate specific points conveniently.
In the next three subsections, three fairly substantial sets of data are introduced.
Later in the chapter, we will present some details of the procedures that get the
data into the data frame as well as techniques for computing with the data. These
datasets will be made available in S if you execute the expression

library(data)

which attaches a library of datasets for use in computations. Attaching this library
will let you experiment with the examples in this book.

3.1.1 Example: Automobile Data

Our first example is a somewhat recreational one, acknowledging the lasting passion
for the automobile, in the United States and elsewhere. Suppose we are interested
in understanding the properties of different automobiles, such as their fuel con
sumption or their reliability. Are expensive cars more reliable, or less fuel-e.fficient?
What about differences due to country of manufacture?

A wealth of data related to these questions is published by the magazine Con
sumer Reports, with one monthly issue per year devoted to automobiles, in addition

3.1. EXAMPLES OF DATA FRAMES 47

to detailed test reports throughout the year, all providing testimony to the automo
bile's central role in our society. The annual issue contains several tables of data,
of which we will use three: overall summaries, dimensions, and specifications. The
reader of Consumer Reports with an interest in data analysis could record some
of this information in the computer and organize it suitably for analysis. We will
now illustrate how this might be done. Let's consider the three tables individually,
showing objects inS corresponding to each. In Section 3.2.2 we show how S objects
are generated from such data.

These tables are naturally represented as data frames, with rows corresponding
to automobile models. The summary section of the issue, for instance, records five
variables for price, country of origin, overall reliability, fuel mileage per gallon, and
type of car. The S object cu.summary is a data frame containing the data. There are
117 models; let's look at a sample of 10. We will generate a sample from the row
names of the data frame, sorting them alphabetically to make it easy to refer back
to the printed table. Data frames always have row names, in this case the model
names as they appeared in Consumer Reports. These names can be used to extract
the corresponding rows of the data frame:

> summary10 <- sample(rov.names(cu.summary), 10)
> summary10 <- sort(summary10)
> cu.summary[summary10,]

Price Country Rel. Mileage Type
Acura Integra 4 11950 Japan 5 NA Small

Audi 100 5 26900 Germany NA NA Medium
BMW 325i 6 24650 Germany 4 NA Compact

Chevrolet Lumina 4 12140 USA NA NA Medium
Ford Festiva 4 6319 Korea 4 37 Small

Mazda 929 V6 23300 Japan 5 21 Medium
Mazda MX-5 Miata 13800 Japan NA NA Sporty

Nissan 300ZX V6 27900 Japan NA NA Sporty
Oldsmobile Calais 4 9995 USA 2 23 Compact

Toyota Cressida 6 21498 Japan 3 23 Medium

Other data frames, cu. dimensions and cu. specs, represent the dimensions and spec
ifications data. The set of rows (automobile models) changes from one table to an
other, so it will be natural to start with separate data frames and consider merging
them when the data analysis demands it. In Section 3.2 we illustrate a variety of
computations on data frames.

3.1.2 Example: A Manufacturing Experiment

Designed experiments to improve quality are important tools in modern manufac
turing. In such experiments, a number of variables are chosen as factors to vary in
the experiment. Several levels (typically two or three) are chosen for each factor.

48 CHAPTER 3. DATA FOR MODELS

The levels may bt• values of some numeric variable, such as the quantity of some
ingredient or the diameter of an opening on a machine. They may also simply be
alternatives, such as the choice of an ingredient in a recipe. The experiment is
planned as a number of runs, on each of which all the factors are supposed to be set
at predetermined levels. After each run, one or more response variables is recorded.
An observer may examine the output of the run and record statistics, or some test
of the output may be carried out and recorded.

A designed experiment will be represented in our work by a design object-a
special class of objects that inherit all the properties of data frames. The variables
in the data include design factors as above, plus some number of observed responses,
plus perhaps other uncontrolled variables. The values of the factors are, in principle,
prechosen according to the design selected by the statisticians and engineers to best
achieve the goals of the study given any prior information available about the process
and the constraints imposed by cost and other practical considerations. The factors
may be ordered or unordered, according to whether we believe they represent some
underlying, perhaps unobservable, numeric quantity. The entire design will usually
be selected from some statistical definition (as we discuss in Chapter 5). Using this
design, the experiment is run. To the design object are then added the responses
and other observed variables to produce a data frame describing the experiment.

You have already seen designs if you have read Chapter 1. There we discussed
experiments to study alternatives in the wave-soldering procedure for mounting elec
tronic components on boards. Two experiments performed on the wave-soldering
process were shown thP.re. Let's return to that example and consider it more closely.
Factors in both of the experiments were:

• opening: the amount of clearance around the mounting pad allowed in the
solder mask;

• solder amount;

• mask: a composite factor coding the type and thickness of the material used
for the solder mask;

• pad type: the geometry and size of the pad on which the component was to
be soldered;

• panel: each board was divided into three panels at the beginning, middle, and
end of tlu~ board (allowing three different experimental units to be defined in
each board).

Such experiments are difficult and important exercises in pursuing quality in man
ufacturing, so our general goal of providing precise and flexible computational fa
cilities is needtld t.o get the most information from the experiment. As we saw
in Chapter ·1, t.lu!Hil experiments also provided some interesting challenges in data

3.1. EXAMPLES OF DATA FRAMES 49

analysis. An article by Comizzoli, Landwehr, and Sinclair (1990) discusses the
background to this and similar experiments. It is an interesting example of the
interaction between materials science and statistics, and well worth reading.

The design object solder contains all the data from the experiment at the first
site:

> sampleruns <-sample(row.names(solder), 10)
> solder[sampleruns,]

Opening Solder Mask PadType Panel skips
865 M Thin 86 W9 1 3
844 M Thin 86 04 1 5
40 M Thick A1.5 06 1 0

689 M Thin 83 L9 2 0
636 L Thin 83 04 3 5
836 L Thin 86 W9 2 0
757 M Thick 86 L4 1 5
493 M Thin A6 L6 1 2
440 s Thick A3 L7 2 7
834 L Thin 86 L8 3 9

The variable skips is the response: a count of the number of visible soldering
skips on the particular run. The other variables are the factors described in the
experiment; for example, Solder is solder amount, and Mask is a combined factor for
solder mask type and thickness (combined to economize on the size of the design).
The row names are just the run numbers in the experiment.

The dataset solder. balance shown in Chapter 1 was extracted from solder. The
design object solder2 contains the data from the second wave-soldering experiment.

3.1.3 Example: A Marketing Study

For the third example, we look at data used in a marketing study at AT&T. A
survey of 1000 households was carried out to characterize customers' choice of a
long-distance company.1 Although relatively recent (1986), the study may already
be regarded as historic, in the sense that it took place during the aftermath of
the divestiture of the local telephone companies in the United States from the Bell
System. As part of the divestiture process, each telephone subscriber was asked to
pick a primary long-distance telephone company.

Data in the study we will examine were obtained from three sources: a telephone
interview survey of selected households; telephone data based on service and billing
databases; and demographic data, taken from a separate marketing database. The
study hoped to develop a model to predict the household's tendency to pick AT&T.
The model would help the marketing group target their efforts more effectively.

Variables from the survey included in our version of the data are:

1This example was kindly provided for us by James W. Watson.

50 CHAPTER 3. DATA FOR MODELS

• the income level of the household;

• the number of times the household had moved in the last five years;

• the age, education level, and employment category of the respondent.

Variables from the telephone records are:

• whether the household picked AT&T;

• the average monthly telephone usage of the household;

• whether the household had an unpublished telephone number;

• whether the household participated in some special AT&T plans or calling
card service (before the choice of long-distance company).

Demographic variables included are:

• measures of affluence, such as mean income per household, average number of
cars per household, and median housing value;

• household size (average number of people per household);

• the racial patterns, in particular the percent black population;

• the employment profile, in terms of percent professional, percent college grad
uate, and percent management;

• a clustering, presumably based on more extensive demographic data, that
assigns a cluster number to each census block group.

Substantially more than this already large amount of data could have been included;
many demographic variables were dropped when they appeared to add little to the
predictions.

This example illustrates many of the features that make analysis of business
data interesting but challenging. The data are highly "ragged": although we will
treat all the variables as observations on the 1000 respondents to the survey, there
are many missing values. The demographic data are unavailable for about 30% of
the observations, and in any case are not observed on the individual households but
rather on demographic entities determined by their addresses. The telephone data
were derived (no doubt with considerable difficulty) from databases not originally
intended to support data analysis at all. Nearly all the data, byt particularly the
survey data, can be expected to be based at least partly on subjective opinion, open
to questions about meaning, and prone to errors.

The ten variables in the survey data are in data frame market. survey and the
complete data, including nine additional demographic variables, are in market. frame.
Both data frames have 1000 rows. Instead of sampling the data as we did in previous
examples, let's make some graphical summaries of entire variables:

3.2. COMPUTATIONS ON DATA FRAMES

attach{market.frame)
plot{age)
plot{nonpub,usage)

NA =:J
65+

55-64

45-54

35-44

25-34

18-24 CJ
0 50 100

age

8
"'

I 0

I ~ ..
I Cl

ll!
::>

I 8

I :1l

0

150 200

51

0

0

8

I 0
0

' g
~

N y NA

nonpub

Figure 3.1: Two graphical summaries of the marketing data, market.frame. The left panel
shows the number of observations for each level of the ordered factor age. The right panel
plots the distribution of usage (monthly telephone usage) separately for the two levels of
nonpub.

The style of attaching a data frame and exploring the variables through a variety of
interactive graphics and other computations is a rewarding one, and we recommend
it as a preliminary before doing any formal modeling.

3.2 Computations on Data Frames

We proceed now to show how computations on data frames can be carried out in
S. As you use the modeling software described in this book, you will find yourself
carrying out the following general computations involving data frames:

• setting up some data as a data frame;

• extracting, inserting, or modifying variables and/or rows of the data frame;

• plotting and summarizing the variables;

• creating a fitted model with a model formula involving the variables in the
data frame;

52 CHAPTER 3. DATA FOR MODELS

• examining the fitted model using the data; for example, by plotting residuals
in various ways against variables in the data frame.

Section 3.2.2 presents functions to create data frames. Section 3.2.3 provides meth
ods to use and modify data frames. Some general summary functions for data
frames are described in Section 3.2.4. Additional plots and summaries using any of
the features of S can be carried out by attaching the data frame, as described in
Section 3.2.3.

Throughout, the appropriate computations are more intuitively obvious if we
keep in mind the two ways to think of data frames. First, a data frame can be
regarded as a matrix with the variables being the columns and the observations the
rows, but with the variables not restricted to any particular mode or class of object.
Second, a data frame can be used as a frame within which the variable names define
separate objects.

3.2.1 Variables in Data Frames; Factors

Variables in data frames can be anything that is indexed by the set of rows. However,
variables that can be used for statistical models in this book are of three forms:

1. numeric vectors;

2. factors and ordered factors;

3. numeric matrices.

In each case, the variable is implicitly indexed by the rows of the data frame-the
observations. That is, numeric and factor variables must have length equal to the
number of observations, and matrix variables must have the same number of rows
as there are observations.

Numeric vectors and matrices should be familiar to any S user. We use the
term "numeric variable" throughout this book to distinguish this type of variable
from a factor. This replaces the terminology "quantitative variable" or "continuous
variable" for such variables. Factors are not described in ~, and are introduced
in Section 2.2.1. A factor is an object that represents repeated values from some
set. The set is the levels attribute of the factor and is represented by a character
vector. For example, suppose sex is a factor of length 10 with levels "Male" and
"Female".

> sex
[1] Male Male Male Female Female Male Female Male Male

[10] Male

When operating on factors, think of them as containing character strings, but with
only strings from the levels allowed. Factors can contain missing values, whjle

3.2. COMPUTATIONS ON DATA FRAMES 53

character vectors can not. On the other hand, factors are not numeric objects.
Most basic functions behave as if they were operating on character data:

> sex == "Male"
[1] T T T F F T F T T T

> sex+1
Error in call to "+": Non-numeric first operand

This is the key difference from categories, in which the numeric coding used in the
implementation is not transparent to the user. Occasionally, one needs to replace
a category by some corresponding numeric codes; in this case, use the function
codes():

> codes(sex)
[1] 2 2 2 1 1 2 1 2 2 2

Some care is taken to make factors be well defined by the levels as a set; for
example, neither the comparison nor the call to codes 0 depends on the ordering of
the elements of levels(sex). That is, whether the first element in levels(sex) is
"Male" or "Female" should make no difference to any calculation involving sex. The
levels of a factor form a set.

Users who became familiar with categories as described in ~ can think of
factors as reimplementing categories as a class. Compared to categories, factors
behave more strictly according to the model that says they are repeated values
from some set of possible values.

An extension of factors is the class of ordered factors. Conceptually, these differ
from factors in that the levels !lfe taken to be ordered; now, the levels are not a set
but a vector with elements in increasing order. A factor or a vector can be turned
into an ordered factor by the function ordered 0:

> osex <- ordered(sex, c("Male", "Female"))
> osex

[1] Male Male Male Female Female Male Female Male Male
[10] Male

Male < Female

The second argument is the levels in their desired order. Ordered factors can be
created with any number of levels. For modeling, an ordered factor with only
two levels behaves identically to an unordered factor. With three or more levels,
the choice of contrasts in a linear model will be different for an ordered factor (see
Section 2.3.2). Models that use different fitting methods from those in linear models
may treat ordered factors differently; see, for example, Section 9.4 for tree-based
models.

The function ordered() can also be used on the left of an assignment, with the
same effect. For example;

54 CHAPTER 3. DATA FOR MODELS

> osex <- sex
> ordered(osex) <- c("Male", "Female")

would have the same effect as the previous computation to create osex.
Variables in data frames can contain missing values. The computations described

in this chapter to create and manipulate data frames allow missing values and do
nothing to remove them. The model-fitting methods, on the other hand, mostly do
not allow missing values, so that some computations need to be done to the data
before fitting the model. By default, most of the fitting functions will generate an
error if the missing values are still there when the model frame is computed (see
Section 3.3.3).

The functions in Section 3.2.2 to create data frames convert character or logical
vectors to factors, since the modeling software interprets non-numeric variables as
factors. If necessary, one can prevent this conversion; indeed, as we said, variables
can be anything at all, so long as indexing them by the rows makes sense. All
that is needed to ensure that a variable to be created in a data frame does not get
converted is to make the expression that defines it an argument to the I 0 function.
Thus, while the character vector state.abb would be converted to a factor, the
expression I(state.abb) would stay a character vector. Section 3.3.1 goes into the
implications of nonstandard variables in data frames. However, the three forms
listed on page 52 are the most commonly useful, particularly since most statistical
models are incapable of handling more general variables directly.

3.2.2 Creating Data Frames

New data frames can be created in a number of ways: by reading in data from
an external file; by binding together objects of various kinds; by replacements or
additions to existing data frames; and by other specialized methods. We begin by
discussing how to read in an external table-like file, using the function read. table().
Starting on page 59, we discuss the function data.frameO, which combines other
objects into a data frame. On page 62 we introduce a more specialized function,
expand. grid(), to create a data frame over a regular grid of values. In addition to
these specific functions, a list object can be coerced to be a data frame; see page
63.

Reading Tables of Data

Data frames are naturally analogous to printed tables, with the columns of the table
as variables, the column labels as variable names, and the row labels as row names.
Data from such a table should start as a text file outside of S and be made into a
data frame by calling the function read. table().

Consider the automobile data on page 46. The original data (from the viewpoint
of a reader of Consumer Reports) consist of a number of tables along with verbal

3.2. COMPUTATIONS ON DATA FRAMES 5!

summaries that implicitly define additional tables. Specifically, cu. summary is a dat;.
frame containing information selected from the summary descriptions in the maga
zine. This table is a good example of data entry starting from a non-computerizec·
source. To enter such data, you should begin by deciding what data you want_
and by then having the data recorded as a text file. Often, you may have receivec:
data in this form, or close to it. Tables produced from other software (for exam
ple, spreadsheet software) often resemble printed tables, perhaps after cleaning ur,
special control information.

The function read. table() is designed to read files that look like printed two
way tables. Let's begin with a simple example, a file that is essentially like th£'
printout on page 47:

Price Country Reliability Mileage Type
Acura.Integra.4 11950 Japan 5 NA Small

Audi.100.5 26900 Germany NA NA Medium
BMW.325i.6 24650 Germany 4 NA Compact

Chevrolet.Lumina.4 12140 USA NA NA Medium
Ford.Festiva.4 6319 Korea 4 37 Small

Mazda.929.V6 23300 Japan 5 21 Medium
Mazda.MX.S.Miata 13800 Japan NA NA Sporty

Nissan.300ZX.V6 27900 Japan NA NA Sporty
Oldsmobile.Calais.4 9995 USA 2 23 Compact

Toyota.Cressida.6 21498 Japan 3 23 Medium

If this is on a file named "auto1" it can be read in and turned into a data frame by
a simple call to read. table 0. '

> somedata <- read.table("auto1")
> dim(somedata)
(1] 10 5
> dimnames(somedata)
[(1]]:
[1] "Acura.Integra.4"
[4] "Chevrolet.Lumina.4"
[7] "Mazda.MX.5.Miata"

[10] ·"Toyota. Cress ida. 6"

[(2]]:

"Audi.100.5"
"Ford.Festiva.4"
"Nissan.300ZX.V6"

"BMW.325i.6"
"Mazda.929.V6"
"Oldsmobile.Calais.4"

[1] "Price" "Country" "Reliability" "Mileage" "Type"

Let's look at this example in a little more detail to see what is going on. The file
contained fields separated by "white space" , one or more blanks or tabs. The first
line of the file contained five fields, meant to be the names for the variables; the
remaining lines had six fields, the first being the row label and the rest the data for
this observation. Some of the fields are numeric; others are character strings. The
character strings will be turned into factor variables, as we can see by the following:

56 CHAPTER 3. DATA FOR MODELS

> sapply(somedata, data.class)
Price Country Reliability Mileage Type

"numeric" 11 factor" "numeric" "numeric" "factor"

(The function data. class() returns the class of an object, but for objects without
a class it tries a little harder to figure out what the object might be.) Notice that
the numeric fields could have NA values in the input.

This is a good general form for a file to input with read.table(). You don't
need to have either the variable names or the row labels; if they are missing, you
can construct them later on. For example, suppose file "auto2" contained:

11950 Japan 5 NA Small
26900 Germany NA NA Medium
24650 Germany 4 NA Compact
12140 USA NA NA Medium
6319 Korea 4 37 Small

23300 Japan 5 21 Medium
13800 Japan NA NA Sporty
27900 Japan NA NA Sporty
9995 USA 2 23 Compact

21498 Japan 3 23 Medium

The expression read. table("auto2") turns this into a data frame.
The following options control the behavior of read. table 0:

• Character strings by default cannot contain internal white space, hence the "."
characters used in the row labels. You can allow white space by quoting the
strings, by using an explicit default field separator character, or by organizing
the data in fixed-format fields. In the example, we could quote all the model
names used as row labels:

"Acura Integra 4" 11950 Japan 5 NA Small

The field separator is the argument sep= to read. table(); to use a non-blank
as a separator, say ": ", we would need to replace all nonsignificant blanks by
this character:

Acura Integra 4:11950:Japan:5:NA:Small

Notice that we edited out all extra blanks; when an explicit separator is used,
blanks are significant in character fields.

• An optional argument rov. names= to read. table() allows the call to specify
where the row names come from, either giving explicit labels or specifying
one of the fields to be used as row names instead of a variable. By default,
the first field will be used for row names, if it is a non-numeric field with no

3.2. COMPUTATIONS ON DATA FRAMES 57

duplicates. If all else fails, the row names are just the row numbers. They are
never null and must be unique.

• Names for the variables can be supplied as the argument col.names=. By
default, variable names will be read from the header line, if any; other
wise, the defaults are "Vl", etc. Explicit col.names override the default, but
read. table 0 will still try to read over a header line so that unwanted column
labels can be ignored. Names can also be changed after creating the object by
using the function names() to assign new variable names to the data frame.

• The header line can be explicitly forced in by the argument header=T. This is
needed if there js a column label for every column, as would be the case if the
first line of the file "autol" were

Model Price Country Reliability Mileage Type

since in this case the first line has the same number of fields as the remaining
lines, not one fewer.

Sometimes input data come in "fixed-format" fields; that is, it is known that
each field starts in the same column on each line. In this case, the appearance of a
particular separator character won't indicate a new field. The printed version of the
automobile data on page 4 7 would make such a file. With a little tedious counting,
we can find the starting columns of the fields. Providing this to read. table() reads
in the data:

> columns <- c(l, 21, 27, 35, 47, 55)
> somedata <- read.table("auto",sep=columns, header = T)

With the explicit columns used to put in separators, the first line now looks just like
the remaining lines, so read. table() can't tell automatically that there is a header
line; instead, we used the explicit header= argument.

If you are not too sure about the column positions, it may be wise to create a new
file with separators included, using the function make.fields(). Type ?make.fields

to see the detailed documentation for this function.
If you have been involved in many data-acquisition projects, your reaction to

any list of possibilities such as the above may well be that serious projects tend to
fall in the "none-of-the-above" category. If so, ad-hoc work will be needed, inside
or outside S, to convert the data into a suitable form. Work outside S can involve
any tools operating on text files; text editors (especially if they are reasonably
programmable) and special languages like awk are helpful. Within S, two functions
that may be useful are count.fields() and scan(). These functions count the
number of fields in each line of a file and read data from a file. As an example
of using them, consider the following sort of data. On each line of a file, we have
recorded two variables, say x and Y, and then an arbitrary number of values of

58 CHAPTER 3. DATA FOR MODELS

a third variable z, corresponding to events measured under conditions given by X

and Y. This is a common form of data; for example, imagine that the data record
locations in the sky and the observed magnitude of all the stars within a certain
radius of that location. The problem with such data is that there are a variable
number of observations associated with each row. Putting aside the analysis for the
moment, what is a convenient way to read the data in?

Here is one technique, broken into three steps. First, we get the number of fields
on each line. Second, we read in all the data, ignoring lines. Third, the number of
fields per line is used to extract X, Y, and z. The following might be the data, on a
file "sky. data":

10 30 5.9 10.9 8.2
20 40 13.8
30 50 10.7 8.8
40 60 9.8 11.0
50 30 13.4 11.9
60 40 9.2
70 50 9.4
80 60 13.4 7.2

Here are the first two steps:

> f <- count.fields("sky.data")
> f
[1] 5 3 4 4 4 3 3 4
> data <- scan("sky.data")

Now the problem is to split the data into the three variables. Doing this with a loop
over the lines is fairly simple, and I will leave that as an exercise. The following
technique is more typical of the advanced S user. It's not needed for understanding
data frames, but you might find it interesting and helpful. We compute the positions
of the X and Y values in the vector data, extract these values, remove them from
data, and finally form z by splitting what is left according to the original line.

> nline <- length(f)
> Xpos <- c(1, 1 + cumsum(f[-nline]))
> X <- data[Xpos]
> Y <- data[Xpos+1]
> data <- data[-c(Xpos, Xpos+1)]
> Z <- split(data, rep(1:nline,f-2))

The S function cumsum() gives the cumulative sum of its argument. Convince your
self that the expression above gives the indices in the data of all the X values. The
call to split 0 splits the data according to the values of its second argument: all
the values corresponding to a 1 into the first element, and so on. The call to rep()

3.2. COMPUTATIONS ON DATA FRAMES 59

returns as many Is as there are z fields on the first line, followed by as many 2s as
there are z fields on the second line, etc.

Having formed the three variables, one can combine them into a data frame
using the data. frame 0 function to be described in the next section:

> sky.data <- data.frame(X, Y, Zci(Z))

The function I 0 is used to keep z as a single variable of mode "list". The standard
use of the model-fitting functions cannot treat such variables directly, so some addi
tional calculations will be needed. For example, linear models to fit z as a function
of X and Y could use

> Zmean <- sapply(Z,mean)
> W <- sapply(Z,length)

to get a response Zmean and weights W, assuming all the individual observations were
independent. Two possibilities for more direct use of this sort of data would be as
a response in a general linear model in Chapter 6 (with a special family definition)
or in a nonlinear model as in Chapter 10.

Combining Variables into a Data Frame

If the variables to be included in a data frame already exist in one or more S
objects, the function data.frame() is the usual way to combine those objects into a
data frame. For example,

> state <- data.frame(state.abb, state.center, state.x77)

takes data in the three arguments and creates a data frame combining all of them.
The arguments to data. frame 0 are an arbitrary number of objects, each of which

will contribute one or more variables in the data frame returned. These arguments
can be more general than items 1-3 on page 52, including the following kinds of
objects:

1. Numeric vectors, factors and ordered factors: these each contribute a single
variable.

2. Character or logical vectors: these are converted into factors. The levels will
be the set of distinct values in the vector. The factor will not be ordered; the
function ordered() will convert the data into an ordered factor.

3. Matrices: each column creates a separate variable in the data frame. Column
names of the matrix, if any, are used for variable names.

4. Lists: like matrices, these contribute one variable for each component of the
list, according to the rules we are outlining here, applied recursively. (For
example, a character vector that is a component of a matrix is turned into a
factor.)

60 CHAPTER 3. DATA FOR MODELS

5. Data frames: the variables in the data frame become variables in the result,
essentially without processing.

If any argument to data. frame() is of the form I(x), then x will be inserted as is
into the data frame as a single variable. In particular, logical vectors, character
vectors, matrices, lists, and data frames will not be converted as described above if
protected by I(). Needless to say, if you put something in that makes no sense, later
calculations with the data frame are likely to run into trouble. Basically, though,
you can put anything you like into a data frame and compute away with it, as we
illustrated in creating sky. data above.

As data. frame() proceeds through its arguments, it attempts to compute vari
able names and row names. For row names, the function takes the first reasonable
candidate that comes along: a names attribute for a vector argument, row labels for
a matrix, or row names for a data frame. This can all be overridden by supplying
the argument roY. names=. The value of this argument can be one of the variables
in the resulting data frame, specified either by number or by name, in which case
that variable becomes the row names attribute and is deleted as a variable. Alter
natively, the row names argument to data.frame() can supply a specific vector of
names. Wherever they come from, row names must be unique.

Variable names can be specified by naming the actual argument to data. frame().
For matrix, data frame, or list arguments, the appropriate column labels, variable
names, or names attribute will be used (with an actual argument name pasted
on if supplied). A rule is enforced that variable names in a data frame must be
syntactically S names, made up of letters, numbers and ". ", and not starting with
a number. Variable names must also be unique. The function make.namesO is used
to ensure both these conditions; see its documentation for details of the algorithm
used. You can get any variable names you want, simply by assigning the names()
attribute of the data frame after creating it. Remember, though, that when data
frames are attached or used with formulas in models, life will be much simpler if
the variable names are really names that can appear in S expressions.

To illustrate, let's generate a data frame in which the xows correspond to the
states of the United States. The standard S database contains several objects with
related data (~.page 658): state. name and state.abb are character vectors with
the name and its official abbreviation, state. center is a list whose components are
the x andy co-ordinates for plotting on maps, state.region and state.division are
factors for regions and divisions, and state.x77 is a matrix with some demographic
data. These are just the sort of data for which a data frame is a convenient structure,
with the states corresponding to rows, and the variables containing different kinds
of information about the states.

> state <- data.frame(state.center, state.x77,
+ roY.names ~ state.abb)
> state [1: 5,]

3.2. COMPUTATIONS ON DATA FRAMES 61

X y Population Income Illiteracy Life.Exp
AL -86.7509 32.5901 3615 3624 2.1 69.05
AK -127.2500 49.2500 365 6315 1.5 69.31
AZ -111.6250 34.2192 2212 4530 1.8 70.55
AR -92.2992 34.7336 2110 3378 1.9 70.66
CA -119.7730 36.5341 21198 5114 1.1 71.71

Murder HS.Grad Frost Area
AL 15.1 41.3 20 50708
AK 11.3 66.7 152 566432
AZ 7.8 58.1 15 113417
AR 10.1 39.9 65 51945
CA 10.3 62.6 20 156361

The first argument was a list. Its two components, x and y, became separate vari
ables. The second argument was a 50 by 7 matrix, providing seven more variables.
The column labels of state. x77 were:

> dimnames(state.x77)[[2]]
[1] "Population"
[5] "Murder"

"Income" "Illiteracy"
"HS Grad" "Frost"

"Life Exp"
"Area"

Notice that these were automatically converted to legal names (by changing blanks
to dots). The optional rov.names= argument forced the row names to be the abbre-
viations in state. abb. '

Now we will put in some additional information, and use argument names to
data. frame() to control the variable names.

> state <- data.frame(state.center, state.x77,
+ name=state.name, region=state.region, rov.names = state.abb)
> state[1:5,]

X y Population Income Illiteracy Life.Exp
AL -86.7509 32.5901 3615 3624 2.1 69.05
AK -127.2500 49.2500 365 6315 1.5 69.31
AZ -111.6250 34.2192 2212 4530 1.8 70.55
AR -92.2992 34.7336 2110 3378 1.9 70.66
CA -119.7730 36.5341 21198 5114 1.1 71.71

Murder HS.Grad Frost Area name region
AL 15.1 41.3 20 50708 Alabama South
AK 11.3 66.7 152 566432 Alaska West
AZ 7.8 58.1 15 113417 Arizona West
AR 10.1 39.9 65 51945 Arkansas South
CA 10.3 62.6 20 156361 California West

The last two arguments would have produced variables state. name and state. region;
we supplied shorter names. If we had named either the second or third arguments,

62 CHAPTER 3. DATA FOR MODELS

that name would have been pasted together with the individual compon(mt. or· col
umn names. Using center=state.center, for example, would give:

center.x center.y Population Income Illiteracy Life.Exp
AL -86.7509 32.5901 3615 3624 2.1 69.05
AK -127.2500 49.2500 365 6315 1.5 69.31
AZ -111. 6250 34.2192 2212 4530 1.8 70.55
AR -92.2992 34.7336 2110 3378 1.9 70.66
CA -119.7730 36.5341 21198 5114 1.1 71.71

The state names were converted to a factor by the general rule given above. Oe<:a
sionally, you may want to retain them as a character vector, if they should never be
used as a factor in modeling. The function I 0 can again be used for this purpose:

>state<- data.frame(name = I(state.name), state.center, state.x77)

by using the I 0 function as mentioned before.

Data Frames from Regular Grids

For some applications, one wants to generate pseudo-observations that form a grid
over some specified variables. When such data are to be given to a function that
expects a data frame as its argument, the grid needs to be used to generate the
corresponding data frame. The predict() methods, in particular, expect new data
to be a data frame. They return the values that the fitted model would predict to
correspond to the observations in this data frame. Suppose Weight and Disp. from
cu. specs were used as predictors in some model. To look at predictions from the
model over the range of the two variables, we might ask for all the pairs of values
from the two vectors:

> pretty(Weight)
[1] 1500 2000 2500 3000 3500 4000
> pretty(Disp.)
[1] 50 100 150 200 250 300 350

There are 6 x 7 = 42 pairs of values. Since prediction and other similar computations
usually want their input as a data frame, the function expand.grid() takes marginal
specifications of the values and creates a data frame with all the combinations:

> WDgrid <- expand.grid(Weight = pretty(Weight), Disp. = pretty(Disp.))
> dim(WDgrid)
[1] 42 2
> WDgrid[l :5,]

Weight Disp.
1 1500 50
2 2000 50

3.2. COMPUTATIONS ON DATA FllAMES 6 .. ,,

3 2500 50
4 3000 50
5 3500 50

The call to expand.grid() should provide the names for the variables in the new
frame, along with the marginal values. To make it easy to alter the specificatiom
of the grid, the entire set of arguments can be replaced by a single list argument:

spec<- list(Weight = pretty(Weight), Disp. = pretty(Disp.))
WDgrid <- expand.grid(spec)

The grid variables can also be factors; the analogue to a range of values for r
numeric variable is the levels for a factor. If the argument to expand.grid() if
such a character vector (or any character vector), the corresponding variable in th1
result will be a factor with each level appearing the same number of times:

> WDgrid2 <- expand.grid(Type = levels(Type), Weight= range(Weight))
> WDgrid2

Type Weight
1 Compact 1845
2 Large 1845
3 Medium 1845
4 Small 1845
5 Sporty 1845
6 Van 1845
7 Compact
8 Large
9 Medium

10 Small
11 Sporty
12 Van

3855
3855
3855
3855
3855
3855

Keep in mind that the total size of the grid can grow very quickly, since the numbe
of rows is the product of the length of all the arguments!

The rows of the data frame produced by expand. grid () are ordered in "standard
order for a multiway array defined by the arguments to expand.gridO. So, fo
example, any vector whose elements correspond to the rows of Wgrid2 could b
made into a 6 by 2 matrix. This is, in fact, what some of the prediction method
arrange to do (see, for example, Section 8.2.4). The same operation can be don
in general by giving the corresponding vector, along with the data frame, to th
function make.grid(). Another example of expand. grid() is given on page 81, i
illustrating its use with the coplotO function.

Coercing to a Data Frame

Since a data frame has characteristics both of a matrix and of a list, it is reasonabl
that either of these structures could be turned into a data frame. So they can, b

64 CHAPTER 3. DATA FOR MODELS

calling as.data.frame(object). This is the preferred way to create a data frame if
the variables are naturally built up in an ordinary matrix or in a list. Any matrix
can be turned into a data frame, but the operation is only likely to be useful if you
plan subsequently to add new variables of a different class to the matrix or if the
matrix contains character data that you want to treat as factors. If the data are all
numeric, the data frame has no more information than the matrix.

Lists to be turned into data frames should have all elements of the same length
and should have non-null, unique names.

3.2.3 Using and Modifying Data Frames

Two approaches to working with data frames are useful, either using matrix-like
computations or attaching the data frame and using the variables as separate ob
jects. The matrix view is most often useful when working with more than one data
frame at a time and when extracting or replacing rows within a single data frame.
To introduce new variables, to revise individual variables, or to study the variables
interactively, the best approach is to attach the data. Some examples are given
starting on page 67.

Data Frames as Matrices

Data frames can be treated as matrices in calls to most of the basic functipns
treating arrays: subsets and elements, dim(), dimnames(), and functions based on
those. If x is a data frame, then

x[i,]; x[,j]; x[i,j]
dim(x); dimnames(x)
nroY(x); ncol(x)

produce results corresponding intuitively to their behavior on matrices. For exam
ple, x [i, J produces a new data frame by using i to index the rows of x. The indexing
by i can use numeric, logical, or character values. Similarly, x[.j] indexes on the
columns (the variables) and x[i,j] on both. When a single column is selected, the
result is by default the variable, not a data frame containing one variable. This
action can be suppressed by including the argument drop=F, following the rules ap
plied to arrays (1§1, page 128). For example, if stats was some statistic computed
for each of the variables in market. frame, the expression

market.frame[, stats > cutoff , drop=F)

ensures that the extracted object is still a data frame, even if it has only one column.
A single row by default remains a data frame-there is no generally useful object
corresponding to rows of a data frame. If you really want to, however, you can
cause the single row to be dropped to a list by including the argument drop•T.

3.2. COMPUTATIONS ON DATA FRAMES 65

Variable names and row names may be abbreviated in selecting subsets, so long
as the character strings given match the beginning of one unique name. In the state
data, state[, "P"] would select the Population variable, but State[, "I"] would fail
because it would partially match both Income and Illiteracy. Names given in
replacement expressions must match exactly in order to replace rows or variables.
These are just the standard S rules for partial matching, extended to data frames.
Row and column replacements can specify positions not currently in the data. The
result will be to extend the data frame as necessary. The example on page 66 uses
this to combine data frames.

The dimO attribute is just what one would expect: a numeric vector of length
2 containing the number of observations and the number of variables. The list
returned by dimnames() contains the row names and the variable names as its two
elements. Notice that by the construction of data frames, both of these should
contain a set of unique names, in contrast to a matrix in which dimnames() or
either of its elements could be empty. These two attributes can also be replaced or
modified by putting the expression on the left of an assignment.

Computations that want to use data frames as ordinary matrices can convert
them. The standard coercing function, as. matrix (), has a method for coercing data
frames. The technique used by

as.matrix(x)

is to find the ordinary S mode required to represent the. data. The most typical
case, if any of the variables in x is not numeric, is that the matrix will be of mode
"character". It is also possible for the resulting matrix to have dimension different
from that of x, if any of the variables in x was itself a matrix (see the discussion in
Section 3.2.2).

A second kind of conversion to an ordinary matrix is provided by the function
data. matrix 0. This function tries its best to interpret the variables in the frame as
numeric data. In particular, it converts any factors or ordered factors to numbers
representing the levels, by calling the function codes 0 for each of them. In order not
to lose information, the factor levels are kept in a list, as attribute "column. levels"
of the resulting matrix. Like as.matrixO, data.matrix() will expand any matrix
variables in the data frame.

Another relation between data frames and matrices arises during the fitting of
models. Most of the models discussed in this book proceed by creating a numeric
matrix that describes all the terms included in the model. These objects belong to
the "model.matrix" class, and can be generated by calling model.matrix(). These
matrices encode appropriately all terms in a model, to produce a numeric matrix
suitable for fitting. We describe them in Section 2.4.3, in discussing how variables
of various kinds can be coded numerically. In particular, factors and ordered factors
are converted to numeric variables derived from the "dummy" variables that code
the presence of each level of each factor.

66 CHAPTER 3. DATA FOR MODELS

The three functions each produce different results, if any variable in the data
frame is a factor or an ordered factor. Which result is right depends on the cir
cumstances. Models in Chapters 4-7 use model.matrixO, models in Chapter 8
use a special function loess.matrixO, the tree-based models in (Chapter 9) use
data.matrixO, and printing methods tend to use as.matrixO or a similar calcula
tion.

An Example: Combining Data

To illustrate data frames as matrices, we will combine some of the data in the three
data frames of automobile data we discuss in Section 3.1.1 to form a single data
frame. The goal is to match corresponding model names in the three data frames,
and create a single data frame. Since the model names in the three original data
frames are not quite consistent, we will use the S function pmatchO and some hand
editing to match rows. This sort of preliminary data cleaning is typical of most data
analyses. All the details would take too much space to show, but we can convey
the style of the computations. You can skip to the frames discussion on page 67 if
you are not interested in the example.

We first try to match row names in the three data frames as well as possible.
The practical problem is that the three data frames use slightly different ways to
refer to the automobile models. Of the three original frames, cu.dimensions seems
to have the cleanest set of row names; sorting them and editing a little by hand
produces our 111 target row names, saved in common. names. The row names in the
other data frames tend to have extra characters after some of the model names.

The function pmatchO finds row names in the data frames that contain exactly
the common names, or a unique match with extra characters after the common
names:

match.summary <- pmatch(common.names, rov.names(cu.summary))
match.specs <- pmatch(common.names, rov.names(cu.specs))

These two vectors contain row numbers in cu. summary and cu. specs that we can
match to names in common. names. We will use these matches to bind together rows
from all three data frames. There will be NA's in the vectors where names didn't
match uniquely. The next step is to try to match those names by hand. Editing of
the matching vectors and perhaps of common.names will occur.

Once we are satisfied with the matches, the new data can be set up by

> car.all <- cu.dimensions[match.dims,]
> car.all[. names(cu.summary)] <- cu.summary[match.summary,
> car.all[, names(cu.specs)] <- cu.specs[match.specs,]
> rov.names(car.all) <- common.names

Notice that we appended the new columns to car. all using the names for the
columns in the original frames. Although we started with the rows of cu. dimensions,

3.2. COMPUTATIONS ON DATA FRAMES 67

we end up with a match.dims as well, after editing and sorting. It was essential to
check before the above calculation that the variable names were unique:

> any(duplicated(c(names(cu.summary), names(cu.dimensions),
+ names(cu.specs))))
[1] F

Once uniqueness is assured, the computations above create a data frame with all
the data, carrying over the individual variable names, and using common.names to
name the rows.

As another example, done similarly, we construct a data frame with just the
automobiles for which Consumers Union test data are available. Since the Mileage
variable in the cu. summary data frame is missing unless the model was tested, we
begin by selecting rows from cu. summary:

> ok <- !is.na(car.all[."Mileage"])
> car.test.frame <- cu.summary[ok,]

From a process of matching row names from cu. specs, we then added some variables
from cu.specs. Both car.test.frame and car.all will appear in examples in this
and later chapters.

Data Frames as Frames or Databases

A frame in S is a mapping of names to objects for the purpose of evaluating S
expressions using the names. The S evaluator maintains a frame to hold the argu
ments in a call to an S function, plus any local assignments, during the evaluation of
the call. A database is a directory, S object, or other permanent construction that is
attached via the attach() function to define a similar mapping of names to objects.
The files in the directory, the components of the object, or whatever mapping the
database implies make objects available by name to subsequent S expressions.

A data frame can be attached as a database and can be used as a frame for
evaluation. In either case, each of the variables in the data frame becomes available,
by name, as a separate object. The model-fitting functions to be described in later
chapters all take a data frame as an optional data argument.

fuel.fit <- lm(Fuel~ Weight+ Disp., fuel.frame)

The variables in the data frame fuel. frame include all the names appearing in the
formula. These variables will be automatically made available by name during the
computation of the fit. Section 3.3.3 will discuss the details of what happens when
data frames are used in model-fitting.

To do interactive computations with the variables in a data frame, you should
attach it; for example,

68

> attach(cu.specs, 1)
> h <- Weight/Disp.

CHAPTER 3. DATA FOR MODELS

This is the recommended way to revise a data frame, whether changing existing
variables or creating new ones. Notice the second argument to attach(): the data
frame is attached in position 1, as the working data. As a result, ordinary assign
ments, such as that for h above, take place in the attached database. A secondary
benefit is that variables in the data frame will not be hidden by objects in the
previous working database (typically the local . Data directory).

Any calculations used to create or modify objects in the attached database do
not modify the original data frame. In the example, h is created in the working data,
an object internal to the S evaluator. The call to attach() initialized that object
as a copy of the data frame cu. specs. From then on, assignments only changed the
internal object. You can save a copy of this object at any time. The easiest, and
the recommended, way to save it is at the time the attached database is detached;
for example,

detach(1, save = "new.specs")

will save the revised data frame as the object new. specs, in the database in second
place on the search list before detaching. This is typically the local .Data directory.

This sequence of steps is the recommended way to revise data frames:

• Attach a data frame as in position 1.

• Carry out any computations to revise or create variables.

• Detach and save the database in position 1.

For most purposes, you do not need to know any further details, but we provide a
few here anyway, in case they may be relevant.

While the data frame is attached, its class is ignored in assignments. The objects
created will not generally be valid variables in the data frame. For example, here
is a natural way to take logs of a variable known to have zero, but not negative,
values:

> attach(market.frame, 1)
> uu <- .OOOl•max(usage)
> logU <- log(usage + uu)

The object logU is a new variable, but uu is just a single number. Although the
class of the attached database has not been lost, the internal object is not itself a
valid data frame at this point. To turn it int.o such an object, the evaluator looks
for a method for the generic function dbdetach(). There is such a method for data
frames; specifically, it deletes all objects in the database that are not the right size

3.2. COMPUTATIONS ON DATA FRAMES 69

to become variables. Only objects that have length or number of rows equal to
the row.names attribute of the database are retained. Another class of objects can
be used if you do want to retain these objects of arbitrary length along with the
variables-see Section 3.3.4.

Attaching a data frame is also a good way to examine the results of a fit. Each
kind of model provides methods for overall summaries and diagnostics. After looking
at these, you will often want to examine the fit further, plotting variables from the
data frame in a variety of ways along with components of the fit. Attaching the
data frame makes such computations simple.

As always in S, the data frame attached or included as an argument can be any
expression that evaluates to a data frame, not just the name of an object:

attach(car.all[1:50,])

attaches a data frame from the first 50 rows of car. all.

3.2.4 Summaries and Plots

Plots and numerical summaries play a critical role in statistical modeling. Numeri
cal summaries provide an incisive, although quite limited, quantification of aspects
of the data such as the variation of measurements of a single variable or the de
gree of correlation between measurements of two variables. Plots have two roles:
exploratory analysis before embarking on a first model, and diagnostic checking of
fitted models. For a thorough, interactive analysis, the best approach is to attach
the data frame to the search list and use as wide a range of appropriate compu
tations in S as possible. In this section, we show the behavior of some generic
functions that can be applied to entire data frames:

• summary(): print summaries;

• plot 0: plot variables;

• pairs(): plot a scatterplot matrix;

• coplot 0: plot, conditioning on other variables.

These functions are generic; that. is, they have suitable methods for a wide range
of objects. In the examples of this section, we will use the generic functions either
with complete data frames

summary(car.all)

or with formulas

plot(Mileage ~ Weight, car.test.frame)

70 CHAPTER 3. DATA FOR MODELS

used to select or transform variables from the data frame. Of course, we can use
other S functions to plot and summarize, by giving rows or columns of a data frame
as arguments. For example, one function, scatter. smooth 0, which we will also
show here, makes a scatterplot and adds a smooth curve.

The summary and plot functions are designed to give you an overall look at
the data. They try to do something reasonable in choosing information to print or
plot about the data variables and their interrelationships. Use them for an initial
view, to be followed by detailed study of interesting details. Generally, graphical
summaries are better for seeing unexpected features of the data than are printed
summaries. When there are many variables, there may simply be too many plots or
too much printed output, even for initial study. In that case, one approach is to look
at smaller subsets of variables. For example, from the car. test. fraJDe constructed
above, we select the Weight, Disp. and Mileage variables for some simple analysis
of fuel economy:

> fuel.fraJDe <- car.test.frame[,c("W","D","M"))

We will produce some plots of this data frame, and will use it in later model-fitting
examples.

Plots and summaries can be produced by using the generic plot() and summary()
functions with various classes of objects: data frames, individual variables, and
formulas. Giving a formula to a summary or plot implies that the response, if any,
and all the predictors in the formula should be displayed. As some examples will
show, this is a flexible and convenient way to produce summaries and plots.

Summaries

Calling summary() produces a printed summary of the variables:

> summary(car.test.fraJDe)
Price Country Reliability Mileage

Min. : 5866 USA :26 1 : 7 Min. :18.00
1st Qu.: 9870 Japan :19 2 : 7 1st Qu. :21.00
Median :12220 Japan/USA: 7 3 :12 Median :23.00
Mean :12620 Korea 3 4 : 6 Mean :24.58
3rd Qu.: 14940 Ge:rmany 2 5 :17 . 3rd Qu. :27.00
Max. :24760 Sweden 1 NA's: 11 Max. :37.00

(Other) 2

Type Weight Disp. HP
Compact:15 Min. :1845 Min. : 73.0 Min. : 63.0
Large : 3 1st Qu. :2568 1st Qu. :113.5 1st Qu.: 101.0
Medium :13 Median :2885 Median :144.5 Median :111.5
Small :13 Mean :2901 Mean :152.1 Mean :122.3

3.2. COMPUTATIONS ON DATA FRAMES

Sporty : 9
Van : 7

3rd Qu. : 3243
Max. :3855

3rd Qu. :180.0
Max. :305.0

3rd Qu. :143.6
Max. :226.0

71

The summary for numerical variables, like Price, gives mean, median, smallest and
largest values and first and third quartiles. For factors or ordered factors, like Type

or Reliability, a table of counts is produced. For all forms, if there are missing
values, the number of these will be printed.

Distribution Plots

A plot() method for the variables of a data frame generates plots summarizing the
distribution of the variables. For numeric variables, quantile plots are shown; that
is, if the data are in x, sort (x) is graphed against ppoints (x). ·For facto.rs, plot()
graphs the counts for each level.

The method can be invoked by giving plot() a data frame. Where only some
of the variables in the data frame are to be plotted, you can select a subset of the
columns. This is illustrated in Figure 3.2:

plot("' Country+ HP, car.test.frame)

Brazil o
England o
France o

Germany o
Japan

Country

Japan/USA o
Korea o

Mexico o
Sweden 0

USA

0

0

0 5 10 15 20 25

Count

HP

0

0

8

0

0.0 0.2 0.4 0.6 0.8 1.0

Fraction

Figure 3.2: Two distribution plots of data from car.test.frame.

A flexible alternative is to use the model formulas to specify which variables to plot.
A plotting method for formulas will produce scatter plots of the response (the left
side of the ""'" operator) against each of the terms (the expressions separated by "+"
on the right side of the operator). If the left side is omitted, however, distribution

72 CHAPTER 3. DATA FOR MODELS

plots will be produced of each of the terms. The plots in Figure 3.2 could have been
made by:

> plot<~ Country + liP, car. test. frame)

This form is more flexible, in that any transformation or combination of variables
could hav~ been specified in the formula. For a third option, the data frame could
have been attached, after which the formula can be given without a second argu
ment:

> attach(car.test.frame)
> plot(~ Country + HP)

See Section 2.3.1 for further discussion of formulas.

Scatterplots, Scatterplot Matrices, and Smoothing

Let us focus now on three variables from car.test.frame: Mileage, Disp., and
Weight. Our purpose is to study the dependence of fuel consumption on weight
and displacement. The scatterplot matrix is a useful graphical method for a first
look at the data to show inter-relationships among the variables:

> attach(car.test.frame)
> pairs(~ Mileage + Disp. + Weight)

The result is shown in Figure 3.3. To produce just the scatterplots of mileage
against weight and displacement, give a formula object to plot():

plot(Mileage ~ Disp. + Weight)

Given a formula with a left side (a response), the plot method makes scatterplots
of the response against each of the terms on the right side. The result is shown
in Figure 3.4. The last two plots show that the variables are strongly associated,
and there is some suggestion of nonlinearities. In particular, the dependence of
Mileage on Weight appears to be somewhat curved. Let us add a smooth curve to
the scatterplot of Mileage against Weight to study the dependence more incisively:

> scatter.smooth(Mileage ~ Weight, span = 2/3)

The result is shown in the left panel of Figure 3.5. We have added the smooth
::urve using a nonparametric regression procedure that is described in Chapter 8; the
argument span controls the amount of smoothness. The curve confirms the nonlinear
pattern. Since gallons pet mile are as sensible for measuring gas consumption as
miles per gallon, it makes sense to attempt a straightening of the relationship by
:\n inverse transformation:

> scatter.smooth(100/Mileage ~ Weight, span • 2/3)

3.2. COMPUTATIONS ON DATA FRAMES

100 150 200 250 300

0

0
0

00
0 0

0
0

Mileage 00

• 0
00 0

oo 0
0 O<D

""" 0 0
0 0 0

"' 00
00 ..
0 0 0
0 0 0 0

Dol

0

0 0
Disp. oo 8oo 0

0

o 08 8o§§ o
o 0 8

0

0 oo 0 oo
0 oo oo 0

0
0

0 0 "' 88
0

0 8 0
0

oooo 0 0 0

oa 0

"'of
0 "' 0 o~s

0

8°0 ge odf'~
0 lo 02<jb

00 o8 0 8'iio
0 0 0

0 0 J~ oB oo
o8

0 0
0 0

0 0 00

20 25 30 35

0

0
0

000 0
0 0

0
0
00

"'"' "' 0 00
0 0 0

0 •
0 = 0 0 0

0 Q) 0
OCD 00 0

OCJ>O 0
0 "' 0 000

(I (I

0 0

0 0

aJi 0 00
0

0~, 8 0 0

ci'bo~ o o

00
0 OIJDO 0

Weight

2000 2500 3000 3500

"' .,

0 .,

"' N

73

Figure 3.3: Scatterplot matrix of measurements of three variables from car. teat.frame.

74 CHAPTER 3. DATA FOR MODELS

0 0

10 0 :!! 0

"' 0 0
0 0 000 0

0 0 0 0

0 0 0 0

i "' 0 Cl "' 0
00 g> 00

Cl) 0

~
(I) (I)

10
00 0

10
(I) 0 00

00 0 0 0 0 N
0 O<D

N
0.

CDO 0 0 0 = 0 0 0
0 0 0 0 CD 0

0
(I) 00 0(1) 00 0

N 00 .. ~ OCDO 0
0 0 0 0 (I)

0 0 0 0 0 000

100 150 200 250 300 2000 2500 3000 3500

Dlsp. Weight

Figure 3.4: Response against predictors.

0 0 00 0

10 0 0

"' 0 C! 000 0 10
0

0 0

0 0
Cl

Cl "' li
l 0 .!!

(I) (I)

~
0 0

~ (I) 00 ...
(I) 10 0 0 N

0 ...
0

0

0 0

"' ..;

2000 2500 3000 3500 2000 2500 3000 3500

Weight Weight

Figure 3.5: Sootterplots of mileage and the inverse of mileage against weight with smooth
curoes added.

3.2. COMPUTATIONS ON DATA FRAMES 75

The result is shown in the right panel of Figure 3.5. Now the dependence is nearly
linear.

Since we have been having so much fun with cars, we will study the variables in
the data frame ethanol, which are from an experiment with a single-cylinder auto
mobile test engine (Brinkman, 1981). The data are graphed in Figures 3.6 and 3.7:

> plot{ethanol); pairs{ethanol)

The dependent variable, NOx, is the concentration of nitric oxide, NO, plus the
concentration of nitrogen dioxide, N02 , in the engine exhaust. Concentration is
normalized by the amount of work done by the engine, and the units are p,g of
NOx per joule. One predictor is the compression ratio, C, of the engine. A second
predictor is the equivalence ratio, E, at which the engine was run; Eisa measure
of the richness of the air and fuel mixture. There were 88 runs of the experiment,
and as the name of the data frame suggests, ethanol was the fuel.

Coplots

A conditioning plot, or coplot, is a graphical method for seeing how a response
depends on a predictor given other predictors. The technique is described in the
second edition of the book The Elements of Graphing Data, {Cleveland, to appear).
The function coplot 0 implements this graphical method for one or two given pre
dictors. Coplots are used extensively in plotting with the ·local regression models
in Chapter 8; look at the examples and discussion in that chapter for further mo
tivation and details. The graphical technique is useful generally, however, so we
introduce it here.

Figure 3.8 is a coplot of the ethanol data. The dependence paneLs are the 3 x 3
array of square panels and the given panel is at the top. On each dependence panel,
NOx is graphed against C for those observations whose values of E lie in an interval;
thus, on the panel, we are seeing how NOx depends on C for E held fixed to the
interval. The intervals are shown on the given panel. As we move from left to
right through the intervals in the given panel, we move from left to right and then
bottom to top through the dependence panels. Figure 3.9 is a coplot of NOx against
E given C. Since C takes on five values, we have simply conditioned on each of
these five values.

Figures 3.8 and 3.9 show us much about the ethanol data. For low values of E,
NOx increases with C, and for medium and high values of E, NOx is constant as
a function of C. Thus there is an interaction between C and E. Second, over the
range of values of E and C in the dataset, NOx undergoes more rapid change as
a function of E for C held fixed than as a function of C for E held fixed. Finally,
the plots show that the ·amount of scatter about the underlying pattern is small
compared with the effect due to E and is moderate compared with the effect due
to C.

76

rl
~
ti
ii)
li;
"E
0

..
"'

"'

..
ci

NOx

<B

/

/
/

0.0 0.2 0.4 0.6 0.8 1.0

Fraction

E

/
/

/

/
0

0.0 0.2 0.4 0.6 0.8 1.0

Fraction

CHAPTER 3. DATA FOR MODELS

c

C/)
u

:1
en
li; -"E
0

-CD -
0.0 0.2 0.4 0.6 0.8 1.0

Fraction

Figure 3.6: Distribution plots for variables in ethanol.

3.2. COMPUTATIONS ON DATA FRAMES

NOx

a 8
0 •

8
0 0

8 0

§ 8
0 D

9 •
~ g

10 12 14 16 18

• 8 0 •
0

D

o• 0

:>o Jo
~

0 0
0 0 0

g I 00000

:!_,'::;;...,=:;:0;;:;;:0:;;:0=;D~:::::;;:D==0;:::;e;;O;: ~=========~ 0 D 0

oo •oo•ooo o o o co 00 - 00 0 0 00 GO 0

~ a:DO Q)Q IZI OOOCD

OOCD 0 mDCD 0 00 0 e)

2 3

0 0

8 ~
• 0 D

• 0

I 8
8 0

! 6
0 g

8
0
0

i
8

c

0

8
0
0

0
0

0 •
0

0

0

0 OODtO CID 00 00 0

E

0.6 0.8 1.0 1.2

Figure 3.7: Scatterplot matrix of ethanol.

"!
0

77

78 CHAPTER 3. DATA FOR MODELS

Given: E

0.6 0.8 1.0 1.2

= = = --··~---··

= ·---~---···-···················--·········-··

8 10 12 14 16 18

.,
0

0
0

8 0
0 -" ..

0 0 0
0 0 0 0

0 0 8 0 0
0 0 0 Oo 8 Q 3 0 0

0

0 ...
~

0

0 0
0 0 0 0

0 8 0 -0

.,
0

0 0
0

0 0 0

0

0 0 ~
0

0 0 0 §
0 0 ~

0

~0
0

0

8 10 12 14 16 18 8 10 12 14 16 18

c

Figure 3.8: Coplot of NOx against C given E.

3.2. COMPUTATIONS ON DATA FRAMES 79

Given: C

10 12 14 16 18

I
···--··--·----------·-································

0.6 0.8 1.0 12

()
z ..

.,

"'

0.6 0.8 1.0 1.2 0.6 0.8 1.0 1.2

E

Figure 3.9: Coplot of NOx against E given C.

80 CHAPTER 3. DATA FOR MODELS

Let us now see how we produced the two coplots, starting with Figure 3.8. First,
the conditioning intervals were computed by the function co. intervals ().

> attach(ethanol)
> E.intervals <- co.intervals(E, number = 9, overlap = 1/4)

The result is a 9 x 2 matrix that gives the left endpoints of the intervals in the left
column and the right endpoints in the right column:

> E.intervals
[, 1] [,2]

[1,] 0.535 0.686
[2 ,] 0.655 0.761
[3,) 0. 733 0.811
[4,] 0.808 0.899
[5.] 0. 892 1. 002
[6,] 0.990 1.045
[7,] 1. 042 1.125
[8,] 1.115 1.189
[9,] 1.175 1. 232

The intervals have the following properties: they contain approximately the same
number of values of E, and the fraction of values shared by two successive intervals
is approximately equal to overlap. Now we call coplotO:

> coplot(NOx ~ C I E, given.values = E.intervals, panel
+ function(x,y) panel.smooth(x, y, degree = 1, span= 1))

The first argument is a formula that specifies the response, the predictor to plot
against, and the given predictor; in our example we are graphing NOx against C
given E. This is a special kind of formula, which uses the operator "I" to separate the
predictor(s) from the conditioning variable. This operator is interpreted in formulas
as "given", following its typical use in mathematics. With this interpretation, we
read the formula as

"Model NOx by c, given E"

In the plotting functions, we extend "modeled" in a natural way to. imply the
informal process of looking at one variable as a function of another.

The argument given. values to coplotO specifies the conditioning values. For a
numeric given predictor the values can be a two-column matrix as in the example,
or can be a vector, in which case each element is both the left and right endpoint
of an interval, so the intervals have length 0. We can also condition on the levels of
a factor; in this case the argument is a character vector.

The argument panel takes a function of x and y that determines the method of
plotting on each dependence panel; x refers to the abscissas of points on a panel and y

3.2. COMPUTATIONS ON DATA FRAMES 81

refers to the ordinates. The default function is points (). In the above expression we
have used the function panel. smooth to smooth the scatterplots. Notice a paradigm
that is frequently useful in S: giving an in-line function definition to specify both
a function and some optional arguments. In the example, we want panel. smooth{)
to be called with two specific values for optional arguments. This defines a new
function, but instead of assigning it somewhere, we just include the definition in
line:

function(x, y) panel.smooth(x, y, degree = 1, span= 1)

The value of this expression is an S function, just what we need as the panel
argument.

As with scatter.smoothO, the argument span to panel.smooth() controls the
amount of smoothness. Also, the argument degree is specified. It controls the
degree of the locally-fitted polynomials that are the basis of the smoothing method,
and can take the values 1 or 2. Figure 3.9 was produced by the following expressions:

> C.points <- sort(unique(C))
> coplot(NOx ~ EIC, given.values = C.points, column.row = c(3,2),
+ panel = function(x,y) panel.smooth(x, y, degree = 2, span= 2/3))

In this case, given. values is a vector. The argument column.row has been used to
specify the dependence panels to be arranged in an array with three columns and
two rows.

Coplots of Fitted Functions

A coplot can also be used to display a surface fitted to a response as a function
of two or three predictors. The points at which to do the plot will in this case be
chosen by us, typically over a regular grid of values. The function expand. grid()
will be used to generate a data frame corresponding to the grid. Let us look at
one example. The data in data frame air are from an environmental study to
determine the dependence of the air pollutant ozone on solar radiation, wind speed,
and temperature:

> summary(air)
ozone radiation temperature

Min. :1.000 Min. 7.0 Min. :57.00
1st Qu. :2.621 1st Qu. :112.8 1st Qu. :71.00
Median :3.141 Median :207.0 Median :79.00
Mean :3.248 Mean :184.8 Mean :77.79
3rd Qu. :3.968 3rd Qu. :255.8 3rd Qu.:84.75
Max. :5.518 Max. :334.0 Max. :97.00

Figure 3.10 is a scatterplot matrix of the data:

wind
Min. 2.300
1st Qu.: 7.400
Median : 9.700
Mean 9.939
3rd Qu.: 11.500
Max. :20.700

82

0

0

CHAPTER 3. DATA FOR MODELS

temperature
0 I'?

0 5I

wind

60 70 80 90

Figure 3.10: Scatterplot matrix of air.

3.2. COMPUTATIONS ON DATA FRAMES 83

> pairs(air)

In an analysis described in Chapter 8, a surface was fitted to ozone as a function
of the three predictors. Suppose we want to make a coplot of the fitted surface
against radiation, given wind and temperature. Denote the surface by s(r, t, w).
We want to condition on values of t and w and graph against r; that is, we graph
s(r, t•, w•) against r for various values of t• and w•. To do this, the surface was
evaluated on a 50 x 5 x 5 three-dimensional grid in the space of the predictors-50
values of radiation, 5 values of temperature, and 5 values of wind speed. Specifically,
suppose object air .marginal is a list with three components: radiation, containing
50 equally spaced values of radiation from 125 to 250; temperature, containing 5
values of temperature from 70 to 85; and wind, containing 5 values of wind from 7.5
to 11.5 (a call to seq() will generate each of these). For plotting, we need a data
frame with all the 1250 combinations of these values. The function expand.gridO,
defined on page 62, turns the marginal values into a data frame:

> air.grid <- expand.grid(air.marginal)

air.grid is a data frame with 3 columns and 1250 =50 x 5 x 5 rows; the row values
are the coordinates of the grid points:

> names(air.grid)
[1] "radiation:" "temperature" "wind"

The surface Values corresponding to this grid are an array, air.fit, with one di
mension for each predictor:

> dim(air.fit)
[1] 50 5 5
> names(dimnames(air.fit))
[1] "radiation" "temperature" "wind"

(How we construct these values is discussed in Chapter 8.) Now we add to the data
frame air. grid to form a new data frame that has both the coordinates and the
surface values:

> air.grid[, "fit"] <- as.vector(air.fit)

The as. vector() is just to be certain that the fitted values enter as a vector; the
definition of expand.grid() ensures that the rows of air.grid come in the same
order as the values of the three-way array for air. fi ~· Finally, we can make the
coplot:

> coplot(fit rv radiation I temperature * wind, data = air.grid,
+ given.values • air.marginal[c("temperature", "wind")], type= "1")

84

70

CHAPTER3.

Given· t · emperature

75

~--- ..

DATA FOR MOD ELS

..

=

Figure 3.11.· Coplot 0 t ~ surface fitted . to au.

3.3. ADVANCED COMPUTATIONS ON DATA 85

The result is shown in Figure 3.11. The dependence panels- that is, the graphs
of the surface against radiation given wind speed and temperature - are the 5 x 5
array of square panels. The given panels, one for each conditioning predictor, are to
the right and top. As we move up a column of dependence panels, the given values of
wind speed increase, and as we move from left to right across a row of dependence
panels, the given values of temperature increase. For example, the curve on the
panel second from the bottom and third in from the left shows the surface given
the second marginal grid value of temperature and the third marginal grid value
of wind speed. Further study of the surface would construct two more coplots -
ozone against temperature given radiation and wind, and ozone against wind given
radiation and temperature.

3.3 Advanced Computations on Data

The discussion in the previous section should be adequate for using data frames
in basic fitting and analyzing of models, as well as in other data analysis. We
discuss next some topics that may be needed for more advanced use of models, and
for adapting the functions to special applications. Section 3.3.1 explains in more
detail how computations with data frames work. Section 3.3.2 discusses some new
facilities for databases in S as they may be useful for model-fitting. Section 3.3.3
describes the intermediate model frame and model matrix objects. Finally, Section
3.3.4 introduces the parametrized data frame.

3.3.1 Methods for Data Frames

First, here is a look at how data frames work (the "private" view, in the terminology
of Appendix A). The various methods for data frames use only a small number of
internal quantities and assertions:

• The attribute rov. names must be defined and must have length n, equal to
the number of rows in the data frame.

• If x is a data frame, then unclass(x) should be a list with a non-null names
attribute with unique names. The elements of this list are the variables
(columns) in the data frame.

• The variables of the data frame must be interpretable as either a vector of
length n or as a matrix with n rows.

Computations using a data frame as a frame require only that the names of the
variables be unique, since any variable with a duplicate name will be inaccessible
when the frame is attached. Variable names that are not syntactically names are

86 CHAPTER 3. DATA FOR MODELS

inconvenient, since the only way to refer to a variable named "Rev per mile", for
example, is by

get("Rev per mile")

For this reason, read.table() and data.frame() convert all names to make them
syntactically legal. The function make. names 0 can be used directly if you need to
convert other strings to legal names.

Computations using a data frame as a matrix require that the variables behave
either as vectors or as matrices defined over the n observations. They do not,
however, otherwise constrain what is in the variables. For example, a vector of
length nand mode "list" or "character" will work fine. Functions"["(),"[["(),
dim 0 , and dimnames 0 all have methods that treat data frames as if they were
matrices. Assignment methods also exist for each of these. The methods for dim()
and dimnames(} are fairly obvious, just using the row.names attribute to define the
row dimensions and the row labels, and the length and names attribute of the
unclassed list object for columns and column labels.

The method for "[" replicates the behavior of the default subsetting for matrices
(~.pages 127-129). Specifically, it treats expressions of the form

X (i, j]

where either i or j may be omitted, but not the comma (the expression x[i] is
ambiguous since it has different matrix-like and frame-like interpretations). It also
obeys the optional drop= argument. Either subscript can be numeric (positive or
negative), logical, or character. Character subscripts are matched against the row
names fori and the names for j. Matching is partial (via pmatchO) on extraction
and strict on replacement, as with matrices. The semantics of subscripting can be
summarized briefly as follows. The method creates a data matrix with one variable
(column) for each variable extracted according to j. It then loops over the selected
variables, selecting from each of those according to i. If the selected variable is
a matrix,. the rows implied by i are extracted; otherwise, the vector subset. It's
worth noting that the method is rather deliberately simple at this stage: if xj is
some selected variable, then the extraction is done directly by

xj [i]
xj [i,]

in the two cases. The key point here is a reliance on methods for the variables;
for example, a method " [.factor" 0 will ensure that extracted factors retain their
factor-ness. If new classes of objects, including matrix-like classes, are to be used
as variables in data frames, it is essential that methods be defined for them to make
"["()work right.

Computations that apply as.matrix() to a data frame will also work, using
a method for data frames. One difference from ordinary coercing to a matrix is

3.3. ADVANCED COMPUTATIONS ON DATA 87

important: if any of the variables in the data frame is itself a matrix or matrix
like, then the number of columns of the resulting matrix will not generally be the
same as the number of variables. The method works as follows. It loops over the
variables in the data frame, determining a common mode to represent the result.
If all variables are numeric, so is the result. If some are non-numeric but none
is recursive (list-like), then the result is a character matrix. Otherwise, the result
is a matrix of mode "list". In particular, factors are converted into character
vectors, each element containing the corresponding level of the factor. If the factor
originated as character data, this will be the obvious result, but remember that
logical data are also converted to a factor and will not be automatically converted
back to logical (not that this is likely to be a major problem in practical situations).
The result of the method is a member of the class "matrix", primarily to ensure it
inherits a printing method capable of treating mode "list".

As noted several times in earlier discussion, variables in a data frame can be
considerably more general than the original description in Section 3.2.1. Once you
try to use the data frame in any of the model-fitting in later chapters, however,
you cannot expect variables other than those listed on page 52 to be interpreted
sensibly when included in model formulas. Numeric vectors and numeric matrices
are used as is. Factors and ordered factors are converted into coded numeric form,
as is described in Section 2.4.3. Anything else will almost certainly cause an error.
Other, future work on models could well make sense of more general variables, but
the models discussed in this book do not.

3.3.2 Data Frames as Databases or Evaluation Frames

The version of S used in this book has a number of new features added since the
publication of lj. Appendix A discusses one key addition, the use of object-oriented
programming. Another addition is an extension and formalization of S databases
that is, of the things that can be attached and detached in order to access objects by
name in S expressions. In lj, databases were always directories in the file system,
and the objects were files, accessed by the name of the file. The current version
allows databases to be list-like S objects, as well as compiled databases and user
defined classes of database objects. In addition, the object names can be arbitrary
(nonempty) character strings, regardless of file system limitations.

Of these extensions, the ability to attach S objects as databases is used exten
sively in the book. The use of arbitrary object names is also important, implicitly,
in permitting unrestricted naming of methods and other functions. The other ex
tensions are not used. The whole topic of S databases in the current form is much
too large to cover here, but in this section we outline some of the functions that
deal with relevant aspects of databases.

First, a definition of the search list. At any time during an S session, this special
object, internal to the S evaluator, defines the databases currently accessible by

88 CHAPTER 3. DATA FOR MODELS

name in S expressions (see ~. Section 5.4). In ~. this object was in fact a
character vector, although called a list. In the current version of S, it actually is
a list. The elements of the list are the attached databases, which can be character
strings (e.g., if they specify a directory), lists or other list-likeS objects, or objects
of special database classes. We refer to the object in element 1 as the database in
position i of the search list.

When a name is used in an S expression, the evaluator matches that name to
an object by looking successively in:

• the local frame of the currently evaluating function;

• frame 1, associated with the top-level expression;

• a session database, called database o;

• each of the databases on the search list, in order.

This is essentially equivalent to ~, page 118. What is new is the way the search
is carried out, as well as the generality of the search list.

Each database in the search list can be examined by appropriate S expressions.
Of course, the fundamental functions for this purpose are get(), exists(), assign(),
and remove(). These get, test, and change the contents of the attached database.
They behave consistently independent of whether the database was a directory,
an object, or something else. In addition, objects() returns the names of all the
objects known by name in the database, possibly restricted to those matching a
regular expression in the sense of the grep command.

A few additional functions give useful information about the currently attached
databases:

• database.object(i} returns the object that was attached as the database in
position i.

• database. type(i} returns a character string giving the type of the database
in position i. The possible types are "directory", "object", "compiled", and
"user". Only the first two types are used in this book.

• database. attr(which, i} returns the value of the attribute which for the data
base object in position i.

The third function is particularly useful for the applications in this book. Data
frames and classes inheriting from them have useful attributes in addition to the
variables, "row. names" being an example. When the data frames are attached to the
search list, it may be important to have access to theSe attributes. The function
database.attr() handles this. For example, if we have attached the data frame
cu. specs, as on page 68, we can obtain the row names by

3.3. ADVANCED COMPUTATIONS ON DATA 89

database.attr("rov.names")

Notice that we omitted the second argument giving the position of the database. In
this case the function will search through the databases in order, returning the first
non-null instance of t.he requested attribute, or NULL. Direct use of the function will
be safer if an explicit position is included, but functions that suspect a data frame
to have been attached but do not know the position, will ask database. attrO to
search. This is the case, for example, with the model. frame() function. There is
also an assignment function for database attributes, which can be used to modify
attributes in the attached database while leaving the original data frame alone.

While the S evaluator is evaluating an expression, it creates temporary evalua
tion frames. Calls to S functions are evaluated in· such frames, which are list-like
objects whose components correspond to the arguments and to locally assigned ob
jects. Each evaluation frame disappears when the evaluation of the function call is
complete. An S function can create such a frame explicitly from a list or a data
frame; for example,

> n <- nev.frame(fuel.frame)

creates an evaluation frame and returns the index of the new frame in the vector
of evaluation frames. The new frame initially contains copies of all the variables in
the data frame fuel. frame. The returned index can be used as an argument to the
function eval 0:

eval(expr, n)

causes expr to be evaluated in the frame created by the call to nev.frame().
This is not something to be used directly in user-written expressions, but it

provides an efficient mechanism for evaluating several expressions in the context of a
particular data frame or other list-like object. In particular, it is used by the model
fitting functions for that purpose. Frames created by nev.frame() disappear when
the function calling nev.frameO returns. A second useful mechanism, however,
overrides this:

move.frame(n, to)

causes frame n to be handed over to frame to. This is an efficient mechanism for
moving around intermediate results. See the documentation for nev. frame 0 and
move. frame 0 for further details.

Some of the other functionality described above for databases is available as well
for temporary frames created by the evaluator:

• sys.frame(i) returns the ith frame in the evaluator.

• frame .attr(vhich, i) returns the value of the attribute vhich for the ith frame
in the evaluator.

90 CHAPTER 3. DATA FOR MODELS

The concept of database. type 0 does not have an analogue for frames, since all
frames are conceptually lists. There are a number of other functions that return
quantities associated with the evaluator, but that are not meaningful for databases;
for example, sys. call 0 and sys. function() give the call and the function definition.

3.3.3 Model Frames and Model Matrices

All the models in Chapters 4 through 7 prepare for fitting the model by essentially
the same steps. Beginning with a formula, an optional data frame, and possibly
other arguments such as subset or weights, they compute two intermediate forms
of data:

1. a model frame, a data frame containing just the data needed to fit the model;

2. a model matrix, response variable, and possibly other information needed to
carry out the fit.

The development of these objects from the formula, particularly emphasizing the
terms object, is discussed in Section 2.4.3. We now continue that discussion, em
phasizing the properties of the two intermediate data objects. Although the models
discussed in Chapters 8 and 9 do not use model matrices, they do use model frames.
From the model frame, they construct a different form of matrix suited to their own
fitting methods, as described in those chapters.

The function model. frame 0 computes the model frame corresponding to a for
mula, using the terms object computed from such a formula. The variables in the
model frame are the expressions for the terms of order 1 (the variables that ap
pear as terms or as one of the arguments to "•", "/",or":" in an interaction).
The response is also included. Optional weights and other special variables will
be included in the model frame too, but under special names: " (weights)" for the
weights, and so on. Enclosing the names in parentheses is intended to reduce the
chance that they accidentally conflict with an actual variable name.

Let's develop an example to examine the contents of the model frame and model
matrix. Suppose we decide to fit the model formula

100/Mileage ~Weight + bs(Disp.) +Type

to the car. test. frame data. This will fit the transform of Mileage to a linear term
in Weight plus a B-spline fit in Disp. plus a term in the factor Type. At the moment,
however, it is not the fitted model that is of interest, but the objects common to
all fitted models, specifically the model frame. Suppose we include the optional
argument weights=HP, where HP is the horsepower variable in the same frame (don't
ask for this to make statistical sense!). Finally, suppose the fit is only to be on the
subset of the data for which Weight<3500. The actual call would be:

3.3. ADVANCED COMPUTATIONS ON DATA

lm(100/Mileage "" Weight + bs(Disp.) + Type,
car.test.frame, weights c HP, subset • Weight < 3500)

91

We're not interested in the fit, but in the model frame. Suppose we compute the
model frame and store it in mframe. This can be done by giving lmO the argwnent

method = "model.frame"

Some representative rows of the model frame are as follows:

> mframe [sample. mframe,]
100/Mileage Weight bs(Disp.).1 bs(Disp.).2

Chevrolet Beretta 4 3.B46154 2655 0.426447373B 0.14B760711B
Chrysler New Yorker V6 4.545455 3450 0.32B7921649 0.4117BB2453

Ford Mustang VB 5.26315B 3310 0.00049514B3 0.0377963202
Ford Probe 3.333333 2695 0.426447373B 0.14B760711B

Hyundai Sonata 4 4.347B26 2BB5 0.4413522746 0.1907077730
Mercury Tracer 4 3.B46154 22B5 0.2494567223 0.02B7B346BO

Mitsubishi Wagon 4 5.000000 3415 0.4413522746 0.1907077730
Nissan 240SX 4 4.166667 2775 0.44337B2744 0.2035636103

Toyota Corolla 4 3.44B276 2390 0.2494567223 0.02B7B346BO

bs(Disp.).3 Type (weights)
Chevrolet Beretta 4 0.0172977572 Compact 95

Chrysler New Yorker V6 0.1719115976 Medium 147
Ford Mustang VB 0.9617063693 Sporty 225

Ford Probe 0.0172977572 Sporty 110
Hyundai Sonata 4 0.02746B197B Medium 110
Mercury Tracer 4 0. 0011070565 Small B2

Mitsubishi Wagon 4 0.02746B197B Van 107
Nissan 240SX 4 0.031153340B Sporty 140

Toyota Corolla 4 0. 0011070565 Small 102

In this model frame, there are four variables, one for each of the three terms in the
model and one for the weights. The first term is an ordinary numeric variable, the
second is a matrix returned by the B-spline function, and the third term is a factor.
The matrix prints out as three columns, but the whole matrix is one variable in the
model frame.

The model frame and model matrix are not usually intended for direct user
interaction, but for use by other functions. Both objects have extra attributes that
link them to the model. The model frame, in particular, contains as an attribute
the terms object discussed in Section 2.4.3. The terms object contains information
such as the identification of variable 1 in the model frame as the response.

A few of points of detail are worth noting. Since the model frame is not intended
for human use, its variable names are left exactly as in the formula. In the example,

92 CHAPTER 3. DATA FOR MODELS

the second variable is itself a matrix, corresponding to the two orthogonal polyno
mials in Weight; this contributes two columns to the printout. The model frame
contains only the rows of the original data corresponding to the subset argument.

One further option affecting the model frame has not been shown. The na. action
argument to one of the model-fitting functions specifies a function that carries
out some action to detect missing values. The value returned by the na. action
function must be a data frame without missing values. Any missing values left
in the model frame cause an error in the model-fitting functions. Supplying the
argument as na.omit causes all rows containing any missing values to be dropped
from the analysis. Other strategies may be specified for particular kinds of models
or the user may supply a special function. Whatever is supplied as na.action must
be a function that takes a data frame as argument and returns another data frame
as result, with the same variables and containing no missing values.

The function model. matrix() takes a terms object and a model frame as argu
ments. It returns the matrix of linear predictors used in fitting linear models and
in models that derive from linear models, such as those of Chapters 6-7. The con
struction of the model matrix from the terms was discussed in Section 2.4.3. Here
we add a few points about the object itself.

The model matrix is a valid numeric matrix. It contains, in addition, attributes
that define its role in the model. The most important is "assign". This is a list with
as many elements as there are terms. The elements of the list say which columns
of the matrix estimate coefficients to the corresponding term. For example, if mm is
a model matrix, the following computations would extract a matrix containing the
columns corresponding to the third term:

asgn <- attr(mm,"assign")
x3 <- mm[, asgn[[3]], drop=F] .

This information is kept correct during the fitting of linear and related models, is
returned as an "assign" component of the fit, and is then used by the corresponding
summary methods. If mm is the model matrix corresponding to mframe above, the
assignment information is:

> attr(mm, "assign")
$"(Intercept)":
[1] 1

$Weight:
[1] 2

$"bs(Disp.)":
[1] 3 4 5

3.3. ADVANCED COMPUTATIONS ON DATA 93

$Type:
[1] 6 7 8 9 10

Both the spline term, bs(Disp.), and the factor Type contribute multiple columns
to the model matrix.

The importance of the model matrix comes in large part because key numerical
results (for example, the coefficients in fitting a linear model) are indexed the same
way as the columns of the model matrix. Numerical fitting methods that work
from the model matrix are expected to keep the assign attribute consistent with
any changes they make. An important example is our standard fitting algorithm
for linear models, lm.fit.qrO. If a linear model is over-determined, this method
removes the aliased columns of the model matrix (by pivoting them to the right
end of the matrix). At the same time, it modifies the assign attribute to show
that these columns no longer contribute to the corresponding term. Whatever is
done to the assign attribute of this nature should not change the number, order, or
names of the list. These are used to match the terms for future calculations. Thus
the "assign" component of a linear model can be used to select the coefficients
corresponding to a particular term. The assign attribute is also kept correct by
subsetting methods for model matrices.

3.3.4 Parametrized Data Frames

The matrix nature of data frames requires that each variable can be indexed by the
rows of the data frame, either as a vector of n elements or a matrix with n rows.
This restriction is reasonable enough in that it agrees with the intuitive view of
data frames as corresponding observations on a number of variables. Occasionally,
however, it would be convenient to have additional information accessible from the
data frame that does not correspond to variables in this sense. For example, suppose
we are analyzing the solder data and have decided to model the data in terms of
a chosen power transformation of the skips variable. The chosen power might be
kept as an object, say pover. For clarity, it would be nice to write formulas in a
style like

skips"pover "' .

In this way of thinking, we are regarding the chosen power as fixed (at least for the
moment). It is then not a coefficient in the model, but neither can it be a variable
in the data frame. We could just keep it separately, say in the working data, but
this is also not very attractive, since it belongs with the solder data.

To handle such situations, we provide an extension to data frames called para
metrized data frames, or pframe's. The class of a pframe object is

c("pframe", "data.frame")

94 CHAPTER 3. DATA FOR MODELS

In addition to variables, pframe objects have parameters. These are accessed and
set by special functions operating on the pframe object, but when the object has
been attached for evaluation, they are accessible by name in the same way as vari
ables. Parameters, however, are not assumed to be indexed by the rows of the
data frame. The function param() can be used to extract or set a given parameter,
while parameters() does the same for the complete list of all the parameters. These
functions are analogous to attrO and attributes() for handling attributes (e.g.,
~' pp. 143-146). For example,

param(solder, "power") <- .5

would set the parameter "power" and make expressions like skips"power work in
any formula using solder.

Parametrized data frames can be attached in position 1 to create new or revised
data, as we showed on page 68 for ordinary data frames. When they are detached,
however, objects that are not variables will be retained as parameters rather than
being dropped. Only a few special objects generated by the S evaluator (e.g.,
.Last.value) will be deleted. A convenient way to work with pframe objects is:
first, assign any parameter so as to copvert a data frame to a pframe; second, attach
the object in position 1 and create or modify whatever parameters and/or variables
you want; finally, detach and save the revised data frame.

Parametrized data frames come into their own in nonlinear models, where the
coefficients must be explicitly included in the model formulas. In Chapter 10,
parametrized data frames are used extensively to achieve effects such as holding
some parameters constant at pre-specified values.

Chapter 4

Linear Models

John M. Chambers

This chapter presents S functions and objects for classical linear methods in statis
tics, in which a numerical response variable is predicted by linear combinations of
other numeric or categorical variables. S functions and classes of objects described
in this chapter fit linear models by least squares, and analyze the models by a variety
of techniques. By modifying and extending the functions provided, you can special
ize the modeling to your own applications or develop new statistical techniques for
linear models.

The statistical, computational, and mathematical ground covered in this chap
ter deserve to be called "classic" in any sense. The statistical use of linear models
goes back to Laplace and Gauss early in the nineteenth century and continues to
underlie much of statistical modeling. The numerical techniques, also, are excep
tionally reliable and well developed, representing some of the most successful results
of numerical analysis. Many of the computational tools can be applied in other sit
uations as well; in particular, many computations in later chapters will use linear
least-squares computations as building blocks. The mathematical analysis of this
topic, particularly the fundamental results of linear algebra and vector geometry,
also serve as the basis for many other results.

If you expect to use linear models in your work, then you should read this
chapter. The computational details described in Section 4.4 will likely be a useful
reference for advanced work on other models as well, particularly those in Chapters
5-7. This chapter follows a style and organization of computations, around classes
of objects and the functions that create and use them, that provides a perspective
on linear models different from traditional treatments. The data analyst has greater

95

96 CHAPTER 4. LINEAR MODELS

freedom: summaries and displays are not restricted to a few predetermined printouts
or tests. Instead, there is an essentially unlimited scope for getting the relevant
analysis for particular problems. The theme is that one function, lmO, creates an
object describing a fitted model, and other functions use this object to analyze or
modify the fit. Optional arguments to lm() specialize the fitting. Fitted models can
be updated in a simple and general way.

The functions and objects in this chapter provide a number of statistical tech
niques directly. Equally important in their design, however, is the goal of providing
a powerful basis for nonstandard computations or for the implementation of new
ideas. Even such a well-developed area of statistics as linear models provides many
challenges and opportunities. New functions, new user interfaces, and new algo
rithms can all be built on the basis provided here.

4.1 Linear Models in Statistics

This chapter describes S functions and objects for linear models that use least
squares as a fitting criterion. Some of the discussion will also be relevant to other
situations, either because the techniques do not depend specifically on the fitting
criterion or because the least-squares computations form an essential basis for other
techniques. The first section of the chapter outlines the statistical concepts we
will use in discussing linear models. The goal is to set the background for the
computational discussions that follow in the rest of the chapter. We don't aim to
teach the statistics of linear models; for that, you should look at one of the many
good books on the subject (some are mentioned on page 144), either in advance or
while you are reading this chapter.

Linear regression models a numeric response variable, y, by a linear combination
of predictor variables xi, for j = 1, ... , p. Each of the variables was observed on the
same n observations. The fitted values are the sum of coefficients fli multiplying
each of the x1 plus (usually) an intercept fl0 • Using our "..,.!' operator to mean "is
modeled as", the linear model is:

(4.1)

Linear least-squares models estimate the coefficients to minimize the squared sum of
residuals. If the response and predictors corresponding to the ith of n observations
are y;, xil, x;2 , •.. , x;11 , then the fitting criterion chooses the fli to minimize

n 1'

L (y;- (flo+ Lflixii))2 (4.2)
i=l j=l

The standard statistical theory of linear models makes (4.1) more explicit by writing

4.1. LINEAR MODELS IN STATISTICS

the model for the ith observation as:

p

Yi = /3o + L ,B;Xij + €;
i=l

and by making the following assumptions:

i. the c; are independently and identically distributed;

ii. the c; have mean zero and (finite) variance u2 ;

iii. the c; are distributed according to the normal distribution.

97

(4.3)

Coefficients that minimize (4.2) define a fitted linear model, represented by what
we will call a linear-model object. The object contains the estimated coefficients
~i, the fitted values

Yi = tJo + L tJ;x;;
j

and the residuals y; - y;. The statistical assumptions define the distribution of
various components of the fitted model. The residuals will be normally distributed
with zero mean, and the estimated coefficient tJ; will be normally distributed with
mean /3;. The lineax-model object also contains a set of effects, which we define
formally in Section 4.4.1 on page 133. Under the statistical assumptions, they are
independently and normally distributed, with variance u2• The elements of the
squared effects axe the contribution from fitting the corresponding coefficient to the
standard analysis of variance breakdown. The effects are used extensively when
linear models are applied in the context of the analysis of variance in Chapter 5.

The standard error u can be estimated from the residuals. Estimated variances
and covariances for the coefficients, fitted values, and residuals axe known functions
of the x; multiplied by the estimate of u.

These statistical characterizations lead to a variety of summaries and diagnos
tics, including plots. As with all models, both the structural form of the regression
and its probabilistic characterization are at best simplifications that help us under
stand the data. Fortunately, linear models can use a particularly well-supplied box
of tools to help assess and improve the model.
. The model (4.1) is additive, representing y as the sum of p terms. In this view,
flixi is the contribution of the x; term to the fit. Statistically, such a view needs
to be taken cautiously since the contributions axe not independent, but the view
of (4.1) as an additive model is a useful one that carries over to generalizations
such as those discussed in Chapters 6 and 7. The symbols /3; in (4.1) are not
needed to convey the model. Just specifying the terms as x; defines the structural
form. Computer systems for additive models have evolved a notation in which
the coefficients (including the intercept) are omitted. Our formula objects take

CHAPTER 4. LINEAR MODELS

that evolution further by including the response, adding some new notation, and
allowing more general expressions for terms. For computational purposes we will
write (4 .. 1) as:

Y "' X1 + • • • + Xp (4.4)

As we will see, this form is very convenient and extends well to related models
in later chapters. It is important to remember, however, that some additional
statistical specification is always involved before (4.4) fully defines a model that
can be used in practice.

The variables in (4.4) were said to be numerical, but they can be more general
than that. If x; is a factor or an ordered factor, its presence in the formula stands
for fitting a coefficient in the additive model for each level of the factor. Terms that
are factors can therefore contribute more than one coefficient (that is, more than 1
degree of freedom) to the fit; still, it makes sense to regard the entire contribution as
a single term. If x; is a numeric matrix, the intention is to regard all the coefficients
contributed by x; as a single term in the model. As an example, choosing to fit a
polynomial of degree d in one or more predictor variables usually means that the
contributions of different basis vectors for the polynomials should be regarded as
forming a single term. Similar comments apply to splines or other parametrized
family of curves.

The response in a linear model cannot be a factor. Generalized linear models in
Chapter 6 treat factors with two levels as response variables, and tree-based models
in Chapter 9 will allow arbitrary factors. The response in a linear model can however
be a numeric matrix, a generality that will not extend to some of the other models.
The reason is that the solution to (4.2) is characterized essentially in terms of the
matrix formed from the x;. In particular the solution can be characterized by linear
operators that are applied toy to generate coefficients, fitted values, residuals, and
effects. If y is a matrix, the same linear operators apply, generating matrices instead
of vectors.

The fitting functions in this chapter mostly use one particular numerical algo
rithm for linear least squares. The algorithm has been chosen for high accuracy
and good reliability, and is based on the widely used LINPACK algorithm library.
However, a recurring theme of this and some later chapters will be that it is the
objects representing the fitted models that are key, not a particular algorithm that
computes them. Modifications of our chosen algorithm or the use of an entirely
different algorithm are perfectly acceptable, so long as the computations produce
objects containing the necessary information in a form that the various summary
and diagnostic methods can handle. Section 4.4.2 reviews some of the underlying
theory behind linear least-squares models, to explain how the computations work
and how you can alter them.

One extension of the standard model that will be discussed is that of weighted
least squares, in which each of the squared residuals in equation (4.2) is given some

4.2. S FUNCTIONS AND OBJECTS 99

specified weight, say w; ;::: 0. This generalization arises both directly (see page 111)
and as a computational technique for implementing other models in terms of linear
least squares. If it is known or suspected th.<:~.t the variance of the errors is not the
same for all observations, then the standard fitting shown so far is not appropriate.
Treatments for this situation include looking for a transformation of the data that
makes the variance constant or using a model, such as one of those in Chapter 6,
which incorporates the changing variance in the model itself. If, however, the vari
ance is known (up to a constant), ordinary linear least-squares fitting can proceed
by weighting the squared residuals proportionally to the inverse of the variance.
For example, if each value of the response represents the average of observations on
some known but varying number of replications for fixed values of the predictors,
the variance will be inversely proportional to the number of replications, so that the
number of observations can be used as weights in the fit. The statistical theory of
linear models carries over essentially unchanged, by considering the model in terms
of variables w!y and w!xi. For this to be valid, the weights (and the Xj as well)
are assumed to be fixed and in particular not to involve y.

In addition to providing the basic fitting of the model (4.4), functions in this
chapter address some other important aspects of using linear models:

• diagnostics, especially graphical, that look for aspects of the data that are not
well explained by the model, often by looking at the residuals;

• examining the structural form of the model, to see the result of adding, drop
ping, or changing terms;

• summaries showing the inherent variability in the coefficients, fitted values,
or predictions;

• summaries using the effects and other information to study the importance of
individual terms in explaining the response.

Section 4.2.2 describes S functions to compute a number of analytical summaries
and diagnostic plots. Variations on these and many other analytical results can be
computed from the information in the objects, as described in Section 4.3.

4.2 S Functions and Objects

This section presents S functions for typical fitting and analysis of linear models.
The function lmO returns an S object that we will call a fitted linear least-squares
model object, or an lm object for short. Section 4.2.1 shows the fitting itself; Section
4.2.2, some summary functions; Section 4.2.3, some functions to compute predic
tions. The last sections, 4.2.4 and 4.2.5, present some useful options for doing the
fitting and a powerful general technique for updating the fit.

100 CHAPTER 4. LINEAR MODELS

4.2.1 Fitting the Model

The S function lmO creates a least-squares fit:

lm(formula, data)

where formula is the structural formula that specifies the model and data is the
data frame in which the model is to be computed. Let's look at an example using
data introduced in Chapter 3. On page 70, we created a data frame fuel.frame,
including variables Fuel, Weight, and Disp .. A linear model that fits Fuel to Weight

and Disp. is specified by the formula

Fuel ~ Weight + Disp.

which is read "Fuel is modeled as a linear combination of Weight and Disp.". The
names occurring in the formula are interpreted in the frame fuel. frame. The fit,

fuel.fit <- lm(Fuel ~Weight+ Disp., fuel.frame)

does not produce printed tables or other summaries of the model. Instead, the 1m
object created represents the fit, and contains all the essential information, such as
coefficients, residuals, fitted. values, and some other less obvious things. The
lm object can be given to functions to produce summaries, or to functions with the
names above (coefficients(), etc.) to get at the specific information in the model.
Short forms of the commonly used extracting function names are provided to save
typing: coefO, resid(), and fitted().

> coef(fuel.fit)
(Intercept) Weight Disp.

0.4789733 0.001241421 0.0008543589

Notice that the coefficients are printed with names, constructed automatically from
the data and the formula. It is important to use the functions like coef 0, rather
than prying open the inner contents of the 1m object, at least while you're getting
used to the model-fitting. The functions can use all the information in the object
to return a sensible result. Particularly with models that are derived from linear
models, such as glm models, the raw components may be misleading.

The lm object itself can be printed, like any S object, by just giving its name:

> fuel.fit
Call:
lm(formula = Fuel ~ Weight + Disp., data = fuel. frame)

Coefficients:
(Intercept) Weight Disp.

0.4789733 0.001241421 0.0008543589

Degrees of freedom: 60 total; 57 residual
Residual standard error: 0.3900812

4.2. S FUNCTIONS AND OBJECTS 101

The style of the printing method for this and for other models is to show the
simple information in the model that seems most likely to be relevant. The printing
method tends to give you just what is in the fitted model, with little statistical
embellishment. Another function, summary(), gives a more technical, statistical
description of the model, using the statistical assumptions mentioned on page 97.
We discuss this function on page 104.

Formulas are discussed extensively in Chapter 2 and will come up again repeat
edly, but here are a few points to keep in mind. The individual terms in the formula
can be any S expressions that evaluate to something that can be a predictor: nu
meric vectors, factors, ordered factors, or numeric matrices. Several coefficients in
the model may correspond to one factor or matrix term. The special name "." may
be used on the right of the "~" operator, to stand for all the variables in a data
frame other than the response. Assuming that Fuel, Weight, and Disp. were the
only variables in fueL frame, the expression

fuel. fit <- lm(Fuel "' . , fuel. frame)

would produce the same fit as before.
Terms in formulas are separated by "+"; therefore, if we want to have a single

term equal to the sum of Weight and Disp., the "+" sign must be protected. This is
done by enclosing the term in the "identity" function, I 0:

Fuel ~ I (Weight + Disp.)

The operators ":", "•", """, "I", and "-" are also special on the right side of
formulas. Terms that use these operators in their usual arithmetic sense should be
protected by the I () function. The operators are special only as predictors, not in
expressions for the response.

The terms for predictors can evaluate to numeric vectors, numeric matrices or
factors. Logical or character vectors will be turned into factors. The response can
be a numeric vector or a matrix. In the case of a matrix response, the coefficients,
residuals, and effects will also be matrices, with the same number of columns as the
response.

Models that include factors are discussed in great detail in Chapter 5, in the
context of the analysis of variance. The model-fitting functions fit factors by, in
principle, replacing them with the corresponding set of "dummy variables," vari
ables that take the value 1 for observations with a particular level for the factor
and 0 for all other observations. The details can be left for Chapter 5; for now, it's
sufficient to know that factors can be included in models with the fitted values and
residuals coming out correctly. With ~ur Fuel example, it might be interesting to
include the type of automobile as a predictor:

102 CHAPTER 4. LINEAR MODELS

> fuel.fit2 <- lm(Fuel ~ Weight + Disp. + Type, fuel.frame)
> fuel.fit2
Call:
lm(formula ~ Fuel ~ Weight + Disp. + Type, data • fuel.frame)

Coefficients:
(Intercept) Weight Disp. Type1 Type2 Type3 Type4

2.9606 4.164e-05 0.0075941 -0.14528 0.098084 -0.12409 -0.04358

Type5
0.19151

Degrees of freedom: 60 total; 52 residual
Residual standard error: 0.31392

By the way, using the function update() would have been simpler than rewriting
the whole call to lmO:

fuel.fit2 <- update(fuel.fit, . ~ . + Type)

This very handy generic function allows nearly all common changes in a model to
be created from the original model and the changed arguments; in addition, it uses
the "." notation as shorthand for the previous left or right side of the formula.
Section 4.2.5 will describe update().

The factor Type has 6 levels,

> levels(Type)
[1) "Compact" "Large" "Medium" "Small" "Sporty" "Van"

which produce five coefficients, or contrasts. The individual coefficients are usually
less important for factors than the overall contribution of the term to the fit. If you
do want to know more about the choice of contrasts, see Sections 2.3.2 and 5.3.1.
Another example with factors as terms will be shown on page 111.

It is worth emphasizing that a response or predictor in a formula is not restricted
to being a name, but can be any S expression that evaluates to an object that can
be used as that response or predictor. The variable Fuel was defined as 100/Mileage,
so we could have fit the same model by:

> fuel.fit2 <- lm(100/Mileage ~ Weight + Disp. + Type, car.test.frame)

The operator "/" is special in predictor terms, but not in the expression for the
response, so there was no need to protect it. As with the response, the predictors
on the right of the "~" can be anything that evaluates to numeric vector, matrix, or
factor. Of course, the variables should all be defined on the same set of observations
in order to be meaningful in the model.

4.2. S FUNCTIONS AND OBJECTS 103

Most analysis of linear models will benefit from organizing the data into a data
frame, encouraging the kind of preliminary analysis discussed in Chapter 3. It is
possible, however, to omit the data argument from the call to lmO, in which case
the names in the formula will be evaluated in the usual way for arguments, meaning
they typically will be the names of permanent S objects. As an example, suppose
we want to reproduce the analysis of the "stack loss" data, a classic set of data
in which the loss of ammonia in an industrial process (an indirect measure of the
yield of the process) is fitted to three measures of conditions in the process. The
response variable and the matrix of three predictors are supplied with S as the
vector stack.loss and the matrix stack.x (~'page 657). The fit can be produced
directly from these objects:

> stack.fit <- lm(stack.loss ~ stack.x)
> coef(stack.fit)

(Intercept) stack.x.Air Flov stack.x.Water Temp stack.x.Acid Cone.
-39.92 0.71564 1.2953 -0.15212

Notice that the formula referred only to the whole matrix of predictors, but the
coefficients are labeled using the dimnames from the matrix. Nevertheless, expressing
the formula in terms of stack.x means that the whole matrix should be regarded as
a single term. More natural and more flexible would be to form a data frame and
use the "." notation:

> stack <- data.frame(loss=stack.loss, stack.x)
> stack. fit <- lm(loss "' . , stack)
> coef(stack.fit)

(Intercept) Air.Flov Water.Temp Acid.Conc.
-39.91967 0.7156402 1.295286 -0.1521225

The terms in this case are separate vectors rather than one matrix.
Formulas may be kept as objects to save the effort of retyping them:

> fuel. f <- formula(Fuel "' Weight+Disp.)
> fuel.f
Fuel "' Weight + Disp.

This assigns the formula expression as an unevaluated S object. The formula func
tion will also extract a formula from objects representing a fitted model; an equiv
alent way to get at the formula from the fitted model fuel. fit on page 106 would
be

> fuel.f <- formula(fuel,fit)

Formula objects can be edited like other objects using S editor functions such as
vi(). Usually, however, the update() function makes direct editing of formulas
unnecessary, as in Section 4.2.5.

04 CHAPTER 4. LINEAR MODELS

1.2.2 Basic Summaries

\ wide range of plots and summaries can be applied to linear models. We will
lescribe several of them, but you are definitely encouraged to design your own as
veil.

A plot method for lm objects makes two plots against the fitted values, one of
he response and another of the absolute residuals.

plot(fuel.fit)

>roduces the plot in Figure 4.1. The left panel shows the general pattern of the

0
,.;

0 00 _ . .P'

0 ···""··

0(1) 00:. .. ~-~- 0

0 .a:i 0
0 ~... 00 0

o o;./o

oo ~ og
Q.·l)

...... ·0 0

.. ·· 0 0

0...-· ooo o
.c; 0

q

a)

0
p 0
.;::;

co a;
.a 0 0

:c
'iii "" e 0
"ii)

oOO
00 0

1il N
0

oO
0

0
coo

q 0

0

0

0

0

0
0

0

6 0
0 oo 0

0
00

0
0

oo o 0 0

0 0
'b 00 0 '0

§ 0
0

0
0

0 0 0

3.0 3.5 4.0 4.5 5.0 5.5 3.0 3.5 4.0 4.5 5.0 5.5

Fitted: Weight + Disp. Fitted: Weight + Dlsp.

Pigure 4.1: Plot method for an 1m object, applied to fuel. fit. The left panel shows response
against fitted values, the right panel plots absolute values of residuals against fitted values.

l.t by plotting the response against the fitted values, with the y = x line super
,mposed. The right panel tries to point out patterns in the residuals by plotting
~.heir absolute values against the fitted values. Figure 4.1 shows, for example, one
residual considerably larger than the rest. To find out which observation it is we
:an use identify() or look directly in the row names of the data frame. The high
cesidual is the only residual with an absolute value greater than .9:

> rov.names(fuel.frame)[abs(resid(fuel.fit)) > .9)
[1) "Chevrolet Lumina APV V6"

The gerwric function summary() produces summary objects for fitted models in
;.cnded to give more "statistical" information than comes from just printing the

4.2. S FUNCTIONS AND OBJECTS 105

object. For a linear model, the summary contains estimated standard errors, cor
relations, and t-statistics for the individual coefficients, correlations for the coeffi
cients, and summaries of the residuals:

> summary(fuel.fit)

Call: lm(formula =Fuel~ Weight+ Disp., data= fuel.frame)
Residuals:

Min 1Q Median 3Q Max
-0.81 -0.26 0.02 0.27 0.98

Coefficients:
Value Std. Error t value

(Intercept) 0.47897 0.34179 1.40
Weight 0.00124 0.00017 7.22

Disp. 0.00085 0.00157 0.54

Residual standard error: 0.39 on 57 degrees of freedom
Multiple R-Squared: 0.74

Correlation of Coefficients:
(Intercept) Weight

Weight -0.90
Disp. 0.47 -0.80

The Coefficients table gives the coefficients and their estimated standard error.
The third column is the ratio of the estimated coefficients to the corresponding
standard-error estimate, which could be compared to a Student's t distribution. The
residual standard error is the sum of squared residuals, divided by the number of
degrees of freedom for residuals (usually the number of observations less the number
of coefficients). Multiple R-squared is the term for a quantity usually defined as
the fraction of the total variation in the response accounted for by the variation
in the fitted values. It can be a useful measure of the success in explaining the
response by the current model, although it ignores the number of coefficients and so
invites over-fitting. The table of correlations are those of the estimated coefficients;
only the lower triangle is printed. Remember that these correlations are for the
coefficients, not for the original variables.

The summary() function is normally used to produce printed output. However,
the value of the function is an S object of class "summary .1m", containing all the infor
mation printed. Computations needing the information printed above can extract
it from the object. The printing is produced by a special method for summary.lm
objects. Let's look at the components of the summary.lm object:

106 CHAPTER 4. LINEAR MODELS

> fuel.summary <- summary(fuel.fit)
> names(fuel.summary)
[1) "call" "terms" "residuals"
[5] "sigma" "df" "r. squared"
[9] "correlation"

"coefficients"
"cov.unscaled"

The meaning of most of these will be obvious from the printed version of the sum
mary. The cov. unsealed and df components are not reflected directly in the print
ing. The latter gives the degrees of freedom for each term. The discussion in Section
4.4.1 clarifies the use of the unsealed covariance, cov. unsealed.

The qqnorm () function (19, pp. 70-71) plots a vector of numbers, sorted, against
corresponding expected values from a standard normal distribution. If the vector
behaves like a sample from a normal distribution, the plot should look roughly
linear. Since the standard statistical assumptions for linear models say that the
residuals from the model are distributed as a normal sample, the plot is a useful
way to look for patterns indicating that the candidate model needs to be modified.
The residuals from the fitted model don't exactly follow this distribution, but the
plot is still a reasonable way to look for problems. Figure 4.2 shows the result. The
pattern looks reasonably linear in this example.

"! 0

0

> qqnorm(residuals(fuel.fit))

~ "' 000
ci

~ 'ii
,s

/ !!! 0
§ ci
~
i!

~ "' 9 00
0

0

-2 -1 0 2

Quantlles ol Standard Normal

Figure 4.2: Normal probability plot of residuals, for the fit of Fuel ~ Weight + Disp.

4.2.3 Prediction

After fitting a model to some data, we would often like to know the predicted
response from the model for some different values of the predictor variables. This

4.2. S FUNCTIONS AND OBJECTS 107

is provided by the generic function

predict(fit,nevdata)

where newdata contains the data for which we want a predicted response. Following
our general approach, newdata is a data frame including all the variables used in
fitting the model. The response variable is ignored in newdata and need not be
present.

The fuel.fit model was fitted to the automobile data for which the Mileage
variable was present. One reason for fitting the model might well be to predict the
fuel consumption for automobiles not road-tested by Consumers Union, for which
Mileage would be NA. To obtain predicted values for a sample of those automobiles,
we need to construct a data frame containing the Weight and Disp. variables. The
data frame car. all contains all the variables for the automobile data. For prediction
we want Mileage to be missing but Weight and Disp. to be present:

> attach(car.all)
> ok.for.predict <- is.na(Mileage) t !(is.na(Weight) I is.na(Disp.))
> sum(ok.for.predict)
[1] 55
> predict.rovs <- rov.names(car.all)[ok.for.predict]

Let's sample 10 of the possible rows for prediction:

> sample.rovs <- sample(predi~t.rows,10)

> new.cars <- car.all[sample.rovs,c("Weight", "Disp.")]

The data frame nev. cars is now suitable as an argument to predict 0:

> new.cars
Weight Disp.

Volkswagen Golf 2215 109
Volkswagen GTI 2270 109

BMW 325i 2895 152
Pontiac Bonneville 3360 231
Mitsubishi Precis 2185 90

Hyundai Excel 2345 90
Sterling 827 3295 163

Lincoln Continental 3695 232
GEO Storm 2455 97

Dodge Spirit 2940 181

> pred.fuel <- predict(fuel.fit,new.cars)

The predicted values have the same structure as the original response, either a
numeric vector or a matrix. In our example:

108 CHAPTER 4. LINEAR MODELS

> pred.fuel
Volkswagen Golf Volkswagen GTI BMW 325i Pontiac Bonneville

3.3218 3.3901 4.2027 4.8475

Mitsubishi Precis Hyundai Excel Sterling 827 Lincoln Continental
3.2684 3.467 4.7087 5.2642

GEO Storm Dodge Spirit
3.6095 4.2834

Notice that the row names from new. cars have been retained as the names attribute
of the predicted values. As for how well the model predicts, at least the names
associated with low and high fuel consumption seem plausible.

The predict() function has a number of useful options. The option se.fit=T

causes the prediction to include pointwise standard errors for the predicted values.
The argument type="terms" causes the predictions to be broken down into the
contributions from each term, returning a matrix whose columns correspond to the
individual terms in the model. For examples of these options, see Section 7.3.3.

Prediction from a fitted model is usually straightforward, with one important
exception. A problem arises whenever the expression for one of the predictors
uses some overall summary of a variable. For example, consider the following two
expressions:

x/3; x/sqrt(var(x))

The first expression is fine for prediction; the second is not. The problem is that
while we could compute a subset of values for the first expression just from know
ing the corresponding subset of x, the same is not true of the second expression.
Ordinary prediction is precisely that: we try to compute values for the new data
using only the formula and new values for the predictor variables. The functions to
watch out for include:

poly(x) #orthogonal polynomials
bs(x) · #spline curves

and any function that uses overall summaries, such as range 0, mean(), or quantile 0.
These are all fine expressions for linear models, but if you use them and want to do
prediction, look ahead to Section 7.3 for a safe method.

Just in case you don't believe there is a problem, you can try a simple experi
ment. Fit the two models

fuel. fi tq <- lm(Fuel ~ Weight + I (lleight"2) + Disp. , fuel. frame)

fuel.fitq2 <- lm(Fuel ~ poly(lleight, 2) + Disp., fuel. frame)

4.2. S FUNCTIONS AND OBJECTS 109

These both fit a quadratic polynomial in Weight to the Fuel data. The coeffi
cients will be different but the fitted values are equivalent; they represent differ
ent parametrizations of the same model. Now compute predicted values for the
two models. The fitted values for fuel. fitq are not very different from those for
fuel. fit; for example, the low and high values are:

Mitsubishi Precis Lincoln Continental
3. 209793 5 .187772

which can be compared to 3. 27 and 5. 27 before. But for the fit using poly(), the
corresponding values are

Mitsubishi Precis Lincoln Continental
2.364744 6.642079

which have changed more than is plausible from the small contribution of the
quadratic term.

4.2.4 Options in Fitting

Additional, optional arguments to the 1m0 function and special features of the
formula language give a great deal of flexibility in fitting the model. Among other
things, it is possible to select subsets of observations, provide weights for fitting,
deal with missing values, fit parallel regressions, handle over-specified models, and
update models to produce new models.

Fitting to Subsets of Observations

The subset argument allows the call to specify a rule for selecting a subset of
the rows in the data to be included in the fit. For example, the data frame
car. test .frame includes a factor, Type, that specifies one of six types of car:

> attach(car.test.frame)
> levels(Type)
[1] "Compact" "Large" "Medium" "Small" "Sporty" "Van"

Suppose we decide that cars of type "Van" should be excluded (perhaps because
they tend to be big fuel guzzlers and we're really only interested in standard cars).
Evaluating the expression

Type != "Van"

identifies the non-Van observations in factor Type. Including this expression as the
subset argument causes lmO to fit the model only for this subset of the observations.
Let's assume we added Type to fuel.frame, and fit the restricted model:

110 CHAPTER 4. LINEAR MODELS

> fuel.not.van <- lm(Fuel ~Weight+ Disp., fuel.frame,
+ subset • (Type != "Van"))
> fuel. not. van
Call:
lm(formula =Fuel~ Weight+ Disp., data= fuel.frame,

subset • (Type != "Van"))

Coefficients:
(Intercept) Weight Disp.

1.1528 0.00084507 0.0035165

Degrees of freedom: 53 total; 50 residual
Residual standard error: 0.36717

The original fit included seven cars of type van. We can see that the coefficients
have changed somewhat and the residual standard error is reduced by about 10%.
As an aside, suppose we want to ask also whether dropping out those seven vans
from the data changed the pattern of the residuals. We can compare our two sets
of residuals using qqplot, as in Figure 4.3. This function plots the quantiles of two
sets of data and will give a roughly linear pattern if the two sets have the same
distribution. In this case, the distribution of the residuals has changed very little,

> qqplot(residuals(fuel.fit),
+ residuals(fuel.not.van))
> abline(0,1)

"!
9

·0.5

0

0.0 0.5 1.0

residuals(fuel.fit)

Figure 4.3: Empirical quantile plot of residuals, they-axis showing the fit with seven "Van"
models excluded. The 1.! = x line is included.

despite the differencE>. in the coefficients. The most discrepant point is the large
residual in fuel. fit that appears also in Figure 4.1 on page 104.

4.2. S FUNCTIONS AND OBJECTS 111

Weighted Regression

A vector of non-negative weights can be supplied with the fit for applications where
the contributions of the observations to the fitting criterion are not equal. The
optional argument weight= to lm() allows weights to be supplied as an expression
to be evaluated along with the formula. Note that the weights are defined to be the
weights appearing in the sum of squared residuals; some discussions of regression
use the square root of these instead.

Some data to illustrate this situation were reported by Baxter, Coutts, and Ross
(1980). The data consist of the average cost of automobile insurance claims, along
with the age of the policyholder, the age of the car, and the type of car, these
predictors being recorded as factors with 8, 4, and 4 levels. The number of claims
in each cell was also recorded. The data are in the data frame claims, as variables
cost, age, car.age, type, and number. The model used in the published reference fits
cost to the sum of terms in the age, the car's age and the type of car. Because the
response is average cost, the rows should be weighted in the fitting by the number
of claims. Also, there were five missing values in the reported cost data; we will
explain how those were handled just a few paragraphs below.

> claims.fit <- lm(cost ~ age + type + car.age, claims,
+ weights = number, na.action = na.omit)
> coef(claims.fit)

(Intercept) age.L age.Q age.C age A 4 age A 5 age A 6 age A 7
250.64 -58.261 30.195 5.9625 -34.107 -33.5 -7.1807 18.667

type1 type2 type3 car.age.L car.age.Q car.age.C
2.6612 9.4708 24.269 -78.918 -54.769 -49.47

This model includes factors among the predictors, as discussed on page 20. The
factor age has 8 levels, meaning there will be 7 linearly independent coefficients;
similarly, for the factor type with 4 levels there will be 3 coefficients. Chapter
5 discusses appropriate summaries for linear models in this context in detail. In
particular, the summary method used there groups together all the effects for a
particular term. While we did not fit this example explicitly by the function aov(),
as we would have in Chapter 5, the summary methods are compatible. By using
the name of the method explicitly, we can produce the same summary information
for the lmO fit:

> summary.aov(claims.fit)
Df Sum of Sq Mean Sq F

age 7 5618930 802704.3 2.18
type 3 12110810 4036936.6 10.99

car.age 3 6987861 2329287.1 6.34
Residuals 109 40056968 367495.1 1.00

112 CHAPTER 4. LINEAR MODELS

The summary suggests that the type variable contributed the most to the fit, since
it has the largest F-statistic value.

The use of the summary.aov() method on an 1m object is worth remarking on.
It illustrates a general principle throughout the book that the classes of model
objects are linked as closely as makes sense, so that software for each kind of model
takes advantage of work on other kinds of models. In particular, more advanced
models are often designed to inherit from linear models. Many nice features of the
computations result from this approach. Generalized linear models and additive
models make particularly strong use of the style.

The lmO function allows weights to be exactly zero (but not negative). Zero
weights are rather ambiguous, however, and discouraged: the problem is to decide
whether they just happened as part of some numeric computation, or whether they
really imply that the corresponding rows should be omitted from the computations.
We assume the latter; for example, summary() does not count zero-weighted obser
vations toward residual degrees of freedom. Expect to see a few warning messages
if you use zero weights; on the whole, it's safer to use the subset argument to omit
observations. In fact, the example just shown could have involved us in zero weights,
since several observations had no recorded claims:

> sum(claims[. "number"] ,.,. 0)

[1] 5

One way of avoiding zero weights would be to supply as a subset argument the
expression number>O.

Missing Values

The lm() function, like most other model-fitting functions in the book, cannot
deal with NA values in either response or predictor; instead, it takes an argument
na. action that allows the user to specify what technique should be used to remove
the missiJ·~~ values. By default, lmO generates an error if there are any NA's in the
predictor", response, or weights. You can specify a method for removing missing
values iu ll particular application, by giving an S function as an na.action, either
in an ar~urnent to lmO or as an attribute of the data frame. The attribute is used
if you WILli I. the na. act ion to apply to all models constructed from this data frame.
This would be a reasonable approach in the example above: in the claims data,
the avemv.,. c:laim was, as it should have been, recorded as NA whenever there were
no claimH. A reasonable attitude would then be that any model that needs an
na.action 11hould omit such observations. This would be achieved by:

attr(c.t,.lms,"na.action") <- na.omit

This funct.to11 drops any row of the data frame for which any of the variables has
a missing vsduc. The function is applied to the data to be used in the actual fit;

4.2. S FUNCTIONS AND OBJECTS 113

missing values elsewhere in the data will be ignored. Giving an na. action attribute
to a data frame automatically sets up the strategy for all models generated from
that frame. If an action is supplied directly to lm() as the na. action argument, it
will override the attribute, if any, of the data frame. Notice that since the na. action
is a function, you can write your own function to take any action that is suitable
for a specific application.

Section 3.3 discusses na. action functions in general. We have not tried to provide
a sophisticated facility for imputing values for NA 's; the function na. omit () is the only
really general one. The problem is difficult and to some extent depends on the kind
of model as well, of course, as the assumptions that can be made about the missing
values. Tree-based models deal rather better than linear models with missing values;
Section 9.2 discusses a nice method for replacing missing values in tree models.
Otherwise, we encourage users to write na. action functions appropriate to their
own data: the essential requirement is that the function take a data frame as an
argument and return one in which there are no missing values.

Another approach to removing the missing values is to work interactively to
estimate them on a case-by-case basis, and then to work with the revised data
frame. Keep in mind that only missing values in the observations and variables
included in the fit will matter. Missing values anywhere else are irrelevant.

Fits Through the Origin; Parallel Regression

In (4.2) a constant or intercept term was included by default, as is usual. The
coefficient for the intercept is labeled as (Intercept) in the fitted model. You can
force a fit "through the origin"-that is, without an intercept-by including the
term -1 in the model formula:

Fuel ~ Weight + Disp. - 1

Used with a factor as the first predictor, this produces "parallel regressions," models
in which a different intercept is included for each level of the factor but the coef
ficients of subsequent terms are estimated on all the observations. The following
example produces a parallel regression of Fuel on Weight for each Type of automobile:

> lm(Fuel ~ Type - 1 + Weight, fuel.frame)
Call:
lm(formula = Fuel ~ Type - 1 + Weight, data fuel.frame)

Coefficients:
Type.Compact Type.Large Type.Medium Type.Small Type.Sporty Type.Van

1.6721 1. 7153 1. 7743 1.2761 1.4816 2.2019

Weight
0.00088464

114 CHAPTER 4. LINEAR MODELS

Degrees of freedom: 60 total; 53 residual
Residual standard error: 0.3634

Compare this with the use of Type with an intercept on page 102. In the parallel
regression, there are 6 coefficients associated with each of the levels of Type. With
an intercept there are 5 coefficients associated with the contrasts and not with
individual levels.

Parallel regression can be used with any number of other terms in the model. If
we want the slopes to be defined within each level of Type as well as for the intercept,
then we are dealing with a nested model, as discussed in Section 5.2.1:

lm(Fuel - Type/Weight - 1, fuel.frame)

The separate slopes and intercepts will fit 12 coefficients; without the -1 the model
would fit contrasts for Type and then a coefficient for Weight within each level of
Type.

Overdetermined Models

By default, lmO requires that the data be sufficient to estimate uniquely all the
coefficients in the model. In numerical terms, the model matrix used in the fitting
must be nonsingular. If the matrix is singular, the model is overdetermined; that is,
there are (infinitely) many coefficient values that provide the same least-squares fit.
In this case, computations using the coefficients may be meaningless. Our default
approach is to- treat overdetermined models as an error.

The application, the data, or the purpose of the analysis can suggest that overde
termined models should be allowed, or at least checked for by some nonstandard
computations. Some designed experiments buy a smaller number of runs by ar
ranging that not all the effects in the model will be estimable. A very different
perspective comes from retrospective studies with predictor variables that can be
highly correlated and at the same time not measured exactly. The statistical and
numerical questions are subtle, and discussion of them is deferred to Section 4.4.3.
Here we will just describe how to allow singularities and how to check for badly
determined models.

Fitted values and residuals will be well defined if the model is exactly singular.
Such would be the case, for example, if the same predictor was effectively included
twice in the model:

y - x1 + x2 + poly(x1,2)

The linear predictor in x1 appears twice in this formula. There was no need to have
the first x1 term, but except for the coefficients, everything about the model should
be well defined.

4.2. S FUNCTIONS AND OBJECTS 115

If the application suggests that such exact singularities are possible and not a
problem, you can allow them by using the singular.ok argument to lm():

> lm(Fuel~ Weight + Disp. + poly(Weight, 2), fuel.frame,
+ singular. ok = TRUE)
Call:
lm(formula =Fuel~ Weight+ Disp. + poly(Weight, 2), data= fuel.frame,

singular.ok = T)

Coefficients: (1 not defined because of singularities)
(Intercept) Weight Diep. poly(Weight, 2)2

0.50447 0.0012196 0.0011032 -0.45364

Degrees of freedom: 60 total; 56 residual
Residual standard error: 0.38894

As the printing warns, not all the coefficients will be defined. The value of coef(fit)
will give only the estimated coefficients; those not printed are stored as NA. The full
story is that many coefficients will give the same fit. In this case, the linear part
of the third term is completely aliased with the first term, and a one-dimensional
linear family of coefficients will give the same fit. Chapter 5 deals extensively with
overdetermined linear models and presents techniques for studying the pattern of
aliasing.

A somewhat different issue is that of models that are nearly singular, in that
some small change to the data could make the model singular. Again, this is a
complicated question, that we deal with in Section 4.4.3. The function kappa()
returns an estimate of the condition number of the model matrix, large values of
which indicate that the model is close to singularity. The argument to kappa() can
be a fitted model or a matrix. A single number is returned; if it is large, there is a
possibility that the numerical results of the fit are not well defined. For example,
for the model on page 100,

> kappa(fuel.fit)
[1] 15494.84
> kappa(diag(5))
[1] 1

How large is large? The condition number of any orthogonal matrix is 1. Values
that are approaching t:- 1 , where t: is the relative precision of the computations are
cause for numerical concern. On the machine we are using, t: is small enough that
the condition estimate for fuel. fit is not troubling from a computational view:

> .Machine$double.eps
[1] 2.220446e-16
> .Machine$double.eps ·* kappa(fuel.fit)
[1] 3.440546e-12

116 CHAPTER 4. LINEAR MODELS

However, if the data in the problem are subject to sizable error of measurement
you ought perhaps to be concerned long before numerical inaccuracy is a problem.
Section 4.4.3 gives some suggestions.

4.2.5 Updating Models

Developing statistical models nearly always involves modifying an existing model
when something is seen to be wrong with it. The structural formula may not be
right or some other aspect of the fit may need to be adjusted. The function update()

allows a new model to be created from an old one by providing only those arguments
that have to be changed. This function works on all the kinds of models to be fit
in this book, taking advantage of some common structure in the fitted objects and,
again, of the ability of methods to be inherited from one class of objects to another.

As an example, the model fuel. not. van that we computed above differed from
the model fuel. fit only in the subset argument. Therefore, an equivalent but
somewhat simpler way to generate it would have been:

fuel.not.van <- update(fuel.fit, subset = (Type != "Van"))

Updating also allows the formula to be updated so as to add, drop or change pieces
of it while keeping the rest constant. For example, to add the variable Type to the
fuel. fit model, as on page 102, we could update the formula:

fuel.fit2 <- update(fuel.fit, . ~ . + Type)

In giving the formula, we used "." both on the left and the right of the "~" to
stand for "whatever was here before". On the left it stands for the old response,
Fuel, and on the right for the old right side, Weight + Disp .. The same shorthand
works for dropping terms. We could have gone back from fuel.fit2 to the original
model by:

fuel.fit.old <- update(fuel.fit2, . ~ . - Type)

A different response can be fit to the same predictors. If we wanted to fit sqrt (Fuel),

sqrt.fit <- update(fuel.fit2, sqrt{.) ~ .)

will substitute for"." the original response from fuel.fit2:

> formula(sqrt.fit)
sqrt(Fuel} ~ Weight + Disp. +Type

The computations in update() attempt to simplify the new formula, so that adding
and then dropping terms will work reasonably well:

> formula(fuel.fit.old}
Fuel ~ Weight + Disp.

4.3. SPECIALIZING AND EXTENDING THE COMPUTATIONS 117

The expressions to be simplified must match as expressions, not just numerically;
for example, WeightA2 and Weight * Weight are different.

Any arguments in the original call can be deleted from the new call by giving
them as empty arguments to update 0. To go from the fit with a subset= argument
to one without:

> fuel.no.sub <- update(fuel.not.van,subset=)
> fuel. no. sub
Call:
lm(formula =Fuel~ Weight+ Disp., data= fuel.frame)

Finally, you can change from one kind of model to another by giving the class=
argument to update 0. The value of the argument is the name of the fitting function
to be used, instead of that called to produce the current fit. To refit a model using
glmO instead of lm(), call update 0 with

class = "glm"

along with whatever other new arguments and changes in the formula are needed.
The update() function's only assumptions about the fitting function are that it

has formula as its first argument, and that the call that produced the old fit can
be extracted from a "call" component in the fit. The new fit must be computable
from the reconstructed call; in particular, the data must be available. If all the
relevant data are in a data frame given as an argument, there should be no trouble.
lf the data frame is omitted or if we mix in variables from several sources, updating
can fail-for example, because the search list or the contents of the working data
have changed since the original fit was computed.

4.3 Specializing and Extending the Computations

The techniques illustrated up to this point don't require knowing what lm() does
internally. Most statistical use of the linear model software should be at this level:
the analyst wants to concentrate on asking the relevant and interesting questions
rather than being diverted into computational details. One's perspective begins to
change when the modeling software starts to be used to develop further techniques
(for example, when a number of related linear models are to be produced at once).
Since most of the computing time taken by lmO is in analyzing and setting up
the proposed model and only a small part in the actual numerical fitting, repeated
fitting can be made faster by iterating at a lower level than lmO itself.

Section 4.3.1 illustrates this in the context of general fitting of related models,
and Section 4.3.2 discusses the special case of adding and dropping terms from
the current model. Section 4.3.3 provides a framework for a variety of statistical
techniques assessing the influence of observations.

118 CHAPTER 4. LINEAR MODELS

4.3.1 Repeated Fitting of Similar Models

When fitting a single linear model, the natural way to proceed is as shown in
subsection 4.2.1. The model and data are provided as a formula and a data frame;
all the details from that point on are worked out by the lmO function. In some
applications, however, you may want to fit related linear models, varying some
aspect each time but otherwise reusing the previous model.

There are several ways to do this. Generally, they amount to a tradeoff be
tween saving computing time and getting deeper into the computations. The use
of update() as described in Section 4.2.5. is by far the easiest and most flexible ap
proach. Anything can be changed (the new model doesn't even have to use lmO),
and shorthand notation is provided for the common case of making changes in the
formula. You pay for the generality in that update() just constructs a new call to
lmO or to a similar function and then recomputes the fit from scratch. In order
to save the computer some of this work, a human will have to work harder. If
similar problems arise repeatedly, the investment will usually be worthwhile. The
first requirement is to understand a bit more about how lm() and its cousins work.
The main stages are as follows:

• From the formula, the data, and the optional arguments weights, subset, and
na.action, lm() constructs an intermediate data frame, called the model. frame,
containing just the data needed in the model. This includes the variables that
appear in the formula, taking account of any subset selection, NA action, etc.
The model frame has an attribute, terms, that summarizes in detail the terms
of the model defined by the formula. See Section 3.3.3 for details.

• From the model frame, lmO constructs the response as a numeric vector or
matrix, and the predictors as the model. matrix, a numerical matrix with some
additional information about the model. See Section 2.4.3.

• The model matrix and the response are the arguments to lm.fit(x, y), which
does the numeric fitting.

• The basic fitted model returned by lm.fitO is augmented with components
describing the terms, the call to lmO, and the response and/or model matrix,
if the call asked for those.

A look at the definition of lm() will show how this works. The special techniques
for repeated fitting proceed by doing the first step or the first two steps once only,
and then repeating the rest of the calculations as needed.

Repeatedly modifying and using the model frame mainly saves manipulating
the large data frame from which the (perhaps much smaller) model frame was
constructed for this specific model. This technique is very general, using no special
features of linear models. Therefore, it is a useful paradigm for repeated fitting

4.3. SPECIALIZING AND EXTENDING THE COMPUTATIONS 119

of any models. Repeating the fitting using the model matrix, rather than the
model frame, saves much more of the preparation and so is important for large
scale computations, such as simulation studies.

The other main question in repeated fitting is how to organize the results. Here
too there is a tradeoff, this time between a simple list of ordinary lm objects and
some more specialized organization. The list of fits has the advantages that the
elements of the list are ordinary lm objects: all the usual summaries can be applied.
Also, building the list needs no special knowledge of how lm objects are organized
internally. Special structures can save on some space and can sometimes make
later computations simpler. We will show one special organization, as a matrix of
repeated fits by components of the fit. This simplifies. access by component (for
example, getting the residuals from all the models at once) and can also save some
space by not including components of the fit that stay the same or that are not
needed in the result.

Simple Repeated Fitting

As an example, suppose we want to include a power of one or more predictor
variables, and would like to investigate the fit for a sequence of possible powers. In
particular, suppose we want to fit a model of the form

Fuel ~ I(WeightAk) + Disp.

where k is to be chosen. This is not a linear model with k as a parameter, but rather
than drag in a more powerful algorithm, we can refit with a sequence of values for
k and compare the fits. We choose to study different powers of a predictor, rather
than the more common case of powers of the response, because the latter can be
done in a single call to lmO; however, for models in later chapters such as those
fit by glmO, powers of a response would need to be handled as in the example to
follow.

Let's begin with a purely lazy approach. Suppose k. values is a vector of values
we want to try for k:

> fits <- list()
> for(k in k.values)
+ fits[[as.character(k)]] <-
+ lm(Fuel ~ I(WeightAk) + Disp., fuel. frame)

Notice that we assigned the elements of fits by name, not by position. This trick
is recommended for many computations that create lists, because it creates named
lists directly and avoids the confusion that can happen when a NULL value is assigned,
deleting a component of the list. In this example, we called lmO each time, since
the formula and data expressions were constant, with only the value of k changing.

120 CHAPTER 4. LINEAR MODELS

If there are changes in the call other than values for data, the update() function can
be used to construct the new call each time.

Once the list of models is created, we can pluck off specific results to study the
fits. Several functions in S help, one of the most useful being sapply(). This applies
a function to each element of a list and then attempts to simplify the result to a
vector or matrix. The function supplied to sapplyO can be any function suitable
to be applied to the elements of the list. In this case, each element will be an lm
object, and we can apply any of the summarizing functions in Section 4.2.1.

The "function" supplied to sapplyO really is an S function object, even though
the argument is usually just a name. As a result, if the precise function you want
doesn't exist, you can simply define it in-line. For example, suppose we want to
compare the variance of the residuals of the fits. All that is needed is to supply
sapply() with the function definition

function(x) var(residuals(x))

This function will be called for each of the lm objects in fits:

sapply(fits, function(x)var(residuals(x)))
0.5 1 1.5 2

0.1445124 0.1470052 0.1514131 0.1574302

The four values of k, c (. 5, 1, 1. 5, 2), appe~r as the names of the vector of vari
ances. It seems that the square-root is the. best choice, but there is not much
difference over the chosen range. To look more closely, let's draw boxplots of the
sets of residuals. The argument to the boxplot 0 function is a list with each set of
residuals as one element. The expression

sapply(fits, residuals)

would simplify its result to a matrix since each set of residuals is of the same length.
Using the function lapplyO or giving the argument simplify=FALSE to sapply(),
suppresses the simplification, so the resulting list can be passed to boxplot 0 di
rectly:

> boxplot(sapply(fits, residuals, simplify = F))

Fitting from the Model Matrix

Even though update 0 makes no effort to save on space or time, the simplicity of
this approach makes it the one to start with. But if the computations are to be
done many times, a lower-level version is useful. As noted, lm() eventually calls a
function lm.fit(x,y) or, for weighted fitting, a function lm.wfit(x,y,w), where x
nnd y are the model matrix and the response. In order to do more efficient fitting,
we can construct these arguments and call the appropriate fitting routine directly.

4.3. SPECIALIZING AND EXTENDING THE COMPUTATIONS 121

The lmO function computes the model matrix and response, but by default does not
return them as components of the lm object. If arguments r-=T or y=T are supplied
to lmO, it will return the corresponding component in its value.

Suppose we wanted to resample the data in a model with nrows observations,
picking rows with replacement each time, to generate a new fitted model (a "boot
strap" resampling of the predictor and response). We can generate the model matrix
and response for the resample by sampling with replacement from the observations
of the original model. To begin, we create the original model, including the model
matrix and response:

> fitl <- lm(Fuel "'Weight+ Disp., fuel. frame, x=T, y=T)
> x <- fitl$x; y <- fit1$y

The resampling of rows can be applied to the model matrix x and the response
vector y, and a new fit produced by lm. fit 0 :

> rows <- sample(nrows, nrows, replace=T)
> fit2 <- lm.fit(x[rows,] , y[rows])

We can repeat the calls to sample() and lm.fitO to resample as many times as de
sired. For a substantial number of resamples, much less computation will be needed
than when using update() or lm() each time. In this case, the computationally
simpler form is simple for the human as well, once the necessary details of lmO are
understood.

The real payoff, of course, comes from writing an S function to encapsulate the
details. Let's write bootstrap.lm() to carry out the bootstrap sampling given a
single initial fit, z, and the number of resamples wanted:

bootstrap.lm <- function(z, nsample) {
x <- z$x; y <- z$y
nrows <- dim(x)[l]
value <- list()
for(i in seq(nsample)){

}

rows <- sample(nrows, nrows, T)
value[[i)] <- lm.fit(x[rows,], y[rows])

value

A user-friendly version ofbootstrap.lmO should b~ a bit more careful than this; for
example, if the original fit was missing the x or y component, bootstrap.lm() could·
use update() to redo the fit.

One caveat about proceeding at this lower level of numerical fitting is that not
all of the information in the full 1m object will have been generated by lm.fitO.
A fairly simple modification of the function above would retain all the information
available in the lm objects. Replace the line

122 CHAPTER 4. LINEAR MODELS

value[[i)] <- lm.fit(x[rows,], y[rows])

with the lines

z$x <- xx <- x[rows,]; z$y <- yy <- y[rows]
vi <- lm.fit(xx, yy)
z[names(vi)] <- vi
value [[i]] <- z

The technique here, which is quite general, arranges for each element of the list to
have the following components:

• all the components returned by lm.fitO on the ith call;

• anything in the original fit not returned by lm.fitO;

• the data x and y used in the ith fit (these are not required and could be
omitted if there was a large amount of data).

For large examples, the replication of identical information in the elements of the
list may waste a serious amount of space. An organization of the results in an
object of a special class (see, for example, page 124) avoids this wasted space at
the cost of more effort in organizing the results. Either approach only works on the
assumption that the information other than the components returned by lm.fitO
stays the same from one fit to the next. This is often correct, but needs to be checked
for each application. For example, bootstrap.lmO as written does not handlethe
case that the sampled model is overdetermined (singular), as it could well be. A
possible approach is to use the argument singular.ok=T to lm.fitO, but comparing
a singular model with a nonsingular one is a bit ambiguous. Let's pass over these
details, however, and discuss an alternative organization of the results.

Matrix Organization for Repeated Fits

Organizing the results of repeated fitting as a list of fits is undoubtedly the best way
to start, and is probably the best choice in any case unless one expects to apply
some extensive calculations repeatedly across the different fits. However, notice
that it was necessary to use the function sapplyO to get at all the residuals. This
does rather a lot of computing and efficiency might again be a consideration. In
some specialized applications, it may be important to make indexing symmetric and
efficient, either across the models or across the components of the models.

What kind of data organization in S makes subscripting in two different ways
easy? Obviously, a matrix. It is designed exactly for this purpose, and we should
consider organizing the fits as a matrix, indexed by the components of an 1m object
along one dimension, and by the different circumstances giving rise to the model
along the other. This may sound a little strange at first since you are more likely

4.3. SPECIALIZING AND EXTENDING THE COMPUTATIONS 123

to encounter matrices of numerical data or of character strings than matrices of
mode "list", as this one will be. However, nothing bizarre or specially constructed
is necessary, and the technique will prove extremely useful. Therefore, let's pause
to review a few things about matrices in S, to clarify what we are going to do.
Sections 5.5.1 and 5.5.2 of ji (pages 126-135} are also useful reading. A matrix, or
generally a multiway array, is any S object that has an attribute dim. This attribute
gives the dimensions of the array; a matrix is just the special case in which the dim
attribute is of length 2. S takes care to keep the dimension information meaningful
and consistent with the length of the object, but otherwise it imposes no constraints
on a matrix. In particular, the mode can be anything at all.

The meaning and the importance of matrices reside largely in the functions that
understand how to deal with them. In this case, it is the [and [[operators that
will be essential. These both understand how to subscript matrices (ji, p. 127),
and they also are written so that matrices can have any mode at all. You will not
have used [[much with matrices, but when the mode of the matrix is "list", there
is an important distinction. The result of [is always an object of the same mode as
the original object; however, if you want to get a particular single element of a list,
rather than the list of length 1 that contains that element, the [[operator is the
one to use (1§1, p. 111). Arrays can also have a dimnames attribute that gives names
to the rows and/or the columns, which can be used with the [or [[operators.

With this brief review in mind, let's turn the value of bootstrap. 1m() into a
matrix, whose rows correspond to the components returned by lm.fit() and whose
columns correspond to the different samples. The calculations are identical, except
that just before returning value:

rnames <- names(value[[l)))
value <- unlist(value, recursive = F)
dim(value) <- c(length(value)/nsample, nsample)
dimnames(value) <- list(rnames, paste("Sample",l:nsample)))
class(value) <- "matrix"

The call to unlist 0 makes a single vector from the components of all the nsample
fits. Both the dim and dimnames rely on the assumption that lm.fitO returns the
same components each time; other than that, the paradigm used above applies to
essentially any similar sequence of refitting. The dimnames attribute is computed
from the component names of the object returned by lm. fit 0 . Setting the class
to "matrix" will bring in some matrix methods, the most important being a special
printing method for matrices of mode "list" (see page 126).

This same organization could have been used in the computation of the fits with
different powers of the Weight variable on page 119.

fits<- array(fits, c(length(fitl),length(k.values)),
list(names(fitl), k.values))

124 CHAPTER 4. LINEAR MODELS

The poxplot function used on page 129 to produce Figure 4.5 expects as its argument
a list of the data vectors to be plotted. With the matrix organization this does not
require sapplyO:

boxplot(fits["residuals",])

Other functions might want, for example, a matrix whose columns are the residuals
from the different fits. This is obtained by the expression

matrix(unlist(fits["resid",]), ncol = ncol(fits))

Remember also that the [[operator works for matrices of any mode. For example,
a normal probability plot of the residuals for k=. 5 is produced by:

qqnorm(fits[["resid", ".5"]))

If you get unexpected error messages about trying to use non-atomic or non-numeric
data, chances are you meant to use [[, but used [instead.

The matrix form makes extractions simpler to write and computationally faster,
but the extra programming involved in computing the object is not worthwhile for
"one-off" analyses. For substantial new software efforts, where the objects created
may themselves be used for further computing, the matrix form can be useful.
The approach could be taken further by designing a class of objects for the matrix
version of bootstrap.lmO, for example, so that methods could smooth over the
details of the implementation. This would allow us to return complete lm objects
when columns are selected, without replicating all the components in each fit, as
we did previously. The extra information would be copied once as an attribute of
the object, and a method for the "[" 0 function would insert these in the value
when a column subset was computed. The details would make an interesting, fairly
advanced exercise. See Appendix A on how such classes and methods are designed,
and t.he function "[.data. frame" 0 for an example.

If you have read Chapter 3 on data, all this discussion of lists versus matrices
might suggest that data frames are likely to pop up. Indeed they do, in somewhat
different uses of refitting. One example is shown -in Section 4.3.2, in which new
models will be formed by systematically adding or dropping one term from the
current model. This example is sufficiently important that it rates a generic function
and methods, but it is also interesting as another version of the general refitting
techniques.

4.3.2 Adding and Dropping Terms

The analytic techniques to be considered next focus on individual terms that are
candidates for inclusion in a linear model. The questions to consider include "Does
this term appear to add a useful structural relationship to the model?", "What

4.3. SPECIALIZING AND EXTENDING THE COMPUTATIONS 125

structural form seems to represent the relationship best?", and "Is the relationship
strongly influenced by a few observations?". These questions hark back to the
displays and summaries in Chapter 3, where we were studying the relationships
between variables in the data frame. The focus now is sharper and narrower. We
have chosen a response and are looking for a good linear model. A candidate, initial
model has been fitted. We. want to study some possible new models.

Computationally and statistically, two different situations arise. In one case,
we begin with a model and ask what would happen if we dropped a term. In the
other, we begin with a model and an additional set of candidate terms, and ask
what would happen if we added one of those terms. The analytic techniques are
essentially the same, but the context is different, and different computations are
used to provide an efficient answer.

For the most part, we will talk about terms in this discussion, rather than
coefficients. A distinction arises when the term being considered corresponds to a
factor or a matrix, so that more than one coefficient is involved. Dropping single
coefficients rather than terms is an option, but dropping some of the coefficients
used to fit a categorical variable means quite a different thing from dropping the
term, and is not always a meaningful operation. For example, if we coded an ordered
factor by polynomial contrasts-linear, quadratic, cubic, etc.-then dropping the
highest power would make sense, but dropping a lower power usually would not. So
the discussions here will be of adding and dropping terms:

dropl(fit)

will return all the fits obtained from dropping one of the terms in fit and

addl(fit, scope)

will return all the fits from adding one term to fit from the possibilities in scope.
These are generic functions. They find more frequent application in generalized
linear models (Chapter 6), where adding and dropping terms involves somewhat
more computations. The glm objects inherit from linear-model objects, however,
and in this case the methods used for glm's are applicable to any linear model.

As an example, suppose we consider the two terms in the original fuel. fit, and
form an object representing this model and the two models that can be formed from
dropping either Weight or Disp.:

fuel.dropl <- dropl(fuel.fit)

The object fuel.fit is the fitted model computed on page 100. The anova object
fuel.dropl is a summary of the changes resulting from dropping each of the terms:

> fuel.drop1
Single term deletions

126 CHAPTER 4. LINEAR MODELS

Model: Fuel "' Weight + Disp.

Df Sum of Sq RSS Cp
<none> 8.67 9.59
Weight 1 7.931 16.60 17.21

Disp. 1 0.045 8.72 9.33

The printing method shows the initial model, and then a table with rows corre
sponding to the original and each of the deletions. The columns give the number
of degrees of freedom in the deleted term, the sum-of-squares due to the deleted
term, the residual sum-of-squares for the reduced model, and the Cp statistic for
the subset of terms in the reduced model. For a discussion of the Cp statistic in
this context, see page 233 in Chapter 7.

The object returned by drop1 0 or addl 0 summarizes the fits by the quantities
Df, etc., as shown in the printing above. In contrast to the examples in the previous
section, the object is not a list of the individual fits. Additional information for each
of the models will be returned if you supply the argument keep=T to the drop1 ()
function:

> fuel.keep <- drop1(fuel.fit, keep=T)

When printed out, this object will list some additional statistics kept for future
computations:

> fuel.keep
$anova:
Single term deletions

Model: Fuel "' Weight + Disp.

<none>
Weight
Disp.

$keep:

Df Sum of Sq RSS Cp
8.67 9.59

1 7.931 16.60 17.21
1 0.045 8.72 9.33

coefficients
Weight numeric, 2
Disp. numeric, 2

fitted residuals
numeric, 60 numeric, 60
numeric, 60 numeric, 60

x.residuals effects a
Weight numeric, 60 numeric, 60 numeric, 4
Disp. numeric, 60 numeric, 60 numeric, 4

In this version, the object returned is a list whose anova component is the table seen
before. The other component, keep, is a matrix of mode "list", whose columns are

4.3. SPECIALIZING AND EXTENDING THE COMPUTATIONS 127

indexed by different statistics and whose rows correspond to the dropped terms, here
"Weight" and "Disp.". The printout "numeric, 2" means that the corresponding
element of the matrix is a numeric vector of length 2.

The keep component is similar to the organization in Section 4.3.1, where re
peated fits are represented as matrices. Elements of the matrix give single compo
nents for particular models:

fuel. keep$keep[["Weight", "residuals"]]

gives the residuals from the model in which Weight was dropped. The column
"x.residuals" gives the residuals of the corresponding predictor when it is regressed
against all the other predictors in the original model. This statistic arises in a
number of plots and summaries used for studying added and dropped terms. The
other columns should be self-explanatory. Since the individual elements are whole
objects, not numbers or character strings, the printing method for class "matrix"
just prints a brief summary of each element.

As an example of using the additional statistics from keep=T, suppose we want
to look at the residuals of the model with Weight omitted. One useful plot shows the
residuals of Fuel from this model plotted against residuals of Weight fitted against
the same terms-in this case, regressed against Disp .. If the configuration of points
in this plot shows a noticeable linear trend, this is evidence that Weight should be
included; in particular, the simple linear regression of the points in this plot gives the
same coefficient for Weight as in the full modellmf. For the statistical background,
see Belsley, Kuh, and Welsch (1980, p. 30), Cook and Weisberg (1982, p. 44), and
Chambers et al. (1983, pp. 268-277). All three references give a different name
to the plot; we will call it the added variable plot, following the second reference,
but with the caution that there are other reasonable plots for looking at added
variables.

Figure 4.4 shows the plot for our example, along with a similar plot when
Displacement is dropped. There is a clear linear pattern for Weight, indicating that
it deserves to be in the model, but a much less obvious pattern for Displacement,
reinforcing the message given from the two printed summaries. To produce these
plots we extract the corresponding components from each of the two columns:

keepstuff <- fuel.keep$keep
for(x in dimnames(keepstuff)[[l]])

plot (keeps tuff [[x, "x. resid"]] , keepstuff [[x, "resid"]] ,
xlab= paste("Residuals of" ,x, "from rest"),
ylab=paste("Residuals without",x))

Note the use of double square-brackets: we want the vector in the corresponding
element of the list, not a sublist (see 1§1, p. 111, if this is an unfamiliar distinction).
It should also be obvious .that we could write an "added variables plot" function
that did little more than the above, to produce this sort of plot for any drop-1linear

128 CHAPTER 4. LINEAR MODELS

q
0 0

.E q 0
0

"' 0 0 ·a; 0

3: 0

0 o 0
0

5 ll)

0 ci ..c:
000 s ·~ 00' 8~

0

II) 0 0 0

7ii ci 0 ::J
08 ~ Oo 0

:2
II)
Cl) ll) 0 0 0 a: 9 <b

oo od& o oo
0 0 0

ci.
0

II) ll) 000
0 i5 ci 0 000 0

5 0 8 0 0 0 0
£

0 o~'O> •;t 0 0

II) ci 0
0 co I

7ii (I) 0
::J os,a :2 0
II) 0 ~6' Cl) ll) 0 0 a: 9 0

0 0

0
0

-500 0 500 -50 0 50 100

Residuals of Weight from rest Residuals of Disp. from rest

Figure 4.4: Plots of the "drop-1" fits from the fit of Fuel on \Ieight + Displacement

model summary. As in the previous subsection, the goal of functions like dropl 0
is to produce an object from which a wide variety of specific diagnostics can be
generated easily.

The opposite approach starts from a model and adds on one term from each of
a possible choice of terms; for example,

> fitO <- lm(Fuel "' 1, fuel.frame)
> fuel.add1 <- addl(fitO, • "' Weight + Disp. + Type)

The first statement creates an empty model, fitting only the intercept. The second
then investigates all the one-variable fits by adding each of them to the empty
model. The resulting object has the same structure as for drop1 0, but this time
the individual models in the rows will all have one more term than the original
model.

> fuel.add1
Single term additions

Model: Fuel "' 1

<none>
Weight

Disp.

Df Sum of Sq RSS Cp

1

1

33.86 35.00
25.14 8.72 11.01
17.25 16.60 18.90

4.3. SPECIALIZING AND EXTENDING THE COMPUTATIONS 129

Type 5 24.24 9.62 16.50

The keep=T option is again available, with the same statistics. The x. residuals
statistic contains the residuals from fitting each of the new terms against the same,
original model. If we had computed fuel. addl with keep=T, boxplots of the three
sets of residuals could be produced easily. Figure 4.5 shows that the spread of the

·---r---

> boxplot(fuel.add1$keep[. "residuals"]) "!
0 QOo

: : • ___ J.. __ _
, ___ .~.. __ _.

Weight Disp. Type

Figure 4.5: Boxplots of residuals, fitting Fuel to three variables in the automobile data
using the addl 0 function

residuals is much less when fitting Weight or Type than Disp. (the comparison is not
entirely fair, since Type uses 5 degrees of freedom and the numeric variables only 1).

4.3.3 Influence of Individual Observations

A weakness of least-squares models, in theory and sometimes in practice, is that
individual observations can exert a large influence on the fitted model. If those
observations were in some sense inconsistent with the bulk of the data, the con
clusions drawn from the model could be misleading. A wide variety of statistical
techniques have been proposed to detect and analyze such situations: the books by
Bclsley, Kuh, and Welsch (1980) and by Cook and Weisberg(1982) present a variety
of techniques, some of which we will illustrate. The questions that we will consider
center around what influence individual observations have on the fit. In particular,
what would happen to various aspects of the fitted model if individual observations
were omitted? Computing all the n models arising if one of the n observations were
omitted would be impractical for large datasets. Fortunately, numerical techniques
for linear least-squares models allow many relevant summaries of such models to be

130 CHAPTER 4. LINEAR MODELS

computed all at once. (If this were not the case, the subject would have received
much less attention than it has!)

The function lm.influence() takes an initial linear model and returns an ob
ject whose components contain various summaries of the n models obtained by
omitting one observation. These summaries tend to be either vectors of length n
or matrices with n rows, corresponding to the omitted observation. Specifically,
lm. influence() returns a list with components coefficients, sigma, and hat. The
first is a matrix whose rows are the coefficients for the model with the corresponding
observation omitted, and sigma is a vector of the estimates for the residual standard
error in the corresponding model. The definition of hat is a little more technical,
and has to anticipate just a little the theoretical discussion of Section 4.4. The
fitted values for the response, say y, can always be written as the product of an n
by n matrix times y:

y=H·y

The component hat is the vector of the n diagonal elements of H; large values of
this vector indicate observations with a large influence on the fit. The matrix H
depends only on the predictors, not on y. The utility of hat arises from its ability
to summarize what is often called the leverage of the individual observations-that
is, the effect on the fit arising from the corresponding row of the model matrix.

The components of the lm. influence object, or at least coefficients and sigma,
are directly interpretable and of some interest. The real point in their design,
however, is that they can be combined with some of the components of the 1m
object describing the original fit to compute a very wide variety of diagnostics. A
number of these are summarized in Table 4.1. The S expressions in the second
column of the table compute the specified diagnostics, using objects assumed to
have been extracted from an 1m object, say lmf, and from corresponding summaries
and influence objects as follows:

lms <- summary(lmf)
lmi <- lm.influence(lmf)
e <- residuals(lmf)
s <- lms$sigma; xxi <- diag(lms$cov.unscaled)
si <- lmi$sigma; h <- lmi$hat
bi <- t(coef(lmf) - t(coef(lmi)))

A typical use of this information. would be to construct S functions that produce
the particular statistics you want, using whichever of the quantities in the table are
needed; for example,

dfbetas <- function(fit, lms ~ summary(fit), lmi = lm.influence(fit)) {
xxi <- diag(lms$cov.unscaled)
si <- lmi$sigma
bi <- t(coef(fit) - t(coef(lmi)))

4.4. NUMERICAL AND STATISTICAL METHODS 131

Quantity Expression Meaning Reference
Standardized e/(s•(1-h)".5) Residuals with equal BKW(20)
Residuals variance
Studentized e/(si•(l-h) .5) Use si as standard BKW(21),
Residuals error CW(l8)
DFBETAS bi/(si %o% xxi .5) The change in the BKW(13),

coefficients, scaled by CW(125)
the standard error for
the coefficients

DFFIT h*e/(1-h) The change in the fit- BKW(l5)
ted value when that
observation is dropped

DFFITS h .5•e/(si•(1-h)) Change in fitted val- BKW(l5),
ues, standardized to CW(124)
variance 1

Table 4.1: Computation of some diagnostic summaries for influential obserttations from
the components of lmO and lm. influence(). References are to page numbers in flelsley,
f1uh, and Welsch (1980} and Qook and Weisberg(Jg82}.

bi/(si %o% xxiA0.5)

The use of the outer product operator, %o%, produces a 60 by 3 matrix (observations
by coefficients), matching the dimension of bi.

Similar functions could be created for the other statistics in Table 4.1, as well
as for many other related quantities. The computations done by summary .lm() and
1m. influence() provide the building blocks.

4.4 Numerical and Statistical Methods

This section discusses details of fitting linear models that underlie the functions
in the previous sections. You should read the material if you want to understand
why things work the way they do, or if you want to make them work in a seriously
different way. You're welcome to read it anyway, if you're just curious. Section
4.4.1 gives a more formal discussion of the statistical regression model as we have
used it in the chapter. Section 4.4.2 presents similar elaboration on the numerical
methods used. Section 4.4.3 goes into some detail about the difficulties associated
with over- or ill-determined models.

132 CHAPTER 4. LINEAR MODELS

4.4.1 Mathematical and Statistical Results

Mathematical, computational, and statistical results on linear models are covered
in many books and articles. We give some references for further reading at the end
of the chapter. In this section, the main results will be given briefly, along with
some special considerations for statistical modeling not discussed in the numerical
analysis literature. The mathematical and computational discussion of linear least
squares fitting rests on a few fundamental results. To express these compactly, we
need to use matrix notation. Let X be the model matrix whose columns, Xj, are
the predictors in the model, including a first column whose elements are all 1, if
the intercept is included. Let {3 be the vector of coefficients, again including the
intercept if one is fitted. Let p be the length of /3. The least-squares estimate of the
coefficients will be denoted {3.

The vector of n fitted values from the linear model can be written in matrix
form, for any coefficients /3, as

X. /3

where "·" denotes matrix multiplication. As in equation (4.3) on page 97, the
residuals are:

c=y-X·/3

The least-squares fit chooses f3 = {3 to minimize the sum of squares of the residuals
(4.2). Two characterizations of a least-squares fit arise most frequently. One can
be stated in terms of an orthogonal transformatfon that takes X into an upper
triangular matrix. Suppose Q is an orthogonal n by n matrix; that is,

where QT is the transpose of Q, and I is the identity matrix. For the orthogonal
decomposition, Q is chosen so that

(4.5)

where R is a p by p upper-triangular matrix; that is,

Ri,i = 0, i > j

and 0 is a matrix of all zeros. If Q1 is the first p columns of Q, then

X =Q1 ·R

In geometric terms, Q1 is a set of orthogonal vectors in n-space that span the
columns of X; i.e., any linear combination of columns of X can be written as a
linear combination of the columns of Q1 •

4.4. NUMERICAL AND STATISTICAL METHODS 133

We now define the effects to be the vector c such that:

(4.6)

where c1 is of length p and c2 is of length n - p. Any /3 that satisfies the equations

R · /3 = c1 = Q[· Y (4.7)

can be shown to produce a least-squares fit. Equation (4. 7) is the basis for practical
numerical methods for least-squares solutions. The computations performed by lm()

use the Householder decomposition for computing Q; this produces a complete and
accurate definition of the transformation. Choosing R upper-triangular provides
efficient, accurate solutions for (4. 7). Mathematically, we have not used the upper
triangular property, and all we need is the ability to compute an orthogonal basis of
X and then solve for /3. More about this when we come to discuss the singular-value
decomposition. We are assuming in this section that the linear model is of full rank.
The characterizations of the results in terms of an orthogonal decomposition carry
over to the case that the model is over-determined, but the notation becomes more
cumbersome, so we prefer to postpone this generalization to Section 4.4.3.

A second characterization of the least-squares fit begins from the cross-products
and can be derived from (4.5) - (4.7). Any /3 satisfying the normal equations;
namely,

(4.8)

gives a least-squares fit. The normal equations follow directly by substitution; in
particular,

RT ·R = xT .x

nT · ct = xT. y (4.9)

which provides a basis for the computations using the computed cross-products. The
first equation of (4.9) is implemented by computing the Choleski decomposition of
XT ·X. The second equation is then used to solve for c1 ; this is the solution of
another triangular system of equations, and therefore can be computed quickly and
accurately. Given c1 and R, /3 is computedas before from (4.7).

The solution to (4.7) can be written as a linear transformation of c1 , say

(3 = n- · c1

If all the columns of X are linearly independent, as we are assuming in this section,
then n- is the inverse of R, is upper-triangular, and is uniquely defined. Substi
tuting c1 from (4.7), we can write /3 as

(4.10)

134 CHAPTER 4. LINEAR MODELS

where x- = R- · Q[. The relevance of (4.10) is not that one computes x-, but
that writing /3 in this way shows that it is a linear transformation of y. So also are
the least-squares residuals and fitted values. The fitted values are

ii = X ·/3
x-x--y

= Qt·Qf ·y
The last line follows from the definition of x- and the fact that

The n by n matrix
H= Qt·Qf

projects y into its fitted values iJ. The diagonal elements of iJ are used in Section
4.3.3 as a measure of the leverage the individual observations have on the fitted
values. The residuals are also a linear transformation of y,

e = y- iJ = (I -H) · y

Much of the formal neatness of linear least-squares results from the estimated coeffi
cients, the fitted values, and the residuals all being linear functions of the respom:e.

Statistical characterizations follow from making assumptions about the process
that generated the data. In the usual treatment, the values of X are taken as fixed
and the model assumes that

y=X·f]+~

where the elements ~i of ~ satisfy the assumptions of independence, constant vari
ance, and (usually) normal distribution on page 97. The combination of these
assumptions with the algebraic characterizations given before leads to relatively
precise theoretical results on the distribution of estimates from the fitted model.

In particular, because coefficients, fitted values, and residuals are linear transfor
mations of y, the assumptions determine normal distributions for these quantities
as well. Linear combinations of normally distributed quantities are also normally
distributed. If z has a multivariate normal distribution with mean p. and variance
matrix E, then any linear transformation of z, say A· z, has a normal distribution
with mean A· p. and variance

V(A · z) =A· E ·AT

From the characterization of (4.10), /3 is normally distributed with mean f3 and
variance

V(/3) =

=
x- . x-r . v(y)
R- · R-T x u 2

4.4. NUMERICAL AND STATISTICAL METHODS 135

The variances and covariances of the coefficients are estimated by replacing a 2

by an estimate of the residual standard error, typically s2, the sum of squared
residuals divided by the number of degrees of freedom for residuals (n- p if X is
nonsingular). Notice that whatever estimate of a 2 is used, it just multiplies the
unsealed covariance, R- · R-T. This is one reason why the unsealed covariance is
included as a component of the summary object returned by summary .1m() (see page
106). In particular, the correlation matrix of /3 in the model is the corresponding
cross-product when the rows of R- are rescaled to have unit sum-of-squares.

Given some new predictor data, say x, the model predicts the corresponding
response values to be x · /3. Since this is a linear transformation of /3, the variance
of the vector of the prediction is given by the formula for the variance of /3:

V(x · /J) =X · V(/J) · XT =X- • X-T X a2

where x- = x · R-; that is, x- satisfies

R·x- =x

Notice also that the prediction itself can be written as x- · c1.

Let's summarize by noting what information from the fit we need in order to
define various summaries. R and c1 are essential: they are used to get the coefficients
and, with an estimate of a, are enough to estimate distributional properties, such
as variances and correlations, for the coefficients and for predictions corresponding
to new data. Some additional information is needed to answer similar questions
about the n fitted values or residuals. This information comes from the orthogonal
basis, Q1 , or through the projection matrix H defined from it.

4.4.2 Numerical Methods

One argument to lm() not discussed so far is method. This argument can spec
ify a function to use for the numerical fitting. The method of estimation remains
least squares; the motivation is to provide a more efficient or desirable numerical
algorithm for special applications. Three methods are supplied, implementing the
algorithlllS discussed in the previous section: "qr" implements the QR decomposi
tion (in particular, the Householder method); "chol", the Choleski decomposition
method; and "svd", the singular-value method. The default is "qr".

> fuel.chol <- update(fuel.fit, method="chol")
> fuel.chol
Call:
lm(formula ~ Fuel "' Weight + Disp., data = fuel. frame, method • "chol")

Coefficients:

136 CHAPTER 4. LINEAR MODELS

(Intercept) Weight Disp.
0.47897 0.0012414 0.00085436

Degrees of freedom: 60 total; 57 residual
Residual standard error: 0.39008
> effects(fuel.chol)

(Intercept) Weight Disp.
32.611 5.0139 0.21169

Different methods will produce slightly different numeric results, as we will discuss,
but only in situations where their particular numerical properties are relevant is this
likely to matter to the user. For example, the Choleski method may be important in
situations where computations using the cross-products are simpler or faster than
those using the QR decomposition. The "svd" method may be important in some
studies of ill-conditioned problems.

Other than these numerical issues, the different methods should produce essen
tially equivalent objects, in that the summary methods and other functions using
the lm objects can function regardless of the method. This goal is largely, but
not completely, achieved with the current methods. If the summary methods are
themselves built around generic functions that do not depend on the particular nu
merical method, the results will be transparent. However, the information available
is slightly different, even between "qr" and "chol", which refer to the same underly
ing decomposition. As the example shows, one difference with the Choleski method
is that the solution from the normal equations only determines the first p elements
of the vector of effects. For most purposes, such as calling summary (), this makes no
difference. Occasionally, you may encounter a diagnostic function that assumes all
n elements of the effects have been computed, such as when doing plots of effects;
for such diagnostics, the "chol" method will not be adequate.

The most commonly used numerical methods for finding an orthogonal basis, in
the sense of equation (4.5) on page 132, are the orthogonal-triangular decomposi
tion methods, usually just called orthogonal decompositions, and in particular the
Householder decomposition. Solving linear equations in R is done by the efficient,
accurate process of back-substitution. When the computations proceed from the
normal equations rather than by decomposing X, this choice of R comes from the
Choleski decomposition of XT · X. Either method works fine for most practical
examples. The main argument in favor of the normal equations is usually speed,
but it is necessary to understand, first of all, that in most applications the computer
time taken in the numerical phase of solving linear least-squares problems is a small
fraction of the total time spent preparing the model, displaying the results, and car
rying out other tasks. A more likely reason for using the method might be that the
cross-products can be accumulated or derived from some other computation, but
that the eorresponding full data are not easily produced. Historically, methods us
ing cross-products came from a background of accessing data sequentially by rows,

4.4. NUMERICAL AND STATISTICAL METHODS 137

with the assumption that the full model matrix would take too much space.
The time taken by the numerical solution of least-squares problems can be esti

mated by counting "flops," floating-point operations. The counts can be expressed
in terms of panda, where

a= njp

is the ratio of observations to coefficients (hopefully a ;:::.: 1). The Householder
solution takes 2p3(a- 1/3) operations, the solution from the normal equations,
p3(a + 1/3). This means that if a is large, the normal equations solution ap
proaches half the operation count of the Householder method, whereas when a = 1
the counts are equal. If you think such considerations might be important to your
applications, you should study a careful account of the numerical methods, such as
found in Golub and van Loan(1989), and also be prepared in most cases to do some
detailed programming in FORTRAN or c. Just to make the situation more compli
cated (but also more interesting), if you do really need to worry about speed·, you
should probably consider the option of special hardware dedicated to the numerical
processing. For example, parallel computation is a practical alternative that can
alter the relevant time estimates in a fundamental way. The book by Golub and
van Loan is again a good place to start studying such questions. In using lmO to fit
linear models, more time goes into computing the terms, model frame, and model
matrix objects than into solving the estimation numerically. Therefore, techniques
to re-use the model matrix and response, as discussed on page 120, should be the
first step in saving on computations. After that, considerations of the algorithm
used may become relevant.

The other side of the comparison between normal equations and orthogonal de
compositions concerns accuracy. To oversimplify a complicated topic, if the numer
ical rank of X is well-defined computationally, either method will produce accurate
solutions to the least-squares problems, but as X becomes ill-conditioned computa
tionally, two things happen. First, the solution itself becomes unstable, in the sense
that small changes in X will substantially alter the least-squares coefficients and,
perhaps, the fitted values or residuals. Second, the numerical accuracy of a solution
using the normal equations will tend to degrade faster than that from an orthogonal
decomposition. It is in this sense that the orthogonal decomposition can be said
to be more accurate. But the question of non-unique or ill-conditioned solutions to
the computation must be considered in the context of the statistical nature of the
model, a context that usually dominates strictly numerical questions. We will say
a little about this in the next section.

One last topic in comparing the two approaches is important, but subjective.
It can be argued that orthogonal decomposition starting from the model matrix is
a more informative and more elegant solution than computations based on normal
equations. A basis for this statement is that, particularly with the Householder
method, one obtains a simple geometric characterization of the solution, consid-

138 CHAPTER 4. LINEAR MODELS

ered as the definition of a subspace spanned by the columns of X, within the
n-dimensional space of possible response values. The Householder QR method de
fines this subspace by ·p reflections. Stored in the form of these reflections, the
corresponding transformation can be applied to project vectors onto this subspace,
or onto its orthogonal complement. S has a variety of functions related to the QR
decomposition that implement the various computations in a simple manner, using
for example the qr component that can optionally be returned from a call to lmO.
For someone familiar with a little of the underlying mathematics, the computations
made possible by this form of the decomposition may simplify programming new
computations related to linear models.

The third method provided for solving linear least-squares problems corresponds
to choosing R in (4.5) of the form

R=D·V

where D is a diagonal matrix and V is a p by p orthogonal matrix. Solving equations
in R is again easy: divide by the diagonal elements of D (assuming these are
positive), and multiply by vT. These methods correspond to forming the singular
value decomposition of X. In using the singular values, it is important to carry out
the computations appropriately for least-squares problems: in particular, one can
avoid the portion of the decomposition requiring an n by p orthogonal matrix. See
again the comments in the next section, and the reference by Golub and van Loan.

The different numerical methods are integrated into the lm object by the compo
nent R. This component must exist, and there must be methods for each new class of
R objects to allow the functions treating 1m objects to work with the new numerical
method. As far as the generic functions described in this book are concerned, the
only critical method is for solving (back-solving in the case of upper-triangular R),
as required by summary .1m () .

4.4.3 Overdetermined and Ill-determined Models

There is no guarantee that the formula and data in a model will define the least
squares fit precisely, or even be numerically unique. Two situations need to be
considered, both arising quite frequently. First, if some column of X is exactly
equal to a linear combination of the preceding columns, then the coefficients {3
are determined only up to a one-dimensional family. However, the fitted values
from the estimated model are unique: any least-squares coefficients are equivalent,
geometrically, to fitting y to the p - 1 linearly independent columns of X. This
sort of linear dependency arises all the time in models, such as those in Chapter
5, that include factors. In this case, it is quite natural that some variables will be
functionally equivalent to other variables; in particular, fitting such a factor always
generates columns in the model matrix that are linearly dependent on the vector of
ones representing the intercept term.

4.4. NUMERICAL AND STATISTICAL METHODS 139

A somewhat different situation arises when some numeric terms are not exactly
known, perhaps because of observation error. In this case, a column of X may be
approximately equal to a linear combination of previous columns. The issue here is
that a model may be statistically meaningless and substantively misleading because
some linear combinations of variables are just noise. Hard decisions about which
model to choose may not be possible in this situation; it may be necessary to look
at several possible solutions. To make matters worse, in this case the fitted values
may be affected by the choice as well as the coefficients. If we choose to include a
questionable term in the model, the corresponding column of X will not be an exact
linear combination of the preceding columns. Therefore, there is no guarantee what
effect this inclusion will have on the fit. It could range from entirely negligible to
being the only important effect in the model.

Clearly, the proper treatment of these questions involves both statistical and
numerical questions. The two situations above correspond numerically to singu
lar and ill-determined models, in numerical terminology. The distinction between
these is clearly important statistically, but is not always made clearly in numerical
discussions.

Attitudes to the Problem

To set the discussion in a realistic context, let's take the viewpoint of a user who
needs to decide what precautions, if any, to take about these potential problems.
Four plausible attitudes that one might have in presenting a linear model for fitting
are:

I. "This model is not singular or ill-determined, and -I don't want to waste time
checking." ·

2. "This model shouldn't be singular or ill-determined, and if it is, treat that as
an error. Errors in the predictor variables are not important."

3. "This model may well be singular, because the particular design makes it
impossible to fit all the coefficients I'd like; if it is, just fit the nonsingular part
and note the ·family of coefficients. The model should not be ill-determined
once we take account of these design limitations."

4. "This model may be ill-determined; in particular, I realize that the predictor
data are both correlated and not known precisely. Solve it in such a way that
I can take account of these considerations."

These alternatives do not exhaust all the possible situations, but they do cover
the majority of practical situations. Number 3 is the typical situation in designed
experiments that are not "complete"; Chapter 5 will discuss this situation. Number
4, on the other hand, is a common situation in data where all the variables, response

140 CHAPTER 4. LINEAR MODELS

and predictors, are measured numeric quantities. Data in the social sciences par
ticularly tend to be both subject to measurement error and strongly correlated.

Alternative number 2 is the default assumption made by the lm() function,
so let's begin by considering that situation. The approach only protects against
numerical singularity; the important, but very difficult, question of errors in the
predictors is not considered. Numerical methods for solving least-squares problems
allow us to compute a solution, given the number of linearly independent columns
of X, and then examine that solution to see whether the problem seems to be nearly
singular. If singularity or ill-conditioning is to be an error condition, we proceed
to compute the numerical solution assuming that all the columns of X are linearly
independent (this will generate an error if the algorithm being used concludes that
X is singular). If not, the standard lmO computation returns the result, without
further checking. If ill-determined models are a statistical concern, however, some
additional checking should be done. Theoretical results about numerical linear
least-squares solutions offer some useful help.

Estimating Numerical Sensitivity

The condition number ~t(X) of a matrix X is defined as the ratio of the largest to the
smallest nonzero singular value. The essential qualitative property is that ~t(X) will
turn out to measure how well linear models using X are determined. Small condition
numbers mean well-determined models, while large condition numbers mean that
either the coefficients or the residuals may be poorly determined. This statement
can be made more meaningful in terms of the sensitivity of the fitted model to
changes in the data (that is, to X or y or both). Suppose we let 6 == 6(X,y) stand
for a small relative change in the data, and let 6e and 613 be corresponding relative
changes in the residuals and the coefficients of the fitted models. The fundamental
sensitivity results are then

6e < C ~t(X)6

613 < (CI~t(X) + C2(e) ~t(X)2)6 (4.1l)

Here C and C1 are constants, and C2(e) depends on the residuals; specifically, it
is small if the residuals are small relative to y but becomes arbitrarily large if the
residuals are nearly equal toy. Equation (4.11) is the key theoretical result on com
putational sensitivity in linear models. Both the residuals and the coefficients can
be ill-determined if the condition number of X is large. The coefficients, however,
are more sensitive than the residuals in that they can be ill-determined even for
moderate condition numbers if the residuals are large relative to y, indicating that
the model is not doing a good job of fitting y. In addition, the sensitivity of the
coefficients grows with the square of the condition number rather than the condition
. number itself, even if the model gives IL moderately good fit.

4.4. NUMERICAL AND STATISTICAL METHODS 141

Although we have left a few notions unspecified in setting out (4.11), the defini
tions can all be made precise. The important practical message is that one should
estimate the condition number of the model matrix. This and the size of the resid
uals relative to the response will give guidance as to the degree of ill-determinacy
possible in the problem. We could compute ~t(X) from the singular-value decompo
sition, but this takes substantially more calculation than the default method for the
least-squares computations themselves. An adequate approximation is available, as
the function kappa(), using the triangular factor, R, from an orthogonal or Choleski
decomposition of X. This requires only on the order of p2 floating-point operations.
The resulting estimate of the condition number is not guaranteed as to accuracy,
but experience with it has been that it gives reliable order-of-magnitude estimates.
The underlying algorithm comes from the LINPACK library; the method is described
in Golub and van Loan (1989, page 128). Let's examine the estimate on the model
fitted to the Fuel data. Consider the lm object fuel. fit:

> kappa(fuel.fit)
[1] 15494.84

Roughly speaking, if the condition number times the relative precision of the com
putations is small compared to 1, then linear algebra calculations using the matrix
should be numerically well-defined (which of course does not say they are statis
tically meaningful). In this case, computations are being done with a precision of
around 10-17• The product of this with 1t is then around 2 x 10-12 , which seems
quite small.

We can compare the estimated condition number with the actual value computed
from the svd function applied to the matrix R. The condition number is the ratio
of the largest to the smallest singular value:

> xx <- svd(fuel.fit$R)$d
> XX

[1] 22822.766404 280.651689
> xx[1]/xx[3]
[1] 19997.27

1.141294

So the cheap estimate from kappa() has underestimated ~t(R), but not very seriously.
An estimate of ~t(X) produces an estimate of the two kinds of sensitivity in the

fitted model, via equation (4.11). The function 1m. sensitivity takes an 1m object
and returns two numbers: the estimated sensitivities for the residuals and for the
coefficients. In the example previously shown:

> lm.sensitivity(fuel.fit)
residuals coefficients

1766469 21546499

Despite the numerical accuracy implied by the value of It, these numbers would be
cause for worry, particularly about the values of the coefficients. To interpret the

142 CHAPTER 4. LINEAR MODELS

value 2 x 107 for coefficients, think of it as estimating how much the relative change
in the coefficients might be as a multiple of some small relative change in the data.
The term "relative change" is defined as follows: if we change some vector x to
x + 6x, the relative change is ll6xllfllxll, with "II" standing for the Euclidean norm,
that is, the square root of the sum-of-squares. Clearly, the estimated coefficients in
this model are very sensitive, or can be, to changes in the data.

The definition of relative change in residuals is a little different: it is taken to be
the ratio of the norm of the change in the residuals over the norm of y. Here again,
the fit is clearly sensitive to changes in the data, although not quite so much so.

Using the Estimated Sensitivity

The sensitivity numbers are upper bounds, if the condition number is known ex
actly. If the inexpensive estimate is used, this tends to underestimate the condition
somewhat, but usually by less than a factor of two. In any case, the bound from the
condition number is likely to be much larger than the actual change in the fit due to
a small change in the data. Nevertheless, the bounds are useful in that they point
out models in which there is potential for the results to be influenced by such small
changes. Very large values, such as those in the example above, should be cause to
interpret the model cautiously, and to experiment statistically with changes in the
data or the model.

The use of such diagnostics following a fit that is numerically nonsingular is
recommended as a careful approach to situation 2 in our list. This is also a reason
able approach to situation 4; in this case, however, some explicit account should, if
possible, be taken of the uncertainties in the predictors. A thorough treatment of
this problem is far. beyond the scope of this section, but the following procedure is
one approach. Suppose we are willing to assume that the uncertainty or measure
ment error in the values of X can be adequately represented by a model in which
the observed value x;; has an error, say cf;, with the errors being independently
distributed with mean 0 and standard deviation u;. Furthermore, assume we have
an estimate, say, s; of u;. The prescription is then:

• Divide the jth column of X by s;. If your model includes an intercept term,
first subtract means from y and from each column of X.

• Use the singular-value decomposition of X to compute the regression. Exam
ine the singular values. If any of them are substantially smaller than fo, the
suggestion is that these linear combinations of columns of X are essentially
noise, under the assumptions made about errors in X. Therefore, you should
not use these columns in computing a meaningful regression.

• From the examination of singular values above, select one or more possible
ranks for the regression and compute corresponding fitted values and resid-

4.4. NUMERICAL AND STATISTICAL METHODS 143

ual. Since assumptions about errors in X are usually not very accuratP, it is
strongly recommended that you try several models if the singular valtli'H are
at all ambiguous.

Our alternative 3 on page 139, in which one expects to find some ••xact Hillgu
larities, can also be accommodated by using a standard method (say, au ortho",onal
decomposition) with an included test for strong linear dependence or a column
on preceding columns of X. Both Householder and Choleski methodH are Pludly
adapted to this test; roughly, either allows one to compute the norm of t.he residual
of the jth column of X from a regression on the preceding j - 1 colu111ns. If this
number is small, we treat the new column as a linear combination of preceding
columns, and pivot it out. The result, in the case of an orthogonal decomposition,
is that we will end up with a decomposition that can be represented as follows:

X·P=Q·R (4.12)

where Q is orthogonal as before, R is triangular with a special form that we will
examine shortly, and P is a permutation matrix-that is, X · P is a permutation of
the columns of X. In practice, of course, P is not kept as a matrix but rather as a
vector, pivot, such that X[,pivot] is the permutation. The pivot is chosen so that
the first r columns of R represent the full-rank portion of X:

In this form, R11 is an r by r matrix giving the full-rank decomposition, R12 is an
r by p- r matrix giving the "aliasing" pattern (the computed dependencies of the
dependent part on the first r columns), and il{J is treated as being zero.

Detailed discussion of how this information can be used to understand what
coefficients can be estimated in the model, and methods to present singular models
informatively are given in Chapter 5. The first point to note here is that we can
use R11 exactly as we would use R in the full-rank case to compute fitted values,
residuals, and one valid set of coefficients. In particular, the various standard
summaries and diagnostics are generally designed to use the full-rank portion of
the decomposition. Because lm.sensitivityO works from the computed R, the
sensitivity estimates apply directly to the full-rank portion of the model. This gives
us an essentially complete treatment of models, in the sense that we can compute the
apparent rank of X and then get a sense of how well this rank is defined by looking
at the sensitivity of the corresponding model. For experiments using standard,
balanced designs, the rank should be easy to compute and the reduced-rank model
well-conditioned.

If singular models are allowed, by supplying singular. ok=T as an argument to
lm(), then pivot and rank components are returned in the 1m object to define the

144 CHAPTER 4. LINEAR MODELS

full-rank part of the model. The coefficients are retained in unpivoted form, with
NA's corresponding to effects that cannot be estimated. Some additional components
are included in the lm object to help later computations allow for the singularities.
See the methods summary.aov() and print.aov() for examples. In manipulating
this extended version of the lm object, it is important that any calculations using
the R component should treat the data in the permuted form. Chapter 5 discusses
aliasing and its relation to the full set of coefficients.

Bibliographic Notes

Both the statistical and the computational literature on linear least-squares regres
sion are substantial. Further statistical discussion should ideally be oriented to
the applications you are interested in. Books exist that discuss regression models
in many applications (economics, engineering, social sciences, biology, and many
more). Draper and Smith (1981) and Weisberg(1980) give general discussions of
linear models in applications; Searle (1971) emphasizes the connections with the
analysis of variance.

For numerical issues, Golub and van Loan (1989) is the best general referen< l

as background to all the discussions of matrix methods in this book. Additional
discussions of linear least squares may be found in Lawson and Hansen (1974).
The user guide to the LINPACK subroutine library (Dongarra et al., 1979) is also
recommended as a reference, since our numerical methods derive from that library.

Chapter 5

Analysis of Variance;
Designed Experiments

John M. Chambers
Anne E. Freeny
Richard M. Heiberger

This chapter provides for the modeling of numeric variables by factors, variables
that take on one of a specified set of levels. Such data are often the result of a
designed experiment, in which observations of one or more responses are made for
changing values of several factors. The variation in the response is then studied,
in the hope of understanding how it depends on the underlying phenomena that
the levels of the factors represent. One of the most important contributions in the
history of statistics was R. },.. Fisher's notion that choosing the factors according to
a suitable experimental design could provide more information on such dependencies
than varying only a single factor at a time. Techniques for choosing such designs
and for analyzing the results, particularly the analysis of variance, have become
an important part of scientific studies in agriculture, biology, social sciences and,
increasingly, in manufacturing and other applications of engineering and the physical
sciences.

Our goal is a general computing capability for such data. This chapter draws on
the ideas of Chapter 3 to represent the experiments, and on those of Chapters 2 and
4 to represent and fit the models. The classical models for designed experiments
are very closely related to the linear models of Chapter 4; in fact, many of the
modeling techniques are the same, but with important differences in how the models

145

146 CHAPTER 5. ANALYSIS OF VARIANCE

are viewed and used. In addition to modeling techniques, this chapter contains
functions to generate common designs and informal ways to look at the results of
the experiments without using a specific model.

While the motivation and statistical theory arising from experimental design
are central to this chapter, it's worth noting that many of the techniques work for
any data in which the behavior of a numeric response is studied in terms of some
categorical predictors. Most of the computational techniques are organized to be
valid for arbitrary experiments. However, the statistical techniques sometimes are
invalid, or at least the results from them need to be interpreted carefully when the
assumptions of balanced experiments are not met.

Since there are many software packages for the analysis of variance, we should
emphasize what this chapter provides and what it does not. We are presenting a new
approach based on the general ideas of model formulas, data frames, classes, and the
techniques these ideas make possible. We stress generality, directness of expression,
and an ongoing process of making powerful computations easily accessible. The
emphasis is on computed objects describing the data and fitted models, to be used
in an open-ended set of displays and diagnostic computations, rather than on fixed
output reports of the analysis. The functions described here are far from a final
package and we especially hope that users will extend them and adapt them to
their own interests. Some topics, such as multiple error terms, are treated relatively
thoroughly; for others, such as random-effects models, we provide only a fraction of
the possible software.

5.1 Models for Experiments:
The Analysis of Variance

An experiment, in the sense we will use the term, is described by the values of
some chosen variables for each of a number of runs or observations. In a designed
experiment, some of those variables will, in principle, have values from a finite set
of levels specified by the experimenter in advance. In classical experimental design,
these variables are categorical, and are usually called the factors in the design.
Other variables are observed when the experimental runs take place. The data
frames introduced in Chapter 3 provide a natural way to represent such experiments
in S. The factors are represented as factor objects and the response as a numeric
variable or matrix.

Complete factorial designs consist of one run for each possible combination of
levels for each of the factors. For example, Table 5.1 shows a design with three
factors, each having two possible levels, giving eight runs. In this experiment, as
described in Box, Hunter, and Hunter (1978, p. 308), the experimenter plans to
run a process using two catalysts, identified only as A and B, at two choices of

5.1. MODELS FOR EXPERIMENTS 147

concentration and with two choices for the temperature at which the process runs.
Notice that two of the three variables are inherently quantitative, although they
are treated as factors in the design by choosing two specific values. Such variables
are ordered factors as described in Chapter 3, although with only two levels the
distinction is not important.

Temp Cone Cat Yield
1 160 20 A 60
2 180 20 A 72
3 160 40 A 54
4 180 40 A 68
5 160 20 B 52
6 180 20 B 83
7 160 40 B 45
8 180 40 B 80

Table 5.1: A factorial experiment with factors temperature, concentration of cataly.•t, and
catalyst type, each ha:uing two levels. The response is the yield of the process.

The scenario is that the experimenter now runs the process in some randomized
order under each of the eight conditions given by the design, and records the Yield
in the last column of Table 5.1. In many situations, the experimenter will choose
to randomize the order of the runs (see page 175), to the extent practicable, in the
hope of disentangling sequential effects from the factors of interest. The results
of the experiment are now available for analysis. As always, some careful studies
of the data, particularly through plots, should precede or at least accompany the
formal modeling. One such graph is shown in Figure 5.1: the average of the values
of Yield are shown for each level of each factor, with a horizontal line showing the
overall average for comparison.

The analysis of variance, the principal classical model for factorial experiments,
uses formulas and estimation that are formally special cases of the linear models
discussed in Chapter 4. The emphases differ substantially, however. Discussion
centers more on the contribution of terms in the model to the total variation of the
response and less on individual coefficients. The categorical nature of the variables
means that detailed study of the way in which the response depends on a single
predictor variable is usually impossible-with only two levels of temperature, the
form of dependence of yield on temperature will not be available. The compensation
is that much broader exploration of the effects of several factors may be possible.
New questions arise, as well, such as which factors should be assumed to interact.

An experiment on the quality of integrated circuit fabrication was reported by
Phadke et al. (1983). Th~ objective of the experiment was to investigate various
factors that might affect the quality of the fabrication process, with the goal of

148 CHAPTER 5. ANALYSIS OF VARIANCE

II)
180

....

0

"0 20
a;
>= 18 BT 0
<= A.l ..
Cl>
E 40

16

160

Temp Cone Cat

Factors

Figure 5.1: Yield from the experiment in Table 5.1, avemged for each level of the factors.
Vertical position shows the mean yield for the corresponding level; for example, the position
labeled 180 is the mean of the observations with Temp at level 180.

controlling both the average level and the variability of the quality. The experi
mental design had 18 runs, varying 8 factors based on an orthogonal-array design
(p. 171). In principle, two wafers with 5 measurements each should have been
manufactured for each run, but three wafers were broken. Two measures of quality
are the pre-etch line width and post-etch line width. The line widths are numeric
responses, measured five times on each wafer. The published analysis uses the mean
and standard deviation for each experimental run for pre- and post-etch line width
as responses, the goal of the experiment being to control both the average quality
and the varinbility in quality. Table 5.2 shows a sample of6 runs to suggest the form
of the data. This experiment will be used several times in the chapter to illustrate
some interesting techniques of analysis. See the reference for more discussion of the
experiment and additional analysis.

5.1. MODELS FOR EXPERIMENTS 149

maskdim visc.tem spinsp baketime aperture exptime devtime etchtime
2 2 204, 90 normal 30 2 normal 45 13.2
5 2 206,90 normal 30 3 -20~. 30 14.5

10 2.5 204,90 lov 40 3 normal 45 14.5
14 2.5 206, 90 normal 40 1 normal 30 15.8
15 2.5 206,90 high 20 2 -20% 45 14.5
18 2.5 204,105 high 30 1 normal 60 14.5

pre.mean pre.dev post.mean post.dev N
2 2.684 0.1196 3.14 0.063 10
5 1.870 0.1168 1. 72 0.400 5

10 2.660 0.1912 3.31 0.350 10
14 2.308 0.0964 3.14 0.160 10
15 2.464 0.0385 2.55 0.210 5
18 3.494 0.0473 4.34 0.078 5

Table 5.2: Part of an experiment {6 of 18 runs} on wafer fabrication: 8 factors, 4 responses
{the mean and standard deviation for pre- and post-etch line width}, and the number N of
measurements per ron.

Models for experiments may differ from other linear models also in the emphasis
they give to structure among factors and in the error assumptions. Factors may
be dependent on other factors, in that levels of the one factor are meaningful only
within each level of the other factors, giving rise to nested or hierarchical models.
The experimental situation may also imply that the errors of observation depend
on the levels of some of the factors, giving rise to an error model. In our approach
this situation can be expressed by including the error model as an additional term
in the formula. The analysis of variance will then reflect the multiple sources of
error, so that estimated effects are compared to the appropriate error estimates.
These aspects of factorial experiments will be handled in this chapter by extensions
to the basic computational techniques developed in earlier chapters, while keeping
the organization built around formula, data, and fitted model.

The experiment in Table 5.1 is small and complete. Such experiments tend
perhaps to appear mostly in textbooks. In practice, a large number of factors, more
factor levels, unbalanced or incomplete designs, and other practicalities are likely
to arise. The experiment in Table 5.2 is somewhat larger and, in its complexity and
slight irregularity, more typical of practice. We will also deal with the wafer solder
experiment introduced in Chapter 1. This, with its large size (900 observations) as
Well as its irregular features, is indeed a serious application. In choosing examples
for this chapter, we will~ small examples for ease of illustration with these more
realistic ones to emphasize the issues such experiments raise.

150 CHAPTER 5. ANALYSIS OF VARIANCE

5.2 S Functions and Objects

This section describes the basic use of S functions to do analysis of variance, to
display the results of experiments graphically, and to generate designs:

The modeling techniques of the analysis of variance apply the ideas of formulas
and data from previous chapters, expanding on the range of formulas and introduc
ing some summaries of particular relevance for designed experiments. Subsection
5.2.2 presents some summary and diagnostic techniques, chiefly graphical. These
are particularly valuable, and we encourage you to use the plots as preliminary
views of the data and as communication tools. Subsection 5.2.3 presents functions
for generating some standard designs and running experiments. This subsection
will not be relevant if you are only analyzing data after collection. The first two
subsections, however, should be read by anyone interested in analyzing designed
experiments.

5.2.1 Analysis of Variance Models

The basic expression for fitting an analysis of variance is

aov(formula, data)

where formula is a model formula, relating the response to appropriate factors, and
data is an optional design object containing the data from the experiment. The
object returned by the aovO function has class "aov". It is very similar to a linear
model object, and inherits the use of functions fitted, 'residuals, coef, and effects
to return the named components of the aov object.

Suppose the catalyst experiment in Table 5.1 is contained in design object
catalyst. To fit a simple additive model in all the factors,

> aovcat <- aov(Yield ~ . , catalyst)

Notice that we used the shorthand "." to refer to all the variables in the data frame
except for the response on the left of the formula. As with all fitted models, there
are methods for printing and for a slightly more statistical summary:

> aovcat
Call:

aov(formula ~ Yield ~ Temp + Cone + Cat, data ~ catalyst)

Terms:
Temp Cone

Sum of Squares 1058.0 50.0
Deg. of Freedom 1 1

Residual standard error: 7.1589

Cat Residuals
4.5 205.0

1 4

5.2. S FUNCTIONS AND OBJECTS 151

Estimated effects are balanced

> summary(aovcat)
Df Sum of Sq Mean Sq F Value Pr(F)

Temp 1 1058 1058 20.64 0.0105
Cone 1 50 50 0.98 0.3782
Cat 1 5 5 0.09 0. 7791

Residuals 4 205 51

The printing and summary methods for analysis of variance objects reflect the dif
ferent approach to what is essentially the same information as returned by lm().
While a printed linear-model object shows individual coefficients, printed aov ob
jects show terms, which may correspond to several coefficients. In this, and in other
ways we will demonstrate, the focus will shift somewhat in this chapter. Nothing
has been lost, however, because methods for linear models can always be applied
explicitly to aov objects, such as those for the coefficients or residuals:

> coef(aovcat)
(Intercept) Temp Cone Cat

64.25 11.5 -2.5 0.75
> resid(aovcat)

1 2 3 4 56 78
5.5 -5.5 4.5 -4.5 -4 4 -6 6

We could also have previously attached the design object:

attach(catalyst)

to allow us to refer to the individual variables (Temp, etc.) in arbitrary S expressions.
In this case, the second argument to aovO can be omitted, but at a price: without
the data argument there is no context to define the meaning of ".", so the formula
would have to be given in full.

Crossed and Nested Terms

In models involving factors as predictors, interactions among the factors are often
important. When possible, good data analysis suggests that one should ask whether
the effect of one factor depends on the levels of one or more other terms. This leads
us to a richer use of formulas than is typical of Chapter 4.

The expression A • B in a model formula puts into the model the terms for A,
B, and the interaction of A and B (represented as A:B). The notation can be used in
any general way that makes sense: the operands of • can be any expression that
evaluates to a factor, and crossed terms can be combined with other operators,
and parenthesized to indicate grouping. This is needed to permit covariates to be
crossed and nested. With a small factorial experiment, we may want to fit the full

152 CHAPTER 5. ANALYSIS OF VARIANCE

model including all possible effects. This model is specified by combining all the
terms with • (an alternative specification avoids writing an explicit formula at all,
as we show on page 153). In our previous example:

> aovall <- aov(Yield ~ Temp • Cone • Cat, catalyst)
> aovall
Call:

aov(formula = Yield~ Temp * Cone • Cat, data= catalyst)

Terms:
Temp

Sum of Squares 1058.0
Cone
50.0

Deg. of Freedom 1

Sum of Squares
Deg. of Freedom

Temp:Conc:Cat
0.5

1

Estimated effects are balanced

Cat Temp:Conc Temp:Cat Conc:Cat
4.5 4.5 200.0 0.0

1 1

The specified model fits three main effects, three two-way interactions and one
three-way interaction. Notice that the term "Residuals" did not appear, nor the
residual standard error. When all interactions in this experiment are included in
the model, no degrees of freedom are left for residuals. Intermediate models can
be specified, including whatever set of interactions make sense. Some short forms
simplify writing common instances of such models, as we will illustrate shortly.

When the levels of factor B are meaningful only given the level of some other
factor A, B is said to be nested in A. The notation in a formula is A I B, saying to
fit first A and then the effects of B in each level of A. Main effects for B are not
meaningful in this case. As with •, the operands to I can be arbitrary expressions.

An experiment on methods for firing naval guns was reported by Hicks (1973,
page 194). Two methods were tested by gunners corresponding to three different
physiques (slight, average, and heavy). Nine gunners of each physique were divided
into three teams, and each team tested the two loading methods twice, for a total
of 36 runs. The response was the number of rounds fired per minute. The data are
in design object gun; a sample of six runs is as follows:

Method Physique Team Rounds
3 H1 A T1 22.0
4 H2 A T1 14.1

14 H2 s T3 12.5
25 M1 s T2 26.9
29 M1 H T2 23.7
34 H2 A T3 16.0

5.2. S FUNCTIONS AND OBJECTS 153

For this experiment, the Team factor is only meaningful within each physique, so
one possible model is:

Rounds ~ Method + Physique/Team

which will fit effects for Method, Physique and Team within Physique, as follows:

> gunaov <- aov(Rounds ~ Method + Physique/Team, gun)
> summary(gunaov)

Df Sum of Sq Mean Sq F Value Pr(F)
Method 1 652.0 652.0 316.8 0.0000

Physique 2 16.1 8.0 3.9 0.0330
Team 7.in7. Physique 6 39.3 6.5 3.2 0.0178

Residuals 26 53.5 2.1 1.0 0.5000

Short Forms for Formulas

When an experiment involves a substantial number of factors, writing a formula
to contain them all is tedious. An alternative is to generate a model specification
including all the possible terms, up to a specified order of interaction. The "."
convention introduced in Section 2.3 is a shorthand way of referring to all the
variables, as an additive model. We used it to specify the main-effects model, but
in fact it can appear anywhere. It is replaced by all the variables in the data frame,
with the exception of those used in the expression for the response. In analysis of
variance models, the notation is often conveniently combined with the """ operator.
This operator specifies all the main effects and interactions in the operand on its
left, up to the limit defined by the "power'' on its right. So:

aov(Yield ~ . " 2 , catalyst)

says to fit the main effects and the two-way interactions of all the factors in the
data.

If you plan to work for some time on a subset of the variables in a design, it may
be worthwhile to create a new data frame containing only this subset, so that "."
will have the desired meaning. The data from Table 5.2 are in the data frame vafer.
It contains 8 factors, 4 responses, and the auxiliary variable N. To study pre.mean,
the first response, we can create a new data frame, vpm:

>wpm <- vafer[, c(1:9)]
> vaov1 <- aov(pre.mean ~ . , wpm)
> summary(vaov1)

Df Sum of Sq Mean Sq F Value Pr(F)
maskdim 1 0.652 0.6521 107.4 0.0092

visc.tem 2 1.343 0.6717 110.6 0.0090
spinsp 2 0.7~6 0.3827 63.0 0.0156

baketime 2 0.002 0.0012 0.2 0.8380

154 CHAPTERS. ANALYSIS OF VARIANCE

aperture 2 0.032 0.0158 2.6 0.2771
exptime 2 0.545 0.2724 44.9 0.0218
devtime 2 0.280 0.1401 23.1 0.0415

etch time 2 0.103 0.0517 8.5 0.1052
Residuals 2 0.012 0.0061

Model updating, discussed in Section 4.2.4, can also be used to refine the speci
fication, by adding or dropping individual terms. For example, we can pool the
contribution of the factor baketime into the estimate of the residual mean square:

> summary(update(waov1, . ~ . - baketime))
Df Sum of Sq Mean Sq F Value Pr(F)

maskdim 1 0.652 0.6521 180.0 0.00018
visc.tem 2 1.343 0.6717 185.4 0.00011

spinsp 2 0.765 0.3827 105.6 0.00035
aperture 2 0.032 0.0158 4.4 0.09848
exptime 2 0.545 0.2724 75.2 0.00067
devtime 2 0.280 0.1401 38.7 0.00242

etchtime 2 0.103 0.0517 14.3 0.01513
Residuals 4 0.014 0.0036

In the formula given to update 0, the "." notation can be used on both sides of
the "....,"", referring to the response on the left and to all the terms in the original
model on the right. See Section 4.2.4.

Multiple-Response Models

The examples described so far have dealt with single response variables. It is also
possible to supply a numeric matrix as the response variable. Columns of the matrix
are interpreted as the individual responses. The fit carries through as before, with
the distinctions that the object now inherits from class "maov" and that the effects,
coefficients, residuals, and fitted values will be matrices having as many columns
as the response. These models should not be confused with the "manova" analysis,
which studies the dependence of the covariance structure among the responses on
one or more factors. Each response is modeled separately in our analysis.

Multi-response models can be described in the same way as single-response mod
els. To illustrate this and also a useful way to organize multiple-response data, let's
construct a new data frame from the wafer data with all four responses stored as a
single matrix-valued response. While we're at it, we take logarithms of the standard
deviations, which should be analyzed on the Jog scale:

> waferm <- wafer[, 1:8]
> attach("wafer")
> waferm[, "Line"] <- cbind(pre.mean, log(pre.dev), post.mean,
+ log(post.dev))

5.2. S FUNCTIONS AND OBJECTS 155

We first select the 8 factors, then insert in this data frame a single new variable, Line,
set to all the columns of vafer containing responses. With a single column on the
left of the assignment and a matrix on the right, the replacement method for data
frames inserts the entire matrix as one variable. Now we can fit the multivariate
anova simply:

> vmaov <- aov(Line "' . , vaferm)

Summaries for multi-response models repeat the univariate summary for each re
sponse:

> summary(vmaov)
Response: pre.mean

Df Sum of Sq Mean Sq F Value Pr(F)
maskdim 1 0.652 0.6521 107.4 0.0092

visc.tem 2 1.343 0.6717 110.6 0.0090
spinsp 2 0.765 0.3827 63.0 0.0156

bake time 2 0.002 0.0012 0.2 0.8403
aperture 2 0.032 0.0158 2.6 0.2770
exptime 2 0.545 0.2724 44.9 0.0218
devtime 2 0.280 0.1401 23.1 0.0415

etchtime 2 0.103 0.0517 8.5 0.1052
Residuals 2 0.012 0.0061

Response: log(pre.dev)
Df Sum of Sq Mean Sq F Value Pr(F)

maskdim 1 0.661 0.6606 4.03 0.1825
visc.tem 2 0.165 0.0826 0.50 0.6667

spinsp 2 0.191 0.0956 0.58 0.6329
baketime 2 0.492 0.2460 1.50 0.4000
aperture 2 1.114 0.5570 3.40 0.2273
exptime 2 0.651 0.3255 1.99 0.3344
devtime 2 0.015 0.0074 0.05 0.9524

etchtime 2 0.313 0.1566 0.96 0.5102
Residuals 2 0.328 0.1638

Etc.

Summaries for multi-response models (and also for models with Error strata) are
lists of the summaries for the individual responses or error strata. If we wanted to
print only the summary for one response, we could just select the corresponding
element of the summary object for the whole model.

Aliasing; Over-specified Models

The specification of a model for the analysis of variance may include more terms
than can actually be estimated from the design. In this case the fit goes through,

156 CHAPTER 5. ANALYSIS OF VARIANCE

but some of the terms or coefficients specified in the formula may not appear in the
fit. A table of aliasing information can summarize the relation between effects that
can be estimated and those that cannot. Let's consider a small example. Suppose
that instead of the complete eight observations in the catalyst data shown in Table
5.1 on page 147, we could only afford four observations. By taking the half-replicate
consisting of rows 2, 3, 5, 8, and assuming the yields were the same as in Table 5.1,
we would obtain the following data, in design object catalyst2, say:

> catalyst2
Temp Cone Cat Yield

2 180 20 A 72
3 160 40 A 54
5 160 20 B 52
8 180 40 B 80

What happens if we fit the complete model in the three factors?

> half. aov <- aov(Yield "' Temp•Conc•Cat, catalyst2)
> half .aov
Call:
aov(formula Yield "' Temp • Cone • Cat, data = catalyst2)

Terms:

Sum of Squares
Deg. of Freedom

Temp Cone Cat
529 25 9

1 1

4 out of 8 effects not estimable
Estimated effects are balanced

The printing method warns us that some of the effects in the model formula can't
be estimated in the data. The fit includes three terms plus the intercept, using up
all 4 degrees of freedom available.

The function alias() defines the relation between the effects that could not be
estimated (the rows) and the effects that were estimated (the columns). Looking at
the alias pattern gives information about what happened to the interaction terms:

> alias(half.aov)
Complete

Temp:Conc
Temp:Cat
Conc:Cat

Temp:Conc:Cat

(Intercept) Temp Cone Cat
1

1
1

For example, the first row shows that the estimate for the Temp:Conc interaction
was completely aliased to the Cat main effect, already included. Statistically, the

5.2. S FUNCTIONS AND OBJECTS 157

implication is that the design cannot distinguish these two terms. Only if one is
willing a priori to treat the Temp: Cone interaction as known to be zero can the
sum-of-squares assigned to Cat be attributed unambiguously to that term. The
last row shows that the Temp:Conc:Cat interaction is aliased with the intercept.
In the terminology of f ac . design 0, this says that the interaction is the defining
contrast for the fractional design represented by the four rows of catalyst2. For
more discussion of aliasing, see page 178.

Incomplete balanced, or fractional factorial, designs are widely used and useful
when experiments are expensive to run or when many factors need to be studied
simultaneously. It's perhaps preferable in these cases to understand beforehand
what can be estimated, and to phrase the model to make the assumptions plain.
In this case, for example, if we had specified only the main effects, as in the initial
example on page 150, we would have got the same fit, but without aliasing. On
the other hand, if you are unsure just what can be estimated from a particular
balanced design, specifying a complete model and then examining the alias pattern
is one way to find out. The aliasing depends only on the design and the structural
form of the model, not on the response itself. Therefore, the aliasing can be studied
before running the experiment; for example, if halfdesign were the half-replicate
design in catalyst2:

alias(halfdesign, ~ . "3)

would show the same alias pattern as above. If the formula is omitted, ~. "2 is
assumed. See Section 5.3.2 for more discussion of aliasing.

Error Terms

The analysis of experiments with multiple factors departs from standard linear mod
els in an important way when the model includes multiple error terms. An example,
described in Federer (1955, page 274), will suggest the idea. In an experiment on
eight varieties of guayule (a Mexican plant yielding rubber), four different treat
ments were applied to the seeds. The question of interest was the effect of the
treatments on the rate of seed germination. The experimenter reasoned that plants
grown on different greenhouse flats were likely to have differences due to the flats.
These differences are not of particular interest and can be modeled as a random
quantity depending on the individual flat.

In order to gain the most information on the seed treatments, the experimenter
divided each flat (plot in the classic terminology) into subplots and assigned all
treatments to each subplot so as to allow estimation of the treatment effects or
thogonal to flat effects and subject only to within-flat variability. Specifically, each
fiat was planted with seeds of one variety and each subplot contained 100 seeds
treated with one of the four treatments. Each seed variety was planted in three

158 CHAPTER 5. ANALYSIS OF VARIANCE

flats for a total of 24 flats. The response in this example consisted of 96 observa
tio~ of the number of plants germinating per 100 seeds planted in each subplot.
The first two treatments in eight of the flats are shown below:

> guayule[1:16,]
variety treatment reps plants flats

1 V1 Tl 1 66 1. V1
2 V2 Tl 1 77 1.V2
3 V3 T1 1 51 1.V3
4 V4 T1 1 52 1.V4
5 V5 T1 1 45 1. V5
6 V6 T1 1 59 1.V6
7 V7 T1 1 56 1.V7
B VB T1 1 49 LVB
9 Vl T2 1 12 1. V1

10 V2 T2 1 26 1.V2
11 V3 T2 1 B 1.V3
12 V4 T2 1 4 1.V4
13 V5 T2 1 20 1.V5
14 V6 T2 1 B 1.V6
15 V7 T2 1 12 1. V7
16 VB T2 1 14 LVB

In the analysis of variance, we want to specify an error term corresponding to the
levels of flats, which we do by including the expression Error(flats) in the model
formula:

> attach(guayule)
> gaov <- aov(plants ~ variety * treatment + Error(flats))

This model will produce a separate fit for the portion of the data corresponding to
the effects of the variable flats and for the residuals from these effects-in classical
anova terminology, the whole plot and subplot error strata.

As you might expect, since there is a separate fit for each error stratum, the
overall fit is represented as a list of aov objects. Its class is aovlist, and methods
exist for the usual functions such as print 0 and summary 0:

> summary(gaov)
Error: flats

Df Sum of Sq Mean Sq F Value Pr(F)
variety 7 763 109.0 1.232 0.3421

Residuals 16 1416 88.5

Error: Within
Df Sum of Sq Mean Sq F Value Pr(F)

treatment 3 30774 1025B 423.4 O.OOOe+OO

5.2. S FUNCTIONS AND OBJECTS

variety:treatment 21
Residuals 48

2620
1163

125
24

5.2 1.327e-06

159

Notice that the experimenter chose a design such that treatment effects, which the
experiment was particularly anxious to estimate accurately, were entirely orthogonal
to flats. They do not appear in the first (less accurate) stratum at all. The
experimenter's assumption of substantial flat-to-flat variation is supported by the
residual mean square in the flats stratum being over three times that of the Within
stratum.

The error model specified can include more than one term; the argument to
ErrorO can be anything that would go on the right side of a formula. For example,
depending on how the experiment was run, the experimenter might have wanted
to reflect a situation in which flats within one replication would tend to be more
alike than those in different replications. This reasoning suggests having two error
terms: reps and flats. The formula

plants ~ variety • treatment + Error(reps + flats)

produces an analysis divided into three strata: reps, flats after removing reps,
and residuals from both. In this case, flats are actually defined within reps, but
nothing in the computations requires this. The model is as follows:

> gaov2 <- aov(plants ~ variety • treatment + Error(reps + flats))
> summary(gaov2)
Error: reps

Df Sum of Sq Mean Sq F Value Pr(F)
Residuals 2 38.58 ' 19.29

Error: flats
Df Sum of Sq Mean Sq F Value Pr(F)

variety 7 763 109.0 1.108 0.41
Residuals 14 1377 98.4

Error: Within
Df Sum of Sq Mean Sq F Value Pr(F)

treatment 3 30774 10258 423.4 O.OOOe+OO
variety:treatment 21 2620 126 5.2 1.327e-06

Residuals 48 1163 24

This experiment was designed so that treatments, varieties, and their interaction
were balanced within each replication. As a result, there are no effects from
varieties•treatment at all in the reps stratum.

Random-Effects Models

Some factors in experiments have the property that the levels chosen are not so
much interesting in themseives but instead are examples of "typical" values for the

160 CHAPTER 5. ANALYSIS OF VARIANCE

underlying variable. Samples of counties within a state, households on a block, or
animal or human subjects for testing may have been chosen in the hope that conclu
sions made from the experiment can be generalized to the overall population from
which the samples are chosen. The random-effects model applied to such factors
looks at the variability in the effects for a particular term, not the individual effects
themselves. The standard distributional assumption is that the coefficients for indi
vidual levels are distributed with zero mean and some unknown standard deviation.
Large or small standard deviation then indicates important or unimportant terms.

We have included only a special case of this model, implementing the completely
random model for the balanced case, as described by Searle (1971, page 393). The
software tests for balance, by computing the number of replications for each of the
terms involved. To obtain a fitted analysis of variance including random-effects
information on all the factors, use

raov(formula, data)

instead of aovO. Let's do an example. Box, Hunter and Hunter (1978, page 572)
report an experiment in which 15 batches of a pigment were each sampled analyti
cally twice and two repeated analyses were performed from each sample, to measure
the moisture content. Given this experiment, in a design object, pigment, we can
compute the random-effects analysis of variance as follows:

> _pigment
· Batch Sample Test Moisture

1 B1 S1 T1 40
2 B2 S1 T1 26
3 B3 S1 T1 29
4 B4 S1 T1 30
5 B5 S1 T1 19
6 B6 S1 T1 33
7 B7 S1 T1 23
8 B8 S1 T1 34
9 B9 S1 T1 27

> praov <- raov(Moisture ~ Batch/Sample, pigment)
> summary(praov)

Df Sum of Sq Mean Sq Est. Var.
Batch 14 1210.933 86.49524 7.12798

Sample Y.inY. Batch 15 869.750 57.98333 28.53333
Residuals 30 27.500 0.91667 0.91667

See 'the references cited for further discussion of the analysis.

5.2. S 'li'UNCTIONS AND OBJECTS 161

Analysis -.~f Unbalanced Experiments

The term balance describes a relation between a pair of factors in which every level
of one factor appears with every level of the other factor the same number of times.
If all the pairs of !actors are balanced in this sense, the variables in the model matrix
will be orthogonal, and interpreting the analysis will be more straightforward. On
the other hand, data from an unbalanced experiment must often be analyzed. The
nature of the unbalance can be studied, and alternatives to the usual summaries help
with the interpretation. It should be emphasized that there is no problem in fitting
the model, regardless of balance; the issues arise in summarizing and interpreting
the fitted model.

The function replications() presents the relevant information about balance
as part of a more general result. The arguments to replications() are a model
formula and an optional data frame. The value returned has as many elements as
there are terms in the model. Each element describes the pattern of replications
for all the levels associated with the corresponding term. In general, these elements
will each be a table of the number of replications of the levels (a one-way table for
main effects, a two-way table for two-factor interactions, and so on). H the term
is balanced in the design, all the numbers in this table will be equal. In this case
replications() replaces the table by this single number. If all terms are balanced,
replications() replaces the list by a numeric vector containing for each term the
number of replications. The response in the formula given to replications() is not
used in computing the replications, but may be helpful if we want to ·use "." in the
formula (the response will then not be included incorrectly in the definition of".").

An example of replications() on the solder data is

> replications (skips ~ . , solder. balance)
Opening Solder Mask PadType Panel

240 360 180 72 240

We stated that this subset of the data was balanced, and indeed it is. It came from
a larger set of data from an experiment originally designed to be balanced, but not
balanced as actually run. The result of replications() for the full set of data is

> rep. all <- replications(skips ~ . , solder)

The test for balance is

> is.numeric(rep.all)
[1] F

Given that there is some unbalance, a simple computation to find the unbalanced
terms is

> sapply(rep.all, function(x)length(x)>l)
Opening Solder Mask PadType Panel

F F T F F

162 CHAPTER 5. ANALYSIS OF VARIANCE

This calculation applies a function to each element of the list, in this case the in-line
function

function(x)length(x)>1

which returns TRUE wherever the replications did not reduce to a single number.
The result shows us that one term, that for Mask, caused the unbalance. We can
look at the replication pattern for that term:

> rep.all$Mask
A1.5 A3 A6 B3 B6

180 270 90 180 180

Level A6 of the Mask factor is found in the full experiment, but not in solder. balance.
You might be able to guess what happened from this printout. Level A6 was orig
inally intended to be used on 180 runs, just like the other levels. In the actual
experiment, however, half of those runs were done with level A3 instead. Level A6
turned out not to be a good one to pursue, but as a result, the full experiment
left the data analyst with the dilemma of choosing between a larger, unbalanced
experiment and a smaller, balanced one. With a properly randomized experiment,
the balanced subset is still a legitimate one to study, but it does represent a loss of
information.

Chapter 1 shows an analysis of sqrt (skips) over the balanced subset. For com
parison, we now fit the main effects over the complete set of data. Since aovO is
based on a linear model estimation, there is no problem with the fit, but the inter
pretation of the results is different. First, we fit and use the standard summary.

> aov.solder.all <- aov(sqrt(skips) ,..., . , solder)
> summary(aov.solder.all)

Df Sum of Sq Mean Sq F Value Pr(F)
Opening 2 740.8 370.4 527.7 O.OOOe+OO
Solder 1 295.1 296.1 420.4 O.OOOe+OO

Mask 4
PadType 9

Panel 2
Residuals 881

548.7 137.2 195.4 O.OOOe+OO
161.3 17.9 25.5 O.OOOe+OO
22.7 11.3 16.2 1.272e-07

618.4 0.7

With 881 degrees of freedom for residuals, and the F probabilities nearly all off
scale, the formal statistical analysis is not perhaps too relevant. However, if we
were worried about its validity, we should take account of the unbalance. That is
to say, the standard table above is to be interpreted sequentially. The contribution
of each row must be interpreted as adding that term to the model containing the
previous terms. A different analysis is obtained by the function drop1 0, introduced
in Section 4.3.2 for linear models. This function produces a table showing the effect
of dropping each term from the complete model, and therefore is interpretable
without the sequential considerations required for the standard summary.

5.2. S FUNCTIONS AND OBJECTS

> drop1(aov.solder.all)
Single term deletions

Model: sqrt(skips) ~ Opening + Solder + Mask + PadType + Panel

<none>
Opening
Solder

Mask
Pad Type

Panel

Df Sum of Sq RSS F Value Pr(F)

2
1
4
9
2

618
684.3 1303 487.5 O.OOOe+OO
226.0 844 322.0 O.OOOe+OO
548.7 1167 195.4 O.OOOe+OO
161.3 780 25.5 O.OOOe+OO
22.7 641 16.2 1.272e-07

163

The summary here has sums of squares and F-statistics, but replaces the mean
square column with RSS, the residual sum-of-squares for the reduced model. This
is useful in that it gives a direct comparison of the terms, showing that dropping
Opening or Mask has the largest effect on RSS. The function drop10 is further dis
cussed in the context of generalized linear models in Chapter 6.

Another way to investigate the lack of balance is with the function alias(). An
example of this is given in Section 5.3.2. The aliasing information is derived from
the numerical fit, not from the factors. In cases like the example here, where the
unbalance is systematic, replications() generally gives more interpretable results.
But if a few runs at random were omitted, no terms would be balanced. In this
case, alias() gives direct numerical information about the pattern of unbalance.

5.2.2 Graphical Methods and Diagnostics

There are a number of useful graphical methods for displaying data that includes
multiple factors. The plots shown in Figure 1.1 in Chapter 1 and Figure 5.1 in this
chapter are examples. Figure 5.1 is produced by the default plotting method for
designs:

plot(catalyst)

which shows a plot of the means at each level of each factor for the data given in
Table.5.1. Similarly, Figure 1.1 was produced from the balanced subset of data from
the experiment on wave soldering. The experiment, in design object solder. balance,
has factors Opening, Solder, Mask, PadType, replication factor Panel, and response
skips. So

plot(solder.balance)

plots the response, skips, showing its mean value for each level of each of the factors.
When the plotting method gets only one argument, as in the above examples, it

looks for a numeric variable in the design to use as the response. If there are several
such variables, separate plots will be produced for each of them. A second argument

164 CHAPTER 5. ANALYSIS OF VARIANCE

can be provided to define the variables to be plotted. Typically, this argument is a
formula, to be interpreted in terms of the variables in the design; for example, to
plot the square root of the skips in solder. balance against all the factors:

> plot(solder.balance,sqrt(skips) ~ .)

The plotting method for designs can use summary statistics other than means. In
this case, a third argument is used to specify the function. Figure 5.2 shows the
median skips for each level of each factor in the design, obtained by

plot(solder.balance, fun = median, ylim = c(O, 10))

s
86

a. <D
:i1 ..
0
c: ..
'g • Thin E

L4

N """]
M Thick AAS Ill

0 L W9

Opening Solder Mask PadType Panel

Factors

Figure 5.2: Median number of solder skips at each level of each factor in the solder. balance
data.

Graphical parameters can be supplied in the call to the plot methods; in this case,
the limits on the y-axis have been specified to include 0. The supplied function may
be anything returning a single numeric value. Slightly more complicated cases-for

5.2. S FUNCTIONS AND OBJECTS 165

example, when the function needs another argument-can be handled by providing
an in-line function definition. See the example on page 167.

Two other specialized plotting functions are also available for use with designs:

• plot. factor() shows the distribution of a response for each level of one or
more factors;

• interaction. plot 0 shows the interaction of two factors on some summary of
the response.

The distribution of the response for different levels of one or more factors can be
summarized using boxplots, shaded bar plots, and other plots, from plot . factor 0 .
Figure 5.3 shows the first four of five boxplots produced by the expression:

plot.factor(solder.balance)

As its name implies, plot.factorO is a method for plotting factors or ordered
factors. For example, the two calls

plot(Mask); plot(Mask, sqrt(skips))

would make a barplot of the factor Mask and a boxplot of sqrt(skips) for each
level of Mask. Since the function is often called with a design or data frame rather
than a factor as its first argument, we are emphasizing its direct use by calling
plot. factor() as well as its automatic use as a plotting method for factors.

The arguments to plot.factor(), like those to the plot method for designs, can
be a design plus an optional formula or response. If the second argument is omitted,
as in this case, all the numeric variables in the design object will be plotted, split
up by levels of each of the factors. One plot is produced for each combination of
factor and response.

As another example of plot .factor(), suppose we want to produce a plot of the
data in solder. balance by boards. The interaction of the factors Opening, Solder,
and Mask uniquely identifies a board. We could plot boxes for each board, but let's
try instead a character plot and identify the Panel within each board by plotting
characters:

> attach(solder.balance)
> Boards <- interaction{Solder, Mask, Opening)
> plot(Boards, skips, character s Panel)

The function interaction() produces a new factor indexed by all combinations of
levels of the arguments to interaction(). By giving the argument character= we
tell the plotting method for factors to produce a character plot, using the levels of
the factor Panel to label individual points. Figure 5.4 shows the result.

The function interaction.plotO summarizes graphically how pairs of factors
interact in influencing the response. The function takes three arguments, the first
two being factors and the third the response:

166

0

0

0

0

0
0

T
I
I
I
I
I

B

0

0

s

0

0
8

' ~ M

Opening

0
0

s

0
0

' c:::::=:J

L

I
0

0 ~

8 ' :

' I 8 gQ
A1.5 A3 B3 86

Mask

CHAPTER 5. ANALYSIS OF VARIANCE

0

0

0

0

0

0

0

0
0

I 8
0

8 I s I
I l g

Thin Thick

Solder

0

8 8
0 0

8
0 0

W404 L4 06 L6 07 L7 L8W9L9

PadType

Figure 5.3: Box plots of solder skips by factors for the solder. balance ·:lata. Each box
pattern shows the distribution of the response skips for one level of a factor.

5.2. S FUNCTIONS AND OBJECTS 167

2

0 I I I i
j i j ~ i j i J i i ~ J ~ i i·i i i J I j I! I

Boards

Figure 5.4: Chamcter plot of solder skips by boards, showing the levels of factor Panel as
the chamcters 1, 2, and 3. The prevalence of 2 and 3 in higher values suggests that the
second and third panels had more skips. Board Thin.B6.S tended to have the most skips
ovemll.

> interaction.plot(Opening, Solder, skips)

The left panel of Figure 5.5 is the result. The horizontal axis of the plot shows levels
of the first factor. For each level of the second factor, connected lines are drawn
through the mean of the response for the corresponding level of Opening:Solder.
The style of the plots are related to the matplotO function (ii, page 67). Like
plot.designO, interaction.plotO uses a summary function, again the mean by
default. Interesting plots for datasets with many factors may be suggested by
looking at an analysis of variance table that includes two-factor interactions, or
by previous knowledge of the factors. The right panel of Figure 5.5 shows the
95th-percent-point plot for Mask by Opening, produced by the expression:

> interaction.plot(Mask, Opening, skips,
+ fun c function(x) quantile(x, probs = .95))

This example again shows the use of an in-line function definition to increase the
flexibility of the plots. We wanted to give quantile() a second argument. Rather
than assign a special object to be the new function, we can supply the expression

168 CHAPTER 5. ANALYSIS OF VARIANCE

Cl)
0. 0 :;;:
Cl)

0
c: ca
CD
E

10

0 s M

Opening

Solde
Thin

- Thick

l A1.5 A3

' ' ' '

' ' ' '

83

Mask

' ' '

86

Openi g

s
M
l

Figure 5.5: Interaction plots of solder skips. The left panel plots mean skips at each
combined level of Opening and Solder, and connects the points with the same level of Solder.

The right panel does the same for Mask and Opening, using the 95th percentile rather than
the mean.

function(x) quantile(x, probs = .95)

The value of this expression is an S function object. The function takes one argu
ment and returns the corresponding value from quantile().

All of these plot functions take plotting parameters and can, as noted, sometimes
take either factors or designs. In addition, plot. design and plot. factor can take
formulas to specify the desired plot. See the on-line documentation for details.

Normal Quantile-Quantile Plots of Effects

Under the standard assumptions for linear models (independently normal errors
with constant variance), the effects computed in fitting the model are also inde
pE>ndently normal. If the true value of the coefficient for a particular contrast were
zero, the corresponding effect would have mean zero. Thus, large values on a nor
mal quantile-quantile plot of the effects suggest important effects. Since the signs of
the effects are of secondary interest, the absolute values are traditionally plotted (a
"half-normal" plot). A method for the S function qqnorm() for aov objects produces

5.2. S FUNCTIONS AND OBJECTS 169

this plot. Effects corresponding to residuals or to factors having no contribution to
the response should form a roughly linear pattern in the lower left of the half-normal
plot; the slope of this pattern estimates the residual standard error in the fit. More
importantly, points that lie well above this pattern suggest important contributions
to the fit. Separate plots will be produced for each response in a multiple-response
model and for each error term in a multiple-strata analysis of variance. Optional
arguments can control the labeling of points on the normal or half-normal quantile
quantile plot of effects. If label is provided as a positive integer, the largest in
absolute value label effects will be identified; if the option identify=T is included,
the function prompts for interactive identification (e.g., with a mouse) of interesting
points on the plot. In either case, the corresponding effect labels will be plotted.

As an example, we show in Figure 5.6 the half-normal plot of effects from the
analysis of pre-etch mean in the wafer data discussed in the previous subsection,
with the six largest effects identified:

qqnorm(vaovl, label=6)

The effect names are abbreviated on the plot; typing effects(vaovl) gives the
full labels. For example, vsl is visc.teml, the first effect for visc.tem, and exp.L is
the linear contrast for the factor exptime.

5.2.3 Generating Designs

Design objects inherit from data frames, and thus any manipulations that can be
done on data frames should also be appropriate for design objects. Designs can
be created either by using some special functions or by taking any data frame and
coercing it to be a design.

Two functions, fac.designO and oa.designO, are provided to generate com
monly used experimental designs-namely, factorial designs (complete or fractional),
and orthogonal array designs. In the simplest call, these functions take an argu
ment levels, giving the number of levels for each of the factors to be included in
the design:

fac.design(levels)
oa.design(levels)

A call to fac.design() produces a factorial design, with a row of the design object
for each possible combination of the factors in the design. To generate a 23 design,
as in Table 5.1 at the beginning of the chapter, we ask for a design with three
factors, each at two levels:

> fac.design(c(2,2,2))
A B C

1 A1 Bl Cl

170 CHAPTER 5. ANALYSIS OF VARIANCE

vs1 •

sp.L•

~ - ms•

exp.L•
vs2•

~ -

!!l
lll dv.L•
iii .,

ci

•
•

N
ci •

•
• • • • • •

0 •
ci

0.0 0.5 1.0 1.5 2.0

Half-normal Quantiles

Figure 5.6: Half-normal plot of pre-etch mean effects in the wafer experiment. The six
largest points are labeled: "vsl" is the first effect for factor vise. tem; "sp.L" is the linear
effect for ordered factor spinsp, etc.

2 A2 Bl Cl
3A1 B2 Cl
4 A2 B2 Cl
5Al Bl C2
6 A2 Bl C2
7A1 B2 C2
8 A2 B2 C2

A call to oa.designO produces an orthogonal array design. These designs aim to
study a large number of factors in as few runs as possible. The designs returned
by oa.designO select as small a design as possible from a given set of such designs,

5.2. S FUNCTIONS AND OBJECTS 171

on the assumption that only main effects need to be included in the model, and
allowing for an optional request to provide a specified number of degrees of freedom
for residuals. The wafer experiment in Table 5.2 is an example of such a design.
The underlying design had nine factors, three with two levels and six with three
levels. Two of the two-level factors were combined in a special way to define a three
level factor, creating an experiment with one two-level factor and seven three-level
factors.

> wafer.design <- oa.design(c(2,rep(3,7)))
> wafer.design

A 8 C D E G H I
1 A1 81 C1 D1 E1 G1 H1 !1
2 A1 81 C2 D2 E2 G2 H2 !2
3 A1 81 C3 D3 E3 G3 H3 !3
4 A1 82 C1 D1 E2 G2 H3 !3
5 Al 82 C2 D2 E3 G3 H1 !1
6 A1 82 C3 D3 E1 G1 H2 !2

Etc.

Orthogonal array design with 2 residual df.
Using columns 1, 2, 3, 4, 5, 6, 7, 8 from design oa.18.2p1x3p7
> replications(wafer.design)
ABCDEGHI
9 6 6 6 6 6 6 6

The printing method for the design shows the number of degrees of freedom for
residuals (the default minimum requested is 3). H this is less than 10% of the size
of the design, a warning is given. The call to replications shows that we have a
balanced design with 18 runs.

The oa.designO function uses a table of known designs of which the largest
contains 36 runs to handle a limited range of requests for factors with two or three
levels. Outside of that range, it gives up:

> oa.design(rep(2,100))
Error in oa.design(rep(2, 100)): Don't have an all 2 levels oa for> 32

runs, use fac.design

Other factors can sometimes be accommodated by adjusting the design; for exam
ple, a four-level factor can be formed out of two two-level factors, provided the
interaction of those factors is estimable.

By default, fac.designO and oa.designO generate standard names for factors
and for the levels of the factors. These names may be provided by the factor .names
argument. If supplied, factor.names can either be a character vector or a list; in
either case, it should have length equal to the number of factors. A character vector
provides names for the factors. The names for the levels are then constructed from
an abbreviated form of the factor names:

172 CHAPTER 5. ANALYSIS OF VARIANCE

> fac.design(c(2,2,2), factor.names ~ c("Temp","Conc","Cat"))
Temp Cone Cat

1 T1 Col Cal
2 T2 Col Cal
3 T1 Co2 Cal
4 T2 Co2 Cal
5 T1 Col Ca2
6 T2 Col Ca2
7 T1 Co2 Ca2
8 T2 Co2 Ca2

If factor. names is a list, its elements provide names for the levels of the correspond
ing factors, and the names attribute of the list gives the factor names:

> nlist <- list(Temp =
> fac.design(c(2,2,2),

Temp Cone Cat
160 20 A

2 180 20 A
3 160 40 A
4 180 40 A
5 160 20 B
6 180 20 B
7 160 ' 40 B
8 180 40 B

c(160, 180), Cone= c(20, 40), Cat= LETTERS[1:2])
factor.names = nlist)

The expression factor .names(design) returns a similar list giving the factor and
level names of design. Factor names can be assigned to an existing design by using
factor. names() on the left of an assignment. The same interpretation is given to the
object on the right of the assignment as was outlined for the factor. names argument:

> cdesign <- fac.design(c(2,2,2))
> factor.names(cdesign) <- nlist

This produces the same design as in the previous example. A factor .names argu
ment can be used in calling oa.designO as well, with the same interpretation.

The function fac.design() also takes an optional argument row .names to provide
names for the rows of the resulting design object:

> cdesign <- fac.design(c(2,2,2), names= nlist,
+ row.names 2 paste("Run",1:8))

The row names are the attribute "row.names" of the resulting data frame, and
can be extracted or assigned as this attribute. For oa.design, and by default for
fac. design, the values of row. names are the sequence numbers of the rows. As with
the factor names, the row names can be assigned after creating the design:

5.2. S FUNCTIONS AND OBJECTS 173

> cdesign <- fac.design(c(2,2,2))
> row.names(cdesign) <- paste("Run",l:nrow(cdesign))

For designs created by oa.designO this will generally be necessary, since the number
of runs is not known in advance.

Factorial designs can be generated with multiple replications of each combination
offactor levels by setting the optional replications argument to the number of repli
cates wanted. Fractional factorial designs can also be generated from fac.designO,
but only for 2k designs. The argument fraction defines what fraction of a design
is wanted. The argument can be a numeric fraction:

> fac.design(rep(2,5),fraction~l/4)
A B c 0 E

1 A1 B2 C1 01 E1
2 A2 Bl C2 01 E1
3 A2 B2 C1 02 E1
4 A1 Bl C2 02 El
5 A2 Bl Cl 01 E2
6 A1 B2 C2 01 E2
7 A1 Bl C1 02 E2
8 A2 B2 C2 02 E2

Fraction: y "" A:B:O + B:C:E

In this case, the function provides a one-quarter replicate of a 25 design, using some
standard choices to pick the fraction. For more control over how the fractionation
is done, fraction can be one or more defining contrasts. In terms of our model
formulas, a defining contrast is an interaction of factors, such as A:B:C. In a two
level design, each such interaction defines one contrast with two possible values.
Therefore, each such contrast implicitly divides the design into two halves, one of
which will be chosen in forming the fractional design. If one contrast is supplied,
a half-replicate is produced; if two contrasts are supplied, a quarter-replicate, and
so on. The half chosen is specified by the sign of the corresponding term in the
formula. The following creates a specific quarter-replicate of a 25 design:

> fac.design(rep(2,5), fraction •"" A:B:C- B:O:E)
A B C D E

1 A2 B1 Cl 01 E1
2 A1 B1 C2 01 El
3 A1 B2 C1 02 El
4 A2 B2 C2 02 E1
5 A1 B2 Cl 01 E2
6 A2 82 C2 D1 E2
7 A2 81 Cl 02 E2
8 Al Bl C2 D2 E2

174 CHAPTER 5. ANALYSIS OF VARIANCE

Fraction: ~ A:B:C - B:D:E

It's important that we used ":", not "•" in defining the contrasts. We wanted only
the three-factor interactions, not the expanded model with all the main effects, etc.
The latter will produce a design, but not one we want. The printing method for
designs will show the defining contrasts, whether chosen automatically or specified
in the calL

Design objects are essentially just data frames in which the design itself is repre
sented by the factor variables. The function design() can be used to make a design
object from one or more arguments (data frames, matrices, etc.), each variable or
column being coerced to be a factor. In particular, designs are sometimes printed as
tables, with numbers 1, 2, ... , in each column to stand for the levels of the factors.
For instance, the first five rows of the orthogonal array design on page 171 in this
form and without row labels would look like:

1 1 1 1 1 1 1 1
1 1 2 2 2 2 2 2
11333333
1 2 1 1 2 2 3 3
1 2 2 2 3 3 1 1

The function read. table() will read in such a file and convert it to a data frame.
Suppose the complete design was read in this form, as waferd. Then design(waferd)

will convert the data frame waferd to a design object.
Once a design object has been created, .the factor names can be assigned from a

list. For example, we could make up the names for the factors in the wafer. design
design as follows:

> fn <- list()
> fn$maskdim <- c(2, 2.5)
> fn$visc.tem <- c("204,90", "206,90", "204,105")
> fn$spinsp <- c("lo~", "normal", "high")
> fn$baketime <- c(20, 30, 40)

> factor.names(wafer.design) <- fn

Alternatively, fn could have been given to design() as the factor .names= argument.
In some designs, we want to indicate that some factors are ordered. Either single
factors or selected factors in a design can be designated as ordered by using the
function ordered 0 on the left of an assignment. The right side can give for each
factor either a TRUE/FALSE value or the vector of levels in the order desired. With a

5.2. ADVANCED USE 175

logical value, the current levels are assumed to be in increasing order. For example,
in wafer. design, all the factors except the second and fifth are ordered:

> ord <- rep(T, 8)
> ord[c(2,5)] <- F
> ordered(wafer) <- ord

Further control over the parametrization can be obtained by specifying contrasts
for the factors. See Section 5.3.1.

Randomization

In carrying out an experiment, one may want to randomize the order in which the
runs are to take place. A randomized order could be generated by

mydesign[sample(1:nrow(mydesign)),]

which permutes the rows of the design in a random order. Unfortunately, things
may not be quite so simple. In practice, some factors may be difficult to vary.
We want to restrict randomization to leave these factors alone, so they can be
varied as infrequently as possible. The function randomize() takes a design and the
names of some factors to be restricted, and returns an ordering, first by levels of the
restricted factors, and then randomized within those levels. Running the experiment
in the order given by this permutation would provide the restricted randomization
requested. For example, suppose we wanted to randomize the design in Table 5.1,
but not over the Cat factor:

> perm <- randomize(catalyst, restrict = "Cat")
>perm
[1] 1 3 4 2 8 6 5 7
> catalyst[perm,]

Temp Cone Cat Yield
160 20 A 60

3 160 40 A 54
4 180 40 A 68
2 180 20 A 72
8 180 40 B 80
6 180 20 B 83
5 160 20 B 52
7 160 40 B 45

The result is to do all the A catalyst runs first, then all the B catalyst runs, while
randomly permuting within each level of the catalyst factor. The restrict argument
is essentially a subscript argument on the factors and can have any form suitable
for such a subscript: character, numeric, or logical.

176 CHAPTER 5. ANALYSIS OF VARIANCE

5.3 The S Functions: Advanced Use

In this section, we present some more advanced techniques for using S functions
to parametrize contrasts in more customized ways, to investigate aliasing, and to
compute projections.

5.3.1 Parametrization; Contrasts

If we think of the anova model as implying coefficients for each level of each factor
or interaction, then the model is inherently over-parametrized. The sum of all the
coefficients for a main effect is trying to estimate the same thing as the intercept
term, and the sum of the coefficients over one factor in a two-factor interaction is
estimating the same thing as a single level of the other factor. No matter how many
observations we take, these parameters are functionally aliased. In addition, if the
experiment does not include all the possible combinations of levels for the factors
in the model, even parameters that are not functionally aliased may be aliased in
the design.

The resolution of these ambiguities is done in two steps. First, a parametriza
tion of the model is constructed according to a choice of contrasts for each factor
appearing in the model, to eliminate functional aliasing. Second, the numerical
fitting of the model checks for and identifies any further design-dependent aliasing.

The need to parametrize factors to fit linear models is common to all models in
Chapters 4 to 7, although the details may vary a little depending on the emphasis
in the modeling. For most analysis of variance, the default choice of contrasts is
adequate: unordered factors use the Helmert contrasts, and ordered factors use or
thogonal polynomials. In particular applications, you may want to set the contrasts
or study the fit in terms of particular contrasts. In doing any of these computations,
two tools are particularly useful:

• The function CO takes a factor and a chosen set of contrasts, and returns
a factor with those contrasts inserted. You typically use CO directly in the
formula of a fit, to set the contrasts for that fit.

• The function contrasts 0 returns or sets the contrasts of a factor. If you want
to modify the contrasts, you can start by getting the current contrast matrix
and then make any changes you want to that matrix. The matrix can then
be used with CO in a formula or assigned as the contrasts of the factor.

Chapter 2 presents the techniques for defining and modifying contrasts in Section
2.3.2 with the rules examined in detail in Section 2.4.1. In addition to C() and
contrasts 0, a number of other techniques in this chapter are handy when studying
contrasts. For example, the projections of the fit for individual terms are useful as

5.3. ADVANCED USE 177

responses in fits designed to study the effects of different contrasts for the corre
sponding factors. The remainder of this section illustrates some of these techniques.

It is possible to choose fewer than k - 1 contrasts for a factor with k levels, if
the remaining contrasts are of no particular interest. There are two distinct ways
to do this:

contrasts(x) <- value
contrasts(x, hov.many) <- value

The first version value and fills it out to give a complete parametrization. The sec
ond version assigns only how.many contrasts, allowing a partial term in the analysis,
in the sense that at most how .many degrees of freedom will be given to this term.

Suppose we wanted to make sure the first effect for a four-level factor contrasted
the average of the first and third against the average of the second and fourth levels:

> attach(state, 1)
> contrasts(region) <- c(1,-1,1,-1)
> contrasts(region)

[.1] [,2] [,3]
Northeast 1 -0.7 -0.1

South -1 0.1 -0.7
North Central 0.7 0.1

West -1 -0.1 0.7

The assignment function for contrasts has appended two additional, orthogonal
columns to the supplied contrast. The rows of the contrast matrix, as always, are
labeled by the levels of the factor.

For an example of omitting degrees of freedom from a term, we look again at
the wafer data in Table 5.2. The factor called visc.tem was a three-level factor
concocted from three of the four possible levels constructed by combining two levels
each for viscosity (204 and 206} and baking temperature (90 and 105). In analyzing
this factor, one needs to choose contrasts specially. If one chose to assume that
the temperature factor had no effect, then the quadratic effect from three-level
orthogonal polynomial contrasts turns out to be equivalent to the single contrast
for viscosity. One way to install this assumption in the anova fitting would then be:

> attach(wafer, 1)
> contrasts(visc.tem,1) <- contr.poly(levels(visc.tem))[, 2]
> contrasts(visc.tem)

[.1]
204,90 0.40825
206,90 -0.81650

204,105 0.40825
> detach(1, save • "wpm1")

178 CHAPTER 5. ANALYSIS OF VARIANCE

This is a fairly typical computation; let's examine it a step at a time. We want
to create a new data frame with the modified contrasts for vise. tem; to start this
off, we attach wafer as the working data. Now we generate the quadratic contrast
for vise.tem (since it is not an ordered factor, its default contrasts would not use
eontr.polyO). Because we assigned this with how.manyc1, only one degree of free
dom will be used for this term. Detaching and saving gives us our new data, in
wpm1. Now we fit the pre.mellll response to the new data:

> wvaov <- aov(pre.mellll ~ . , wpm1}
> summary(wvaov}

Df Sum of Sq Mellll Sq F Value Pr(F)
maskdim 1 0.652 0.652 67.1 0~0038

vise.tem 1 1.326 1.326 136.4 0.0013
spinsp 2 0.765 0.383 39.4 0.0070

baketime 2 0.002 0.001 0.1 0.8904
aperture 2 0.032 0.016 1.6 0.3318
exptime 2 0.545 0.272 28.0 0.0115
devtime 2 0.280 0.140 14.4 0.0289

etehtime 2 0.103 0.052 5.3 0.1033
Residuals 3 0.029 0.010

Only one degree of freedom goes to vise. tem, the other being included in the resid
uals. The same technique could have been used in a formula, replacing vise. tem
by

C(vise.tem, eontr.poly(levels(vise.tem}}[, 2], 1}

The third argument to CO is again how.mlllly, with the same interpretation as when
setting contrasts. In this example, permanently setting the contrasts seems more
straightforward than having to include such a complicated expression in formulas.

5.3.2 More on Aliasing

The term aliasing is used in the analysis of variance to refer to the inability in some
circumstances to talk about the estimate of an effect in the model without reference
to other effects, either:

• complete or full aliasing, in which the estimate is identical to (completely
aliased with) some previously estimated effect or linear combination of effects;
or,

• partial aliasing, in which all the effects can be estimated but with correlation
between estimates of the coefficients. '

There are many ways to phrase the definition of aliasing, and other terminology
is sometimes used (the term confounding is used in some cases for partial aliasing,

.5.3. ADVANCED USE 179

particularly between block and treatment factors). The wording we use reflects our
linking of analysis of variance with linear models. In fact, complete aliasing corre
sponds to singularity of the model matrix and partial aliasing to non-orthogonality
of the columns of that matrix.

Complete aliasing will happen in fractional factorial designs, and may be delib
erate if the design has been chosen to alias some higher-order interactions in the
hope that not all of these will be important. Numerically, an effect or coefficient
that would have been estimated is found to be equal to some linear combination of
previously estimated parts of the model. That is, a column in the model matrix
representing a contrast for one of the terms is found to be linearly dependent on
previous columns of that matrix.

Complete aliasing is represented by a matrix of dependencies, with rows for
inestimable effects and columns for estimated effects. Each row equates an ines
timable effect to a linear combination of previously included effects. The expression
alias(fit) returns the aliasing pattern appropriate to the object fit: for a linear
model or an anova with a single error stratum the result is a matrix or NULL; for a
model with multiple error strata the result is a list of the non-null alias matrices
for the strata. The alias pattern in the fractional factorial analyzed on page 156 is:

> alias(half.aov)
Complete

Temp:Conc
Temp:Cat
Conc:Cat

Temp:Conc:Cat

(Intercept) Temp Cone Cat
1

1

1

In this example the interpretation of the pattern is very sjmple, since each ines
timable contrast is exactly aliased with one earlier contrast. For example, one can
say that the two-factor interaction Temp:Conc is aliased with the main effect Cat.
When several nonzero coefficients appear in single rows of the alias matrix, inter
pretation may be more difficult.

Partial aliasing is used to refer to the situation when two contrasts are correlated
but not exactly linearly dependent. Where complete aliasing relates inestimable
effects to estimable ones, partial aliasing is a relationship among the estimable
effects. The measure we use is the correlation matrix of the coefficient estimates,
with the diagonal terms set to zero.

As an example of partial aliasing, we return to the wafer-processing example in
Table 5.2 on page 149. The analysis in the referenced paper, and our own analysis
so far, have ignored the fact that 3 of the 18 runs were done on one wafer, meaning
that they had 5 instead of 10 repeated observations from which to compute the
mean and standard deviation of the line widths. Under these circumstances, linear
model computations should weight the observations proportionally to the number

180 CHAPTER 5. ANALYSIS OF VARIANCE

of repeated observations, since the variance of the mean line width is inversely
proportional to this number. The weighting is easy to do with the aov() function.
Arguments to aov() can include optional arguments to lm(), such as weight"' to
provide weights to be used in the fitting.

wwaov <- aov(post.mean ~ maskdim + visc.tem + spinsp + baketime +
aperture+ exptime + devtime + etchtime, data= wafer, weight = N)

The weighted linear model is not balanced, and we can examine the alias pattern:

> alias(wwaov)
Partial

(I) m v1 v2 sL sQ bL bQ al a2 eL eQ dL dQ eL2 eQ2
(Intercept)

maskdim
visc.teml
visc.tem2
spinsp.L
spinsp.Q

baketime.L

3 6 -1 6 1 -4 -5 1 -1 -6 1 -1 -1 -9

baketime.Q
aperture!
aperture2
exptime.L
exptime.Q
devtime.L
devtime.Q

etchtime.L
etchtime.Q

Notes:
$"Max. Abs. Corr.":
(1] 0.184

4 6 6 -3 1 -1 -6 -4 6 -3 -4
-5 4 -3 -4 -2 4 3 -7 5 -4 -3 -8

2 4 2 -3 -6 -4 5 -7 6 4 1
4 -4 -3 1 -4 -4 -2 4 -2 -8

-2 3 -1 -7 3 -4 6 -3 -1
-2 -4 2 4 -2 1 4 5

5 -3 2 3 -1 -6 6
1 -4 6 -4 -6 -1

-3 4 -6 3 1
-5 4 3 8

-6 -4 -1

1
1

Most effects are partially aliased with most other effects. The object returned to
represent partial aliasing is a table simplified by coding the substantially nonzero
correlations from -9 to +9 relative to the maximum absolute correlation, which is
added as a note to the table. In addition, since the table is symmetric, only the
upper triangle is shown, with the column labels abbreviated since they are the same
as the row labels. There are many other ways to try to simplify this sort of pattern.
The function pattern() is used to produce the simplified form:

alias(vwaov, pattern = F)

suppresses the call to pattern() and returns just the numerical alias pattern. Some
nested designs tend to produce less global partial aliasing patterns.

5.3. ADVANCED USE 181

In the examples shown, we either had complete aliasing (half. aov) or partial
aliasing (wwaov). It's possible, of course, to have both, in which case alias() returns
both as elentents of a list. Arguments Complete=F or Partial=F will suppress one
part of the report if it is not of interest.

So far, we have shown alias() as applied to a fitted model. You might well
want to study the aliasing properties of a proposed design before fitting the model.
In particular, studying the alias pattern of a proposed design and model may be a
useful step in selecting a design. For this reason, alias 0 has a method for design
objects:

alias(mydesign)

This method returns the aliasing pattern of the design, with respect to a model that
fits all possible main effects and second-order interactions. Generally, the numerical
aliasing pattern is determined by the design and the structural form of the model
(but not by the response data). For this reason, an optional model formula can be
added to the above call (a response is not needed). The default model is equivalent
to

alias(mydesign, "' . 11 2)

5.3.3 Anova Models as Projections

The description of a model formula as the sum of terms suggests an analogous way
of looking at the fitted model. The model formula for the gun example on page 152
is

Rounds "' Method + Physique/Team

which expands to

Rounds "' Method + Physique + Team %in% Physique

This additive model can usefully be related to the sum of five vectors, one for each
of the terms in the model (including the intercept) and one for the residuals. These
vectors identically sum to the response:

Rounds = Y1 + Y2 + Y3 + Y4 + Ys

where y1 is the projection of the response on the intercept, Y2 is the projection on
the Method term, and so on. These projections are useful diagnostics and summaries
of the fit. They can be computed, either during the fit or later. The projections are
represented as a matrix. H computed during the fit (the most efficient approach)
they are returned as the projections component of the fit. In the gun example, the
computations would be as follows:

182 CHAPTER 5. ANALYSIS OF VARIANCE

> gunaovp <- aov(Rounds ~ Method + Physique/Team, gun,
+ projections • TRUE)
> gunproj <- proj(gunaovp)
> dim(gunproj)
[1) 36 5
> dimnames(gunproj)([2))
[1) "(Intercept)" "Method" "Physique"
[4) "Team Xin% Physique" "Residuals"

The argument projections=! to aov() causes projections to be computed. If we had
previously computed a fit and just wanted to produce the projections, this can be
done by

> gunproj <- proj(gunaov)

This usually does as much work as the previous version, since proj 0 must refit the
model unless a qr component was requested in the original fit.

The projection has one column for each term and one for the residuals. The
linear equation above corresponds to asserting that the sum of the columns of the
projection is equal to the response (up to rounding error):

> sum.of.projections <- gunproj X•X rep(1,5)
> all.equal.numeric(sum.of.projections, gun$Rounds)
[1) T

Since the columns of the projections are defined by the corresponding factor (main
effect or interaction), all the elements of the column that correspond to the same
level of the factor are equal. Thus, for all rows with the same level for Method, the
values of gunproj [,"Method") are the same. For example, with Method••"M1", the
common value is 4. 256. The same is true for the Physique effect. For the "Team
XinX Physique" nesting, all cells indexed by each unique combination of Team and
Physique have a common value.

The sums of squares of each of the columns of gunproj are the sums of squares
listed in the anova table (with, as usual, the sum of squares for the "(Intercept)"
suppressed from the anova table).

> apply(gunprojA2, 2, sum)
(Intercept) Method Physique Team XinX Physique Residuals

13456 651.95 16.052 39.258 53.499

Compare this with the summary on page 152.
Indeed, the anova table is a systematic way of recording the quadratic equa

tion that expresses the total sum-of-squares as the sum of the five values above.
This quadratic equation is often called Cochran's theorem in the statistics litera
ture. It is a multidimensional analogue of Pythagoras's theorem. The degrees of
freedom associated with the sums of squares are kept in the computed projection,

5.3. ADVANCED USE 183

as attr(gunproj, "df"). The sums of squares for single-degree-of-freedom projec
tions are effects(gunaov)"2. We could store the sums of squares as an attribute of
gunproj, but have chosen not to do so. Recording the degrees of freedom in gunproj
is necessary. The row sums of the linear equation recover the response variable
Rounds. The sum of the sums of squares equals the sum-of-squares of Rounds, and
the sum of the sums of squares excluding "(Intercept)" is the corrected total sum
of squares often seen in anova tables.

Each column of gunproj is the projection of the response variable into the linear
space spanned by the columns of the model matrix corresponding to that term of
the model. The standard notation for the model expansion

Rounds - Method + Physique + Team %in% Physique

gives the linear equation:

R R + RM + Rp + RT%in%P + e

= l/3o + XRf3R + XMf3M + XT%in%P.6'r%in%P + e

where the Rterm columns are projections of R onto the linear space of the model
terms, the X term matrices are subsets of the columns of the model matrix, and the
f3term coefficients are subsets of gunaov. qr$coef. In this notation Cochran's equation ,
is:

t -t- ~t ~ ~t ~ ~t ~ t
R R = R R + RMRM + RpRp + RT%in%PRr%in%P + e e

Projections of the vector gun [, "Rounds" l onto each of the single-degree-of-freedom
columns of the model matrix are also possible: '

> gunprojl <- proj(gunaov, onedf = T)
> dim(gunprojl)
[1] 36 11
> dimnames(gunproj1)[(2]]

[1] "(Intercept)" "Method"
[3] "Physique.L" "Physique.Q"
[5] "PhysiqueSTeaml" "PhysiqueATeaml"
[7] "PhysiqueHTeaml" "PhysiqueSTeam2"
[9) "PhysiqueATeam2" "PhysiqueHTeam2"

[11) "Residuals"

The sums of squares of the columns of gunproj 1 are the single-degree-of-freedom
sums of squares. They are identical to the squared effects, effects(gunaov)"2.

Projections with Multiple Sources of Variation

Projections in the multiple-stratum models form a list whose elements are the pro
jections for each of the Error() terms. They are created by the same generic proj 0
function. We illustrate using the guayule example:

184 CHAPTER 5. ANALYSIS OF VARIANCE

> gaov.proj <- proj(gaov)
Refitting model to allow projection
> names(gaov.proj)
[1] "(Intercept)" "flats" "Within"

Each element of the list of projections is the projection matrix for the corresponding
error term. The number of columns is the number of non-empty terms in the analysis
for that error term:

> sapply(gaov.proj, dim)
(Intercept) flats Within

[1,] 96 96 96
[2.] 1 2 3

In the analysis on page 158 that produced gaov, there are two terms for the flats
strata, with two corresponding columns of gaov.proj$flats:

> dimnames(gaov.proj$flats)[[2]]
[1) variety Residuals

Each of the projection matrices has its own df attribute, recording the degrees of
freedom for the projections:

> attr(gaov.proj$flats, "df")
variety Residuals

7 16

The projections in a multi-stratum model represent two steps of projection.
First, the response is decomposed into projections onto each term of the error
model. Then, each of these projections is decomposed into projections onto each
term of the treatment model.

As with the single-stratum projections, we could use design.table() to examine
each of the projection matrices in the multiple-stratum case. The value of each
projection is constant within each level of the interaction factor corresponding to
that term.

Single-degree-of-freedom projections are again available, with the same interpre
tation.

5.4 Computational Techniques

This section presents some background on the computations shown in previous
sections, including numeric and statistical results to justify the computations. The
purpose is to make clearer the computations available and how they might be further
extended. The topic is a rich one and our discussion here is necessarily brief and
incomplete. However, it should help to clarify what is going on and why. Section

5.4. COMPUTATIONAL TECHNIQUES 185

5.4.1 relates the effects and coefficients to the underlying linear model. Section
5.4.2 discusses what happens when aliasing prevents estimating all the effects in
the model. Section 5.4.3 adds the results needed when the model has an Error()
model. Computations for projections are discussed in Section 5.4.4.

5.4.1 Basic Computational Theory

This section states some results that link the computations for aov models to the re
sults for linear models. Specifically, we state the algorithm for generating the model
matrix and give the essential properties of the effects. A thorough treatment would
require a fairly extensive excursion into linear algebra or geometry. Fortunately, the
numerical algorithms themselves provide a natural way to motivate these results in
an informal way, extending the corresponding results from Section 4.4.

We start by rephrasing the linear model appropriately for this chapter. Suppose
there are m terms in the formula, with expressions involving • or I expanded,
the result simplified to eliminate duplicate terms, and with the intercept, if any,
included as the first term. The n observations on the response y can be written:

(5.1)

where each T; represents the expected contribution from the jth term and e is the
error, conventionally assumed independently normal with zero mean and variance
u2 , as outlined in Chapter 4, page 97. In this chapter, the emphasis is on terms
and on single-degree-of-freedom effects. The algorithms used to fit the models,
however, work by finding a model matrix, X, that is equivalent to (5.1). The term
TJ corresponds to X;, a submatrix of X. The columns of Xj are generated from
contrast definitions for all the factors appearing in the term T;. These contrasts
are chosen so as to represent all the linear combinations of the dummy variables for
the factors that are not redundant (in the sense of being functionally dependent on
previous terms).

The rules for constructing the columns of X1 were given in Section 2.4.1, where a
recursive rule was given. For a factor, F, appearing in T;, the computation generates
a matrix with n rows and either k or k- 1 columns, where k is the number of levels
of F. If Tj is an interaction of two or more factors, then X; is formed by taking all
possible products of columns from the matrices generated for each of these factors.
Section 2.4.1 has an informal proof that this is a valid coding of the model.

We can write the model matrix as:

(5.2)

and let X; have d; columns. Then d; is the maximum number of degrees of freedom
forT;, as determined from the form of the model (5.1). If the design is complete
or the model is chosen so· that all terms are estimable, then X will be of full rank.

186 CHAPTER 5. ANALYSIS OF VARIANCE

Otherwise, the number of degrees of freedom for some T; will be less than d;. Since
the notation is a bit simpler, let us assume to begin with that X has full rank,
d = 'Ed;, and then consider the general case in Section 5.4.2.

Given a valid coding of the model in the form (5.2), we can use the orthogonal
decomposition discussed in Section 4.4 to state the properties of the effects. The
decomposition expresses X in terms of ann by n orthogonal matrix Q and ann by
d upper-triangular matrix R such that

Qt ·X = R
Qt. y c

= [c1 cz · · · Cm Cm+t) (5.3)

where c; is the set of effects associated with term T; (d; of them by the assumption
of full rank), and Cm+1 is the set of residual effects, if any. These effects are the key
computational tool for standard anova summaries. Their essential properties follow
directly from the construction of the orthogonal decomposition:

1. The elements of c are all uncorrelated, both within and between terms, re
gardless of whether the design is balanced or not.

2. The distribution of c; is unaffected by any of the preceding terms T;•, j' < j;
in particular, T;• contributes nothing to the expected value of c1. Again, this
is true regardless of balance.

3. In addition, if a following term 7';•, j' > j, is balanced with respect to T1, the
same is true of it; that is, the distribution of c1 is unaffected by T;•.

By "unaffected" in properties 2 .and 3 we mean that the mean of c; does not involve
the coefficients from term T;•. These three properties justify the use of standard
summaries, such as the anova tables and the association of effects in probability
plots with the corresponding terms.

To complete this section, we outline how the three properties can be derived
from the linear model. Equation (5.3) and the model assumptions imply the first
property, since the elements of y are independent and c is an orthogonal transfor
mation of y. To see the other properties, we write Q in columns corresponding to
the terms,

In the Householder algorithm, Q is not stored explicitly as an n by n matrix, but
the matrix form is nevertheless fully defined. We also write out the linear model
for y in terms of coefficients corresponding to the chosen contrasts,

(5.4)

>5.4. COMPUTATIONAL TECHNIQUES 187

and partition the upper-triangular matrix R into rows and columns corresponding
to the terms; that is, Rn is the first d1 rows and d1 columns, R21 the next d2 rows
of the same columns, and so on. Since R is upper-triangular,

R;i' = 0, j' < j

In addition, if the j'th term is balanced with respect to the jth term,

R 0 •I •
jj' = 'J > J

as well. The second and third properties then follow from writing out Cj:

Cj = Q}·y

= Q} · (X1/31 + Xz/3z + · · · + Xkf3k + t:)
k

- L Rii' . /3;• + Qj . t:
j'=l

= Rji · f3i + · · · + Rik · !3k + Q} · t:

and c; = Rii · f3;, if all the terms are balanced.

(5.5)

As in the linear model, all the basic results extend directly to the case of a
multivariate response-that is, to the case that y is ann by q matrix. Then c, c;,
f3 and /3;, all become matrices with q columns.

5.4.2 Aliasing; Rank-deficiency

This section derives the matrix returned by the alias 0 function to represent alias
ing in an over-determined model. When the computed rank r of X is less than
d = Ed;, the decomposition pivots columns so that the first r columns are linearly
independent. In this case, the numerical decomposition is written:

(5.6)

Here Pis a permutation matrix, representing the permutation of columns described
by the component pivot returned from the decomposition, and R+ is an r by r
upper-triangular, nonsingular matrix. The computation has decided that the diag
onal elements in the triangular matrix corresponding to the pivoted columns are all
effectively zero.

The matrix Ra contains the aliasing information. To see this, let Xo be the
columns of X found to be linearly dependent, the last d - r columns of X · P in

188 CHAPTER 5. ANALYSIS OF VARIANCE

(5.6). Similarly, let X+ be the first r columns of X ·P, and Q0 , Q+ the corresponding
columns of Q. Then

Q~ · Xo = Ra

By analogy with (5.3), Ra contains the effects from fitting X0 to X+· In the
stmse developed in Section 4.4, the elements in Ra define the contribution of the
contrasts in X+ to predicting the contrasts in X0 . But since the fit is exact, the
effects actually define X0 in terms of X+. The alias() method returns R~ as the
definition of complete aliasing as illustrated in Section 5.3.2.

This discussion of aliasing shows clearly the extension to partial aliasing. When
complete aliasing occurs, the contrasts in Xo are regressed on X+ with effectively
zero residuals. However, when the jth contrast is not fully aliased, we can still
consider fitting it to the preceding j - 1 columns of X, and it remains true that the
jth column of R represents the effects of this fit. If the first j - 1 elements of this
column are effectively zero, then the jth column is orthogonal to (unaliased with)
the preceding columns. Otherwise, partial aliasing exists, and can be summarized
in various ways. The result returned by alias() uses the above-diagonal elements
of the correlation matrix of the coefficients. This is a relatively easy summary to
interpret. However, there is no single definitive numerical summary. In terms of
theory, the matrix R itself is attractive. It clearly has all the information and
connects fairly smoothly between complete and partial aliasing. It is not scale
independent, on the other hand, and probably is not as easy to explain intuitively.

5.4.3 Error Terms

This section explains the computations used with an explicit error model, supplied
as an Error 0 expression in the formula. The method is nicely simple and general,
awl uses the basic linear model computations in a neat, recursive way. The general
J>r<•hlem is to fit an analysis of variance model when the error is assumed to be the
surrr of errors due to the levels of certain factors occurring in the error model, as
w•·ll as a common residual error.

To begin, we need to write such a model explicitly. Let's submerge the specifics
of t.he terms and just let 11- stand for the sum of all the terms in (5.1) on page
18f,, except for the Error() expression. This is often called the treatment model.
Suppose the error model has s terms. Then (5.1) can be rewritten for observation
i:

•
Yi = J.li + LCl(i,j) + E; (5.7)

j=l

wh''"' the notation l(i, j) just means that the jth error term is at level l(i,j) for
the tl.h observation.

The key to the computations is to write the element-wise model (5.7) in terms
of th•! equivalent model matrix, XE, for all the terms in the Error() expression. In

5.4. COMPUTATIONAL TECHNIQUES 189

matrix form:
y := 1-' + XE . EE + E

But now we can compute an orthogonal matrix QE from the decomposition of XE.

As in (5.3), QE applied to y produces s + 1 sets of orthogonal effects, which we
write y•:

Q~. y y•

(YiY2 · · ·y;y;+l)
:= 1-'. + RE. EE + Q~. E (5.8)

where yJ are the effects for error term j, and

Since Q E is orthogonal, Q~ · E has the same distribution as E under the normal error
assumptions. The analogy with (5.3) extends to equation (5.5). In particular, the
j'th error term contributes nothing to the variance of yJ, for j' < j. Statistically,
this says that the jth term of the error model produces a set of effects, say bi of
them, constituting the components of y affected by the jth error term (but not by
previous error terms), and a set of n- L: bi components affected only by the Within

(intra-block) errors. The appropriate analysis th~n applies the treatment model
separately to these sets of effects, producing analyses for each that can be related
to the corresponding error estimates.

Computationally, this works out quite simply. The quantity we have written as
J.L is really the sum of the components from each of the terms in the treatment part
of the model (5.1) and can be written in terms of the model matrix (5.2):

Therefore
~-'. == x·. /3

where x• = Q~ ·X. Equation (5.8) fits Yi to the first b1 rows of x•, Yi to the
next lrz rows, and so on. Each fit may produce estimates for any of the terms in the
treatment model, which are to be compared to the relevant error estimates for that
fit, assuming there are degrees of freedom left for residuals in that fit. It is these
separate fits that correspond to the error strata.

To summarize the computations:

1. Compute the orthogonal transformation, Q E. for the error model.

2. Apply this to the response and to the model matrix for the treatment model,
producing y• and x·.

190 CHAPTER 5. ANALYSIS OF VARIANCE

3. For each term in the error model, fit the elements of y• assigned to that term
to the corresponding rows of x·.

4. The object representing the complete analysis of variance is the list of these
models.

5.4.4 Computations for Projection

Section 5.4.1 extends the QR calculations for linear models to handle the single
stratum analysis of variance. In essence, we partitioned the response variable y in
equation (5.4):

The columns of the X; components are not necessarily orthogonal, neither within
nor between X;. The projections are a repararnetrization of the same equations
with the substitution X = Q · R. In terms of computed quantities:

where ~ means equal up to computational error, the f; are the elements of the
product-)'= R·/3 and e is the computed residuals. Each term Q;f; in equation (5.9)
is one column of the n by m projection matrix returned by the generic function
projO. For ordinary linear models, and so for anova models without an Error()
model, the result follows directly from the QR method of fitting. If single-degree
of-freedom projections are not wanted, all the columns associated with each term
of the model formula are summed into one column. By supplying the argument
onedf=T, this summation is suppressed. The column of residuals is appended to the
projection matrix, so the columns sum to the response.

The multiple-stratum projections are more interesting. They begin with the
objects constructed as described in Section 5.4.3. The fit in stratum j b;, generally
much smaller than n. Specifically, the computations solved the linear model:

where Ej is the part of Q E · E associated with the jth term in the Error 0 model. The
projection computations in this case begin by producing the projections of column
length b; for the ith error term. They then reconstruct the n-row projection matrix
for each error term by embedding the length b; projection into an n-row matrix of
zeros and premultiplying by Qe.

To make this concrete, consider again the guayule example. Recall that the
Error() model forms a stratum from the flats factor, specifically,

plants ~ variety • treatment + Error(flats)

5.4. COMPUTATIONAL TECHNIQUES 191

The assign component of gaov.qr assigns 1 degree of freedom to the Intercept
stratum, 23 degrees of freedom to the flats stratum, and the remaining 72 degrees
of freedom to the Within stratum. Suppose Q E is the orthogOIIIt] transformation
defined by the QR decomposition of the Error() model. For an.v (n = 96)-vector
x, Q~ · x projects the first element onto the Intercept stratum, Uu· next 23 to the
flats stratum, and the remaining 72 to the Within stratum. In)>hrf.icular, if M is
the treatments model matrix, Q~ · M projects each column of M iu this way. This
is the key step in computing the analysis of variance (and the Jl''•.iections) with
multiple error strata.

The anova for the flats stratum is computed by fitting element.k 2 through 24
of Q~ · y to the corresponding rows of Qt -M, and the anova for the Within stratum
fits elements 25 through 96 to rows 25 through 96. The computational efficiency
is realized because each of these steps has computational cost proportional to 113 ,

where 11 is the number of degrees of freedom in the stratum. For example, 11 = 23
in the flats stratum. The projection process reverses the subsetting process. The
column-length 23 projection in the flats stratum is embedded into rows 2 through
24 of an otherwise 0-valued 96x23 matrix, which we will call P. The column-length
96 projection returned in the component gaov. proj$flats is calculated as Q E . P.

As we noted, there is no need to specify separate treatment models for the
different strata; with a balanced design the balance will cause the columns of the
transformed model matrix to be zero {within computational accuracy) in strata
where the corresponding terms drop out of the analysis. For example, the flats in
this experiment are orthogonal to the treatment factor, so that the corresponding
treatment columns of Q~ · M will be zero in rows 2 through 24.

The computations are designed to be general. An error structure with more
than two strata would correspond to additional factors in the Error() model. Also,
there is no computational requirement for balance, either in the error strata or
between the error factors and the treatment factors. Of course, statistical use and
interpretation of analysis of variance models fitted to unbalanced data are adversely
affected and need to be much more carefully stated.

Generalized Yates Algorithm for Direct Projection

We derive here an algorithm for fitting the models of this chapter from projections,
without explicitly using linear model calculations. The function aov. genyates 0
implements this algorithm. The relevance is that for some large, balanced designs
the calculations may be much more efficient than those based on linear models. In
addition, the method illustrates a more general notion; namely, that our approach
to these models can be adapted to any algorithm capable of producing the essential
information used for computing summaries and derived quantities. While we do
not discuss them, method& exist that solve a wider range of models without using
linear model calculations. These too could, in principle, be used to generate aov

192 CHAPTER 5. ANALYSIS OF VARIANCE

objects.
The generalized Yates algorithm is based on knowing that the columns of the

X matrix in the regression setting are orthogonal. Hence the fundamental mathe
matical specification for the projections,

is numerically simplified because X 1 X is diagonal. By starting with an orthogonal
X matrix we are able to avoid the cross-product and inversion in the cross-product
algorithm, or the orthogonalization process in the QR algorithm:

xx <- apply(X•X,2,sum);
xy <- crossprod(X,Y)
coef <- xy/xx

From this we can calculate the projections directly:

element by element multiplication
proj <-X • matrix(coef,nrov(X),ncol(X),byrov=T)
Yhat <- apply(proj,l,sum)
alternatively:
Yhat <- X %•% coef
residual <- Y - Yhat

We collect in function aov. genyates () the direct calculation of the single-degree
of-freedom projection information from the model formula and the data frame. The
result is an aov object with an added proj component.

This process gives us projections onto single-degree-of-freedom contrasts that
correspond to the columns of the specific contrast matrix used in the construction
of the model matrix. Often we care about the projection into the subspace, but
not onto the arbitrary individual degrees of freedom. We therefore collect them by
summation of all the columns of the projection that have been assigned (with the
assign attribute) to the same model term. Since the columns are orthogonal, their
sums by the assign groups retain the orthogonality.

Generalized Yates Algorithm with Multiple Error Strata

The error strata correspond to a model matrix similar to that used for treatments.
The calculations for the multiple-strata designs are also similar to those for the
simpler one-stratum designs. We describe them in terms of the direct projection
algorithm.

First, the response variable Y is partitioned via aov. genyates () into a set of
projections onto the terms of the Error() model formula. For the gun example,

5.4. COMPUTATIONAL TECHNIQUES 193

there are the "(Intercept)", flats, and Within terms. Each carries the entire sum
of squares and degrees of freedom of what will become its stratum.

Second, each column of the projection onto the error space and its residual
is partitioned, by recursive use of the aov. genyates 0 function, into columns cor
responding to the terms of the treatment model. Treatment terms whose model
matrix columns are orthogonal to the columns of the error model matrix that de
fine a stratum have projections with 0 sum-of-squares and 0 degrees of freedom.
Should a stratum be entirely orthogonal to the treatment model, the entire sum-of
squares for the stratum appears in the stratum residual. To avoid redundancy in
terminology, the stratum to which the residuals from the fit to the Error() model
are assigned is called the Within stratum.

The direct projection algorithm is efficient but not immediately generalizable to
situations where the error and treatment models do not define orthogonal model
matrices. Common designs such as partially confounded designs are therefore ex
cluded. In addition, designs for which there are missing values on some observations
are excluded.

We can partially compensate for the lack of generality by including an optional
argument in the multiple-stratum function. When it is known that the error and
treatment model matrices are not orthogonal, setting the argument causes the treat
ment model matrix to be projected onto the space of the error model matrix before
the recursive anova of the current partition of the response variable.

Bibliographic Notes

There are many good introductions to the analysis of variance. Box, Hunter, and
Hunter (1978) is widely used in industrial applications. Searle (1971) gives a some
what less applied approach, connecting the methods to linear models as we have
done here. Computational methods for the analysis of variance are presented in
detail in Heiberger (1989).

Chapter 6

Generalized Linear Models

Trevor J. Hastie
Daryl Pregibon

Linear models and analysis of variance are popular. Many phenomena behave lin·
early (at least over small ranges) and have errors that are Gaussian. Often even
nonlinear phenomena can be modeled linearly by transforming or "bending" the re
sponse. This simplifies the computations, but it can lead to interpreting the modej
in unnatural scales.

This chapter is devoted to a class of models that is as tractable as classical linear
models but does not force the data into unnatural scales. Instead, separate functiom
are introduced to allow for nonlinearity and heterogeneous variances. Generalized
linear models are closer to a reparametrization of the model than to a reexpression
of the response.

Take, for example, binary response data, where the outcome variable takes onf
of two values, say "success" or "failure." If the response is coded 1 for success and
0 for failure, the mean is the probability of success and is a natural candidate f01
modeling. We might want to investigate the effect of the predictor variables on
this probability. Is the linear regression model still appropriate for binary responsE
data? Probably not, unless we are willing to constrain the fitted values to be in
[0, 1]. FUrthermore, the variance of a binary response depends on the mean, which
we are modeling as a function of the predictors, so we should account for that a!'

well. The logistic regression model, described in this chapter, is a generalized linear
model (GLM) that is specially designed for modeling binary and more generally
binomial data.

The family of generalizations includes log-linear models for contingency tables

195

196 CHAPTER 6. GENERALIZED LINEAR MODELS

and count data, models for multinomial responses, gamma models for positive data
with long-tailed error distributions, and many more. These models share several
features:

• They can be described concisely in terms of a link function, which describes
the relationship between the mean and the linear predictor, and a t>ariance
function, which relates the variance to the mean.

• They can be fitted by iteratively-reweighted least squares. Apart from the
computational convenience, the accompanying quadratic approximation to
the log-likelihood makes for simple approximate inferences.

• The fitted nonlinear models can be summarized by statistics, tables, and plots
that are all natural generalizations of their linear model counterparts.

S is a natural environment for exploring generalized linear models and for cre
ating suitable data structures for their representation and fitting. For example, the
link and variance functions are packaged up in the family argument to the glmO
function, and are themselves S functions; typically they are very simple, and as such
they can be easily modified and new link and variance functions can be created.

6.1 Statistical Methods

The classical linear model
y =f3Tx +e- (6.1)

postulates that e is (normally) distributed with zero mean and constant variance.
This model serves a large variety of data situations very nicely, and it has seen a
lot of use. In some situations, (6.1) is not appropriate for one or more reasons:

• If y assumes values over a limited range, the model E(y) = J.L = {3tx for the
mean does not incorporate this restriction.

• For many types of data a change in the mean of y is accompanied by a change
in its variance.

For example, binary response data have their mean J.L E [0, 1] and a variance
J.L(1- J.L) that changes with the mean. The problem seems to be that a mean linear in
the parameters/predictors is not restricted to [0, I] without additional assumptions,
and that a constant variance is not always realistic.

Generalized linear models deal with these issues in a natural way by using
reparametrization to induce linearity and by allowing a nonconstant variance to
be directly incorporated into the analysis. Specifically, a generalized linear model
requires two functions:

6.1. STATISTICAL METHODS 197

• a link function that describes how the mean depends on linear predictors,
g(J.L) = {3T x, and

• a variance function that captures how the variance of y depends upon the
mean, var(y) = Q>V(J.L), with 4> constant.

Link functions are monotone increasing, and hence invertible; the inverse link f =
g-1 is an equivalent and often a more convenient function for relating J.L to the
predictors:

J.L = f({3Tx).

For convenience, it is c\.istomary to denote the linear predictor by T/ = {3T x. For
example if the response is binary, the so-called logit link

T/ = log(-IL-)
1-J.L

or
e'~

1 +e'~

guarantees that J.L is in the interval (0, 1], which is appropriate since IL is a proportion
in this case. The logit link, together with the binomial variance function V(J.L) =
J.L{1 - J.L) defines the popular logistic regression model.

Although binary data problems are an important application, the following table
summarizes other commonly used generalized linear models, along with their default
link and variance functions:

Distribution Link FUnction Variance FUnction
Gaussian J.L 1
Bernoulli log{J.L/{1 - J.L)} J.L{1- J.L)
Binomial log{J.L/{1- JL)} J.L{1 - J.L)/n
Poisson log(J.L) IL
Gamma 1/J.L J.L2
Inverse Gaussian 1/J.L2 1-'3
Quasi g(J.L) V(JL)

Apart from the last entry, all the distributions in the table belong to the one pa
rameter exponential family of distributions. The last entry in the table refers to
the quasi-likelihood model. While all the other entries are generated by a specific
distribution or likelihood, this need not be the case for quasi-likelihood models; they
are specified entirely by the mean and variance functions. A thorough account of
quasi-likelihood inference would be out of place here; McCullagh and Neider {1989)
is a good reference for all the material in the chapter.

198 CHAPTER 6. GENERALIZED LINEAR MODELS

Generalized linear models are an alternative to response transformation models
of the form

(6.2)

which are also used for enhancing linearity and homogeneity of variance. In fact,
certain choices of g and V above lead to analyses very similar to the class of response
variable reexpression models, but in fact they are more general due to their flexibility
in allowing separate functions to specify linearity and variance relationships.

Reexpressions, although very useful at times, suffer from several defects:

• Familiarity of the measured response variable is sacrificed in the analysis of
1/J(y).

• A single reexpression 1/J(y) must simultaneously enhance both linearity and
homogeneity of variance.

• Often the preferred transformations are not defined on the boundaries of the
sample space; e.g., the logit transformation is not defined for observed pro
portions exactly equal to zero or one.

Generalized linear models finesse both these problems.
The next question is how to estimate the model. We use maximum-likelihood

estimation. For the class of response models we consider here, maximum-likelihood
estimation has a particularly convenient structure. An iteratively reweighted least
squares (IRLS) algorithm is used to compute the model parameter estimates, and
weighted least-squares plays a central role in the asymptotic inference. We give an
outline of the methodology in Section 6.4.1. Readers not familiar with this area
might even read that section first, because we draw on the concepts throughout the
chapter.

Another popular arena for GLMs is the analysis of cross-classified count data,
or contingency tables. The margins of a table are indexed by factors, and the cell
counts are very similar to the response in a balanced, multiway, designed experi
ment. For example, an entry in a three-way table niik is the number of individuals
at level i of factor I, level j of factor J and level k of factor K. The most popular
models are linear in the logarithm of the expected cell count J.Lijk = Enijk· For
example, the main-effects model has the form

log Jliik = a + !3{ + !3/ + !3f

where the superscript refers to the factor and the subscript to the level of the factor.
Alternatively, we can write the log-linear model as a multiplicative model for the
expected cell count

0 1 J K
Jlijk = JL JL; Jlj J.Lk

6.2. S FUNCTIONS AND OBJECTS 199

which is the complete independence model for the table. All the models for various
forms of independence, such as conditional independence and marginal indepen
dence, have a log-linear representation. Although the multinomial distribution is
usually appropriate as the sampling model for the cell proportions, appropriate
Poisson models for the cell counts produce identical estimates and inference. De
spite the similarity with a fully-balanced designed experiment, the estimated effects
are not independent because of the nonlinearity of the mean and the changing error
variance. Nevertheless, the analysis is similar, and an analysis of deviance table is
used to compare nested sequences of models. We return to this member of the GLM
family in Section 6.2.5, where we fit a log-linear model to the wave-soldering data
of Chapters 3 and 5.

In the next section we describe S functions for fitting GLMs. Since weighted
least squares is used iteratively to fit the models, the final fit is also a weighted
least-squares fit. Indeed, we have made sure that objects produced by the glmO
functions inherit as many of the properties of the 1m and aov objects as possible.
This means that summaries and diagnostics described in Chapters 4 and 5 can also
be used here, typically with minor modifications.

Section 6.3 describes the functions in more detail, and examines more advanced
functions for model selection, diagnostics, and creating private families. Section 6.4
gives details on the statistical concepts associated with maximum-likelihood infer
ence, as well as algorithmic details.

6.2 S Functions and Objects

Here we describe some S functions for fitting generalized linear models, and for
printing, summarizing, and working with the fitted glm objects. Many of the func
tions here resemble those encountered in Chapter 4; indeed, the glm object inherits
all the properties of an lm object. Readers familiar with the earlier chapters will
not have to learn too many new names here; functions such as summary(), plot(),
and so on work as before, with suitably modified effect. We show in the examples
how this inheritance can also be exploited to provide additional views of a fitted
generalized linear model.

We encourage you to read Chapter 4 on linear models before reading this chap
ter in order to become acquainted with the basic functions associated with linear
models. Although this chapter is self-contained, the pace is quicker than in Chap
ter 4.

6.2.1 Fitting the Model

A call to the S function glmO in its simplest form looks like

glm(formula, family)

200

"'o C>o
<~

0

~ r~

I
I
I ~-r~

02
absent present

Kyphosis

CHAPTER 6. GENERALIZED LINEAR MODELS

0 .---------------.

li)
~

C\1

absent present

Kyphosis

Figure 6.1: Boxplots of the kyphosis data

I
I

--L-
absent present

Kyphosis

The argument family captures all the relevant information about the link and vari
ance functions. Without the family argument, the glm() function is equivalent to
lmO, modulo some additional returned components.

Let us explore glmO using some binary data. The data frame kyphosis consists
of measurements on 81 children following corrective spinal surgery. The first few
observations are

> kyphosis[1:13,]
Age Number Kyphosis Start

1 71 3 absent 5
2 158 3 absent 14
3 128 4 present 5
4 2 5 absent 1
5 1 4 absent 15
6 1 2 absent 16
1 61 2 absent 17
8 37 3 absent 16
9 113 2 abeent 16

10 59 6 present 12
11 82 5 present 14
12 148 3 absent 16
13 18 5 absoout 2

where the binary out<·•11ue variable Kyphosis indicates the presence or absence of
a postoperative deformit.y (called Kyphosis). The other three variables are Age of
the child in months, Nw"'"•r of vertebrae involved in the operation, and Start, the
beginning of the range of vertebrae involved.

6.2. S FUNCTIONS AND OBJECTS 201

The questions are: how do the latter three variables relate to the response, and
can they be used to screen the patients prior to the operation? In 17 of the 81
children Kyphosis is present. Figure 6.1 summarizes the data. We start with a
simple linear logistic model involving all the predictors

kyph.glml <- glm(Kyphosis ~ Age + Start + Number.
family =.binomial. data = kyphosis)

The formula reads "Kyphosis is modeled as a linear function in Age, Start, and
Number." The family= argument is given as binomial, which means that the link
function defaults to logit and the variance to the binomial variance. The response
is coerced to a 0-1 variable with 1 indicating the presence of Kyphosis. So what the
formula really means is "The logit of the mean of Kyphosis, given the predictors, is
linear " Symbolically, the model is

where p. is the probability of Kyphosis. Although we have named the family=
argument, this is unnecessary since it is the second argument to glmO; we could
simply have entered the word "binomial" in this second position. We return to the
family= argument in Sections 6.2.2 and 6.3.3. Data can either be explicitly provided
as a data frame via the data= argument, as is done here, or else the variables named
in the call to glm() are expected to be found in one of the directories attached
during the session. Of course, the data frame kyphosis' itself can be attached once
and for all at the beginning of the session using attach(kyphosis).

The glmO function fits the coefficients of the linear logistic model using max
imum likelihood in the binomial family. When we print the fitted glm object, it
resembles an lm object, but with slightly different naming conventions:

> kyph.glm1
Call:
glm(formula = Kyphosis ~ Age + Start + Number. family • binomial.

data s kyphosis)

Coefficients:
(Intercept) Age Start Number

-2.035 0.01092 -0.2064 0.4103

Degrees of Freedom: 81 Total; 77 Residual
Residual Deviance: 61.38

To print kyph.glm1, we simply typed the name of the fitted object. The print()
function uses the class of kyph.glm1 and invokes the print method print.glm().
A brief summary is produced by printing an object, while a more detailed one
is produced by the summary() function. The call component of kyph.glm1 gives

202 CHAPTER 6. GENERALIZED LINEAR MODELS

a succinct record of how it was created, and is useful for distinguishing different
fitted objects. Instead of the residual standard error reported for an 1m object, the
deviance of the fitted model is printed, which is a more meaningful measure in this
context. The deviance, described in Section 6.4, is similar to the residual sum-of
squares, and is a useful quantity for comparing models. The residual degrees of
freedom are needed to calibrate the deviance. The signs of the coefficients match
the information we get from the boxplots, but that is about all we can say from the
analysis so far.

Our call to gl110 above has explicit arguments. Several shortcuts are available
in these calls, some pertaining only to this case:

• As always, if we had attached the data frame kyphosis, we would not need
the datackyphosis argument.

• Since we are using all the variables in the data frame as predictors in a simple
additive model, we could use the "dot" facility in formulas

glDI(Kyphosis ~ . , bino11ial, kyphosis)

For "dot" to be interpretable, the data argument has to be present.

• Since Kyphosis is the first column of the data frame kyphosis,

glDI(kyphosis, binomial)

will also work, since the foi'IIIulaO method for data frames assumes that the
first column is the response. '

• We simply give the response as Kyphosis, leaving glDIO to coerce into the form
of a 0-1 variable. Here Kyphosis is a two-level factor, with levels "absent" and
"present", and the rule is that the first level is the 0 and the rest are Is
(Section 6.3.3). An alternate, more explicit specification would be

glm(Kyphosis .. = "present" ~ .)

All the above would produce the same result.
The components of kyph.glDI1 include all the components of an lDI object:

> na~~es(kyph.glDI1)
[1] "coefficients" "residuals" "fitted. values"
[4] "effects" IIR" "rank"
[7] "assign" "df.residual" "veights"

[10] "linear.predictors" 11 deviance" "null. deviance"
[13) "call" "iter" tty II
[16] "terms" "fa~~ily" "foi'IIIUla"

with some added extras. A glm object inherits from the class "lDI":

6.2. S FUNCTIONS AND OBJECTS

> class(kyph.glml)
[1] "glm" "lm"

203

This means that we could have printed kyph. glml using print .1m() instead, although
the merit of doing this is not obvious at this stage.

There are several functions for extracting single components from the fitted
objects, which we list here and explain as we go along:

• residuals() or its abbreviation resid(): produces residuals, with an argument
specifying the type of residual;

• fitted() or fitted. values():· extracts the vector of fitted values;

• predict 0: has several arguments, and by default extracts the linear predictor
vector;

• coef 0 or coefficients(): extracts the coefficient vector;

• deviance(): extracts the deviance of the fit;

• effects(): returns the vector of labeled 1 degree-of-freedom effects;

• formula(): extracts the model formula that defines the object;

• family(): returns the family object used or implicitly used in producing the
object.

All of these functions are generic, which means they should produce sensible results
for a number of different classes of models, provided specific methods exist.

The details of a glm object are described in the documentation section of the
appendix, under glm.object, and can also be obtained online using the expression
help(glm.object). Among the components are both

fitted.values
linear.predictors.

The former is on the scale of the mean, while the latter is the linear parametrization
obtained from the fitted values via the link function. A simple way to extract these
is to use the functions fitted() and predict(). For example, the first three values
of the linear predictor for kyph. glml are

> predict(kyph.glm1)[1:3]
1 2 3

-1.061 -1.969 -0.02822

while the first three fitted values are

204 CHAPTER 6. GENERALIZED LINEAR MODELS

> fitted(kyph.glm1)[1:3]
1 2 3

0.2571 0.1225 0.4929

which lie in (0, 1] as expected. These are obtained in this case by applying the
inverse logit transformation

> TT <- exp(predict(kyph.glm1)[1:3])
> TT/Cl+TT)

1 2 3
0.2571 0.1225 0.4929

The summary() function gives a. more detailed description of the fitted model:

> summary(kyph.glm1)

Call: glm(formula = Kyphosis ~ Age + Start + Number,
family = binomial, data = kyphosis)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.398 -0.5702 -0.3726 -0.1697 2.197

Coefficients:
Value Std. Error t value

(Intercept) -2.03491 1.432240 -1.421
Age 0.01092 0.006353 1.719

Start -0.20642 0.067061 -3.078
Number 0.41027 0.221579 1.852

(Dispersion Parameter for Binomial family taken to be 1)

Null Deviance: 83.23 on 80 degrees of freedom

Residual Deviance: 61.38 on 77 degrees of freedom

Number of Fisher Scoring Iterations: 4

Correlation of Coefficients:
(Intercept) Age Start

-0.2755
Age -0.4552

Start -0.3949
Number -0. 8466 0.2206 0.1236

Residuals for GLMs can be defined in several different ways. The summary() method
produces deviance residuals, and prints a five-number summary of them. These
are different from the residuals component of a glm object, which are the so-called

6.2. S FUNCTIONS AND OBJECTS 205

working residuals from the final IRLS fit. The residuals() method has a type=
argument, with four choices:

• "deviance" (the default): Deviance residuals are defined

rf = sign(y; - {.t;)v'd; (6.3)

where d; is the contribution of the ith observation to the deviance. The de
viance itself is then D = L;(rf)2 . These are presumably reasonable residuals
for use in detecting observations with unduly large influence in the fitting pro
cess, since they reflect the same criterion as used in the fitting.

• "vorking": We name these working residuals because they are the difference
between the working response and the linear predictor at the final iteration of
the IRLS algorithm. They are defined

w (")&,; ri = Yi - J.Li -{).
J.Li

(6.4)

They are an example of why it is safer to use the extractor functions such as
residuals 0 rather than accessing the components of a glm object directly;

residuals(kyph.glml)

would produce the deviance residuals, while

kyph.g1m1$residuals

would give the working residuals. Working residuals are used to construct
partial residual plots; we give an example in Section 6.2.6.

• "pearson": Pearson residuals are defined by

(6.5)

and their SUJ}l-Of-squares

n (•)2 x2 = L Yi- J.Li
i=l V(j.t;)

is the chi-squared statistic. Pearson residuals are a rescaled version of the
working residuals, when proper account is taken of the associated weights:
rf = JWirf.

• "response": These are simply y; - {.t;.

206 CHAPTER 6. GENERALIZED LINEAR MODELS

For Gaussian models these definitions coincide.
The summary() function is generic; the method summary.glm() is used for gl!n

objects. One can assign the result of summary() rather than printing it, in which
case it produces a summary.glm object. The summary object includes the entire
deviance residual vector and the asymptotic covariance matrix, which are often
useful for further analysis.

Along with the estimated coefficients, the summary() method produces standard
error estimates and t values. The standard errors are square roots of the diagonal
elements of the asymptotic covariance matrix of the coefficient estimates. More
simply stated, they are the standard errors appropriate for weighted least-squares
estimates, if the weights are inversely proportional to the variance of the obser
vations. We discuss the quadratic approximation that leads to these estimates in
Section 6.4. The t values are the estimated coefficients divided by their asymptotic
standard errors and can be used to test whether the coefficients are zero.

The printed summary reports the value for the dispersion parameter ¢. For
the binomial and Poisson families, the dispersion parameter is identically 1, and is
not estimated in these cases. For other families, such as the Gamma or Gaussian,
¢ is estimated by X 2 fv, the Pearson chi-squared statistic scaled by the residual
degrees of freedom. Of course, for the Gaussian-error model, this is the usual
procedure. The dispersion parameter is used in the computation of the reported
standard errors and t values for the individual coefficients. These defaults can be
explicitly overridden by specifying the value for the dispersion parameter using the
dispersion= argument to the sUIIIIDary() method; dispersionaO will result in the
Pearson estimate, irrespective of the family of the object.

6.2.2 Specifying the Link and Variance Functions

The family argument is the main difference between calls to glmO and calls to
lm(). The family argument expects a family object, which is a list of functions
and expressions that are needed to define the IRLS algorithm and calculate the
deviance. In our example above we used family=binomial.

Actually, binomial() is itself not a family object but a family generator function
that evaluates to a family object. It can have arguments of its own, as we see later.

Let's explore a binomial family object:

> faml <- binomial()
> names(faml)
[1] "family" "names"
[6] "initialize" "variance"

11 1ink 11

"deviance"

11 inverse 11

"weight"

11deriv 11

The family component is simply a vector of names used for printing, and is used
by the print 0 method for families

6.2. S FUNCTIONS AND OBJECTS

> fam1
Binomial family

link function: Logit: log(mu/(1 - mu))
variance function: Binomial: mu(1-mu)

207

Three components of fam1 are S functions for computing the link function, its in
verse, and its derivative:

$link:
function(mu)
log(mu/(1 - mu))

$inverse:
function(eta)
1 I (1+exp(-eta))

$deriv:
function(mu)
1/(mu • (1 - mu))

Similarly, the remaining components are also S functions and expressions that enable
the IRLS algorithm to fit the logistic regression model.

For the binomial model, link functions other than the logit are also possible.
For bioassay problems, the probit link, defined by g(p,) = q;-1(p,), where 4> is the
Gaussian distribution function, is popular. To invoke the probit link, use

binomial(link = probit)

or, in a call to glmO,

glm(formula, binomial(link = probit))

Some of the components of the binomial family object are changed:

$link:
function(mu)
qnorm(mu)

$inverse:
function(eta)
pnorm(eta)

$deriv:
function(mu)
1/dnorm(qnorm(mu))

208

co
ci

<0
ci

:::1
E

"<I;
0

"' ci

0
ci

CHAPTER 6. GENERALIZED LINEAR MODELS

I
I

I
I

I
/,

·2

r .. --
1 .. -·

/...-/
//'

/,/
I i

I i
I'

I
I

0

eta

2 4

> eta <- seq(from = -5, to = 5, length = 200)
> plot(range(eta), c(O,l), xlab ="eta", ylab = "mu", type= "n")
> lines(eta, binomial(link = logit)$inverse(eta))
> lines(eta, binomial(link = probit)$inverse(eta), lty = 2)
> lines(eta, binomial(link = cloglog)$inverse(eta), lty = 4)

Figure 6.2: A plot of three commonly used (inverse) link functions for the binomial family.
The functions are the logit (solid line}, the probit (dotted line) and the complementary
log-log (broken line).

Figure 6.2 displays the inverse logit, probit, and complementary log-log link functions,
three commonly used links for binomial data. The expressions used to create the
plot are also displayed, if only to convince the reader that these components of the
family objects are legitimate functions.

Other family generator functions are gaussian () (the default), poisson (), Gamma 0,
inverse.gaussian(), and quasi() (we use uppercase Gamma to distinguish this fam
ily function from the S probability-distribution function gamma()). All but the last
are special families implied by an error model with the same name. Since the
error model determines the variance function, these generator functions do not
have a variance• argument. The quasi() function has both a linkz and variance
argument, and is used for constructing arbitrary link/variance combinations. In

6.2. S FUNCTIONS AND OBJECTS 209

Section 6.3.3, we give some more details on families. We show how to construct
special-purpose families and modify existing ones. A great deal of flexibility can be
achieved through the family argument to glmO. Two examples described later are

• the power() link function, which allows the link to be parametrized;

• the function robust(), which converts a family into a robust version of itself.

6.2.3 Updating Models

We seldom know in advance what model will be appropriate, so we typically fit a
number of different models and explore various combinations of predictors. Usually,
the new model will differ from the preceding one in a simple way:

• one additional predictor is included in the model formula;

• the response in the model formula is transformed;

• a subset of the data is used in the fit;

• a slightly different family is used in fitting the model, and often all the other
arguments to the original call are held fi?c:ed.

It is convenient in situations such as these to have a function for updating a model.
Suppose we want to drop the term Age from our fitted model kyph.glm1. The

call

kyph.glm2 <- update(kyph.glm1, ~ . - Age)

results in

> kyph.glm2
Call:
glm(formula • Kyphosis ~ Start + Number, family = binomial,

data = kyphosis)

Coefficients:
(Int.) Start Number
-1.029 -0.1849 0.3574

Degrees of freedom: 81 total; 78 residual
Residual Deviance: 64.54

Apparently Age is not a very important predictor (if modeled linearly), since the
deviance increased by only 3.16 when Age was dropped.

The first argument to update() is a model object, and the second an updating
fonnula. A "." (on either side of "') is replaced by the corresponding left or right

210 CHAPTER 6. GENERALIZED LINEAR MODELS

formula of the model object. In this case, the response is the·same, and the linear
predictor has the term Age removed. For convenience, the "." on the left of "' can
be omitted. Any additional named arguments to update() are used to replace the
corresponding arguments of the object being updated. For example,

update(kyph.glm1, subset c -79)

simply augments the existing call with a subset argument to repeat the fit, with
observation 79 deleted.

Arguments can also be removed from the call. For example, suppose kyph. subset
was created using a subset•-79 argument; then

update(kyph.glml, subset =)

will remove the subset argument, and fit the same model to all the data.
Updating is also described in some detail in Section 4.2.5, and is used several

times in Chapter 1. Although we emphasize its simple uses, some more exotic
applications include:

• The class= argument can be used to change the fitting mechanism from, say,
glm() to lmO, or even to tree() or loess().

• By supplying a data= argument to update(), we can refit the model to an
entirely new dataset (as long as the variables named in the formula and other
arguments in the call are to be found in the new data).

• Using evaluate=F causes update to return the call corresponding to the new
model, without actually evaluating {fitting) the modeL This can be useful if
the original attempt at updating an object caused an error of some kind.

6.2.4 Analysis of Deviance Tables

More often than not, we fit more than one glm model. It is convenient to summarize
a series of fitted models in an analysis of deviance table. An analysis of deviance
table is simply the analogue of an analysis of variance table, such as that produced
by summary.aovO.

There are many ways to arrange a series of models into such a table, and more
importantly, there are many ways of generating an appropriate series of models.
In this and subsequent sections we describe several functions that produce anova
tables, or more precisely objects of class "anova":

• anova(...) takes an arbitrary number of fitted models as arguments, and
makes sequential pairwise comparisons in the order the fitted models are listed.

6.2. S FUNCTIONS AND OBJECTS 211

• anova(object): given a single object, anova() fits a sequence of modul., by
successively dropping each of the terms (from last to first), and prodllthR a
table to summarize the changes.

• drop1 0 and add1 0 produce tables by making a series of single term deleti• •us
or additions. These functions are also encountered in Chapters 4, 5 and 7,
and we describe them in some detail in the next section.

• step() is a stepwise model selection function that builds a model by seqth.10 .

tially adding or dropping terms (Sections 6.3.5 and 7.3.1).

Let's look at a simple example of the use of the anovaO function:

> anova(kyph.glml, kyph.glm2, kyph.glm3)
Analysis of Deviance Table

Response: Kyphosis

Terms Resid.
1 Age + Start + Number
2 Start + Number
3 Start

Df Resid. Dev Test Df Deviance
77 61.38
78 64.54 -Age -1 -3.157
79 68.07 -Number -1 -3.536

If adjacent models are nested with respect. to the terms in the linear predictor,
as is the case here, then the ter11¥1 comprising the difference are named in the
Test column. Either way, the column labeled Deviance reports the difference in
deviances between each model and the one above it, and Df is the difference in
degrees of freedom.

The output of anova() is an S object with class "anova" that inherits from the
class "data.frame". There are several advantages to arranging the output in this
form. As a data frame, the numbers in the individual columns can be accessed, and
columns can be subscripted out. For example, for large models the Terms column
can be rather wide, so we might choose to omit it when printing the table. The table
could then be printed in pieces, with the row numbers used for cross-referencing.

> kyph.anodev <- anova(kyph.glm1, kyph.glm2, kyph.glm3)
> kyph.anodev[,-1]
Analysis of Deviance Table

Response: Kyphosis

Resid. Df Resid. Dev Test Df Deviance
1 77 61.38
2 78 64.5~ -Age -1 -3.157
3 79 68.07 -Number -1 -3.536

212 CHAPTER 6. GENERALIZED LINEAR MODELS

Similarly, if we want to use the numbers in the "Deviance" column, we can simply
extract them:

> kyph.anodev$Deviance
[1] NA -3.157 -3.536

When given a single model as an argument, anovaO behaves a bit differently:

> anova(kyph.glm1)
Analysis of Deviance Table

Binomial model

Response: Kyphosis

Terms added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev

NULL 80 83.23
Age 1

Start 1
Number 1

1.30
16.63
3.92

79
78
77

81.93
65.30
61.38

Notice the table header is different, as are the row labels and columns in the table.
The table reports the effect of sequentially including each of the terms in the original
model, starting from the NULL model. The NULL model is a constant, and is the
mean of the response if an intercept is present in the model, as is the case here;
if there is no intercept, the NULL model has a linear predictor that is all zeros.
The same table is obtained if we drop terms sequentially from the full model, from
right to left in the formula. The formula in our example is rather simple; for more
complicated formulas with interaction terms, the formula is first expanded and then
terms are dropped while honoring the model's hierarchy. This version of anovaO
mimics the table produced by summary.aovO when applied to an aov or 1m object.
In fact, the anova() method for these two classes is summary.aovO. The distinction
is worth noting, however. For a balanced aov model, the table is the same no
matter what the order of the terms. For an unbalanced aov or 1m model, the order
is relevant, as it is for glm models. For large models, anova.glm(object) might take
a while to compute, since it has to fit each of the submodels of object iteratively;
for 1m models no refitting is needed.

It is apparent that the contents of an anova object are rather general; any data
frame can be transformed into one by attaching a character vector header attribute.
There is a print method for anova objects, and all it does is print the header and
hand it over to the printer for data frames. Typically each row corresponds to a
term in a model, and there will be columns labeled "Deviance" or "Sum of Sq" and
"Df".

6.2. S FUNCTIONS AND OBJECTS 213

The anovaO methods all have a test= argument. The default is "none" for
anova.glmO, and other choices are "Chisq", "F", and "Cp". For a binomial model,
the changes in deviances between nested models are typically treated as chi-squared
variables, so test="Chi" is appropriate here (notice abbreviations are allowed):

> anova(kyph.glml, test = "Chi")
Analysis of Deviance Table

Binomial model

Response: Kyphosis

Terms added sequentially (first to last
Df Deviance Resid. Df Resid. Dev Pr(Chi)

NULL 80 83.23
Age 1

Start
Number 1

1.30
16.63
3.92

79
78
77

81.93 0. 2539
65.30 0.0000
61. 38 0. 0477

The additional column labeled "Pr(Chi)" gives the tail probability (p-value) of the
chi-squared distribution corresponding to the values in the "Df" and "Deviance"
columns. The test~"F" option is suitable for Gaussian GLMs, Gamma models with
a dispersion parameter, and perhaps for overdispersed binomial and Poisson models.
The choice test="Cp" is discussed in Section 6.3.5.

One can directly augment an anova object with one or more test columns using
the function stat. anovaO. For example, the sequence

> anova1 <- anova(kyph.glml)
> stat.anova(anoval, test = "Chisq")

produces the same table as above. This function is useful in situations where the
original table is expensive to compute.

6.2.5 Chi-squared Analyses

A glm object looks very similar to a fitted 1m object, as it should. We say that
it inherits the properties of an lm object. The fitting algorithm uses iteratively
reweighted least squares, which means that the final iteration is a weighted least
squares fit. This linearization is not only a coincidence of the numerical algorithm,
but is the same linear approximation that drives the first-order asymptotic inference
for generalized linear models. So, for example, the usual covariance matrix from this
linear fit is the same as the inverse of the expected Fisher information matrix for
the maximum-likelihood estimates. This is precisely what is used as the asymptotic
covariance matrix of the coefficients and is what is usually reported along with the
fit. Section 6.4 has more details.

214 CHAPTER 6. GENERALIZED LINEAR MODELS

Apart from simplifying the algorithms for fitting these models, this linearization
allows us to use many of the tools intended for linear models and models for designed
experiments. To illustrate this, we return to the wave-soldering data introduced in
Chapter 1 and revisited in subsequent chapters. Recall that in this experiment the
response is the number of defects or skips, an integer count taking on values 0, 1,
In some of the earlier analyses we reexpressed the response using the square-root
transformation, and modeled the transformed data using aovO as though the errors
were Gaussian. An alternate and perhaps more justifiable approach is to model the
response directly as a Poisson process. The natural link for the Poisson family is
the logarithm of the expected counts. The effect of the log link is similar to that of
the square-root transformation, but in addition it guarantees that the fitted means
are positive.

The call looks similar to the aovO call:

paov <- glm(skips ,...., 0. family a poisson, data • solder 0 balance)

Once again we can print and produce summaries of the fitted object using either
the methods appropriate for glm objects or else, in this case, those appropriate for
aov or 1m objects:

> summary(paov)

Call: glm(formula = skips ,...., Opening + Solder + Mask + PadType + Panel,
family a poisson, data= solder.balance)

Oeviance Residuals:
Kin 1Q Median 3Q Max

·3.661 -1.089 -0.4411 0.6143 3.946

Coefficients:
Value Std. Error t value

(Intercept) 0.735680 0.029481 24.955
Opening.L -1.338898 0.037898 -35.329
Opening.Q 0.561940 0.042005 13.378

Solder -0.777627 0.027310 -28.474
Kask.1 0.214097 0.037719 5.676
Mask.2 0.329383 0.016528 19.929
Mask.3 0.330751 0.008946 36.970

PadType.1 0.055000 0.033193 1.657
PadType.2 0.105788 0.017333 6.103
PadType.3 -0.104860 0.015163 -6.916
PadType.4 -0.122877 0.013605 -9.032
PadType.5 0.013085 0.008853 1.478
PadType.6 -0.046620 0.008838 -5.275
PadType.7 -0.007584 0.006976 -1.087
PadType.8 -0.135502 0.010598 -12.786

.6.2. S FUNCTIONS AND OBJECTS

PadType.9 -0.028288
Panel.1 0.166761
Panel.2 0.029214

0.006564 -4.310
0.021028 7.931
0.011744 2.488

(Dispersion Parameter for Poisson family taken to be 1)

Null Deviance: 6856 on 719 degrees of freedom

Residual Deviance: 1130 on 702 degrees of freedom

Number of Fisher Scoring Iterations: 4

Correlation of Coefficients:
(Intercept) Opening.L Opening.Q

Opening.L 0.4472
Opening.Q -0.1082 0.3844

Solder 0.3277 0.0000 0.0000
Mask.1 -0.1350
Mask.2 -0.3095
Mask.3 -0.4050

0.0000
0.0000
0.0000

0.0000
0.0000
0.0000

Solder Hask.1

0.0000
0.0000 0.1605
0.0000 0.1483

215

plus many more correlations which we omit. Using summary.aovO instead we get

> summary.aov(paov)
Df Sum of Sq Mean Sq F Value Pr(F)

Opening 2 2101 1050 706 O.OOe+OO
Solder 1 811 811 545 O.OOe+OO

Mask 3 1429 476 320 O.OOe+OO
PadType 9 473 53 35 O.OOe+OO

Panel 2 66 33 22 4.89e-10
Residuals 702 1045 1

The default summary method for glm objects concentrates on the individual pa
rameters, while summary.aov() concentrates on the fitted terrns. The F values and
their tail probabilities are only valid under some special assumptions, in particular
that the Poisson model is over- or underdispersed. In this case, the scaled chi
squared estimate of </J is 1.49, which is somewhat larger than 1 and does indicate
overdispersion. Of course, the default summary() for a Poisson GLM makes the even
stronger assumption that <P = 1, which justifies the use of chi-squared rather than
F-statistics. In practice, it seems that this often is not the case, the above example
being a case in point.

It is interesting to note that the asymptotic correlations (and hence covariances)
between the parameter estimates are zero in the same places as they are for the
balanced analysis of variance model. This is a special feature of the main-effects
Poisson model, a result of the multiplicative structure of the fitted values (they cre
ate weights that are similar to those arising from a proportionally balanced design).

216 CHAPTER 6. GENERALIZED LINEAR MODELS

The sums of squares in the analysis of variance table are appropriately weighted
versions of the usual sums of squares.

If paov is summarized by summary .lmO, the residuals reported are the Pearson
residuals

Kin 1Q Median 3Q Max
-3.382 -0.852 -0.402 0.664 5.259

and what is reported as the residual standard error estimate is JX2 jv, the square
root of the scaled Pearson chi-squared statistic.

The "balance" property referred to above also means that the weighted sums
of squares decompose orthogonally. This is not the case in general for other GLMs,
where orthogonality is rare. For example, we can use summary. aov () on the kyphosis
model

> summary.aov(kyph.glml)
Df Sum of Sq Mean Sq F Value Pr(F)

Age 1 0.1 0.1 0.1 0.738
Start 1 11.1 11.1 12.5 0.001

Number 1 3.4 3.4 3.9 0.053
Residuals 77 68.5 0.9

but the components here are not as meaningful. The entries would differ depending
on the order of the variables, which is the case for any "unbalanced design." The
last effect, Number in this case, approximates the change in deviance resulting from
dropping this variable from the model formula. The approximation in effect takes
one step toward the solution, and as such is similar to Rao's score test. The functions
add10 and drop10 are also based on score tests, and are described in Section 6.3.5.

6.2.6 Plotting

We have already seen some plots of fitted GLMs in Figure 1.6, where we plot the
observed versus fitted values (on the square-root scale) for the wave-soldering data.
Many plots are possible for GLMs, so our selection for a plot method is bound to
be subjective and not please all. Figure 6.3 shows the result of plot(paov), a plot
of our Poisson model. The left panel graphs the response variable against their
fitted values, while the right panel graphs the absolute deviance residuals against
the linear predictor values. This is similar in spirit to the plot() method for 1m
objects introduced in Chapter 4. In fact, plot.lm() can be used on glm objects to
produce a variation of the two plots in Figure 6.3. In that case, the axis labeled
response would actually be the. working response, and the fitted values would be
the linear predictor.

By using the extractor functions fitted(), predict(), and residuals{), we can
easily produce a large variety of plots. For the wave-soldering data, we plot response
residuals against the fitted values in Figure 6.4:

6.2. S FUNCTIONS AND OBJECTS 217

... oo .· 0
0 .. 0 a> <D .. ··

.... ···· 0
C')

a 1 0
0 0 _p··e o

0 0 ., ... o-··· 0 s.
0.. 'b ~· 0 ~ N
~ ., Of:Jt···CJ> 0 ~

0 ,00 ° ~ 0
N 0

'Oo oo

0
0 0

0 20 40 60 ·2 0 2 4

litted(paov) predict(paov)

Figure 6.3: A plot of the glm object paov. The left panel shows the response plotted against
its fitted values; the broken line is at 45 degrees. The right panel shows the absolute deviance
residuals plotted against the linear predictor. The discrete nature of the response introduces
strange striations in the residuals.

> attach(solder.balance)
> plot(sqrt(fitted(paov)), skips- fitted(paov))
> abline(h=O)

We could have used the residuals() function with type="response" to extract the
residuals, although our usage here produces more informative plot labels. We ac
tually plot against the square root of the fitted values to expand the horizontal
scale.

The mean of the residuals is approximately zero, with the most striking feature
being the increase of variability with the mean. This is, of course, expected for
Poisson data, since the variance is supposed to increase linearly with the mean.
The plot on the left uses the main-effects model, and we see some large negative
residuals for high values of the fitted values. This indicates lack of fit for some
regions of factor space, and we need to fit some interaction terms. The plot on the
right is the residual plot for the model

paov2 <- glm(formula • skips ~ . + (Opening + Solder + Mask)A2,
family= poisson, data = solder.balance)

Which is the same model selected in the analysis in Chapter 1. The large neg-

218 CHAPTER 6. GENERALIZED LINEAR MODELS

Main Effects Interactions

0 0
~ ~

"> N'
>

§. 0 0 0

[

I i
0 0

000 ooooo ~ 0
~ -

~
.;,

0 a.
:i< (/)

0 (/)

~ C)'
0

0

0

0

0 2 4 6 8 0 2 4 6 8

sqrt(fitted(paov)) sqrt(fitted(paov2))

Figure 6.4: The residuals for two Poisson models fitted to the wave-soldering data, plotted
against the square root of the fitted values. The residuals on the left correspond to the main
effects model, while those on the right are from a model that includes some interactions.

ative residuals a.l'e not as pronounced as for the main-effects model. Both plots
exhibit rather strange curved bands due to the constrained and discrete nature of
the response and fitted values. This behavior is far more extreme for binary data,
rendering plots of this kind almost useless in that case.

Other plots such as the half-normal plot of Figure 5.6 can also be generated for
a glm object, although one should exercise caution in making interpretations not
necessarily valid in the nonlinear context.

Partial residual plots are useful for detecting nonlinearities and for identifying
the possible cause of unduly large residuals. The partial residuals for variable Xj

are defined to be
(6.6)

The term to the right of the plus sign in (6.6) is simply the working residual,
while the term on the left is the jth fitted term. As mentioned earlier, the working
residual is available using the type="vorking" argument in a call to residuals(), and
is in fact the "residuals" component of a fitted glm object. The individual fitted
terms are available from the predict() method, with the argument type""terms".
A matrix of values is returned, with a column for every term in the model. We
remind the reader that a term is often composite, involving several coefficients. So,

~.2. S FUNCTIONS AND OBJECTS 219

in fact, the expression

predict(kyph.glml, type • "terms") + kyph.glm1$residuals

will produce a matrix of partial residuals, one column for each term. The expression
takes advantage of the fact that matrix addition recycles the values in the vector
~ued residuals term {fortunately columnwise).

Curvature in the pattern of these residuals {plotted against xi) can suggest
nonlinear transformations of the variables, which might improve the fit. A smooth
curve fitted to these partial residuals enhances this display and allows one to detect
the nonlinearities more easily. Figure 6.5 shows such plots for the kyphosis model.

0

0

0 0

0 0 0

0

50 100 150 200
Age

0

0

5 10
Start

0
0

15

r--0~------------~ 0

0

0
0 0

0

8 8 °

~0

2 4 6 8
Number

0

10

Figure 6.5: Partial residual plots for the kyphosis data. In each plot the residuals are
summarized by a loess() smooth curve, which suggests nonlinear transformations. One
large negative residual seems to have a strong local effect on the curve for Number.

After some exploration with these partial residual plots, and experimenting with
various nonlinearities, we eventually arrived at the model

Kyphosis ~ poly(Age, 2) + !((Start > 12) • (Start - 12))

which has a quadratic effect for Age, and a piecewise-linear effect for Start. The
functions poly() and IO are both special, and are described in Chapter 2. For
convenience, we describe them again here.

• poly 0 is an s function that takes one or more vector arguments (or a matrix
argument), as well as a degree= argument, and generates a basis for polynomial
regression. Since this is itself a matrix, it is a valid object for inclusion in a
formula. The more common application uses a single, vector argument (or an

220 CHAPTER 6. GENERALIZED LINEAR MODELS

expression that evaluates to 1), as is the case here, and the resulting columns of
the basis are orthonormal. For more than one argument or a matrix argument,
the bases are no longer orthonormal. In either case, the polynomials defining
the columns have maximum degree given by the degree= argument.

• I 0 is the identity function, and protects its argument from the formula parser.
Such protection is clearly needed here since its argument uses the "•" and "-"
operators, which have a different interpretation in a formula. In this case, the
expression evaluates to the truncated linear function (Start- 12)+, where
the 0+ notation refers to the positive part.

If the positive part function were to be used frequently, it would make sense to write
a special function, say pos.partO, for future inclusion in formulas. Any function
with arbitrary arguments can be used in a formula, as long as it evaluates to a
numeric vector, a matrix, or a factor. The use of compound expressions such as
poly() and I() in formulas is discussed in some detail in Chapter 2, as well as in
Chapter 7. We saved the fitted model in kyph.glm4:

> kyph.glm4
Call:
glm(formula =Kyphosis~ poly(Age, 2) +!((Start> 12) • (Start- 12)),

family = binomial, data = kyphosis)

Coefficients:
(Intercept) poly(Age, 2)1 poly(Age, 2)2 !((Start > 12) • (Start - 12))

-0.684961 5.77193 -10.3248 -1.35101

Degrees of Freedom: 81 Total; 77 Residual
Residual Deviance: 51.9533

We can plot the fitted terms by separating out the relevant columns and multi
plying by their fitted coefficients. If we want to see pointwise standard-error curves,
we need to do a similar partitioning of the covariance matrix of the parameter es
timates. Both these operations can be performed by the predict() method; the
expression

predict(paov, type= "terms", se .. T)

will return a list with two components, "fit" and "se.fit". Both of these will be
matrices, the former having as columns the fitted terms, the latter, the pointwise
standard errors for each term. Section 6.3.6 has more details.

There is an even easier way out. Chapter 7 focuses on the fitted terms in additive
models, and the plot. gam() method produces exactly the type of plot outlined above.
The pair of plots in Figure 6.6 were created by the call

plot.gam{kyph.glm4, se • T, residuals • T)

6.3. SPECIALIZING AND EXTENDING THE COMPUTATIONS

0

"'
N' 0
.;
C>
<(
:;;

C)l 8.

""t

'9

0 50 100 150

Age

"'

'
0

' ' ' '

200

0

"- -o- -a .ll_ -e--"-- ~ 0
,..-----,,.----,....,----..,.:,
; ~ lJ-- 0 _?_-- §-0-~ c,,\ 0

5 10

Start

221

15

Figure 6.6: The fitted polynomial and step function for kyph.glm4, constructed using
plot.gam(). The broken lines are pointwise 2 x standard-error curoes, and the points
are the partial residuals.

It can also be useful to plot factor terms and even linear terms in a similar
fashion, especially if the factors are ordered. Figure 6. 7 displays such a plot, created
by the expressions

> preplot.paov <- preplot.gam(paov, terms= c("Mask", "PadType"))
> plot(preplot.paov, se = T, rug~ F, scale = 2.1)

If all the plots are on the same scale (achieved by using the scale argument),
the fitted effects or slopes can be easily compared visually. Detailed discussion
of plot. gam{) and preplot. gam() is given in Section 7.3.5.

6.3 Specializing and Extending the Computations

6.3.1 Other Arguments to glm 0

In addition to the formula and data argument, glmO shares other arguments with
lm() and aov(). These include the subseta and veights= arguments. The lat
ter allows one to specify prior weights for the observations. A common situation
requiring prior weights is when the responses are themselves averages over homo
geneous groups of independent responses. The weights would then be the number

222 CHAPTER 6. GENERALIZED LINEAR MODELS

..,'? ,.. .;> ~":> * ~ ...

"" J> ~ ~OJ

---±- -=-
C\1 -;-ci

~ C')

ci

C\1

! .>< 9 ' gj
~ 'C ~ __,_.

"' c:i Q_
<D

9 - -±-
' .i.

~ .
-.- 9 i t q

";- ~

Mask PadType

Figure 6.7: The fitted effects for two of the factors in the main-effects model for the wave
soldering data . . The broken bars indicate two standard errors.

in each average. Binomial proportions have this form, in which case the n; or
numbers of trials corresponding to each proportion can be passed as weights. Bi
nomial responses can also be presented as a two-column matrix; we discuss this in
Section 6.3.3.

A commonly used device in GLM models is the offset, a component of the linear
predictor that is known and requires no coefficient. An offset is redundant for
standard Gaussian linear models, since one can simply work with the residuals. An
offset allows a form of "residual" analysis for GLMs; we can evaluate the contribution
of additional terms while holding fixed those already fit. In some stratified sampling
situations, offsets are required to correct the sampling imbalance. An offset term
is specified directly in the model formula by including it as the argument to the
offset() function, as in

y ~ dose + age + offset(prior.fit)

There will be no coefficient fit for the offset term; it is added as is into the linear
predictor.

The start= argument allows initial values for the linear predictor different from
the default given in the "initialize" component of the family object. The control=
argument sets algorithmic constants, and expects a named list. The default values
are given by the expression

6.3. SPECIALIZING AND EXTENDING THE COMPUTATIONS

> glm.controlO
$epsilon:
[1] 0.0001

$maxit:
(1] 10

$trace:
[1] F

and glm.controlO can be used to adjust any of the values as well:

• epsilon= gives the convergence threshold, described Section 4.

• maxit= sets the maximum number of IRLS iterations.

223

• If trace=T, then iteration information is printed during the execution of glm().

Any of the three arguments to glm.controlO can optionally be given directly as
named arguments in the call to glm().

We list on page 202 some shortcuts in constructing the call to glm(). The main
candidate for shortcuts is the formula= argument. The function formula(), which
has methods for a variety of object classes, is used inside glmO {and other mod
eling functions) to extract a formula from the given argument, in the event that
it is not an explicit formula. In particular, there is a formula() method for data
frames, and a slightly different method for design matrices (as described in Chap
ter 5). The expression formula(data. frame) assumes the first column of data. frame
is the response, the remaining columns are predictors, and constructs a simple linear
model formula. A consequence of this is that glm(data. frame) will fit a Gaussian
GLM (and implicitly use the argument data .. data.frame as well). The expression
formula(design.matrix), on the other hand, uses the firstnumeric (nonfactor) col
umn as the response, discards all the remaining numeric columns, and constructs a
formula additive in all the factors.

6.3.2 Coding Factors for GLMs

In Sections 2.3.2 and 5.3.1, we describe how factors are coded in forming the model
matrix. By default, unordered factors are coded using Helmert contrasts, and or
dered factors by orthogonal polynomials. Both these choices lead to uncorrelated
parameter estimates for balanced designs, both within and between factors. A lot of
this appeal disappears for GLMs, where balanced designs rarely lead to uncorrelated
parameter estimates, except in special case5. The easiest way to see this is through
the information matrix

224 CHAPTER 6. GENERALIZED LINEAR MODELS

which will typically be full due to the presence of the diagonal weight matrix W.
Two other popular coding schemes are described in Section 5.3.1, each accom

panied by a contrast function to generate them. Suppose a factor f has k levels:

• contr.sumO produces k- 1 contrasts, which compare each level of the factor
to the last level. This is equivalent to constraining the k original coefficients
corresponding to each level of the factor to sum to zero.

• contr.treatmentO simply produces the k -1 dummy variables corresponding
to all but the first level of the factor. GLMs are frequently used for analyzing
medical data, where it is common to compare a number of new procedures,
drugs, or, more generally, treatments. Usually there is a control treatment
that can be considered the baseline for comparison, which we assume to be
at the first level of the factor. Each coefficient then measures the difference
between a treatment and the control.

One can explicitly attach a contrast attribute to a factor using the CO function,
if a one-time special coding is desired. For example,

C(f, treatment)

creates a new version off, with the appropriate contrast matrix attached. A more
convenient and permanent approach is to reset the default using the options()

function; for example,

options(contrasts = c("contr.treatment", "contr.poly"))

makes contr. treatment 0 instead of contr. helmert 0 the default for factors. The
effect remains for the duration of the session.

Let's look at a simple example using contr.treatment() as the default:

> f <- factor(rep(1:3, 3))
> X <- -4:4
> model.matrix(~ f • x)

(In) £.2 £.3 X f:x.2 f:x.3
1 0 0 -4 0 0
2 1 1 0 -3 -3 0
3 1 0 1 -2 0 -2
4 1 0 0 -1 0 0
5 1 1 0 0 0 0
6 1 0 1 1 0 1
7 1 0 0 2 0 0
8 1 1 0 3 3 0
9 1 0 1 4 0 4

Using contr.helmertO as the default we get:

6.3. SPECIALIZING AND EXTENDING THE COMPUTATIONS 225

(In) f.1 f.2 x f:x.1 f:x.2
1 1 -1 -1 -4 4 4
2 1 1 -1 -3 -3 3
3 1 0 2 -2 0 -4
4 1 -1 -1 -1 1 1
5 1 1 -1 0 0 0
6 1 0 2 1 0 2
7 1 -1 -1 2 -2 -2
8 1 1 -1 3 3 -3
9 1 0 2 4 0 8

Setting the default to "contr.sum", on the other hand, produces:

(In) f.1 f.2 x f:x.l f:x.2
1 1 1 0 -4 -4 0
2 0 1 -3 0 -3
3 1 -1 -1 -2 2 2
4 1 1 0 -1 -1 0
5 1 0 1 0 0 0
6 1 -1 -1 1 -1 -1
7 1 1 0 2 2 0
8 1 0 1 3 0 3
9 1 -1 -1 4 -4 -4

In examples like this, where we have a quantitative predictor as well as a factor, we
may well prefer one of the alternative codings. For instance, it is harder to interpret
a contrast of slopes than a contrast of simple mean effects.

6.3.3 More on Families

In Section 6.2.2, we introduce the family• argument of glmO, and looked at some
of the components of the binomial family in detail. In this section we explore their
flexibility and power in extending the capabilities of the GLM functions.

The initialize component of a family object is an expression that sets up
internal variables before the iterations begin. At face value it simply assigns initial
values for the linear predictor, on which everything else depends. The potential is
far greater, however. Since it is simply an expression involving variables local to
the main frame of glmO, it allows an opportunity to insert additional code in the
glm() function at the point at which it is evaluated. The binomial family illustrates
some of this potential:

> binomial()$initialize
expressionq

if(is.matrix(y)) {
if(dim(y)[2) > 2)

226

}
)

}

CHAPTER 6. GENERALIZED LINEAR MODELS

stop(
"only binomial response matrices (2 columns)"
)

n <- as.vector(y Y.•Y. c(l, 1))
y <- y[, 1]

else {
if(is.category(y))

y <- y != levels(y)[l]
else y <- as.vector(y)
n <- rep(1, length(y))

y <- y/n
w <- w • n
mu <- y + (0.5 - y)/n

In the above example, the local variables that are used in the body of glmO are y,
w, and mu.

If the response is a matrix with two columns, say m 1 and m2 , they are assumed
to be of the form m1; successes and m2; failures. The initialize expression converts
to Yi = mli/(mli + m2;) and incorporates the mli + m2; into the weight vector. If
the response is a category, factor or ordered factor, the first level is assigned the
value 0, and all other levels are 1.

In general, the initialize expression allows an arbitrary amount of user-defined
preprocessing of the data. Although expressions such as this are more flexible than
functions in that no arguments need to be specified, they are more dangerous since
careless use of them can disturb local variables unintentionally.

The variance and deviance functions form a logical group in that a variance
function implies a deviance function [see (6. 7)]. Let's look at the Poisson family:

> poisson() [c("variance", "deviance")]
$variance:
function(mu)
mu

$deviance:
function(mu, y, w, residuals = F)
{

nz <- y > 0
devi <- - (y - mu)
devi[nz] <- devi[nz] + y[nz] • log(y[nz)/mu[nz])
if(residuals)

sign(y - mu) • sqrt(2 • w • devi)

6.3. SPECIALIZING AND EXTENDING THE COMPUTATIONS 227

else 2 • sum(v • devi)

The variance function gives the variance of Yi as a function of the mean P.i, whilE'
the deviance function computes the residual deviance. Notice that the deviancE'
function has a residuals= argument that is convenient for computing the deviance
residuals; it is mainly there for the residuals() function. Although variances and
deviances usually arise from a likelihood corresponding to a particular error model,
quasi-likelihood models are more general. They allow any variance function V(p.)
to determine a corresponding deviance element:

111y-u
D(y, p.) = 2 IJ. V(u) du. (6.7)

There are two auxiliary lists for families: glm.links and glm.variances. Their
separate presence is indicative of the disjoint contributions of link and variancE'
functions to a family. Each of them is stored as a matrix of mode "list", and their
dimnames are instructive:

> dimnames(glm.links)
[[1]]:
[1] "name" ''link"

[[2]] :
[1] "identity" "logit"
[7] "1/mu"2" "sqrt"

> dimnames(glm.variances)
[[1]] :

"inverse"

"cloglog" "probit"

[1] "name" "variance 11 ''deviance''

[[2]] :
[1] "constant" "mu (1-mu) " "mu" 11mu"2 11

"initialize"

ulogu 11 inverse"

11mu"3 11

We see that each column of glm.links is a link subfamily with five elements.
and each column of glm.variances is a variance subfamily with three elements.
The family generator functions, such as binomial() and poisson(), protect the user
against bad choices; for example, only logit, probit, and cloglog are permissiblE
links when constructing a binomial family.

There are several ways to modify the families and construct private ones:

• The quasi() function can be used to build a family from the supplied link~
and variances whose names appear in the two lists above.

• Users can build their own link or variance subfamilies (by mimicking any ol
the supplied ones). These can then be used to construct a family, either using
quasi() or the function make.family().

228 CHAPTER 6. GENERALIZED LINEAR MODELS

• An entire family object can simply be constructed from scratch.

• Functions such as robust 0 can be used to modify existing families.

The second approach is probably safer than the third. The function make. family()
(type ?make.family to see detailed documentation) forces the user to include the
appropriate components together with suitable naming information, and builds an
object with class "family". This new object would then be passed via the family•

argument to glm{). Of course, it is the responsibility of the creator to ensure that
all the components behave as they should.

As a start to creating a family object, it might seem reasonable to simply type
poisson to see an example; the Poisson family generator function would be printed
out! Typing poisson() is not much better; this evaluates to the poisson family,
but there is a print() method for families that simply prints the names of the
family, link, and variance (we give an example on page 206). This feature was
built in partly to protect the user from unwittingly having to see all the family
function definitions. One can avoid the print() method for family objects (and
more generally for objects of any class), by using either of the following expressions:

print.default(binomial())
unclass(binomial())

The link and variance subfamilies do not have print() methods that need to be
side-stepped, so

glm.links [, "logit ")

would extract the logi t link subfamily and print out the list of functions.
A slightly more advanced modification in family construction is to parametrize

the link and/or the variance subfamilies. We provide a function power(lambda) that
creates a link subfamily with components link, inverse, deriv, and initialize,
each of which depends on the value of lambda. A call to glm() might have the form

> glm(formula, family = quasi(link = power(0.5)))

where the first few components of quasi(link = power(0.5)) are

> quasi(link = power(0.5)) [c("link", "inverse", "deriv"))
$link:
function(mu)
mu110.5

$inverse:
function(eta)
eta" (1/0. 5)

6.3. SPECIALIZING AND EXTENDING THE COMPUTATIONS

$deriv:
function(mu)
0.5 • muA(0.5 - 1)

229

A much more advanced modification of a family is the robust () wrapper function.
It takes a family as an argument, and returns a new family that has been robustified.
Its definition begins

robust <-function(family, scale, k = 1.345, maxit = 10){

This allows for a rather elegant modification to the call to glmO, which now may
have the form -

> glm(formula, family = robust(binomial, scale = 1))

Instead of minimizing the usual sum of deviance contributions

n

D = L D(y;, fJ;),
i=l

the robust minimum-deviance estimate uses the tapered criterion

D.., = t r/Jwk (D(y;, fJ;))
i=l 1/>

where Wk dampens contributions larger than k2

The dispersion parameter 1/> is either supplied or else estimated if it is missing.
Two aspects of the IRLS iterations need to be modified to handle robust families:

• The iterative weights get multiplied by an additional weight factor Wr, which
is 1 for suitably small deviance contributions, and decreasingly small for in
creasingly large contributions. The parameter k determines the point at which
the weights get smaller than 1.

• The deviance function needs to be replaced by a tapered version.

The function robust() achieves these changes by modifying the weight and deviance
components of its family argument. The details of how it does this are rather
technical but interesting, since it involves augmenting the weight expression and
deviance function with additional code, some of which depends on the arguments
to robust(). We encourage readers to explore the details by reading the code of the
robust() function.

230 CHAPTER 6. GENERALIZED LINEAR MODELS

6.3.4 Diagnostics

In Chapter 4, we describe some tools for generating diagnostic statistics for linear
models. The function lm.influenceO (page 129) takes a linear-model object and
generates a list of three basic diagnostic elements that, together with the output of
summary .lmO, can be used to construct all the currently popular diagnostic mea
sures. The three diagnostics are the delete-one coefficient matrix, the delete-one
standard-error estimate, and the diagonals of the hat matrix. The exact compu
tation of a delete-one statistic, say a coefficient, is quite expensive for a nonlinear
model. Essentially, each observation has to be removed one at a time and the fit
ting algorithm iterated until convergence. A cheaper but effective approximation is
to remove the observation, and perform only one iteration of the IRLS algorithm
toward the new solution, starting from the model fit to the complete data. It turns
out that lm.influence() achieves exactly that when given a fitted glm object as
its argument! This pattern is becoming familiar, and is once again a consequence
of the fact that a GLM is fitted by iteratively-reweighted least squares, and the
least-squares fit at the final iteration is part of the glm object.

We demonstrate these diagnostics on the glm object kyph. glm4, which is displayed
in Figure 6.6. The Cook's distance diagnostic

(6.8)

measures the effect of the ith observation on the coefficient vector. Writing fl = X iJ
and il(i} = xjJ(i} leads to

C;=
!Iii- il(i} 11:

p¢
(6.9)

showing that it also measures an overall difference in the linear predictor when the
observation is removed, suitably standardized. The W that subscripts the norm
ll·llw reminds us that the squared norm is in fact a weighted sum-of-squares, or in
other words we are computing the norm in the chi-squared metric. The term in the
denominator is usefully viewed as the average variance of the fitted values, where
once again we mean weighted average. Figure 6.8 is a plot of these distances against
the sequence number for the fitted model kyph.glm4. There are three observations
with large values for the distance-namely 11, 25, and 77. Possibly a more useful
diagnostic in this scenario is the version of Cook's distan..:es confined to a subset of
the parameters, in particular those belonging to an individual term in the model.
Figure 6.9 shows index plots of the Cook's distance for both the quadratic and

6.3. SPECIALIZING AND EXTENDING THE C(JMPUTATIONS 231

~
11

(')

c:i

~
25

c: 77

~ N
c:i

"' :;,
8
(.)

;;

l1 I , .. , ul .. i,I.I,IIIII,LII lilltl , " I. J
0 20 40 60 80

observation

Figure 6.8: An index plot of the Cook's distances for kyph.glm4. The numbers in the figure
identify the observations with large distances.

piecewise linear terms in kyph.glm4. The expression

{6.10)

where / 1 = XJiJj denotes the subset of the model matrix and coefficient vector for

the jth term in the model, and similarly fj(t) = xjjJj(i) is an approximation to
the jth term fit with the ith observation removed. It now becomes apparent why
some of the observations have large Cook's distances. In each case, the observation
is a 1 in a region of nearly pure Os. In logistic regression with binary response
data, such points are highly influential. In a sense they are the most important
observations in regions where the probability of a 1 is small. It is also clear that
if we were to remove them, the fitted functions and hence ·coefficients could change
quite dramatically, and in some cases diverge.

The overall Cook's distance in {6.8) can be computed most efficiently using the

232 CHAPTER 6. GENERALIZED LINEAR MODELS

It)

co c)
c)

...,.
CD CD c)
0 0 c ...,. c s c) ~

(')

.!'.! c)
"'0 "'0
VI VI C\1 :;.: :;.:
0 C\1 0 c)
0 0
0 c) 0

L
.,....
c)

0 -·Oil .li\,,J ~d . 0 II I lK " IL .lliUI c) c)

0 50 100 150 200 5 10 15

Age Start

0 0 0
0 - 25

11 C\1 oo
tO 0 77

~5
77 11 co t::

N" ~
It)

I}~ ai 0 0 0 ° 8
~

...,. .
Ooo 0 CDOCCOo C\1 oo 0 s•·:\ >. C\1

0

~
0 8 8 0 oBoe

0. II
0 t:: 0

~
0

0 ? 0
u;> 0

'Y 0 0

0 50 100 150 200 5 10 15

Age Start

Figure 6.9: Cook's distances for the individual functions, plotted against the respective
variables. The lower figures reproduce the fitted functions in Figure 6. 6 and identify the
partial residuals corresponding to the points with largest distances.

6.3. SPECIALIZING AND EXTENDING THE COMPUTATIONS 233

equivalent formula

where the h;; are the diagonal "hat" elements of the weighted least-squares projec
tion matrix used in the final IRLS iteration. The r; are the standardized residuals
from this final regression, and ~ is the scaled chi-squared statistic. These are im
mediately available from the output of lm. influence 0 and summary .lm() applied to
kyph.glm4.

For the distances for the different terms, it is more convenient to use the delete
one coefficients themselves rather than a hat element equivalent. As an illustration
of working with glm objects, we end this example by showing a function written to
derive the Cook's distances for each of the terms in a glm or lm object: ·

Cook.terms <- function(fit)
{

fit.s <- summary.lm(fit)
fit.infl <- lm.influence(fit)
R <- fit$R
I <- t(R) :t.•'l. R
Iinv <- fits$cov.unscaled
ass <- fit$assign
D <- matrix(O, length(fit$residuals), length(ass))
dimnames(D) <- list(names(fit$residuals), names(ass))
Dcoef <- scale(fit.infl$coefficients,

center = fit$coefficients, scale• F)
for(subname in names(ass)) {

sub <- ass[[subname]]

}
D

Dcoefi <- Dcoef[, sub, drop • F] Y.•Y. t(R[, sub, drop = F))
denom <- ![sub, sub, drop • F) Y.•Y. Iinv[sub, sub, drop • F)
denom <- sum(diag(denom)) • fit.s$dispersion
D[, subname] <- apply(DcoefiA2, 1, sum)/denom

6.3.5 Stepwise Model Selection

A typical GLM analysis proceeds in a stepwise fashion. We build models by adding
in new terms and seeing how much they improve the fit, and by dropping terms
that don't degrade the fit by a "significant" amount. This is usually a tedious
task if performed manually, since many different models need to be tried, and the
bookkeeping alone <;an get voluminous. Since each candidate model is fit iteratively,
the computations can be time-consuming as well. Here we describe some ways to

234 CHAPTER 6. GENERALIZED LINEAR MODELS

finesse these operations, and provide a function step.glmO for conducting a stepwise
selection procedure. We illustrate the functions on the wave-soldering data.

The function step.glmO operates as follows:

1. It starts with an arbitrary glm object.

2. It takes a step by adding or removing that term from the current model that
reduces the AIC selection criterion the most.

3. It stops when it hits a specified model boundary or when no step will decrease
the criterion.

The second step is clearly the most work and would be quite time-consuming if
carried out exactly. It assumes there is a current model from which to work. The
AIC statistic

AIC = D+2p~
is used by step.glmOto evaluate different models, where D is the deviance, p the
degrees of freedom in the fit, and~ an estimate of the dispersion parameter. AIC
is the likelihood version of the Cp statistic, and like Gp, changes in AIC due to
augmenting or subsetting a model by a given term reflects both the change in
deviance caused by the step, as well as the dimension of the term being changed
(often terms involve more than 1 degree of freedom}.

The idea is to fit all the models obtainable by deleting a single term from the
current model, and computing the AIC statistic for each. Similarly, all models
obtainable by adding a single term to the current model are fit, and the A/Gstatistic
is computed. A step is taken toward the model having the smallest value for the
AIC statistic; if none are smaller than the original model, the procedure terminates.

There is an inherent vagueness in the previous paragraph that is cleared up by
the scope= argument to step.glmO. Although it may seem obvious what terms can
be dropped at any stage, the terms available for inclusion have to be specified in
some way. This information is supplied in the form of a list with two components,
"upper" and "lover". Each is a formula (for which only the right side is of relevance).
Only those models are considered that include the terms in scope$lower and whose
terms are included in scope$upper. Since the lower limit is often the null model, the
scope= argument can be given simply as a formula, in which case it is interpreted
as the upper formula, and the lower is taken to be the null model. Our example
starts with the model paov fit to the wave-soldering data.

> formula(paov)
skips "' Opening + Samt + Stype. th + PadTyp~ + Panel
> paov.step <- step(paov, scope a "' . A3)

This will potentially step through all models ranging from the full third-order in
teraction model down to the null model.

6.3. SPECIALIZING AND EXTENDING THE COMPUTATIONS 235

At each step, not all single terms in scope$upper ILre eligible for inclusion; sim
ilarly, not all terms in the current model (less those in scope$lover) are available
for exclusion). The reason is that the model hierarchy has to be honored; for ex-
8JDple, main-effect terms must be added before their interactions. The function
add. scope() is useful for seeing what terms can be added in a hierarchical fashion:

> form1 <- formula(paov)
> add.scope(form1, update(form1, ~ .~3)

[1] "Opening:Solder" "Opening:Mask"
[4] "Opening:Panel" "Solder:Mask"
[7] "Solder:Panel" "Mask:PadType"

[10] "PadType: Panel"

"Opening:PadType"
"Solder:PadType"
"Mask:Panel"

So even though the upper formula included third-order interactions, only the second
order interactions could be added at this stage. Similarly drop. scope 0 determines
what terms can be dropped at any stage:

> drop.scope(form1)
[1] "Opening" "Solder" "Mask" "PadType" "Panel"

Both these functions are used before each step taken by step.glmO, and thus re
peatedly throughout its execution.

Suppose step.glm() is considering as current model.the initial model, paov. It
has ten separate terms to consider for inclusion and five for deletion. A maximum
likelihood fit of each of these models requires iteration and would be time-consuming.
We expect the fit of each of these subset or augmented models to be reasonably
close to the parent model. This suggests that the quadratic approximation to the
deviance can be used rather than the deviance itself in computing the selection
criterion, and more importantly that we can use the one-step approach of the score
test in computing all the subset fits. We use the Pearson chi-squared version of AIC,
which is the Cp statistic for the local quadratic model, defined by Cp = X 2+ 2p~.

The consequence of all this is that we can simply hand the glm object corre
sponding to the current model to dropl.lmO and addl.lmO, which compute all the
subset and augmented models efficiently. This is another example of where we can
exploit the inheritance properties of classes of models in a very natural way. We
then select for deletion or addition the term corresponding to the smallest value
of Cp, and complete the IRLS iterations for that model. The AIC statistic is then
computed for this selected model; if it is lower than the AIC for the previous model,
the new model becomes the current model, and the stepping continues, otherwise
step.glmO terminates by returning the previous model.

Before we examine the output of step.glm{), let us make a slight diversion and
take a closer look at add10 and drop10:

236 CHAPTER 6. GENERALIZED LINEAR MODELS

> addl(paov, "' . "2)
Single Term Additions

Model: skips "' Opening + Solder + Mask
Df Sum of Sq RSS Cp

<none> 1045 1099
Opening:Solder 2 23.07 1022 1082

Opening:Mask 6 68.02 977 1049
Opening:PadType 18 46.26 999 1106

Opening:Panel 4 10.93 1034 1100
Solder:Mask 3 48.74 996 1059

Solder:PadType 9 43.82 1001 1082
Solder:Panel 2 6.48 1039 1098
Mask:PadType 27 57.12 988 1122

Mask:Panel 6 21.48 1024 1095
PadType:Panel 18 14.63 1031 1138

> drop1 (paov)
Single Term Deletions

+ PadType + Panel

Model: skips "' Opening + Solder + Mask + PadType + Panel
Df Sum of Sq RSS Cp

<none> 1045 1099
Opening 2 2101 3146 3194
Solder 1 811 1856 1907

Mask 3
PadType 9

Panel 2

1429 2474 2518
473 1518 1545

66 1111 1159

Although these are generic functions, the drop1.lm0 and add1.lm0 methods are
what actually get invoked since no particular methods exist for glm objects, which
inherit from the class "lm". They both return anova objects, and have arguments
scope• and scale=. The scale= argument is also used in step(), and allows the
user to specify the dispersion constant 4> to be used in computing the Cp or AIC
statistic. If scale is missing, add1 0 and drop1 0 use the residual variance of the
original model. By default, step() uses the dispersion parameter for the original
glm objr~ct, which is 1 for binomial and Poisson models, and the scaled Pearson
chi-squared statistic in all other cases. Both these functions are described in some
detail in Section 4.3.2, where additional arguments such as keep'" are described. See
also their detailed documentation for a precise description.

Typir:nlly, one calls step() using the trace•T argument, which then displays all
the drop1 and add1 anova tables along the way. For large models, such as the wave
soldering example, the function can take a while to run so it is encouraging to see
the intermediate results:

6.3. SPECIALIZING AND EXTENDING THE COMPUTATIONS

> paov. step <- step(paov, -. "3)
> paov.step$anova
Stepwise Model Path
Analysis of Deviance Table

Start: skips - Opening + Solder + Mask + PadType + Panel

Final: skips - Opening + Solder + Mask + PadType + Panel +

Opening:Mask + Solder:Kask + Solder:PadType +
Opening:Solder + Opening:PadType + Opening:Solder:Mask

Step Of Deviance Resid. Of Resid. Oev AIC
702 1130 1166

2 + Opening:Mask -6 -71.0 696 1059 1107
3 + Solder:Kask -3 -55.0 693 1004 1058
4 + Solder:PadType -9 -43.3 684 961 1033
5 + Opening:Solder -2 -32.2 682 929 1005
6 + Opening:Solder:Mask -6 -52.7 676 876 964
7 + Opening:PadType -18 -47.7 658 828 952

237

The result of step.glmO is a glm object corresponding to the final model selected.
The object includes an anova object, printed above, which shows the path taken
to the final model. No terms were deleted in this case, only added, including one
third-order interaction.

There are other arguments to step(), namely keep=, direction=, scale=, and
steps=; these are described in the detailed documentation, and also in some detail
in Section 7 .3.1.

As is pointed out in Chapter 4, we do not always want to drop or include entire
terms. For example, we might wish to try different orders of a polynomial fit for
one of the variables. It would be simple, for example, to modify dropl.l.m() (and
make it less smart) so that it dropped columns of the model matrix rather than
subsets of the columns corresponding to terms. But this would not be sufficient,
because we do not really want to drop these columns in any order.

In Chapter 7, a more general stepwise method step.gam() is described for ad
ditive models and can be used with GLMS and LMs as well. It allows a regimen of
subterms to be specified for each term in the model, and performs stepwise back
ward and forward selection on subsets defined by these. For example, a particular
regimen for polynomial regression may be .

~1 + Age + poly(Age, 2) + poly(Age, 3)

There is an ordering in this sequence of subterms, ranging from no term at all
to a third-degree polynomial. The price to be paid for this greater generality is
speed, since each of the candidate models has to be fitted separately. Although

238 CHAPTER 6. GENERALIZED LINEAR MODELS

this stepwise model works for both glm and lm objects as well, we postpone its full
description until Chapter 7.

6.3.6 Prediction

Often we wish to evaluate the fitted model at some new values of the predictors,
either for predictive purposes, or for validation. The method predict.glmO is used
to make such evaluations. The expressions

predict(gl.mob)
fitted(glmob)

are simple ways of extracting the linear predictor and the fitted values from glmob.
More generally, the syntax for predict 0 is

predict(glmob, newdata)

where newdata is a data frame consisting of the new data. This will once again
produce values for the linear predictor evaluated at the new data. If the newdata
argument is missing, predictions are made using the same data that were used to
fit the model. Unless some of the options below are selected, the predictions in this
case already exist on the fitted gl.m object, so no additional work is required.

Prediction for GLMs is not much different than that for LMs, which is discussed
in Section 4.2.3. Our discussion here is meant to complement that section, as well
as describe any features specific to GLMs. The type= argument allows a choice of
either "link", "response", or "terms"; thus

fitted(glmob)
predict.glm(gl.mob, type = "response")

produce identical results. Choosing type="terms" results in a matrix of predictions,
with a column for each term in the model. The construction of these columns is
quite straightforward. Recall that a component of a gl.m or lm object is the "assign"
list; it has an element for each term, and each element is a vector of numbers. For
example,

> kyph.glm4$assign
$"(Intercept)":
[1) 1

$"poly(Age, 2)":
1 2
2 3

$"!((Start > 12) • (Start - 12))":
[1] 4

6.3. SPECIALIZING AND EXTENDING THE COMPUTATIONS 239

tells us that the columns 2 and 3 of the model matrix correspond to the quadratic
term "poly(Age, 2) ", and similarly elements 2 and 3 of the coefficients vector. The
relevant components are extracted and multiplied together to form a single fitted
term, and the same is done for all terms:

> predict(kyph.glm4, type = "terms") [1:5,]
poly(Age, 2) !((Start > 12) • (Start - 12))

1.06519 2.2648
2 0.06911 -0.4133
3 1. 07005 2. 2648
4 -2.28338 2.2648
5 -2.35883 -1.7523

These fitted terms are centered such that, when computed for the original data,
they average zero. Fitted terms are typically used in plots-i.e., plotting a fitted
polynomial term against its predictor(s). The terms are centered because the inter
esting features in such plots are typically the slope and shape, while the level is of no
importance. The matrix of predicted terms returned has an attribute "constant",
which is a single number; the sum of the terms plus this constant is then identical
to the linear predictor. The centering is simply achieved by subtracting from each
column of the model matrix the (weighted) mean of the corresponding column of
the model matrix for the original data.

Standard errors can optionally be computed using the se.fit= argument in a
call to predict(). The object returned is then a list with four components:

• fit: the usual output that would have been returned if se.fit=F; either a
vector or a matrix if terms"'Tj

• se.fit: the standard errors of each element in the fit component, and there
fore having the same shape as fit;

• residual. scale: the scale estimate used in constructing the standard errors;

• df: the degrees of freedom used in estimating the scale estimate.

The last two components are provided in case alternative scaling is required, and
for computing pointwise confidence intervals.

When the type="terms" option is used, the "assign" component is once again
used to extract the relevant sub-block of the estimated covariance matrix of the
parameter estimates. Assume we have available the model matrix X, which has
been centered in the fashion described above. Suppose we are constructing the fit
and standard error~ for the jth term, and we have extracted the relevant subset of
the model matrix Xi, the coefficients {3i, and the covariance submatrix Eii· Then
the fitted term and its pointwise standard errors are given by

240 CHAPTER 6. GENERALIZED LINEAR MODELS

Centering is even more important when standard errors are computed, once again
in the context of plotting fitted terms. Since plots of this kind are produced by
the plot() method for additive models, we defer further discussion of the centering
issue until Section 7.3.5 (page 296).

When the type="response" option is used in combination with se.fit=T, the
delta-method standard errors are computed:

(6.11)

Let's look at an example. The mean of the binary response Pick in the market
survey data has a strong dependence on Usage, as we see in Chapters 7 and 9. We
fit the simple model

survey.fit <- glm(pick ~ log(Usage + 2), binomial)

The sample is rather large (759 observations), and our model is simple; rather than
plot all the fitted values, we choose to represent them over a grid of 50 evenly spaced
values of Usage. The following computations produce the required fitted values and
standard errors:

Usage.grid = seq(from = min(Usage), to= max(Usage), length= 50)
survey.pred <- pr~dict(survey.fit, list(Usage = Usage.grid),

type= "resp", se = T)

Notice that even though we have only one predictor, the newdata= argument of
predict expects a data frame or a list. In fact, a matrix is acceptable as well, as
long the number of columns coincides with the number of coefficients. Since an
intercept is included in this model, we would have to provide a two-column matrix,
so

predict(survey.fit, cbind(l, Usage.grid), type = "resp", se = T)

would give the same predictions as the previous expression. In general, it is at least
as simple to provide a list or data frame of new data, and far safer when factors might
be involved. Figure 6.10 shows the fitted proportions at the selected points, as well
as line segments joining the twice-upper and -lower pointwise standard errors. The
fitted values are not too extreme, and the delta method seems to have worked well.
Had the fitted values been around zero or one, it is quite likely that the standard
error bands could have gone outside [0, 1], which is not acceptable for binomial data.
An alternative approach in situations such as this is to instead compute the bands
on the scale of the linear predictor and then invert the upper and lower bands using
the inverse logit transform. We give an example in Section 7.3.3 {page 291).

6.4. STATISTICAL AND NUMERJCAL METHODS 241

~

.....
d

~
"!
0

·a.
on
d

'<I;
0

..,
0

0 50 100 150

Usage

Figure 6.10: The central curve is the fitted proportion for the binary response Pick, modeled
linearly in the logarithm of Usage for the market survey data. The curve was evaluated at
50 points ()ver the range of Usage using predict 0, as were the pointwise standard errors.
The vertical bars join the upper and lower twice-standard-error points, meant to represent
approximate 95% confidence intervals for the mean response.

GLMS also inherit from LMs the pitfalls in prediction arising from the general
expressions allowed in model formulas, as described in Section 4.2.3. For example,
"' log(x - min(x) + 1) is a perfectly valid formula expression; any coefficient for
this term is likely to be meaningless when the same expression is applied to new
data. The predict. gam() method is designed to avoid these pitfalls at a slight loss
in computational efficiency; we defer discussion of this safer form of prediction to
Section 7.3.3.

6.4 Statistical and Numerical Methods

Here we give a brief overview of the estimation of generalized linear models by max
imUm likelihood, and the associated iteratively-reweighted least-squares algorithm.
We describe the inference tools available for this model of analysis, which are similar
to those for linear models.

In Section 6.4.3, we give some additional algorithmic details about glmO, and
discuss starting values. in Section 6.4.4.

242 CHAPTER 6. GENERALIZED LINEAR MODELS

6.4.1 Likelihood Inference

If f(y; p.) is the density or probability mass function for the observation y given p,,
then the log-likelihood, considered as a function of p,, is simply

l(p.;y) = logf(y;p.).

Large values of l(p.; y) correspond to more likely values of the parameter p., for a
given value of y. Now suppose we have a sample of n independent observations
y1 , ••. , Yn with Ey; = J.li; then the log-likelihood for the entire sample is

l(p.;y) = 'L)ogf(y;;p,i). (6.12)

If g(p.;) = xf {3, then the parameters {3 can be estimated by maximizing (6.12). For
example, for independent binary response data the log-likelihood of the sample is

l(p.;y) = L{y;log(p.;) + (1- y;)log(1- p.;)}
i

If we use the logit link, then the log-likelihood can be written as

l(o:,{3;y) = L[y;xff3 -log{1 +exp(xff3)}) (6.13)
i

The Bernoulli distribution is a member of the exponential family of distributions,
whose members have densities of the form

f(y;B,tj)) = exp{(y8- b(B))ja(f/J) + c(y,f/J)} (6.14)

Other familiar members are the binomial, Poisson, gamma, and Gaussian distri
butions. For our purposes, a(fjJ;) = f/J/w;, where fjJ is referred to as the dispersion
parameter, and the w; are prior weights. If the dispersion parameter is known, then
the distributions are one-parameter members; the binomial, Bernoulli, and Poisson
all have a(fjJ) = 1, while for the Gaussian distribution fjJ = o-2 , the variance param
eter. The parameter 8 is known as the natural parameter; the links in the table on
page 197 are the corresponding natural links that transform the mean of a family
to the natural parameter. For this class of link functions, the regression parameters
enter the log-likelihood as linear combinations

The deviance function is linearly related to the log-likelihood, and is often used
as a goodness-of-fit criterion. The deviance D(y; p.) is defined by

D(~ p.) = 2l(p.*; y)- 2l(p.; y) (6.15)

6.4. STATISTICAL AND NUMERICAL METHODS

where J.t* maximizes the log-likelihood over J.t unconstrained. Often it is the cas1·
that J.t* = y, as it is in the exponential family models that we discuss here. For thr
Gaussian distribution, the deviance is

D(y; J.t) = L w;(y;- J.L;)2
i

and is simply the residual sum-of-squares. Since the first term in (6.15) does not
depend on the parameters, maximum-likelihood estimation i~ identical to minimum
deviance estimation, with the latter being more natural since it has the interpreta
tion of a distance.

To compute the maximum-likelihood estimates, we solve the score equations
8l(f3; y) / 8{3 = 0. These score equations are nonlinear in {3, so iteration is required
to solve them. The IRLS algorithm for exponential-family models consists of the
following steps:

• Compute a working response with typical value

zo = 71o + (y- J.LO)(::) 0

where 11 = g(IJ,) is the linear predictor, and the subscript 0 denotes evaluation
at the current value of the parameters {30 .

• Compute weights

• Regress .zo on the predictors x1. ... , xi with weights W0 to obtain an updated
{31.

These steps are iterated until the relative change in the coefficients is below some
small threshold. For the binary response example, the working response and weights
are

+ (y- J.LO)
zo = 1'/o J.LO(l _ p.o)

Wo J.LO(l - J.LO)

The IRLS algorithm can be justified in a variety of ways. When the natural
link function is used, it is equivalent to the Newton-Raphson algorithm for itera
tively solving the score equations. For other link functions it is equivalent to the
Fisher-scoring algorithm, a close relative to the Newton-Raphson algorithm. The
maximum-likelihood score equations can be written as

(6.16)

244 CHAPTER 6. GENERALIZED LINEAR MODELS

for each predictor Xj. These equations represent a form of orthogonality between
the residual (y- JJ.) and the linearized version of the model at the solution, in the
metric of v-I, where V is the variance of the residual; in this sense they are the
analogues of the usual least-squares normal equations.

Although these estimating equations are formally derived from maximum-like
lihood principles, one could simply write them down knowing the link and variance
functions. We may not know or be willing to postulate the distribution of a response,
but may be happy to pin down its mean-variance relationship. These estimating
equations behave like score equations in several important respects, and provide a
basis for estimation in this case. This is known as quasi-likelihood estimation, and
extends the class of generalized linear models considerably.

We have seen that fitting a generalized linear model is not much harder than
fitting a linear model. The interpretation generalizes in a similar way. The steps in
comparing two models are very similar to those for comparing two Gaussian-error
linear models. The difference in deviance between two nested models measures the
contribution of the parameters by which they differ, just as does the numerator
of the F-test statistic. The distribution theory is asymptotic; under appropriate
assumptions and the null hypothesis that the smaller model f.J.I is correct, the dif
ference in deviance

has an asymptotic f/Jx2 distribution with degrees of freedom 11 = 111 - 112 equal to
the difference in the dimension of the linear spaces implicit in p,1 and p,2 • These ap
proximations can be poor in small sample situations, but the difference in deviance
between two models can still be useful as a screening device.

Also of interest is the distribution of the parameter estimates /3. Under the
same asymptotics and a correct model, the distribution of /3 approaches that of
a N(J3, (XTW X)- 1 4J) distribution, where X is the model matrix and W, the
diagonal matrix of weights. This approximation is often used to perform hypothesis
tests on subsets of the parameters. The form of the asymptotic-covariance matrix
alerts us to a possible additional difference between these models and the usual
linear models: even if the predictors are orthogonal, the nonlinearity of the model
can induce correlations in their associated parameter estimates.

6.4.2 Quadratic Approximations

Each step of the IRLS algorithm minimizes the weighted least-squares criterion

n

L Wi(z; -: z[.8? (6.17)
i=l

6.4. STATISTICAL AND NUMERICAL METHODS 245

where z; = x'{/30 + (y;- Jld(arlifaJl;) and W;-1 = (firJdaJl;fV;, and each of

JJ-;, 1'/i and V; are evaluated at /30 • At convergence, {30 = /3, which means that the
criterion (6.17) reduces to the Pearson chi-squared statistic

(6.18)

By a simple Taylor series expansion, (6.18) can be seen to be a quadratic approxi
mation to the deviance D(y; p.) = 2 L; {l(y;; y;) -l(JL;i y;)} at the minimum.

All the first-order asymptotic theory for maximum-likelihood estimates is based
on this approximation. A simple way of viewing this theory is through the work
ing response, evaluated at the MLE /3. The asymptotics can be derived by as
suming that the z; are asymptotically independent with mean TJ; and variance

(8TJ;/aJl;) 2 V;lj>, where 7J; and V; now depend on the true mean Jli·
As an example, consider the asymptotic covariance matrix of the parameter

estimates:
(6.19)

where W is a diagonal matrix with elements W;. This is exactly the covariance
matrix that would be obtained from the weighted linear regression of z; on x;
with weights W;. The weights W; are estimated, based on the fitted values. The
dispersion parameter is either assumed known (as is often assumed in the case
of binomial or Poisson regression), or else is estimated by X 2 jv, where v is the
residual degrees of freedom. Both these quantities are computed automatically
by the summary.lmO function when handed a weighted least-squares fit object; a
glm object inherits from the class "lm", and so has all the components of weighted
least-squares object.

It is also clear that all the other functions designed for 1m objects will work
when handed glm objects. These include print.lmO, lm.influence(), dropl.lmO,
and addl.lmO. They will produce appropriate weighted least-squares output, and
so can be interpreted as the Pearson chi-squared equivalent of the usual output.
In each case we need to be careful about interpreting the results. For example,
the results of dropl.lm() and addl.lm() are conditioned on the weights and the
working response of the current fit when computing the subset or augmented fits.
This is equivalent to taking one IRLS step toward the new solution, and is the same
philosophy that motivates Rao's score test.

6.4.3 Algorithms

The IRLS computations in glmO are performed by the function glm.fitO, which
uses repeated QR decompositions. The only nonstandard aspect of glm.fitO is

246 CHAPTER 6. GENERALIZED LINEAR MODELS

its family= argument, which is the same as in glm(), and the generality of the
response y. Otherwise, it receives an X matrix and optional prior weights, offset
and starting values, as well as some iteration constants. The implications of this are
that the fitting mechanism of glm() could be replaced without much knowledge of
the workings of glmO. The only constraints on such a replacement function would
be:

• the family argument would have to be used in much the same way as it is by
glm.fitO;

• the object returned should include the essential components of a glm object.

There are several reasons why one might embark on such a venture:

• For standard families, all the computations could be performed in c or FOR

TRAN. This would be faster than the current setup, where the iteration up
dates are computed in S, and only the weighted least-squares fit is computed
in FORTRAN. Whether or not a family is standard could be identified by the
family component of a family object, which is an identification tag.

• This modularity allows dramatic functionality changes to be made with rel
ative ease. For example, one could create a function to fit the Cox's propor
tional hazards model with relative ease, perhaps by using a cox family. The
initialize expression of the family object would be responsible for untangling
the death timeS and censoring information, and glm. fit. cox 0 would fit the
model using the usual Newton-Raphson algorithm for minimizing the partial
likelihood.

Currently such modifications to glmO can be implemented via the method= argu
ment, which defaults to "glm.fit". Using the Cox model as an example, a typical
calling sequence would look like:

glm(Times ~Dose + Age, family = "cox", method= "glm.fit.cox")

Alternatively, users could write their own version of glm.fitO that identified what
algorithm to use by examining the family object. Such a (more permanent) modi
fication could simultaneously deal with both the generalizations suggested above.

6.4.4 Initial Values

As is always the case, the Newton-Raphson iterations are not guaranteed to con
verge unless step-length optimization is used. No such step-length calculations are
performed in glm(), simply because they add to the computational burden and are
rarely needed.

6.4. STATISTICAL AND NUMERICAL METHODS 247

There is an art, however, in selecting starting values for the iterations. It might
seem that an obvious starting point should be the sample mean for the fitted values.
This causes problems, however, when the response is binary and the sample mean
is too small or large. Similarly, it might seem even more natural to start the
iterations of the stepwise algorithms from the previous fit, or even better, from the
fit produced by the single step taken by dropl 0 or addl 0. This strategy, too, is
dangerous; while it may save one or perhaps two iterations most of the time, these
starting values cause convergence problems far more often than those we describe
below. It is also worthwhile to note that selection of a model is computationally far
more intensive than iterating the selected model to convergence.

We use the data themselves as starting values for the fitted response. These
need to be corrected in some cases. For binomial data, we user;+ (0.5- r;)/n;,
where r; is the proportion of 1s, and n; is the number of trials for the ith response.
This shrinks the response toward 0.5 to avoid a proportion of 0 or 1; for binary
data the shrinking is dramatic (all initial values are 0.5). For Poisson counts and
gamma data, a zero response is replaced by 1/6.

There is a start argument to glm(), so in the rare situations when convergence
problems are encountered, alternative starting values for the fitted response can be
tried.

Bibliographic Notes

GLMS have become popular over the last 10 years, partly due to the computer
package GLIM (Generalized Linear Interactive Modeling; Baker and Neider, 1978).
GLIM is a FORTRAN-based interactive environment that features a formula language
for describing the components of the linear predictor, and easy specification of the
different components of a GLM. Apart from the formula language, the core of GLIM

is the iteratively-reweighted least-squares (IRLS) algorithm; the remainder is an
environment for setting up the data structures and summarizing and plotting the
fitted models. Our formula language, described in Chapter 2 and used throughout
this book, was inspired by the the Wilkinson and Rogers (1973) formula language
used in GLIM, and features many enhancements. Several recent books have appeared
on the practice of using GLIM and on the GLM mode of modeling (Healy, 1988; Aitkin
et a!., 1989).

McCullagh and Neider's (1989) research monograph is a comprehensive text
about the theory of generalized linear models. They study many examples covering a
wide spectrum of applications, and give an excellent overview of the recent advances
in the field. They discuss in some detail the asymptotic results referred to in this
chapter, and also summarize the recent work that has been done to improve them.

The robust 0 function follows the conventions for resistant GLMS established by
Pregibon {1982), and described in Hastie and Tibshirani {1990).

Chapter 7

Generalized Additive
Models

Trevor J. Hastie

In the previous chapters we introduced a number of new functions for fitting linear
models. In particular, glm() fits linear models in a variety of settings such as
ordinary regression or logistic regression for binary data. The data and formula

arguments provide a flexible language for specifying the variables and their form in a
model, and the family argument supplies information on the error structure and the
link function. The output of glmO can be fed into a number of auxiliary functions
for summarizing the estimated coefficients and evaluating and examining the fits.
In particular, residual and partial residual plots are used to identify discrepant
observations and to identify nonlinearities. This chapter describes some tools for
identifying nonlinearities in a more direct way by incorporating them into the model.
This practice is not new, of course, if by nonlinearities we mean polynomial terms
and parametric transformations. We use a more adaptive approach; the techniqueE
described here allow us to model the terms nonparametrically using a scatterplot
smoother, and in so doing let the data suggest the nonlinearities. The gam functiom
share many of the features of glmO and lmO, with some added flexibility. The
output of gam(), being graphical in nature, tends to complement rather than overlap
with glmO.

249

<!aU CHAPTER 7. GENERALIZED ADDITIVE MODELS

7.1 Statistical Methods

An additive regression model has the general form

(7.1)

where each of the X; are predictors and the /; are functions of the predictors or terms.
The name additive refers to the multivariate assumption underlying the model,
namely that the p-predictor function TJ has a low-dimensional additive structure.
Such models are attractive if they fit the data, since they are far easier to interpret
than a p-dimensional multivariate surface.

So far we have entertained additive models in which each of the terms is a
parametric function of the predictor-in fact, a function linear in its parameters.
Examples are simple transformations such as logarithm, polynomials, and sinu
soids, as well as step functions introduced by transforming numeric variables into
ordered factors. More elaborate functions can be used to generate piecewise linear
or polynomial functions with breakpoints at specified values of the predictors.

The innovations in this chapter are additional flexible methods for modeling
an individual term in an additive modeL This relieves the user of the burden of
fishing around for the correct transformation for each variable. The functions are
fitted using scaiterplot smoothers, nonparametric techniques for fitting a regression
function in a flexible data-defined manner. Several smooth terms are fitted simul
taneously in an additive model by using the scatterplot smoothers iteratively. Of
course, nothing comes for free; for the nonparametric techniques to be successful
and remain parsimonious, the underlying functions need to be reasonably smooth.

The additive predictor TJ can be used in all the situations where the linear pre
dictor was used for generalized linear models. Lets look at a few examples:

• A univariate smoother estimates the unknown function in the simple additive
model y = f(x) +£,having only one term.

• A semiparametric model y = :r- 1{3 + f(z) +£is an additive model, where only
one term is modeled nonparametrically. Of course, the purely linear model
is additive as well! These semiparametric models have received attention in
the analysis of agricultural field trials; the linear terms usually correspond to
design effects and the nonlinear function models spatial ordering of the plots.

• The additive model y = {31x + fi(zi) + h(z2) + · · · + Jq(zq) +£is also semi
parametric, but more complicated. There are several linear and several non
parametric tP.rms.

• The nonparametric logistic regression model has the form

7.1. STATISTICAL METHODS 251

Once again the additive predictor 11(x) can be a single term, a semi parametric
term, a full additive model as in (7.1), or a mixture.

Often the nature of the variables determines to a certain extent how we model
them. For example, if a variable xi is a factor, we would most likely fit it as a set of
constants corresponding to each level, and so it would appear in the linear part of
the semiparametric predictor. If a variable is quantitative, we can choose whether
we want to model it in a parametric or nonparametric fashion-often we want to
try both.

The examples above may give the impression that each of the terms is univariate.
On the contrary, they may be parametric compound variables, or even multivariate
nonparametric terms, which might be fitted using a surface smoother.

We have presented these models from a rather formal statistical point of view.
In fact, each of the items above represents somewhat independent and rather large
sections of the statistical modeling literature. The next step is to define algorithms
for fitting these models, subject to suitable constraints on the nonparametric func
tions. The methods we use unify this large literature, and in fact allow us to discuss
all these different models under the description generalized additive models. One
approach is based on penalized likelihood and smoothing splines. Others are based
on the idea of local estimation. Section 7.1.2 gives a brief overview of the steps
involved; a more detailed account is given in Section 7.4.

7.1.1 Data Analysis and Additive Models

New and adventurous techniques abound in the applied statistics literature. In
order for these new techniques to be used and become popular, they must blend
with the existing technology. Additive models and the associated methodology
naturally blend well, and the software described in this chapter emphasizes this.

For example, the formula

ozone "' wind + s(temp)

specifies an additive model in which wind is to appear linearly and temp is to be
modeled by a nonparametric smooth term. This model looks very similar to the
model

ozone "' wind + poly(temp, 3)

except that smoothers allow the term in temp to be modeled in a more flexible
way. Readers familiar with smoothing will wonder about the amount of smoothing
or smoothing parameters implicit in the term s(temp). Using the concept of the
equivalent degrees of freedom of a smoother, we are able to prespecify the value of
the smoothing parameter. So in the example above, s(temp) implies a smooth term
lit using a smoothing spline with df=5 (the default), while the general form would be

252 CHAPTER 7. GENERALIZED ADDITIVE MODELS

\
s(temp, df). Similarly, the term lo(temp) implies a smooth term using the loess()

smoother, with a default amount of smoothing.
The fitted model is therefore very similar to a parametric model, and similar

analyses are possible. For example, we can perform tests (albeit crude) for whether
terms should be linear or simply smooth, by fitting the two separate models and
analyzing the change in deviance relative to the change in df. Similarly, we can
use stepwise model-building algorithms for automatically selecting terms. We can
compute pointwise standard-error bands for the curves, and make predictions at
new observations. The fitted functions have strong graphical appeal, and are almost
always plotted.

Some analysts may not be comfortable with the more confirmatory type of
analysis proposed above. Additive models can also be used in a diagnostic mode as
a tool for suggesting parametric transformations or alternative forms for terms in
the model. Once the transformations have been discovered, subsequent fitting and
testing can then be based on these parametric transformations.

7.1.2 Fitting Generalized Additive Models

This section briefly outlines how we fit additive models, leaving the details to Sec
tion 7.4. A general and efficient algorithm for fitting a generalized additive model
(GAM) consists of a hierarchy of three modules:

• Scatterplot smoothers, which are used to fit individual functions, can be thought
of as a general regression tool for fitting a functional relationship between a
response and, in our case, a one- (or typically low-) dimensional predictor
variable. So locally weighted polynomials (loess() in Chapter 8), smooth
ing splines, kernel and near-neighbor smoothers fall into this category. So do
linear parametric regression fitters such as simple and polynomial regression.

• The backfitting algorithm cycles through the individual terms in the addi
tive model and updates each using an appropriate smoother. It does this by
smoothing suitably defined partial residuals. l(nown as the Gauss-Seidel al
gorithm in numerical analysis, the cycles continue until none of the functions
change from one iteration to the next. Typically, three or four smooths per
variable are required.

• The local-scoring algorithm is similar to the Fisher-scoring algorithm or IRLS
used to fit generalized linear models. Each iteration produces a new working
response and weights, which are handed to a weighted backfitting algorithm,
which produces a new additive predictor.

These three steps are a rather natural and intuitive generalization of the usual
linear model algorithms, and that is how they were originally conceived. The al-

7.2. S FUNCTIONS AND OBJECTS

gorithm can be placed on firmer theoretical ground if we are willing to corrunil
ourselves to particular classes of smoothers. For example, if all the smooth term~
in the additive model are polynomial smoothing splines, then the local scoring algo
rithm solves an appropriately penalized likelihood problem.

7.2 S Functions and Objects

This section presents the S functions for fitting and understanding generalizf!d ad
ditive models (GAMs). Readers who visit Chapters 4 and 6 will soon discover tha·
the tools are the same, and most of the new functions introduced here can be use<
with lm and glm objects as well.

7.2.1 Fitting the Models

Readers familiar with S may have used lovess(), an example of a scatterplo
smoother. Figure 7.1 (left panel) shows the lovess smooth of Mileage against Weigh·

gam(Mileage - lo(Weight)) gam(Mileage - s(HP))

0 0

Ltl It\
<") <")

0 0
CD

<") CD <")

0> .,
~

g
~

:ii Ltl :ii Ltl

"' "'
0 0

"' "'

2000 2500 3000 3500 100 150 200

Weight HP

Figure 7.1: Scatterplot smoothers summarize the relationship between the variable Milea!

as a response and Weight and HP as predictors in the automobile data. The first panel us<
the loess() smoother, while the second panel uses a smoothing spline. They can also 1

viewed as nonparametric estimates of the regression function for a simple additive modt
The straight line in each case is the least-squares linear fit.

:.:!54 CHAPTER 7. GENERALIZED ADDITIVE MODELS

for the automobile data, using the default smoothing parameter and no iterative
reweighting. We can also view this smooth as an estimate of the regression function
fin the simple additive model y = f(x) +e where y is Mileage, xis Weight, and the
E represents iid errors. We can go further, and estimate that there are 4.5 equiv
alent degrees of freedom (df) used in the smooth fit, versus 2 df for the linear fit.
Comparing the residual sum-of-squares (RSS) for the two models, we can perform
an approximate F-test for the hypothesis that the regression is linear:

F = (380.8- 317.3)/(4.5- 2) = 4_45
317.3/(60- 4.5)

and compute the corresponding percentage point of the F distribution

> 1 - pf(4.45, 4.5-2, 60 - 4.5)
[1] 0. 01063

which is significant. So it seems that, although visually undramatic, the nonlinearity
exhibited by the smooth is real. This model was actually fit by the expression

gam(Mileage ~ lo(Weight))

This is a call to gam() with a model formula that specifies a single smooth term in
Weight, using the smoother loO, which is an abbreviation for loess() (the newer
version of the S function lovess (), described in Chapter 8). The amount of smooth
ing is set to the default (span=1/2); otherwise this parameter could be passed as well,
as in the expression

gam(Mileage ~ lo(Weight, span = 1/3))

The span= argument gives the fraction of data to be used in computing the local
polynomial fit at each point in the range of the predictor. Since this model only
involves a single term rather than a sum of terms, it could also have been fit using
the loess() function described in Chapter 8.

The plot on the right in Figure 7.1 also displays a scatterplot smooth, using a
different predictor HP (horsepower) and a different smoother. It was created by the
call

gam(Mileage ~ s (HP))

where s(Mileage) requests a smooth term to be computed using a smoothing spline.
The smoothing parameter is also set to the default, which in the case of sO is df=4
for the smooth term, or 5 in all for the overall fit. The df= argument stands for
rlegn:es of freedom, and is a useful way of calibrating a smoother. Smoothing splines
arc discussed in a bit more detail in Section 7.4.1; there we mention the stand-alone
smoothing-spline function smooth.splineO, which could also have been used to
produee the spline curve in Figure 7.1.

7.2. S FUNCTIONS AND OBJECTS

0

0

~ 0

ooo 0
0 0

E" "'
0

0> ·a;
:;::: q,
'iii

0
0

"?

2000 2500 3000 3500

Weight

0

"'
iL
I 0
'iii

"?

0
'7

0

0
ocPO S
'n 0 0

o o o gco •
~ c;o8 9

8 0 ~0
~ 0 0

0 0
0

100 150

HP

255

0

0

200

Figure 7.2: An additive model relates Mileage to Weight and HP. Each plot is the contribution
of a term to the additive predictor, and has as "y" label the expression used to specify it
in the model formula. Each curve has been centered to have average 0. The effect of HP in
this joint fit is greatly reduced from that in Figure 7.1.

What smoother to use is a matter of taste, and the very question has given
rise to a large research literature; visually the performance of the two used here
seems comparable. In practice, both have complementary advantages and disad
vantages. For example, it is almost as easy to fit two- or higher- dimensional surfaces
with loess() as it is to fit one-dimensional curves; the computational complexity
of smoothing splines increases dramatically as we move from curves to surfaces.
Smoothing splines, on the other hand, minimize a data-defined convex criterion,
while the loess() method is based on sensible heuristics; one consequence is that
both the theoretical and numerical behavior of smoothing splines is cleaner than
for loess 0. We discuss the use of different smoothers in additive models in more
detail in Section 7.3.4.

The variables Mileage, Weight, and HP in the data frame car. test. frame are
available by name, because we attached the data frame for use in the entire session:

attach(car.test.frame)

This is a useful alternative to supplying the data= argument each time we fit a
model.

We can model Mileage additively in Weight and HP:

256 CHAPTER 7. GENERALIZED ADDITIVE MODELS

....
u a.

1.0 ---·,··1111111 Ill Ill I

0.5

0.0 --11111111 II I I I

0 50 100 150

usage

200 250 300

Figure 7.3: A scatterplot smooth for binary data (jittered to break ties). The smooth
estimates the proportion of ATT subscribers {ls} as a function of usage.

auto.add <- gam(Mileage - s(Weight) + s(HP))

and plot the fitted model

plot(auto.add, residuals=!)

Figure 7.2 shows the result, which seems to indicate that the effect of HP is dramat
ically reduced in the presence of Weight. The curves in the plot are produced by
the plot() method for gam objects, which joins up the fitted values for each term
by straight line segments.

We can get a numerical summary of the fit by simply printing the gam object:

> auto.add
Call:
gam(formula • Mileage ~ s(Weight) + s(HP))

Degrees of Freedom: 60 total; 51 Residual
Residual Deviance: 306.4

Similarly the model fit to Weight alone prints as

7.2. S FUNCTIONS AND OBJECTS

> gam(Kileage "' s(Weight))
Call:
gam(formula • Mileage "' e(Weight))

Degrees of Freedom: 60 total; 55 Residual
Residual Deviance: 313.6

257

and we see that the residual deviance (or residual sum-of-squares in this case) has
not increased much (relative to the average residual deviance of the bigger model).
We should not be too surprised by this particular result; heavier cars tend to have
higher horsepower, so on its own HP acts as a surrogate for the more important
predictor Weight.

The overall predictor-response relationships are evident in Figure 7.1 without
the smooth fits, although the finer details are not. Often the structure of interest
is not at all evident for bivariate data. Figure 7.3 shows a plot of a binary variable

~
I
I

iS a.

1.0 • ·-----·11111111

0.5~

0.0 • ··--···II Ill I
2 3 4 5

log(usage + 2)

~
I
I

iS
ii

1.0-11111111

0.5 (

0.0 -Ill I II

0 50 100 200 300

usage

Figure 7.4: The left figure smooths pick against the transformed log(ueqe+2). The right
figure plots the same fit against the untransformed usqe.

pick against a numeric variable usage, two variables from the frame market.survey.
The response pick indicates whether a household chose All or DCC (Other Common
Carrier) as their long-distance carrier. These data are described in some detail in
Chapter 3. Of interest in this particular plot is the proportion of ATr subscribers

258 CHAPTER 7. GENERALIZED ADDITIVE MODELS

as a function of usage. Although we have randomly perturbed (jittered) usage to
break ties, it is still difficult to detect the trend from the data alone. The scatterplot
smooth is really needed here; it shows an initial increase which then flattens off.
Although we could simply have smoothed the 0-1 data directly, that was not done
here. The curve in Figure 7.3 was fit on the logit scale, which guarantees that
the fitted proportions (which is what is plotted) lie in [0, 1) (scatterplot smoothers
do not in general guarantee this). Our fitting mechanism also takes the changing
binomial variance into account. This model was fit by the call

gam(pick c= "ATT" ~ s(usage), family = binomial)

which should look familiar to those readers who are reading this book serially. Notice
the form of the response in the formula. The variable pick is a factor with levels
"DCC" and "ATT", and we want to make sure that we are modeling the proportion
of AT&T subscribers. We can express that preference directly in the formula, by
creating the binary (logical) variable pick=="ATT". The fit in the right tail of usage

appears to track the data rather closely. This is not surprising, since the data are
very sparse in this region. Smoothers such as smoothing splines and loess give high
leverage to outlying points such as these, and as a consequence the variance of the
fit is high. In situations such as this, it is useful to transform the predictor prior
to smoothing to bring in the long tails. In this case, the log transformation seems
appropriate (a histogram of log(usage+2) appears symmetric with short tails). The
transformation can be applied directly in the model formula, as in

mkt.fit1 <- gam(pick == "ATT" ~ s(log(usage + 2)), family= binomial)

The fitted values are shown in Figure 7.4, plotted against both log(usage+2) and
usage. The fitted values are easily obtained using fitted(mkt. fitl), which produces
the fitted mean of the response-in this case the fitted proportion of AT&T sub
scribers. So, for example, the right plot in Figure 7.4 was produced by the sequence
of expressions

> plot(usage, pick== "ATT", type= "n", ylim = c(-.1, 1.1), yaxt "n")
> axis(2, at = c(O, 1))
> points(jitter(usage), pick== "ATT", pch ="I")
> o <- order(usage)
> lines(usage[o), fitted(mkt.fit1)[o])

Along with fitted(), other generic functions such as residuals(), summary(},

predict(), family(), deviance(), formula() produce appropriate results when ap
plied· to gam objects. Printing the fitted gam object

7.2. S FUNCTIONS AND OBJECTS

> mkt.fitl
Call:
gam(formula =pick== "ATT" "' s(log(usage + 2)), family =binomial)

Degrees of Freedom: 1000 total; 995.01 Residual
Residual Deviance: 1326.9

259

we notice that the residual degrees of freedom is not an integral quantity. As we will
see, the df of a nonparametric term is an intuitively defined quantity, and can take
on fractional values. Our smoothing spline was requested to produce a fit with 4 df
(the default), and it returned one with 3.99, which is certainly close enough for our
purposes. One might compare such a fit to a parametric fit with four parameters,
such as a quartic polynomial; only here the functional form is not nearly as rigid.

We now move on to some data used in Chapter 6 on spinal bending in children.
Figure 7.5 shows the fitted functions for the additive logistic regression model:

logitP(Kyphosis) =a+ /Age(Age) + !Number(Number) + fstart(Start)

relating the prevalence of Kyphosis, a spinal deformity in young children, to three
possible predictors: Age, Number, and Start. The response indicates the presence
or absence of this deformity, a forward flexion of the spine, after an operation to
correct it. The last two predictors refer to the number of vertebrae involved in the
operation, and the position of the first. These data are also used in Chapter 6 and
are described there. The plot is produced by the call

plot(kyph.gaml, residuals = T, rug = F)

Each of the functions represented in the plot is the contribution of that variable to
the fitted additive predictor, the analogue of the linear predictor in GLMs. The curves
are drawn by connecting the points in plots of the fitted values for each function
against its predictor. The vertical level of these plots is of no importance since
there is an intercept in the model; the fitted values for each function are adjusted
to average zero. We have included the partial residuals, which automatically put
all the figures on the same scale. Notice that for Age and Start there are regions
where the residuals are all below the fitted curve. These correspond to pure regions
in the predictor space where only zeros occur in the sample, and tend to dramatize
the fitted curves in those regions.

This model was fit by the call:

kyph.gaml <- gam(Kyphosis"' s(Age) + s(Number) + s(Start),
family = binomial, data = kyphosis)

The summary function produces

260 CHAPTER 7. GENERALIZED ADDITIVE MODELS

"' "'
0

"C" 0

Ci> .!
0> 0 E 0

0 0
<(:::0
(;) z

(;) 0

'<;>
'<;>

0 50 100 150 200 2 4 6 8 10

Age Number

"'

1? 0

"' ii5
Vi

'<;>

5 10 15

Start

Figure 7.5: A graphical description of the generalized additive model fit of the binary
response Kyphosis to three predictors. The figures are plotted on the logit scale, and each
plot represents the contribution of that variable to the fitted logit. Included in each of the
plots are partial residuals for that variable.

7.2. S FUNCTIONS AND OBJECTS 261

2 4 6 8 10

0
r---- - -

0
0 .. 200
0

0
0 0 ...

0
0

0 • 0 •• : I <t 0 • 0 • •: 0~
,.e , • ~· , 0 • • - • age in months ~ • • ,. 0 '

'& I 0 0 •:· 0 • 0 0

150

100

0 0 • • 0 • • 0
0 0

' 0 • • 0 0
0

'
0 a •• 0 .I

'
I 0 • • 0 II 0 0 0 0 0 8 0~

50

0
10 • •

0 0

8

• oeo • • ••• 0

6 0 • 0 • number of levels • 0 • 0

otP •qp 0 0 .0 • • oo ••• o

4 0 0, 0 0 • • • o 8 o•• •• ., .. 0 --~····
• • 0 •• ··-"• 0

2 ... • 4'oo 0 0 0 0 0 oo ••

0 0
00 0 • .. , od' • .. I • • • Oo

·: 0
.. 0 J • '

0
... 0 0

15
00 •• o O(b •• 0 • " • 0

• • • • • • • • 0 •• 0 • 0 . 0 • • • ... 0
start level 0 .. 0 0 0 0 • # • •

10

0 •• • 0 • • • 0 • • 0 • • 5
•oo 0 • 0 • 0 • 0 ••• • • •

0 50 100 150 200 5 10 15

Figure 7.6: A scatterplot matrix of the three predictors in the Kyphosis data. The presence
(solid dots) and absence (hollow circles) of Kyphosis is indicated in the plots.

262 CHAPTER 7. GENERALIZED ADDITIVE MODELS

> summary(kyph.gam1)

Call: gam(formula =Kyphosis~ s(Age) + s(Number) + s(Start),
family = binomial, data = kyphosis)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.3603 -0.45752 -0.16406 -0.009855 2.0945

(Dispersion Parameter for Binomial family taken to be 1)

Null Deviance: 83.234 on 80 degrees of freedom

Residual Deviance: 40.53 on 68.086 degrees of freedom

Number of Local Scoring Iterations: 7

DF for Terms and Chi-squares for Nonparametric Effects

(Intercept)
s(Age)

s(Number)
s(Start)

Df Npar Df Npar Chisq P(Chi)
1

1

1
2.9
3.0

5.743 0.1162
5.777 0.1263

3.0 5.838 0.1181

The last part of the summary gives a crude breakdown of the degrees of freedom be
tween terms, and separates the parametric and nonparametric contributions within
terms. This is represented in an anova table, which is a component of the output
of summary. gam 0 . The column labeled "Npar Chisq" represents a type of score test
to evaluate the nonlinear contribution of the nonparametric terms. In this case it
seems to indicate that none of the nonlinear components are significant. Further
details can be found in Section 7.4.5.

Figure 7.6 is a scatterplot matrix of the three predictors, with the response
encoded. We see that Start and Number are negatively associated, and so it is
possible that the fit would not suffer much by removing one of them. Let's remove
the term in Number using the update() function:

> kyph.gam2 <- update(kyph.gam1, ~ . - s(Number))
> summary (kyph. gam2)

Call: gam(formula ~Kyphosis~ s(Age) + s(Start), family= binomial,
data = kyphosis)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.6917 -0.44878 -0.20098 -0.030184 2.0857

7.2. S FUNCTIONS AND OBJECTS

(Dispersion Parameter for Binomial family taken to be 1)

Null Deviance: 83.234 on 80 degrees of freedom

Residual Deviance: 48.615 on 72.24 degrees of freedom

Number of Local Scoring Iterations: 6

DF for Terms and Chi-squares for Nonparametric Effects

Df Npar Df Npar Chisq P(Cbi)
(Intercept) 1

s(Age)
s(Start)

2.9
2.8

6.122 0.1016
7.639 0.0469

0

-
------ -~

'
' ' ' ' ' ' ' ' \

0 50

II Ill

' \

100 150 200

Age

0

...... -... _

5 10

Start

' ' ' ' \
\

\

15

\

' ' \

263

Figure 7. 7: The additive logistic fit of Kyphosis to Age and Start. The dashed curves are
pointwise 2 x standard-error bands.

We see that the term s(Start) has apparently gained in importance. The fitted
functions for s(Start) look much the same for the two models, and are displayed in
Figure 7.7. They were produced by the expression

plot(kyph.gam2, se ~ T)

We can use the anovaO function to make the comparison of the two models for us:

264 CHAPTER 7. GENERALIZED ADDITIVE MODELS

> anova(kyph.gam1, kyph.gam2, test • "Chi")
Analysis of Deviance Table

Response: Kyphosis

Terms Resid. Df Resid. Dev Test
1 s(Age) + s(Number) + s(Start) 68.09 40.53
2 s(Age) + s(Start) 72.24 48.61 -s(Number)

Df Deviance Pr(Chi)
1

2 -4.154 -8.085 0.097

and find that the omitted term is not quite significant. These nonparametric curves
suggested a quadratic term in Age and perhaps a low-order spline in Start; they led
to the final parametric model selected for these data, as displayed in Figure 6.6 on
page 221.

7.2.2 Plotting the Fitted Models

Since gam() fits an additive model consisting of a sum of flexible components, the
emphasis in many of the functions in this chapter is on the individual terms in the
formula. The plot 0 method for gam objects tries to produce a sensible plot for
each term. To illustrate, suppose we fit the two-term model mkt. fit2 to the market
share data:

> summary(mkt.fit2)

Call: gam(formula = pick == "ATf" "' s(log(uaage + 2)) +
. income, family m binomial, data= market.survey,
na.action = na.omit, trace = T)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.6625 -1.1008 0.79345 1.1373 1.4811

(Dispersion Parameter for Binomial family taken to be 1)

Null Deviance: 1086.9 on 784 degrees of freedom

Residual Deviance: 1038.7 on 774.02 degrees of freedom

Number of Local Scoring Iterations: 2

DF for Terms and Chi-squares for Nonparametric Effects

7.2. S FUNCTIONS AND OBJECTS

Df Npar Df Npar Chisq P(Chi)
(Intercept) 1

s(log(usage + 2)) 1 3 6.194 0.1014
income 6

2(i[i

where income is a five-level factor. Notice that we have used the na ~tction= argu
ment in creating mkt.fit2, since there are missing observations for l.he predictor
income. The na.omitO action removes all observations missing any values in the•
model frame derived from market. survey. Section 7.3.2 gives more de• tails on tile'
use of na.actions(). The pair of plots in the top row of Figure 7.8 WM created by
the expression

plot(mkt.fit2, se = T, scale = 3)

A plot was produced for each term in the model, and since the se=T option was set,
each includes upper and lower pointwise 2 x standard-error bands. Some features
to notice in the pair of plots:

• The curve for s(log(usage + 2)) is plotted against usage itself rather than
against log(usage+2). The rugplot at the base of the plot indicates the loca
tions of the observed values of usage, randomly perturbed or jittered to break
ties. The rugplot offers an explanation for the wide standard-error bands,
since the observations are sparse in the right region of the plot.

• The variable income is an ordered factor with seven levels, and so an appro
priate step function is produced. The jittering at the base of this plot results
in solid bars because there are so many observations; the width of the bars is
proportional to the level membership for the factor.

The plot 0 method is set up to produce a variety of different plots, depending
on the nature of the term and the predictors involved. It will plot a curve for
any term that can usefully be represented as a curve, a step function for a factor
term, and two-dimensional surfaces for terms that are functions of two variables.
In Section 7.3.5, we outline how users can add their own plot functions to the list.

For example, plot.gam() is used in Figure 6.6 in Chapter 6 to plot a polynomial
term. The coefficients of polynomial terms and other similar terms that result in
a curve, such as the B-splines produced by terms that are expressions in bs 0 , are
kept together and the composed polynomial or spline is plotted as a function of
the argument, Age in that case. Even straight line fits are usefully plotted in this
fashion, for visual comparison with other terms in the model. The details and
options given in this section are therefore pertinent for plotting fitted 1m, glm, and
even some aov models as well.

In Figure 7.8 we give an argument scale=4 in the call to plot.gam(). The scale
argument is a lower bound for the range of each vertical axis, in this case large

266

0
d

CHAPTER 7. GENERALIZED ADDITIVE MODELS

,-~---------------, ,"'- -,, ,,

-'' 1 I
I

0

0

'"
50

50

100 150 200

usage

100 150

usage

Q)

-~

Ol)

0

Ol)

9

I()

9

. . - - ..
Income

t ---=--
-

. - - - ..
income

Figure 7.8: Representations of some additive fits to the market share data. The top
row was created by the expression plot (mkt. fi t2, se • T, scale • 3). The x-axis in each
plot is labeled according to the "inner" predictor in the term, such as usage in the term
s (log(usage+2)); the y-axis is labeled by the term label itself. The bottom row is a plot of
the GLM model glm(pick••"ATT" ~ log(usage+2) + income, binomial), using a similar call
to the /unction plot. gam().

7.2. S FUNCTIONS AND OBJECTS 267

enough to ensure that both the plots are on the same vertical scale. This allows
us to make visual judgments of how important different functions are relative to
each other. Setting a common scale is essential when plotting purely linear terms;
otherwise the lines would all be plotted as 45-degree diagonals.

The argument se=F is a logical flag, and is a request for pointwise standard-error
curves. These are constructed at each of the fitted values by adding and subtracting
two (pointwise) standard errors, resulting in an upper and lower curve that define
an envelope around the fitted term. Under additional assumptions of no bias, these
can be viewed as approximate 95% pointwise confidence intervals for the ''true"
curve.

The rug=T flag causes a frequency plot of the x-values to be represented at the
base of the plot. Ties are broken by randomly jittering the values, and each value is
represented by a vertical bar. Usually this information is available if residuals are
included in the plot, which is also an option. In some cases, especially for generalized
linear or additive models, adding residuals to a plot is unhelpful because they can
distort the scale dramatically. Any interesting features in the functions get lost
because of a few large residuals, even though they may carry a very small weight.
In cases such as these, where residuals are omitted, the rugplot is useful since it
warns us about influential predictor values. For example, in the top left panel in
Figure 7.8, we see that three values of usage occupy about half its range! No wonder
the standard-error bands are so wide in that region.

The residuals= argument can either be a logical flag, or a residual vector. If
residuals•T, the plot for each term includes partial deviance residuals; these are
simply the fitted term plus the deviance residuals. The residuals= argument can
also be supplied with a residual vector rather than a logical flag, thus allowing the
user to choose what partial residuals to use in the plots. For example

> plot(gamob, residuals = residuals(gamob, type • "working"))

would construct partial residuals by adding the working residuals to the fitted values
for each term. The points resulting from this choice have the property that if the
term in question is refit to the points using the final iterative weights, in a univariate
fashion, then the same fitted term values would be obtained. We use the deviance
residuals as the default because they have the variance information built in.

We have seen that a variety of choices have to be made in plotting the terms
of an additive model. Not all terms are suitable for plotting; for example, plots
are not available for interaction terms. Other choices have to be made for each
plot, regarding standard-error curves, partial residuals, the rugplot, and the scale.
For these reasons, plot. gam() has an interactive mode, initiated by the plotting
parameter ask•T. When used, a menu is displa~ed on the screen:

> plot(mkt.fit2, ask • T)
Hake a plotter selection:

268 CHAPTER 7. GENERALIZED ADDITIVE MODELS

1: plot: s(log(usage + 2))
2: plot: income
3: plot all terms
4: residuals on
5: rug off
6: se on
7: scale (0)

8: browser
9: exit
Selection:

Some of the menu options, such as "se on" in item 6, are flags that can be switched
on or off; for example, the display "se on" means that currently the standard-error
flag is off, but choosing this item will flip the switch. Subsequent plots would include
standard-error bands.

Options 4, 5, 6, and 8 in this example are similar flags. The "browser" option
allows the user access to a local frame within the function call, and therefore access
to all the variables, the fitted values and the component functions. This is useful for
augmenting the standard plots, or creating a new plot. It is up to the user to define
the plotting region before invoking plot (). By using the "browser" option, users can
reset the plotting parameters, or even change devices without leaving plot .gam().

When the "scale" item (7 above) is selected, the user is prompted to enter a
new vertical scale; thereafter, each plot will be produced using the new scale. After
each plot is completed, the scale actually used is printed on the screen; this helps in
selecting an appropriate scale for all the plots. We give further details of the plot
function in Section 7.3.5.

Getting back to the examples, it is interesting to note that on page 264 the
summary() function flags the nonlinear part of the nonparametric term for usage in
mkt. fit2 as nonsignificant. This claim is supported by fitting the model

pick == "ATI" "' log(usage + 2) + income

So although we are using logarithms to improve the behavior of the smoother,
it appears that the nonparametric term is well approximated by a term linear in
log(usage + 2). The bottom row of Figure 7.8 displays this model. The standard
error bands for the log-linear term are much narrower for large values of usage since
three less parameters are being used in the fit.

7.2.3 Further Details on gam()

The functions for fitting additive models look very similar to those for fitting linear
and generalized linear models; the only change is in the formulaz argument. To fit
the functions in Figure 7.5 on page 260, we used the formula

Kyphosis "' s(Age) + s(Number) + s(Start)

7.2. S FUNCTIONS AND OBJECTS 269

The sO function indicates that a smooth term is 1.11 I.e fitted as a function of its
argument, using a smoothing spline as the smooth-., and the default amount of
smoothing. We are able to mix smooth terms with liu.,,Lr t<'rms or factors as in

pick "' s(usage) + income

and mix smoothers within an additive model

Kyphosis "' poly(Age, 2) + lo(Number) + s(Start)

All the other possibilities available for GLMs and LMs can be mixed in with
smooth terms; so, for example, both

ozone "' log(ibt) + poly(dpg, 3) + s(ibh)
ozone "' ibUibh + s(dpg)

are also accommodated. The former indicates a linear term in the log of ibt, a
cubic polynomial in dpg, and a smoothing spline term in ibh. The !attn indicates
an interaction term between the quantitative predictors ibt and ibh, consisting of
main effects and tensor product interaction, and a smoothing spline term in dpg.

The function sO can have more than one argument. A second argument is df=,
which determines how much smoothing is done (default df=4). The units are in
degrees of freedom, a convenient but approximate way of calibrating a nonparamet
ric·smoother. A third possible argument is the more customary but less intuitive
smoothing parameter that we call spar. These parameters are described in more
detail in Section 7.4.

The term lo() can be used to specify functions of more than one variable, using
the loess() smoother. For example, lo(vind, rad, 1/2) implies a smooth nonpara
metric loess surface as a function of wind and rad, using a span or neighborhood
size of 50%. There is an optional degree= argument to lo() that can be 1 (default)
or 2 for local quadratic fits.

To avoid any possible confusion, it is probably worth noting up front an impor
tant detail about the implementation of gamO, which is described at greater length
in Sections 7.3.4 and 7.4.5. A term using loO or sO, such as s(Age), does not itself
evaluate to a smooth term. It evaluates to an object that conveniently packages
up the information needed for gam() to jointly model that term with the others in
the model. In the case of s(Age), the evaluation results in Age itself, with some
attributes containing the other arguments to sO and more. This behavior is con
sistent with a linear parametric term such as poly(Age, 3), which does not evaluate
to a cubic polynomial itself, but rather to a basis for polynomial regression.

The software does not currently fully accommodate interaction terms of the sort
a:s(b) or a:lo(b) (anything interacting with smooth term), although in principle
this is possible. Even more plausible would be terms of the type a/s(b), or separate
nonparametric curves within each level of the factor a. We say "not fully", since

270 CHAPTER 7. GENERALIZED ADDITIVE MODELS

using such terms is not illegal; they simply result in the usual linear interaction
between a and the term that results from the evaluation of s(b) or lo(b). Of
course, parametric versions of these interactions could be used instead; this issue is,
resumed in the next two sections.

In principle, any number of different smoothers can be used; see Section 7.3.4
for details on adding personalized smoothers to the list.

The object returned by gam() has the following components:

> names(kyph.gam1)
[1] "coefficients" 11 residuals"
[4] "R" "rank ..
[7] "nl.df" "df.residual"

[10] "assign11 11 terms 11

[13] 11 formula 11 "family"
[16] "y" 11 Veights 11

[19] "additive.predictors" 11 deviance••

A gam object inherits from class "glm":

> class(kyph.gam1)
[1] "gam" "glm" "lm"

and has a few additional components:

"fitted.values"
11 smooth''
"var••
"call"
"nl.chisq"
11 iter 11

"null.deviance"

• $smooth is a matrix of fitted smooth functions with as many columns as there
are sO or lo() terms in the formula;

• $var is a matrix, like $smooth, of pointwise variances;

• $nl. df is a vector of the effective degrees of freedom for the nonlinear part of
1:ach smooth term; and

• $nl. chisq is a vector of chi-squared statistics that approximate the effect of
n~placing each nonparametric curve by its parametric component.

0111:1: again functions like residuals(), fitted, and predict() are useful for
extra.c:l.ing particular components from the fitted object.

7.2.4 Parametric Additive Models: bs() and ns()

The f,,. 11s of this chapter is on flexible methods for fitting terms in an additive
model. The greatest flexibility for any single term is achieved by using a non
pararn«l.ric n~gression smoother, with user control over the smoothing parameter.
In HOIII" applic:1J.tions we might prefer an intermediate level of control. Flexible
parmn•,l.ric nwt.hods exist that fill this gap. These typically construct the fit for a
terJJI IIHing a JIILrametric fit to a set of basis functions. Some simple examples that

7.2. S FUNCTIONS AND OBJECTS 271

we have already seen include step functions-e.g., cut(Age, 4)-and polynomial
terms-e.g., poly(Age, 3). Although somewhat less flexible than the non paramet
ric techniques, these models (albeit large at times), are fitted using weighted least
squares rather than the iterative algorithms required to fit nonparametric GAMS.
Although this implies a slightly faster fitting method, the more important conse
quence is that the fit is a least-squares projection, while the nonparametric fits are
not. Consequently, issues such as degrees of freedom, standard-error bands, and
tests of significance are straightforward, while for nonparametric GAMs we rely on
approximations and heuristics.

A special class of parametric linear functions with a flexibility approaching that
of smoothing splines and loess () are the piecewise polynomials and splines as spec
ified by bs() (B-splines) and nsO (natural splines). We give a very brief description
here, and refer the reader to the literature for more details.

A piecewise polynomial requires the placement of interior 1.:-nots or breakpoints at
prechosen places in the range of the predictor. These knots separate disjoint regions
in the data, and the regression function is modeled as a separate polynomial piece
in each region. It is common to require the pieces to join smoothly; a polynomial
spline requires that the d - lth derivatives be continuous at the knots when the
pieces are dth-degree polynomials. Cubic splines are very popular. The space of
functions that are cubic splines with a given set of k interior knots is a linear space
of dimension k + 4, and so k + 4 basis functions are needed to represent them:

k+d

f(x) =a+ L aiBi(x)
j=l

where d = 3 for cubic splines. B-splines are one particular class of basis functions
that represent piecewise polynomials, popular in the numerical analysis literature.
The function bs() computes the values of the k +dB-spline basis functions at the
n values of its argument, and returns then x (k +d) matrix of evaluations. So, for
example, a cubic spline term in Start with one interior knot at 12 can be specified
by bs(Start, knots = 12), and will result in a term with 4 df.

Other arguments to bs () besides the variable itself are

• knots=: a vector of (interior) knot locations. The degree of continuity at a
given knot can be dropped by duplicating the knot. So j copies of a knot for
a d-degree spline results in continuity of order d - j - 1.

• dfm: rather than specify knots, one can simply give the degrees of freedom,
and have bs place df- d knots uniformly along the range of the predictor.

• degree=: the degree d of the spline, with a default of 3 for cubic splines.

• intercept~: by default, intercept=F and bs() evaluates to a matrix whose
columns are all orthogonal to the column of ls.

272 CHAPTER 7. GENERALIZED ADDITIVE MODELS

N N
;=-
•

~ e
g>

0 ,
~

..;
0>
0 0 c: 0 w .X

ui ~ :8 .2 ';" - ui
' .. .a .,

0.6 0.8 1.0 1.2 0.6 0.8 1.0 1.2

E E

Figure 7.9: A demonstration of B-spline functions using bs(). They-labels show the term
used in a call to Im(); the functions were plotted using plot. gam(). The dotted vertical lines
are included to show the placement of the single knot.

Figure 7.9 shows two splines fitted to the scatterplot of NOx versus E, two vari
ables from the ethanol data frame. The response NOx is a measure of nitric oxide
concentration in exhaust emissions from automobiles, and the predictor E is the
equivalence ratio, a measure of fuel/air mixture. These data are described in more
detail in Chapter 8. The function on the left, a cubic spline with a single interior
knot at 0.93, was created by a call to lm():

gas.bs1 <- lm(NOx~ bs(E, knots m 0.93))

and then plotted using plot.gam(). The function on the right was created by the
expression

gas.bs2 <- lm(NOx~ bs(E, knots = 0.93, degree = 1))

The function nsO is similar to bs(); it produces a basis for a natural cubic
spline function in its first argument. A natural cubic spline is a cubic spline with
the additional constraint that the function is linear beyond the boundary knots,
which we take to be the endpoints of the data. Natural cubic splines tend to have
better behaved tails than cubic splines, and the 2 degrees of freedom saved by
the endpoint constraints can be spent on additional knots in the interior. As an
illustration, we refit the model above using nsO rather than bs():

7.2. S FUNCTIONS AND OBJECTS 273

gas.ns <- lm{NOx~ ns{E, knots s c{0.7, 0.93, 1.1)))

Here we used two additional interior knots, and end up with the same degrees of
freedom as gas.bsl:

> anova{gas.ns, gas.bs1, gas.bs2)
Analysis of Variance Table

Response: NOx

Terms
1 ns(E, knots c c(0.7, 0.93, 1.1))
2 bs(E, knots c 0.93)
3 bs{E, knots = 0.93, degree = 1)

Sum of Sq F Value Pr(F)

2 -0.743
3 -3.149 14.38 4.343e-06

Resid. Df RSS Test Df
83 9.09
83 9.83 1 vs. 2 0
85 12.98 2 vs. 3 -2

Notice that the anova table does not report F values for model 1 versus 2 since they
have the same degrees of freedom; the difference is still large though, relative to the
residual variance of about 0.1. Figure 7.10 graphs the fitted natural spline, showing
the knot placement as well as pointwise twice standard-error curves. Although these
models were all fit by lm(), the plots were all produced by plot.gam().

Further details can be found in the detailed documentation of bs 0 and ns 0.

7.2.5 An Example in Detail

The example in the previous section is based on one of the two predictors in the
ethanol data frame. In this section, we explore the ethanol data further using
additive models; these data also receive considerable attention in Chapter 8. We
perform many fits, summaries, and plots, and in so doing demonstrate the ease
with which quite complex analyses can be simply performed using the hierarchy of
additive modeling software.

Figure 7.11 {top row) shows NOx plotted against both E and C. C stands for
compression ratio, and the other two variables are described in the previous section.
The right plot seems to suggest that an additive model would be ideal for modeling
these data; in fact c does not seem to play a role. Indeed, we fit the model

> attach(ethanol)
> eth1 <- gam(NOx ~ C + lo(E, degree = 2))
> eth1
Call:
gam(formula = NOx ~ C + lo(E, degree = 2))

274 CHAPTER 7. GENERALIZED ADDITIVE MODEI;s

C\1

~

,.;
en
0
,..:
0 u 0
I

~
c
~

ui
u;

";- 0

c

C)'

0.6 0.8. 1.0 1.2

E

Figure 7.10: A demonstmtion of a natural cubic B-spline using ns(). The vertical lines
indicate the placement of knots. The upper and lower curves are pointwise twice standard
error bands.

Degrees of Freedom: 88 total; 80.118 Residual
Residual Deviance: 5.1675

and show the plotted functions in the bottom row of Figure 7.11. We have included
the partial residuals and the pointwise twice standard-error curves. The fit seems
acceptable at face value. The figure suggests that perhaps the linear term in C is
not needed; we can check this by simply dropping it:

> eth2 <- update(eth1, "' . - C)
> eth2
Call:
gam(formula • NOx "' lo(E, degree = 2))

Degrees of Freedom: 88 total; 81.118 Residual
Residual Deviance: 9.1378

and we see that the residual deviance has increased dramatically relative to the
error variance estimate 6. 2/80. 2•0. 06 for 1 df.

7.2. S FUNCTIONS AND OBJECTS

8 0

8 8
8 0 II
0
0

0 0
0 0
8 0

0

)(

0 z C\1

0
0 0

8 0 8
8 II § 8 0 0

8 8
0 0 0 0

0 0 0

8 0 !I 0
0 ~ ll 9 0 0

0

8 10 12 14 16 18

c

0 0

8 10 12 14 16 18

c

C\1

N"
• CD
I!! 0
!i!' ,
ui ";" :g

<}'

0
0

o 0 0JP
0

0.6

0.6

0
0

o 0 o
8 8£0 8
dl 0
0 ° 0

0.8

E

0.8

E

'6>0
Q)

1.0

1.0

275

1.2

1.2

Figure 7.11: The top row shows NOx plotted against C, the combustion level, and E, the
equivalence ratio for the ethanol data. The bottom row shows an additive model fit, where
Cis modeled linearly and E is modeled by a locally quadratic smooth term, specified by lo(E,
degree • 2).

276 CHAPTER 7. GENERALIZED ADDITNE MODELS

The next question is whether an additive surface is sufficient. We fit a two.
dimensional smooth surface, again using loess():

> eth3 <- gam(NOx ~ lo(C, E, 1/4, degree • 2)}
> eth3
Call:
gam(formula • NOx ~ lo(C, E, 1/4, degree • 2))

Degrees of Freedom: 88 total; 62.19 Residual
Residual Deviance: 1.74

We use a span of 1/4, the square of the span used for the loess curve in the additive
model fit. This ensures (approximately) that the marginal span for E is the same
for both fits, and as a consequence that the models are approximately nested. The
anova() function can be used to compare the models:

> aov1<- anova(eth2, eth1, eth3, test '" "F")
> aov1
Analysis of Deviance Table

Response: NOx

Terms Resid. Df Resid. Dev
1 lo(E, degree = 2) 81.12 9.138
2 C + lo(E, degree = 2) 80.12 6.168

Test Df

+C 1.00
3 lo(C, E, 1/4, degree = 2) 62.19 1.740 2 vs. 3 17.92

Deviance F Value Pr(F)
1
2 3.970 141.9 O.OOOe+OO
3 3.427 6.8 6.143e-09

and the effect looks rather small. However, the residual deviance is also small, and
the F-test shows that the interaction surface is strongly significant.

Figure 7.12 is a perspective plot of the the bivariate smooth term in eth3, pro
duced by the expression plot (eth3). The surface in fact looks additive, and a similar
plot of the additive surface defined by eth2 shows no perceptible difference. Perspec
tive plots have their limitations; in this particular case, the structure is dominated
by the strong quadratic effect of E, and departures from additivity are not evident.

There is a noticeable roughness in the perspective plot, an artifact due to the
technique used to construct it. The default style for plotting gam objects is to plot
the fitted values for each term against the corresponding predictors, using the data
that were used to fit the object. In the case of surfaces such as the one here,
these fitted values occur at irregularly placed (E, C) pairs in the plane. The S
function interp() is used within gplot.matrix() (Section 7.3.5) to approximate the

7.2. S FUNCTIONS AND OBJECTS 277

Figure 7.12: A perspective plot of the bivariate surface smooth term in the model etb3,

produced by the plot 0 method for gu objects.

fitted values on a grid, the required form of input for perspO. The interpolation
algorithm used by interpO introduces the roughness evident in the surface. A more
sophisticated method for extracting fitted curves and surfaces on a grid of values,
described in Section 7.3.3, does not produce these anomalies.

Next we use the condition plot routine coplotO described in Chapter 8 to show
the interaction structure remaining in the residuals from the additive model fit. The
separate least-squares fits in each plot show that the slope of c changes with the
level of E. Such behavior cannot be modeled simply using an additive model. The
following sequence of expressions produces the coplot displayed in Figure 7.13:

> to.do <- function(x, y){
points(x, y)
abline(lsfit(x, y))

}

278 CHAPTER 7. GENERALIZED ADDITIVE MODELS

Given: E

06 08 10 1 2

8 10 12 14 16

0 0 0 0 ... 8 0 0 0 0
0

~N 0 0 £0 0

~C> 0

rn 0 0

Cii
::J N 8 0
"0 9 .iil 0

0

~ 0
0 0
0

8 0
0

~ 0 0

8 10 12 14 16 18 8 10 12 14 16 18

c

Figure 7.13: A coplotO shows the residuals from the additive model fit plotted against c,
given three different overlapping intervals of the values of E. The interaction structure is
evident.

> E.int <- co.intervals(E, number • 3, overlap • 0.1)
> coplot(residuals(ethl) ~ CIE, given • E.int, panel • to.do)

These data are pursued in more detail in Chapter 8, where a conditionally para
metric model seems to fit the bill. The coplot 0 function is described there as
well.

Finally, to wrap up this example for the moment, let's proceed along more
conventional lines. The following anovaO display compares two parametric linear
models which address the interaction question:

7.2. S FUNCTIONS AND OBJECTS 279

N
N

8
0 ~ 0 j

~
F:"

0 0 -=~- -----~ ui
-- ::::- 8 a- 0

,--0 g 8

";" § 0
";"

I

<)'
Q.Q_,

<)'

8 10 12 14 16 18 0.6 0.8 1.0 1.2

c E

Figure 7.14: A plot of the tenns in the parametric model glm(NO" - C + cut(E, 7)), with
pointwise twice standard-error bands and partial residuals. The plot. gam() method rep
resents a categorical transformation of a quantitative predictor as a piecewise constant
function.

> anova(eth4, eth5, test • "F")
Analysis of Variance Table

Response: NOx

Terms Resid. Df RSS Test Df Sum of Sq
1 C + cut(E, 7) 80 12.68
2 C • cut(E, 7) 74 8.21 +C:cut(E, 7) 6 4.472

F Value Pr(F)

1
2 6.717 1.046e-06

Here we have approximated the quadratic shape for the E effect by making seven cuts
along the range of E. Once again the F-test rejects the no-interaction hypothesis,
but we had to sacrifice a good deal of fit in the process. It is interesting to plot the
additive fit eth4:

> plot.gam(eth4, residuals • T, scale • 4, se • T, rug • F)

280 CHAPTER 7. GENERALIZED ADDITIVE MODELS

The results are shown in Figure 7.14, and we see the piecewise constant approxi
mation to the quadratic curve.

A better approximation could have been achieved using piecewise linear or cubic
functions rather than piecewise constant:

> eth6 <- gam(formula e NOx rv C * bs(E, df ~ 6))
> eth6
Call:
gam(formula = NOx rv C * bs(E, df = 6))

Degrees of Freedom: 88 total; 74 Residual
Residual Deviance: 2.3963

Here we used the same degrees of freedom as in the model eth5 above, but achieved
a much better fit. These last two models, eth5 and eth6, can be viewed as condi
tionally linear models; they serve as parametric counterparts for the nonparametric
conditionally linear model proposed for these data in Chapter 8. Notice that we
used gam() to fit the model eth6, although it is entirely parametric. No extra cost is
incurred in doing this, and it facilitates making comparisons with the two preceding
models:

> anova(eth3,eth6,eth5,test="Cp")
Analysis of Deviance Table

Response: NOx

Terms
E, 1/4, degree = 2)

C * bs(E, df = 6)
C * cut(E, 7)

Resid. Df Resid. Dev Test Df Deviance
1 lo(C,
2
3

Cp
3.18

2 3.18
3 8.99

62.2 1.74
74.0 2.40 1 vs. 2 -11.8 -0.66
74.0 8.21 2 vs. 3 0.0 -5.81

We compare the models using the Cp statistic since they are not nested. The first
two models are roughly equivalent in terms of Cp; the better fit of the non parametric
model is offset by the extra degrees of freedom required to fit it.

7.3 Specializing and Extending the Computations

7.3.1 Stepwise Model Selection

In Section 6.3.5, we describe an efficient stepwise model selection method step.glmO
for selecting a GLM model. Here we describe a much more general but less compu-

7.3. SPECIALIZING AND EXTENDING THE COMPUTATIONS 281

tationally efficient version that will also work on glm and 1m objects.
The function step.gam() allows one to step through arbitrary models along a

prespecified path. The syntax of the function is

step.gam(object, scope, scale, direction, keep, steps, ...)

The argument scope= is a list, with each element corresponding to a term in
the model. This is different from the scope= argument of step. glm(). Each of the
elements of this list is a formula object that specifies an ordered regimen of candidate
forms for the term. Each candidate model is constructed by pasting together a
f~rmula consisting of a single element from each term formula, in conjunction with
the formula used in the initial model object. Here are some examples of term
formulas, the elements of the scope list:

• ~1 + income: selecting the 1 for this term is the natural way for step.gam()
to remove a term in income from the model. Otherwise income enters linearly
or as a factor, depending on its class.

• ~t + log(usage + 2) + s(log(usage + 2)): this allows the choice between no
term, a log-linear term, or a smooth term in usage.

• ~1 + age + poly(age, 2) + s(age) + s(age, 7): select the form of the non
linear effect from a class ordered in richness.

• ~1 + education + income: education: this makes most sense if income is in the
model by default. It checks whether education should enter, enter additively,
or as an interaction with income.

Suppose the four examples above were actually the four elements of the scope ar
gument to a call to step(); then an example of a valid formula within the scope of
step() is

. ~ 1 + log(usage + 2) + s(age) + education

where the first term is represented by the 1 (and is effectively left out), the second
term by log(usage + 2), and so on. The "." gets replaced by the response in
object.

We restrict the term formulas in scope to be ordered; this means that step.gamO
will only look ahead or back one step each time from the current version of a term.
If there are p terms with k choices each, this reduces the number of models that
need to be tried for each term change from (k- l)p to at most 2p. The function
ensures that it never visits a model more than once.

The first argument object to step() is a gam object, which the function uses as
its starting model. Each of the formulas in the scope argument must be represented
in the formula of object; otherwise an error is reported.

282 CHAPTER 7. GENERALIZED ADDITIVE MODELS

Starting with object as the current model, a series of models is constructed and
fitted by successively moving each term up or down in its scope formula. The argu
ment direction• to step.gam() determines whether steps are made in a "backward"
or "forward" direction, or in the default direction, which is "both". Thus, if the
example ·above was the starting model and direction="both", the first few trial
models considered by step() would have formulas

income + log(usage + 2) + s(age) + education
~ 1 + s(log(usage + 2)) + s(age) + education
~ 1 + 1 + s(age) + education
~ income + log(usage + 2) + s(age) + education
~ 1 + log(usage + 2) + s(age, 7) + education

and so on.
The model that results in the biggest decrease in AIC:

AIC = D + 2df4>

is then selected as the current model, and the updating is repeated. Here df is the
effective degrees of freedom used in fitting object, and <Pis the dispersion parameter.
The argument scale= to step.gamO is the cost (divided by 2) per df incurred by
adding or dropping a term. It defaults to the dispersion parameter for the initial
model, which is 1 for binomial or Poisson models, else the scaled Pearson chi-squared
statlstic. If all the modified models cause AIC to increase, the function stops and
returns the gam object of the best-fitting model visited (in the AIC sense).

The object returned by step() has two additional components:

• $anova is an anova object that summarizes the models selected along the path
to the final model;

• $keep is a list of the items created by the keep() function, an optional argument
to step.gam(). This list is constructed by applying keep() to every model
visited during the model search, and then repacking the results in a convenient
form. By default nothing is kept.

We illustrate the step() method on the marketing data described in Sections 2.1.3
and 8.2.1. There are missing observations in these data, so we use the 759 observa
tions in market. clean for which complete data are available:

> market.clean <- na.omit(market.survey)

We deliberately do not use any of the alternative missing data strategies, since with
model selection going on, it seems important to fit all the models to the same data.
The response is the binary pick (An or occ), and all the predictors are either factors
or ordered factors, with the exception of usage, which is quantitative (Section 7.2.1).

Our initial model is simply additive in all the f8ftors, with a linear term in
usage:

7.3. SPECIALIZING AND EXTENDING THE COMPUTATIONS

> mkt. start <- gam(pick ~ . , data = market. clean,
+ family = binomial)
> mltt.start
Call:
gam(pick ~ . , data = market. clean, family • binomial)

Degrees of freedom: 759 total; 723 residual
Residual Deviance: 942.2

283

We need to construct the scope argument. For this example, we will simply allow
each of the factors to be in or out, and allow the term in usage to be in, out, or
a smooth term s(usage). Although this could easily be done manually, it seems
such a useful default scope argument that we provide the function gam.scope() for
producing it as a default:

> mkt.scope <- gam.scope(market.clean)
> mltt.scope
$income:
~ 1 + income

$moves:
~ 1 +moves

$age:
"" 1 + age

$education:
~ 1 + education

$employment:
~ 1 + employment

$usage:
~ 1 + usage + s(usage)

$nonpub:
~ 1 + nonpub

$reach.out:
~ 1 + reach.out

$card:
~1+card

We also write a function mkt.keepO to save particular components of the models
visited:

> mltt.keep <- function(object, AIC)
+ list(df.resid = object$df.resid, deviance= object$deviance,
+ term • as.character(object$formula)[3], AIC = AIC)

The component "term" is a character version of the right side of the formula. We
now execute step.gam() (and probably go for a cup of coffee; 50 models are visited
in this example!)

284 CHAPTER 7. GENERALIZED ADDITIVE MODELS

> mkt.step <- step(mkt.start, mkt.scope, keep • mkt.keep)
> mkt.step
Call:
gam(formula • pick ~ moves + s(usage) + nonpub + reach.out +

card, family • binomial, data • market.clean)

Degrees of Freedom: 769 total; 742.06 Residual
Residual Deviance: 954.32

The final model consists of five of the nine predictors, with the smooth term for
usage selected. The deviance has increased by about 12 for an increase of 19 residual
degrees of freedom.

0
0

0 0

"' 0 8
0

00 0 0

0 0 0 c. c; 0
0 0

Q
ago

0 0 < 0
0

0 Bo 0 0

8 0

0 0 0
0

0 ooo
0

0 0

0
00

00
0

0 g: 0

•
720 725 730 735 740 745 750

Residual Degrees of Freedom

Figure 7.15: An AIC plot of the models visited during the stepwise search by step.gam()
for the (stepwise} optimal mkt.step. The best-fitting model is plotted using a black dot.

The anova component of mkt. step summarizes the path taken to the final model:

> mkt.step$anova
Stepwise Model Path
Analysis of Deviance Table

Initial Model:

7.3. SPECIALIZING AND EXTENDING THE COMPUTATIONS

pick ~ income + moves + age + education + employment + usage +
nonpub + reach.out + card

Final Model:
pick ~ moves + s{usage) + nonpub + reach.out + card

Scale: 1

From To Df Deviance Resid. Of Resid. Dev AIC
723.0 942.2 1014

2 income 6.000 6.45 729.0 947.6 1008
3 employment 6.000 6.63 736.0 954.2 1002
4 age 6.000 4.58 740.0 958.8 997
5 usage s{usage) -2.941 -10.32 737.1 948.4 992
6 education 5.001 5.88 742.1 954.3 988

285

Starting from the initial model, the table reports the changes in the order that they
occurred.

The keep component of mkt. step is a list with elements

> names(mkt.step$keep)
[1] "df.resid" "deviance" "term" "AIC"

Each is a. vector of length 50, the number of models visited by step.gamO. Fig
ure 7.15 plots the AIC statistic against the residual deviance for each of the models
visited, with the final model indicated. One might also use an S function such as
identify() in conjunction with this plot to see what models are close to the best
model.

We end this section with a brief discussion of further differences between the
model selection methods for GLMS and GAMs. The method step.glm() is based on
the primitives drop10 and add10, which in turn are based on a quadratic approxi
mation to the likelihood for GLM models. With the more flexible scope= argument to
step.gamO, drop10 and add10 are no longer applicable, because terms get changed
rather than added or dropped. There are in fact no drop10 and add10 methods
for gam objects, but since gam objects inherit from class "lm", these functions would
produce results. We have deliberately not blocked this usage since the results can
be interpreted with caution. Parametric terms in the model can be dropped or
added, with the effect of freezing the nonlinear components of any nonparamet
ric terms present. The results provided for the nonparametric terms should be
ignored. However, the summary{) method for gam objects fills the gap, and gives
approximate "drop" information about the nonlinear parts of the nonparametric
terms; Section 7.4.5 has more details.

286 CHAPTER 7. GENERALIZED ADDITNE MODELS

7.3.2 Missing Data

All the modeling functions have an na.actionz argument. An na.action() is a
filter function that takes a data frame as input and returns a "clean" data frame.
For example, in Section 7.2.2 we pass the function na.omitO as the na.action=
argument in creating mkt.fit2. The action of na.omit() is to omit all rows from
the data frame missing values on any of the variables. There are two ways of using
na.omit():

• When na.omitO is passed as an argument to the fitting function, it gets
applied to the model frame. This is the data frame created internally that
consists of only those observations required to compute the fit. Consequently,
only those variables will be checked for missing observations; in some cases,
as in the construction of mkt. sm for Figure 7.4, no observations are omitted.
In the case of mkt.fit2, 215 observations were omitted.

• One can create a new data frame at the onset by applying na.omitO to the
original data frame. For example, in Section 7.3.1 we create the new frame

market.clean <- na.omit(market.survey)

which we then use as the data in the stepwise model selection procedure. This
is important in such applications, since one would like model comparisons to
be based on the same sample sizes.

The gam() function has a way of dealing with missing data in a reasonably
natural way in conjunction with replacement na. action() functions. A replacement
na.action() is onethat replaces missing observations rather then removing them.
The simplest of these treat each of the variables in a data frame separately, and apply
some replacement rule depending on the class of the variable. More complicated
method<> would treat the data frame as a whole in order to impute values for the
missing data. Which particular methods are best, if any, is an ongoing debatable
subject, and consequently we have not recommended any particular na.replaceO
function for general use with this software. Rather we outline a particular example,
na.gam.replaceO, that blends nicely with additive models; another, similar choice
suitable for tree-based models, na. tree. replace 0, is described in Chapter 9.

The function na. gam. replace() operates on each of the variables in its argument
frame separately, and replaces them in the following fashion:

• Quantitative predictors have their missing observations replaced by the mean
of the nonmissing observations.

• Quantitative matrices are treated similarly, where a row is regarded as missing
if any observation in any of the columns is missing for that row.

7.3. SPECIALIZING AND EXTENDING THE COMPUTATIONS 287

• Factors or ordered factors get endowed with a new level, labeled NA, that
records all the missing observations.

• If the data frame is a model frame, and in particular if the response can be
identified, then all rows having missing response values are removed.

So na.gam.replace() returns a clean data or model frame. This na.actionO is not
specific to GAMs, and can be used in any other context, such as with GLMs or LMS
in particular.

Let's understand what happens when a linear model is fit to the variables in this
filtered data frame. Factors have an extra effect estimated that isolates the missing
data. The coefficient of a term linear in a quantitative predictor with missing
observations is not directly influenced by them since they have all been replaced
by the mean of the nonmissing values for that predictor. With a constant in the
model, we can regard the predictors as centered (zero mean), in which case those
recorded at exactly the mean have zero leverage. The fitted term values for those
observations that are missing data for that particular term are therefore zero.

The backfitting algorithm in gam() cycles around the smooth terms, updating
them in an iterative fashion. At each stage the fitting operation involves a single
term. The natural thing to do in gam(), when missing predictor values are encoun
tered, is mimic the behavior described above for linear models:

• ignore the missing predictor values when computing the smooth term for a
particular predictor, and

• return zero as the fitted smooth values corresponding to the missing observa
tions for that term.

This makes sense since fitted nonparametric terms in an additive model are centered
to have average value zero, so the missing predictors get assigned the mean value
of the curve.

This all works because gam() and its associated functions are set up to anticipate
the missing data. During the construction of the model frame, the functions loO
and sO always detect missing observations, and if present, attach an "na" attribute
to their output, recording the rows that are missing. After replacement functions
such as na.gam.replace() have made their changes, these "na" attributes remain on
the "smooth" terms, even though the values of the terms have been modified. The
consequence of this is that the model matrix can be constructed on the replaced data
frame, just as it would be for linear models; the model matrix is used to compute
the parametric component of the fit. These "na" attributes are picked up again
when gam() comes to compute a particular term for the nonparametric component;
the missing observations are omitted from the smooth, and their fitted values are
returned as zero.

288 CHAPTER 7. GENERALIZED ADDITIVE MODELS

This strategy will work for any replacement na. action 0, as long as it does not
inadvertently strip off the "na" attribute of the variables during its replacement
operation. If it were to do that, the function would still produce results, but they
would not be as interpretable.

7 .3.3 Prediction

Often we wish to evaluate the fitted model at some new values of the predictors:
for predictive purposes, for plotting, or for validation. There is a predict() method
for gam objects, just as there is for other classes of objects. However, we will see
that the method predict.gamO also serves as the "safe" method for predicting from
new data for both glm and lm model objects.

Just as for glm objects, the expression predict(gamob) is a simple but clean way
of extracting the additive predictor from gamob-in other words, making predictions
at the same predictor values that were used to fit gamob. Similarly, fitted(gamob)
extracts the fitted values. Once again

predict.gam(gamob, type = "response")

is identical to

fi tted(gamob)

The other choice is type="terms", in which case a matrix of fitted terms is returned.
The argument terms= is used in conjunction with the choice type="terms", and
specifies a character vector of term labels for which predictions are desired; by
default, all terms are predicted. The se . f i t=T argument causes a list to be returned
that contains both fitted values and standard errorS. All these arguments are exactly
the same as for predict.glmO, and are discussed in some detail in Section 6.3.6.
The difference occurs when the nev.data= argument is used.

In Sections 4.2.3 and 6.3.6 we draw attention to problems that can occur in
using coefficients from a fitted 1m or glm object on new data. Both predict.lmO
and predict. glmO compute a model matrix using the new data, which is then
multiplied by the coefficients extracted from the original object. This will work
as long as the expressions defining the terms in the formula do not depend on the
entire data vector for their evaluation. The functions poly() and loO, for example,
normalize their arguments to have length 1, an operation that depends on the
entire vector of values. A term like bs(E, df "' 5) is an elegant way of specifying a
B-spline with 5 degrees of freedom (excluding the intercept). This corresponds to 2
interior knots, which bs() places at the 1/3 and 2/3 quantiles of E. This is a highly
data-dependent operation, and as a consequence bs(E, df = 5) applied to a new
verSion of E will result in different knots, and hence different basi~ functions. Any
coefficients estimated for the former will make no sense when applied to the latter.
In situations such as these and many others, the predictions are incoherent. Since

7.3. SPECIALIZING AND EXTENDING THE COMPUTATIONS 289

GAM objects tend to be made up of either nonparametric smooth terms or often
somewhat complicated parametric terms, they are likely to face these prediction
problems more frequently.

As a consequence, the function predict.gam() operates quite differently from
the other predict() methods, when presented with new data. On the negative side,
it is slower since essentially it has to refit the model. On the brighter side, it ill a
"safe" method of prediction that overcomes the problems described above. It <:an
also handle glm and lm objects (with less work than gam objects), and so is the safe
method of prediction for them as well.

Here follows a brief outline of the steps that are taken in the execution of
predict(gamob, nev.data, .•.):

1. A new data frame, both.data, is constructed by combining the data used to
fit gamob, say, old.data with the data in new .data, retaining only the relevant
predictor variables.

2. The model frame and model matrix are constructed from the combined data
frame both. data. The model matrix is then separated into the two pieces X 0

and xn corresponding to the old and new data.

3. The parametric part of the object gamob is refit using X 0 • In most situations,
the fitted values should be identical to those in gamob. In some, such as in
the case of bs() above, the fit will not be identical; the percentage difference
between the old fit and the new fit is reported as a warning in cases such as
this.

4. The coefficients from this new fit are then applied to xn to obtain the new
predictions.

5. For gam objects with both parametric and nonparametric components, an
additional step is taken to evaluate the fitted nonlinear functions at the new
data values. In principle, most smoothers produce a fitted function that can
be evaluated anywhere (at least in the domain of the original data).

Details of steps 3 and 5 are discussed in Section 7 .4.
To illustrate the use of predict(), let's first return to the model eth3 fitted to

the ethanol data:

> formula(eth3)
NO:z: "' lo(C, E, 1/4, degree = 2)

The perspective plot in Figure 7.12 on page 277 has some irregularities, introduced
by the function interp(). We can predict the values of the surface exactly on a
grid:

290 CHAPTER 7. GENERALIZED ADDITIVE MODELS

> attach(ethanol)
> nev.eth <- expand.grid(
+ C = seq(from = min(C), to= max(C), len= 40),
+ E = seq(from = min(E), to= max(E), len= 40)
+)

> eth.grid <- predict(eth3, nev.eth)

The function expand.gridO produces a data frame of points from a grid, with
marginal values supplied as arguments. So nev.eth has 1600 rows and two columns.
Figure 7.16 shows the fitted surface, which is much smoother than that of Fig-

Figure 7.16: The fitted surface corresponding to eth3, evaluated on a 40 x 40 grid of values
of c and E using predict 0 . Compare with Figure 7.12.

ure 7.12. A slight additional difference between the two is that Figure 7.12 is a
display of the fitted term (excluding the intercept), while Figure 7.16 includes the
intercept. Of course, we could have removed the intercept here as well. The model
eth3 is not really additive, even though we are able to accommodate it within the

7.3. SPECIALIZING AND EXTENDING THE COMPUTATIONS 291

GAM framework. Rather, it is an example of a general multivariate smooth surface,
and models Such as this are covered in much more detail in Chapter 8. In particular,
a variety of plotting methods are described there for displaying such surfaces.

Our next example is particular to additive models. By the nature of additive
models, we need only evaluate the individual terms on a reasonable grid of predictor
values to be able to reconstruct the entire multivariate additive surface everywhere.
So suppose we construct a data frame nev.data, where each component has 40
evenly spaced observations over a suitable range. Then

predict.gam(gamob, nev.data, type = "terms")

will return a 40Xlength(terms) matrix of fitted terms, from which we can construct
the additive surface.

We return to the kyphosis example to illustrate this feature, in particular to the
model kyph. gam2:

> formula(kyph.gam2)
Kyphosis "' s(Age) + s(Start)
> attach(kyphosis)
> kyph.margin <- data.frame(

Age • seq(from = min(Age), to= max(Age), len= 40),
Start~ seq(from • min(Start), to= max(Start), len= 40)
)

> margin.fit <- predict(kyph.gam2, kyph.margin, type • "terms")

The matrix margin. fit has two columns labeled "s(Age)" and "s(Start)." If we
were to plot these two columns of margin. fit against the two columns of kyph. margin,
we would see exactly the same function as in Figure 7.7 on page 263, except the
abscissae would be at 40 evenly spaced values.

The following sequence of expressions constructs the additive surface on a bi-
variate grid defined by the margins in kyph.margin:

> kyph.surf <- outer(margin.fit[, 1], margin. fit[, 2], "+")
> kyph.surf <- kyph.surf + attr(margin.fit, "constant")
> kyph.surf <- binomial()$inverse(kyph.surf)

The first line computes an outer sum, adding together the additive components at
each of the 1600 elements of the 40 X 40 grid. The second line adds in the "constant"
attribute ofmargin.fit, since the terms produced by predict() are centered to have
weighted mean zero (Section 6.3.6). The third line converts the surface from the
logit scale to the probability scale using the inverse link function. Of course, for a
two predictor problem such as this, we could have simply produced the data frame
with the 1600 points on the grid, as in the previous example, and predicted the fitted
probabilities directly using type•"response". Often there are more terms, and then
a procedure like the one described above is far more efficient for constructing the
additive surface.

292 CHAPTER 7. GENERALIZED ADDITNE MODELS

0

0 0 0 0

00 0000 0 0 00 00 00

0

0 50 100 150 200

Age

Figure 7.17: A contour plot of the fitted probability surface derived from the fitted additive
model kyph.gam2. The black dots indicate cases with Kyphosis present, the circles, absent.

Finally, in Figure 7.17 we produce a contour plot from the fitted prevalence
surface:

> plot(Age, Start, type m "n")
> points(Age[Kyphosis cc "absent"], Start[Kyphosis ... "absent"])
> points(Age[Kyphosis •• "present"], Start[Kyphosis ... "present"],
+ pch m 183) • for postscript() device-driver
> contour(kyph.margin$Age, kyph.margin$Start, kyph.surf,
+ add e T, V • c(O.l, 0.3, 0.5))

The contours appear to enclose the cases reasonably well (black dots), and the plot
is a confirmation of the fit.

7.3. SPECIALIZING AND EXTENDING THE COMPUTATIONS 293

7.3.4 Smoothers in gam{)

In all of our examples so far we have specified a smooth term in a forn111la using
on.e of two smoothers:

• sO: as in s(Age, df • 5). This implies that a smoothing spline will he used
in the backfitting algorithm for fitting that term in the model, using 5 df a.'l
the smoothing parameter.

• lo(): as in lo(Age, f • 0.5), which uses the loess() smoother dr..,cribed
in Chapter 8. The lo() smoother additionally allows smooth surfac"" to be
included in the model, as in lo(vind, temp, 0.4).

Remember that the functions sO and lo() do not actually smooth the datiL, but
rather set things up for the backfitting algorithm used by guO to fit the model.
These are both shrinking smoothers, in that their operation is not a projectirm but
rather a shrunken fit onto a rich basis set.

In this section, we outline the steps needed to add a smoother to the existing
set, and in so doing give an idea how it all works.

Adding a new smoother to guO is extremely simple if it is of the projection
type, such as regression splines or polynomials. All that is required is that functions
such as bs() or poly() be written that create a basis matrix for representing the
projection space. These can then be used by any of the regression fitters, not only
gu(). '

Suppose someone wishes to fit additive models using their own favorite shrink
ing smoother rather than using smoothing splines or locally weighted regression
(prejudices do exist in the smoothing field!). They would need an S function (typ
ically interfaced with FORTRAN or c) that computes the smooth. Let's suppose
their smoother is called kemelO. Three simple steps need to be taken in order to
incorporate kemel() as a smoother to be used in fitting additive models in guO:

• An interface function to kemel 0 is needed that takes as input arguments
x, y, and weights (the names are not important), as well as any parameters
that control the amount and type of smoothing. The function should return a
residual vector called residuals, and optionally a vector of pointwise variances
called var, and the nonlinear degrees of freedom called nl. df. We discuss these
latter two items in more detail in Section 7.4. Let's assume that kemel() itself
has all these features. The function gu.s(), for example, is the interface
function for the smoothing spline s 0.

• A shorter named function such as k() is needed for use in the model formula.
Typically, k(x) will return its argument x, along with one or more attributes.
One of the attributes is named "call", and gives the expression needed in the
backfitting algorithm to update the residuals by smoothing against x. In the

294 CHAPTER 7. GENERALIZED ADDITIVE MODELS

case of both loO and sO, the data returned are exactly what is required for
the parametric part of the fit. For example, the expression lo(x, degree •

2) evaluates to a two-column matrix consisting of basis vectors for quadratic
regression. This would be incorporated into the model matrix. The "call"
attribute, on the other hand, would reference the first column as the smoothing
variable.

• The character vector gam. slist should be augmented with the character "k".
This is used as an argument to the terms() function, which identifies all the
special smooth terms in the formula.

To illustrate, let's look at the output of sO:

> pred <- 1:4
> s(pred)
[1] 1 2 3 4
attr(, "spar"):
[1] 0
attr(, "df"):
[1] 4
attr(, "call"):
gam.s(data[["s(pred)"]], z, v, spar= 0, df = 4)
attr(, "class"):
[1] "'smooth"

The "call" component is an S expression (of mode "call"); it gets evaluated
repeatedly inside the backfitting algorithm all.vamO when fitting the terms in the
model. The name "vam" stands for weighted additive model, while "all" refers to
the fact that it can mix in smoothers of all types. This is in contrast to s. vamO,
which is a specialized backfitting algorithm only used if all the smooth terms are
splines; similarly, lo. vamO is used if all the smooth terms are to be fitted using
loess(). So the only knowledge all.vamO has of the smoother to be used for a
particular term is this call it is given to evaluate. The arguments z, data, and v
in the call are local to all.vam(), and in fact data[["s(pred)"]] refers to exactly
that component of the model. frame created by the expression s (pred). The other
attributes of s(pred) are needed for the more efficient backfitting algorithm s.vamO
described in Section 7.4.

Apart from allowing other regression smoothers, this modularity opens the door
to other interesting generalizations. For example, included in this software is a
function random() that is aimed at fitting a random effect factor term in an additive
model. All it does is fit each level by a constant, but then shrinks all the constants
toward the overall mean-another shrinking smoother. The function random() is
used in the formula, and evaluates to its argument, which is a factor. It might be
instructive for the reader to print the definition of random() or look at the detailed

7.3. SPECIALIZING AND EXTENDING THE COMPUTATIONS 295

documentation (?random), as well as its workhorse gam.random(), for further illus
tration. Ridge regression can be accommodated similarly; one could write a simple
function ridge() that would perform a similar shrinking.

In Section 7 .4, we show how users can provide their own backfitting algorithms
for efficiency. This opens the door to even more adventurous generalizations.

7 .3.5 More on Plotting

The plot.gam() method has a modular construction, and consequently users can
tailor-make their own plotting functions very straightforwardly. Before we describe
the method plot. gam 0 itself, we first describe the preplot 0 method for gam objects.

In order to produce a plot, a certain amount of computation is required. Typ
ically, there are many different choices to be made in representing a function or
surface; in the case of GAMs, these choices involve rugplots, standard-error bands,
residuals, vertical scales, and which terms to plot. With not much loss in efficiency,
all the extra "data" needed to produce these plots can be computed once and for
all, and stored away for future plotting. This is the idea behind the preplot()
functions.

In its standard usage,

preplot(gamob)

produces a list with class "preplot.gam", with an element for each term in the
model. Each of these elements is named according to the particular term label.
Let's examine the contents of one of these term elements in the context of a specific
example, say the term "s(Age)" in kyph.gam2. The expression

kyph.preplot <- preplot(kyph.gam2)

evaluates to a two-element list, with names "s(Age)" and "s(Start)", and we shall
dissect the first of these. It has components:

• b, the values of the inner variable in the expression s(Age), in this case Age
itself, to be used as abscissa in the plot. Had the expression been s(log(Age)),
the x component would still have been Age. The values in Age are exactly those
used to fit the model.

• blab, which is the character name "Age" in this case.

• $y, the fitted term to be used as the ordinate in the plot. It is exactly the
term returned by predict(object, type "' "terms").

• $ylab, which is simply "s (Age)".

• Sse . y is the vector of pointwise standard errors corresponding to the term, as
returned when the se•T option is used with predict 0.

296 CHAPTER 7. GENERALIZED ADDITIVE MODELS

It should be clear that a major part of this work is done by predict. gam() in
producing the fitted terms and their standard errors. This element "s(Age)" of
kyph.preplot is also an object of class "preplot.gam", and it might seem to be
ready for plotting as it is. Although true in this case, in general the x component
can be more complex. It may be a factor or a category, or it may be a list of two or
more variables. The preplot 0 method goes to some effort to identify these inner
predictor(s}, and different plotting methods are appropriate depending on their data
class.

The function that actually performs the plot is named gplot 0, and it currently
has four methods, corresponding to the data classes numeric, category, matrix, and
list. The last of these can deal only with two-element lists, which it reshapes into
a matrix and then calls gplot.matrix().

The expression plot(kyph.preplot) produces two plots, one after the other, for
each of the two terms in kyph.preplot. One can use plot() on either the entire
preplot .gam object, or else on any of the elements separately. Ultimately, the ap
propriate gplot 0 method is invoked.

Some readers may wonder why we bothered to invent the generic gplot 0 instead
of simply using plot 0. The reason is that we did not wish to claim the name
plot.matrix, for example, for the very specific type of plots we have in mind here.

The gplot 0 methods are quite straightforward, and produce t;he style of plots
we have seen in this chapter and the last. It would be easy for users to create
their own gplotO functions, either to modify the styles we have chosen, or else to
accommodate other classes. Currently we do not provide plots for interaction termS,
or for terms involving more than two variables. There will also be data classes for
which we have no methods. Related to this, and as a caveat, we note that the
concept of extracting the x variable is somewhat fragile. Although most of the time
it should produce the desired results, there is no guarantee that what is extracted
as x will be suitable as an abscissa for plotting. Indeed, it may not even have the
correct length, or correspond in any way to an abscissa. Expressions in formulas
are governed only by rules dictating the data class of the object they evaluate to,
and can be built up in general from objects of any size, shape, etc.

The plot() method for gam objects is built up in a straightforward way from
the plot method for preplot.gam objects. In its simplest usage, it computes the
preplot. gam object and plots it! If its x argument has a preplot component, it uses
it instead. This suggests a convenient place to stash preplot objects, and in fact
the usage

kyph.gam2$preplot <- preplot(kyph.gam2)

is quite standard.
Further details on plot. gam() can be found in the detailed documentation in the

appendix, as well as online (?plot. gam.)

7.3. SPECIALIZING AND EXTENDING THE COMPUTATIONS

i
Cll
E .
g .
ID

..,.
ci

0
ci

..,.
9

'

' ::; ... --

8 10 12 14 16 18

c

~

~
(.) .
ID

"' , ci

'

--- ---
--- ---

8 10 12 14 16 18

c

297

Figure 7.18: The plot on the left shows the centered, fitted term for c in the model eth7,

together with pointwise twice standard-error bands. The plot on the right is the uncentered
version.

We end this section with an explanation of why centering is important when
computing fitted terms and their standard errors, as is done by the predict() meth
ods (Section 6.3.6, page 239). We require the fitted terms most often for plotting
purposes, and wish to represent the composed polynomial, B-spline, smooth term,
etc. as a function of their argument. The slope and shape of each term is impor
tant for this kind of examination, and not the level; rather, an overall level in the
model is usually only interpretable if the nonconstant terms average zero. These
are not compelling reasons, however, to go to the extra expense of centering since
we could simply ignore the level when examining the plots. Centering becomes es
sential when we compute pointwise standard errors. We illustrate on the simplest of
terms, namely a linear term involving a single coefficient, why this is the case. The
pointwise standard errors for such a term, if it is centered, are given by the expres
sion ix1 - x;i u;;i these are zero at !f; and increase linearly for values away from
Xj. If the term is not centered, the pointwise standard errors are simply ix; I u;;.
To illustrate the difference, consider the linear model

> eth7 <- lm{NOx ~ C + ns(E, 6), data= ethanol)

Figure 7.18 shows the centered and uncentered versions of a plot for the fitted linear
term in c, together with pointwise twice standard-error terms. The centered plot

298 CHAPTER 7. GENERALIZED ADDITIVE MODELS

is informative, since it shows us both the range of the effect of C, as well as an
approximate 95% t interval for the variation in the slope (in units of this effect).
The uncentered plot also shows us the same range of effect, but there is no such
interpretation for the standard-error bands.

7.4 Numerical and Computational Details

This section gives some background to additive models, and further insight into
this particular implementation of the algorithms needed to fit them. Generalized
additive models are a fairly recent innovation, and the methodology will likely be
unfamiliar. Fortunately, the way smooth terms appear additively in formulas is
quite intuitive, and the fitted models look and feel just like GLM models, only more
flexible. All we can hope to do in the following few pages is shed some insight into
the technical background that supports the algorithms we use, and guide the reader
to the references for a more detailed explanation.

7.4.1 Scatterplot Smoothing

A basic element of our additive model routines is the scatterplot smoother. We
have favored two approaches to smoothing in constructing the GAM software:

• lo: short for loess or locally weighted regression, is a direct method of smooth
ing, and extends naturally to dimensions higher than 1.

• s: short for smoothing splines, is an indirect methods of smoothing, driven
by penalized least squares. Although smoothing splines are also d!)fined in
higher dimensions, the computational complexity increases dramatically.

There are other types of smoothers, such as kernel smoothers, nonlinear smooth
ers (for example running medians), and trigonometric series smoothers, to name a
few. All of these, and in fact any smoother, can be used as a building block for
fitting additive models.

For our purposes, it is easiest to motivate a smoother in terms of the simple
model y; = l(x;) + Ei, where I is some unknown and arbitrary function of the
predictor x and the e; represent zero mean independently distributed errors. Since
E(yi I xi) = l(x;), any estimate of I can be viewed as an estimate of this condi
tional expectation. For simplicity, we assume xis univariate. However, we seldom
have more than one observation at any given point x;, so we have to relax the
definition in order to get a reasonable estimate. The typical assumption that is
made toward this end is to assume that I is smooth in some sense, and then exploit
this smoothness in defining the estimate. Smoothers differ chiefly in the way theY
exploit the smoothness assumption.

7.4. NUMERICAL AND COMPUTATIONAL DETAILS 299

A locally weighted regression smoother estimates f(t) at an arbitrary point t
by computing a weighted average of all those values Y; in the sample that have
predictors Xj close tot, and the weights depend smoothly on this closeness.

We can represent it analytically as

n

/(t)·= LS>.(t,x;)y;, (7.2)
j=l

where { Xj, Yi}, j = 1, ... , n is the series of n data points, t is the target point, and
S>. is a weight function parametrized by>.. Then x n matrix {S>.(x;,x;)} is often
called the smoother matrix. All linear smoothers can be represented in the form
(7.2); they differ chiefly in the construction of the weights:

• The loess() smoother imposes a tricube weight function on the >. = span
nearest neighbors in x to the target point t, and then computes the fit at t
by a weighted linear (or optionally quadratic) regression. The span controls
how much smoothing is performed: a large span results in smoother but less
local fitted functions whereas a small span results in rougher (higher variance),
more local fits. Locally weighted regression smoothers are discussed in depth
in Chapter 8, so we do not dwell further on them here.

• Smoothing splines exploit the smoothness from a different more explicit angle.
A cubic smoothing spline fit to our data is that function f that minimizes

PRSS = t(y;- f(x;)) 2 + >. /(f"(t)) 2dt
i=l

(7.3)

over all functions with continuous first and integrable second derivatives. The
solution is a function; it is a natural cubic spline with interior and boundary
knots at the unique values of the x;. The smoothing parameter >. controls
the tradeoff between fidelity to the data and smoothness. Smoothing splines
are also linear smoothers, and so can be represented as in {7.2). The function
smooth. spline(), which is the workhorse underlying s.vam() and gam. sO, fits
a smoothing spline; see the detailed documentation for a description of its
arguments {?smooth.spline.)

Both smoothing methods have a smoothing parameter that needs to be speci
fied. In practice, it is common to use automatic techniques such as cross-validation
for selecting the smoothing parameters. We prefer using fixed or user-specified
smoothing parameters, since concepts such as cross-validation are very expensive
to implement for generalized additive models.

The span for loess() is rather intuitive and can be selected subjectively, while
the >. parameter for smoothing splines is not easy to prespecify. Another parameter

300 CHAPTER 7. GENERALIZED ADDITIVE MODELS

useful for calibrating a smooth is the equivalent degrees of freedom, related, of
course, to the span or >.. The simplest definition is df = tr(S), where S is the
smoother matrix that produces the fit fl = Sy at each of the n data points x;. For
smoothing splines, a convenient smoothing parameter is df = tr(S) itself, which
implies a value of>..

7.4.2 Fitting Simple Additive Models

We now use the scatterplot smoother as a building block for fitting simple nonpara
metric additive models of the form y; = I:;=1 /j(x;j) + c;. Consider the system of
p (vector) equations:

/1 S1(Y /2 /3 /-p)
/2 = S2(Y /1 /3 !-p)
/3 = S3(y II /2 /p) (7.4)

=
/-p = Sp(Y - /1 /2 /3 .)

where the dots in the equation are placeholders showing the term that is missing in
each row. Here a vector of the form fi represents the function fi evaluated at the
n observed values of Xj in the sample; Si represents the smoother operator matrix
for smoothing against predictor Xj· The jth equation is reasonable for fitting I; if
we pretend we know all the other functions appearing on the right side; since we

don't, we plan to solve all the equations simultaneously. There are several more
rigorous motivations for these equations than that just given. Fbr example, if all the
smoothers are smoothing splines, then this system solves the penalized least-squares
problem

(7.5)

The S; can represent any smoother; in particular, the choice Sj = Hj, the least
squares projection matrix, produces a linear fit for the term Xj- If all the smoothers
are projections, system (7.4) reduces to the usual normal equations for least squares.

One method for solving (7.4) uses the Gauss-Seidel iterative method, also known
as backfitting. The algorithm cycles through the equations, each time substituting
the most current versions of the functions in the right side. Let's look at the algo
rithm applied to some air-pollution data contained in the frame air. The response
is ozone, and there are three predictors: radiation, wind speed, and temperature.
We fit the model

7.4. NUMERICAL AND COMPUTATIONAL DETAILS

> gam(ozone ~ s(radiation) + s(wind) + s(temperature), tracezT)

WAH iter rss/n term

Relative

1 0.251 Parametric lm.wfit
1 0.242 Nonparametric s(radiation)
1 0.208 Nonparametric s(wind)
1 0.183 Nonparametric s(temperature)
change in functions: 0.089

2 0.181 Parametric -- lm.wfit
2 0.18 Nonparametric -- s(radiation)
2 0.181 Nonparametric -- s(wind)
2 0.18 Nonparametric -- s(temperature)

Relative change in functions: 0.015

3 0.18 Parametric lm.wfit
3 0.18 Nonparametric -- s(radiation)
3 0.18 Nonparametric -- s(wind)
3 0.18 Nonparametric -- s(temperature)

Relative change in functions: 0.003

4 0.18 Parametric lm.wfit
4 0.18 Nonparametric -- s(radiation)
4 0.18 Nonparametric -- s(wind)
4 0.18 Nonparametric s(temperature)

Relative change in functions: 0.001

GAM all.wam loop 1: deviance = 19.944

301

Figure 7.19 shows the additive model fitted above. Included in the figure are the
univariate scatterplot smooths of ozone against each of the predictors separately.
Due to correlations in the three predictors, we can see how backfitting had to adjust
the smooth terms to achieve a joint fit.

Although backfitting is an efficient method for solving (7.4), convergence can
be slow if variables are correlated, as in this example. By arranging the iterations
sensibly, we can eliminate most of the problems. Two important strategies are:

• All the linear terms in a semiparametric fit are lumped together and treated
as one term in the iterations.

• Even the terms to be smoothed are separated into a parametric and nonpara
metric part: f;(x;) = f3;x; + g(x;). The linear coefficient is fitted together
with the linear parts of all other terms in the model.

302 CHAPTER 7. GENERALIZED ADDITIVE MODELS

"' "'
C\1 0

' ' 'Q 0
0

0 0

0

";" 0 ";" 0
0 0

0 ";" 0

~ ~

0 50 150 250 5 10 15 20 60 70 80 90
radiation wind temperature

Figure 7.19: The solid curves represent the additive model fit to ozone using three atmo
spheric variables. The points in the figures represent the partial residuals (fitted function
+ overall residuals}. The ~roken curves show the functions obtained by smoothing the
variables separately against ozone.

The reason for this latter strategy is simple; a smoothing spline fit, for example,
can be exactly decomposed into a component that is a projection onto the space of
fits linear in its predictor, and a nonprojection component. The effect is that all the
terms have one or more linear components, fitted jointly by least squares; some also
have a nonparametric component. Splitting nonparametric terms up in this fashion
avoids extended iterations in situations such as that above, where the overall slope
of a function can change when fitted jointly. This strategy is generalized when
fitting locally quadratic fits specified by loO; both the linear and quadratic part is
a projection component and is fit parametrically. Similarly, generalizations occur
for surfaces.

7.4.3 Fitting Generalized Additive Models

The algorithm for fitting a GAM is exactly an2.~ogous to the algorithm for GLMs. For
simplicity, we use the binary logistic regre;.;sion model as an example.

Suppose the current estimate of the additive predictor is 11f1d, and, via the inverse
of the logit link, we get p,f1d = exp(1/f1d)/(1 + exp(1/f1d)). Then we

• compute the working response:

7.4. NUMERICAL AND COMPUTATIONAL DETAILS 303

• obtain Ttfew by fitting a weighted additive model to z;. This simply means
that the smoothers in the backfitting algorithm incorporate the additional
weights, and weighted least squares is used for the linear parts.

These steps are repeated until the relative change in the fitted coefficients and
functions is below a tolerance threshold (say 0.001).

Apart from having intuitive appeal, this algorithm can also be justified on more
rigorous grounds. For example, if an appropriate additive penalized likelihood is
used as the criterion, the Newton-Raphson step for updating all the unknown func
tions simultaneously requires a system identical to 7.4 to be solved, with z instead
of y, and weighted cubic spline smoothers for the Si. For other error models and
link functions, all that changes is the formula for constructing the working response
and the weights, just as in the GLM case.

For additive and generalized additive models we can also compute approximate
dfj for each of the terms, and hence perform crude likelihood-ratio tests in an
informal way. Alternatively, we can use the fitted functions to suggest parametric
transformations, and then use the linear model for inferences.

7 .4.4 Standard Errors and Degrees of Freedom

An entirely parametric GLM is computed by weighted least squares, and the usual
weighted least-squares covariance matrix is the inverse of the estimated Fisher infor
mation matrix for GLMs. This is readily available from the output of summary. glmO.
The standard-error curves for composite functions are constructed in the obvious
way, since they are linear combinations of fitted coefficients that have a covariance
matrix. Even for GLMS that have no scale parameter, we use the scaled chi-squared
statistic to estimate a scale parameter and use it in the calculations. This gives
protection against overdispersion, and. typically results in conservative standard
errors.

When smooth terms are present in the model, the procedure is far more com
plicated. An exact analysis requires the computation of an operator matrix Gi for
each smooth term BJ, such that Bj = Giz. Here z is the working response from the
last IRLS fit, which one can argue has an asymptotic Gaussian distribution. Then
the covariance matrix of the fitted term is given by Gicov(z)G}, and is estimated

by ¢ciw- 1 G~ where W is diagonal in the final IRLS weights. Since all of this
is extremely expensive to obtain in general, and is asymptotic anyway, we have
resorted to some even cruder approximations.

First, we approximate ¢ciw-1G} by ¢ciw- 1• This is exact for weighted pro
jections, is usually conservative for nonprojection smoothers in that it is larger, and

304 CHAPTER 7. GENERALIZED ADDITIVE MODELS

can also be justified on Bayesian grounds for smoothing splines. One can orthogo
nally decompose Gi further into Gi =Hi+ N;, where H; produces the parametric
part of Bj, and Ni the nonparametric part. Although we do have Hi, we do not have
the latter, and so approximate it by Sj, the operator for the nonprojection part
of the smoother itself. The diagonal of Si is all we need to compute the diagonal
of Sj, and the former is usually available as part of the output of the smoothing
operation.

Thus, in summary, our standard-error curves for nonparametric curve estimates
are derived from the sum of 2 variance curves. The variance curve for the parametric
part of the function reflects the joint covariance behavior, whereas the variance for
the nonparametric part reflects only marginal information.

The procedure outlined above is admittedly ad hoc. Exact methods for com
puting the operators Gi exist, but the least expensive version we know takes O(n2)

operations (with a large constant) to compute. The approximations described here
have shown empirical success on a number of examples, as long as the pairwise
correlations among the predictors are not too high. In practice one can always ap
proximate the non parametric term parametrically (and even conservatively) using
functions such as bsO or nsO, and use the inexpensive parametric standard-error
curves.

The dfi in the case of nonparametric terms are computed as tr(Si)- 1; see the
references for more details.

7.4.5 Implementation Details

In this section, we describe some of the implementational details. The style will
tend to be somewhat narrative since the details can get complicated, and interested
programmers will want to have a listing of some of the examples alongside. ·

First a general overview. The beginning of gam() is almost identical to that of
glmO or even lm(). A slight difference is that when the terms() function is invoked,
the vector gam.slist is passed as a specials., argument. At present, gam.slist
consists of the three character strings "s", "lo", and "random", and all that happens
is that terms 0 makes a note of which terms are special in this way.

As we have seen, terms in sO and loO evaluate to vectors or matrices in the
model frame, with certain attributes. In fact, whatever they evaluate to is included
in the model matrix. So smoothing splines evaluate to their argument vector since
this will comprise its projection part. A locally quadratic bivariate term specified
by lo(C, E, 1/4, degree = 2), on the other hand, will evaluate to a five-column
matrix consisting of terms of degree 2 or less. This is its projection part. All in
all, a model matrix is constructed that one way or another represents all the terms
in the model. The backfitting algorithms then cycle around, performing one large
least-squares projection step, then one smooth for each of the nonparametric terms
(to update the nonprojection parts). This is repeated until the relative change in

7.4. NUMERJCAL AND COMPUTATIONAL DETAILS 305

the functions is below the threshold bf .eps sul•l•lied by default by the function
gam. control() .

. The m~t general backfitting function is called ~ll.v~~mo. It performs the itera
tiOns descnbed above, and computes each smooth I'Y simply evaluating the "call"
attri.bute of the corresponding term in the model lr llme. Rec:all the example from
Sect10n 7.3.4:

gam.s(data[["s(pred)"]), z, v, spar • 0, df • 4)

This works because data is the local name in all.va.mO for the mo<l.,l frmne and z is
the local name for the partial residual to be smoothed, and so on. B.v hiHis~ing that
the result of the evaluation of this call have a component labeled reatduu, the term
can be updated. In addition, the smoothers return a component c&.ll•!•l var. This
is optional; if users provide their own smooth~rs witho.ut var, ~hey will Himply see
less accurate standard-error curves. As descnbed earher, var IS approxiruat.ed by
diag(SjW-1), where Sj is the (weighted) smoother operator with the (w•:ighted)
projection part removed. The component nl.df is the approximate d~grees of free
dom used in computing this nonprojection part of the smoother; nl.df is giw!n by
tr(Sj).

This general backfitter all.va.mO is quite modular but computationally rather
inefficient. Part of the reason why is that the smoothers gam. sO and ga.m.loO are
both S functions (interfaced to FORTRAN), and in order to retain their simplicity
and modularity we cannot take advantage of the fact that all that is changing during
backfitting is the response.

If all the smooth terms in the model use the same smoother, say s 0 , a vector
ga.m.vlist is consulted (currently the same as gam.slist). Since "s" is present, the
implication is that a specialized, more efficient backfitter s.va.mO exists and should
be used. Some of the speedups are achieved in this case by:

• precomputing all the information needed for sorting and condensing the pre
dictors prior to smoothing;

• performing the least-squares part and all the smoothing iterations within one
FORTRAN subroutine

In fact, little of the work done by s. va.mO is done in S! Users wishing to hard wire
their own backfitting algorithms in this fashion will have to print out s.va.mO or
lo. va.m () for further details.

In addition to the (inner) backfitting iterations, gam() performs the (outer) local
scoring iterations; the backfitter is thus called repeatedly.

The local-scoring update step and test for convergence is organized in a single
expression that is evaluated at each iteration. This expression can even be evaluated
from within the FORTRAN subroutine itself, so in fact s. va.mO and lo. va.mO are

306 CHAPTER 7. GENERALIZED ADDITIVE MODELS

invoked only once, but initiate a back-chat to gam() to get their updated response
and weights.

The anova table at the end of the summary produced by summary.gam() re
ports a type of score test for the effect of each nonparametric function. For each
nonparametric term in the model, the nonlinear component is set to zero and the
parametric part of the model is refit by weighted least squares, holding the other
nonlinear components fixed. There are two levels of approximation here:

• To refit the model completely, one should also adjust the nonlinear components
of the other smooth terms; we only adjust their linear components, and hold
the nonlinear parts fixed.

• For generalized additive models, we are making the typical score test approxi
mation by using the weights and working response from the final local scoring
iteration.

The change in the Pearson chi-squared statistic is recorded for each term so dropped.
These computations can be done simultaneously for all the smooth terms in an
efficient way, using the QR decomposition of the final IRLS iteration. Readers
interested in further details can print out the short function gam. nlchisq 0 to see
the details.

Finally, a few additional comments on predict .gam(). In order to produce fitted
values at new observations, prAdict.gamO needs to produce both the parametric
components and the nonparametric components of the predictions. For the para
metric components, it simply needs to refit the coefficients using the derived model
matrix and the final IRLS information in the fitted gam object, as outlined in Sec
tion 7.3.3. Rather than using the working response derivable from the gam object,
the values in the linear predictor are used instead. For gam objects, this is the
additive predictor less the nonparametric smooth terms. For 1m objects the linear
predictor is the vector of fitted values. When the model is refit to this response
(using the final working weights), the residuals are expected to be zero. The situa
tions where thiK is not the case are a subset of the cases where "safe" prediction is
necessary, and 'L warning message is issued reporting the percentage difference.

To get the llrmparametric components, a bit of trickery is used. We modify the
"call" attribut" of each smooth term in the model frame to include the argument
"xevalz:mev". The smoothers gam.loO and gam.s() both respond differently if
they have an xeval argument; instead of performing the smooth, and returning the
residuals, varia111:es, etc., they return the fit evaluated at the new predictor points
xnev. The predio:;t.() method simply cycles through each smooth term and sets up
the local variableA appropriately.

7.4. NUMERlCAL AND COMPUTATIONAL DETAILS 307

Bibliographic Notes

The topic of nonparametric smoothing and additive models has a long history, al
though most of the material treated here has appeared in the last 15 years. Two
popular smoothers are implemented in this chapter. One is the locally weighted
polynomial smoother of Cleveland (1979) and Cleveland and Devlin (1988). This is
the loess() smoother of Chapter 8, referred to as lo() in GAM formulas. The
lovess() smoother in ~ is the one-dimensional predecessor of loess(). The
other smoother implemented here is the cubic smoothing spline, first introduced
by Whittaker (1923). The monograph by Wahba {1990) is a comprehensive ac
count of the theory and applications of smoothing splines. The s () function in
GAM formulas refers to a cubic smoothing spline term, and the stand-alone function
smooth. spline() is also provided. Our underlying FORTRAN code is a modified ver
sion of the subroutine BART written by Finbarr O'Sullivan, known to some as the
S function bart() .

The ACE algorithm of Breiman and Friedman (1985) was the first fully non para
metric proposal for fitting additive models, allowing a non parametric transformation
of the response as well as the predictors. The baclditting algorithm was proposed
by Friedman and Stuetzle (1981) in the context of projection pursuit regression,
and its convergence properties were studied by Breiman and Friedman (1985) and
Buja et al. {1989).

A full historic account of generalized additive models with ample references can
be found in the research monograph by Hastie and Tibshirani (1990). The style
of working with additive models as an extension of linear models, fixing smooth
ing parameters via degrees of freedom, and using approximate chi-squared tests to
evaluate smooth terms was developed in this last reference.

Chapter 8

Local Regression Models

WilliamS. Cleveland
Eric Grosse
William M. Shyu

Local regression models provide methods for fitting regression functions, or regres
slon surfaces, to data. Two examples are shown in Figures 8.1 and 8.2 In the first
figure, there is one predictor, and the fitted function is the curve. In the second
figure, there are two predictors, and the fitted surface is shown by a contour plot.
These two examples will be explained in detail later.

Consider any point x in the space of the predictors. One basic specification
in a local regression model is that there is a neighborhood containing x in which
the regression surface is well approximated by a function from a specific parametric
class; for the S implementation described in this chapter, there will be two classes
polynomials of degree 1 or 2. The specifications of local regression models lead
to methods of fitting that consist of smoothing the response as a function of the
predictors; thus the fitting methods are nonparametric regression procedures.

Recall that in Chapters 4 to 6, responses are modeled as parametric functions
of the predictors. Then, in Chapter 7, generalized additive models are introduced
that lead to an element of nonparametric fitting. For such an additive model, a
regression surface of two or more predictors is specified to be well approximated
by additive functions of the predictors. In other words, the specification rules out
certain interactions or rules out interactions altogether. But for local regression
models, there is no explicit specification that rules out interactions. If a regression
surface is additive, then the methods of Chapter 7 are appropriate since, in such a.

309

310 CHAPTER 8. LOCAL REGRESSION MODELS

0.7 0.8 0.9 1.0 1.1 1.2

E

Figure 8.1: Local regression model with one predictor-fitted curve.

case, they provide more parsimonious descriptions of the surface and have better
estimation properties. However, if additive fits are unlikely to result in a good
approximation of the surface, the methods in this chapter are appropriate; the
surface in Figure 8.2 is one example.

In Section 8.1.1, local regression models are defined; that is, the various specifi
cations are described. The specifications of a particular model determine the details
of the method used to fit the model; the fitting method, which is called loess, is
described in Section 8.1.2.

In Section 8.2, we discuss the S functions and objects for local regression models
by working through a number of examples. Our goal is to show how the data
are analyzed in practice using S. This means we must discuss diagnostic methods.
The specifications of a local regression model are impositions on the data, and these
impositions need to be thoroughly checked if we are to have estimates and inferences
with a demonstrated validity. Thus, diagnostic checking is an essential part of the
practice of fitting local regression models, and, as with all model building, omitting
it results in demonstrated validity being replaced simply by hope.

311

EW

Figure 8.2: Local regression model with two predictors-contours of fitted surface.

312 CHAPTER B. LOCAL REGRESSION MODELS

8.1 Statistical Models and Fitting

8.1.1 Definition of Local Regression Models

Suppose, for each i from 1 to n, that y; is a measurement of the response and x; is
a corresponding vector of measurements of p predictors. In a local regression model
the response and predictors are related by

Y; = g(x;) + £;,

where g is the regression surface and the £; are random errors. If x is any point
in the space of the predictors, g(x) is the value of the surface at x; for example,
g(x;) is the expected value of y;. In the fitting of local regression models we specify
properties of the regression surface and the errors; that is, we make assumptions
about them. We will now discuss the specifications that are allowable using the S
functions and objects that are described in Section 8.2.

Specification of the Errors

In all cases, we suppose that the £; are independent random variables with mean
0. One of two families of probability distributions can be specified. The first is
the Gaussian. The second is symmetric distributions, which allow for the common
situation where the errors have a distribution with tails that are stretched out
compared with the normal (leptokurtosi$), and which lead us to robust methods of
estimation.

We can specify properties of the variances of the £; in one of two ways. The
first is simply that they are a constant, u 2 • The second is that a;£; has constant
variance u2 , where the a priori weights, a;, are positive and known.

Specification of the Surface

Suppose, first, that all predictors are numeric; that is, none are factor variables. For
each x in the space of the predictors, we suppose that in a certain neighborhood
of x, the regression surface is well approximated by a function from a parametric
class. The overall sizes of the neighborhoods are specified by a parameter, a, that is
defined in Section 8.1.2. Size, of course, implies a metric, and we will use Euclidean
distance. For two or more numeric predictors, the shapes of the neighborhoods are
specified by deciding whether to normalize the scales of the numeric predictors. We
will elaborate on this later.

We will allow the specification of one of two general classes of parametric func
tions: linear and quadratic polynomials. For example, suppose there are two pre
dictors, u and v. If we specify linear, the class consists of three monomials: a
constant, u, and v. If we specify quadratic, the class is made up of five monomials:

8.1. STATISTICAL MODELS AND FITTING 313

a constant, u, v, uv, u2, and v2 • We will let>.. be a parameter that describes the
specification; if>.. = 1, the specificat.ion is linear, and if>.. = 2, the specification is
quadratic.

Suppose >.. = 2 and there are two or more numeric predictors. We can specify
that any of the monomials that is a square be dropped from the class. For example,
suppose again that the predictors are u and v. If we drop the square for u, then
the class has four monomials: a constant, u, v, uv, and v2 .

If there are two or more numeric predictors we can specify that the surface be
conditionally parametric in any proper subset of the numeric predictors; this means
that given the values of the predictors not in the subset, t.he surface is a member of a
parametric class as a function of the subset. If we change the conditioning, or given
values, the surface is still a function in the same class, although the parameters
might change. For example, suppose tqe predictors are u and v. Suppose >.. = 1,
and we specify the surface to be conditionally parametric in u. Then given v, the
surface is linear in u; this means the general form of the surface is {30 (v) + {31(v)u.
Suppose >.. = 2, and we specify the surface to be conditionally parametric in u.
Then given v, the surface is quadratic in u; the general form of the surface in this
case is f3o(v) + {31(v)u + f32(v)u2 • It makes sense to specify a regression surface to be
conditionally parametric in one or more numeric variables if exploration of the data
or a priori information suggests that the surface is globally a very smooth function
of the variables. Making such a specification when it is valid can result in a more
parsimonious description of the surface.

Suppose now that there are factor predictors. A combined factor is formed by
taking all combinations of levels of the predictors. For example, suppose there are
two factor predictors with levels male and female for the first and black and white
for the second. Then the combined factor has four levels: black female, black male,
white female, and white male. In such a case, the above specifications for numeric
predictors apply separately for each level of the combined factor; that is, we divide
the data up into subsets according to the levels of the combined factor, and the
specifications of the surface as a function of the numeric variables hold separately
for each subset.

Summary of the Choices

Thus, the fitting of local regression models involves making the following choices
about the specification of properties of the errors and the regression surface:

• Gaussian or symmetric distribution;

• constant variance or a priori weights;

• locally linear or locally quadratic in numeric predictors;

• neighborhood size;

314 CHAPTER B. LOCAL REGRESSION MODELS

• normalization of the scales;

• dropping squares;

• conditionally parametric subset.

8.1.2 Loess: Fitting Local Regression Models

The method we will use to fit local regression models is called loess, which is short
for local regression, and was chosen as the name since a loess is a deposit of fine
clay or silt along a river valley, and thus is a surface of sorts. The word comes from
the German lOss, and is pronounced lois.

Identically Distributed, Gaussian Errors: One Numeric Pre
dictor

Let's begin with the classical case of Gaussian errors with constant variance q 2•

Suppose there is just one numeric predictor. Let x be any value along the scale of
measurement of the variable. The loess fitting procedure is a numerical algorithm
that prescribes how g(x), the estimate of gat a specific value of x, is computed.

Let Ai(x) = lx- xi I, let A(i)(x) be the values of these distances ordered from
smallest to largest, and let

T(u; t) = { 0(1- (u/t)3) 3 , for 0 S u < t
for u ~ t

be the tricube weight function.
The smoothness of the loess fit depends on the specification of the neighborhood

parameter, a > 0. As a increases, g becomes smoother. Suppose a S 1. Let q be
equal to an truncated to an integer. We define a weight for (xi, Yi) by

wi(x) = T(Ai(x);A(q)(x)).

For a > 1, the Wi(x) are defined in the same manner, but A(q)(x) is replaced by
A(n)(x)a. The wi(x), which we will call the neighborhood weights, decrease or stay
constant as Xi increases in distance from x.

If we have specified the surface to be locally well approximated by a linear
polynomial-that is, if A is 1- then a linear polynomial is fitted to Yi using weighted
least squares with the weights 111i(x); the value of this fitted polynomial at xis g(x).
If A is 2, a quadratic is fitted. Note that as a -> oo, g(x) tends to a linear surface
for locally linear fitting or a quudratic surface for locally quadratic fitting.

8.1. STATISTICAL MODELS AND FITTING 315

Identically Distributed, Gaussian Errors: Two or More Nu
meric Predictors

We continue to suppose the errors are identically distributed and Gaussian. The
one additional issue that needs to be addressed for p numeric predictors with p >
1 is the notion of distance in the space of the predictors. Suppose x is a value in
the space. To define neighborhood weights we need to define the distance, A;(x),
from x to x;, the ith observation of the predictors. We will use Euclidean distance,
but the x; do not have to be the raw measurements. Typically, it makes sense to
take x; to be the raw measurements normalized in some way. We will normalize
the predictors by dividing them by their 10% trimmed sample standard deviation,
and call this the standard normalization. There are, however, situations where we
might choose not to normalize-for example, if the predictors represent position in
space.

Armed with the A;(x), the loess fitting method for p > 1 is just an obvious
generalization of the one-predictor method. For a < 1, neighborhood weights,
w;(x), are defined using the same formulas used for one predictor; thus, if.>.= 1, we
fit a linear polynomial in the predictors using weighted least squares, or, if.>. = 2,
we fit a quadratic. For a > 1, the w;(x) are defined by the same formula except
that A(q)(x) is replaced by A(n)(x)a11P.

Dropping Squares and Conditionally Parametric Fitting for
Two or More Predictors

Suppose .>. has been specified to be 2. Suppose, in addition, that we have specified
the squares of certain predictors to be dropped. Then those monomials are not used
in the local fitting.

Suppose a proper subset of the predictors has been specified to be conditionally
parametric. Then we simply ignore these predictors in computing the Euclidean
distances that are used in the definition of the neighborhood weights, w;(x). It is
an easy exercise to show that this results in a conditionally parametric fit ..

Symmetric Errors and Robust Fitting

Suppose the E:; have been specified to have a symmetric distribution. Then we
modify the loess fitting procedures to produce a robust estimate; the estimate is
not adversely affected if the errors have a long-tailed distribution, but it has high
efficiency in the Gaussian case.

The loess robust estimate begins with the Gaussian-error estimate, g(x). Then
the residuals

316

are computed. Let

CHAPTER 8. LOCAL REGRESSION MODELS

for 0 :5 lui < b
for lui ~ b

be the bisquare weight function. Let

m = median(! €; I)

be the median absolute residual. The robustness weights are

r; = B(€;; 6m).

An updated estimate, g(x), is·computed using the local fitting method, but with
the neighborhood weights, w;(x), replaced by r;w;(x); thus, points (x;, y;) with
large residuals receive reduced weight. Then new residuals are computed and the
procedure is repeated. The final robust estimate is the ~esult of updating the initial
estimate several times.

Factor Predictors

We can include one or more factor predictors in the fitting by dividing the data
into subsets, one for each combination of levels of the factor predictors, and then
fitting loess surfaces to Yi as a function of the numeric predictors for each subset.
This allows for very general interactions between the numeric and factor predictors
but, of course, requires that there be a sufficient number of measurements of the
numeric predictors for each combination of the levels of the factor predictors. If
we have specified the errors to be Gaussian, the fits for the subsets are not related
in any way; for example, neighborhoods are determined separately for each subset.
However, if the error distribution has been specified to be symmetric, the various
fits are pooled in forming the median absolute residual, m.

Errors with Unequal Scales

Suppose we specify that ai£i have constant variance u 2 . Then, for the Gaussian
error estimate, the neighborhood weight, w;(x), is replaced by a;w;(x), and for the
robust estimate, the weight r;wi(x) is replaced by a;r;w;(x).

8.2 S Functions and Objects

This section describes the S functions for local regression modeling. In each subsec
tion we analyze a dataset, illustrating how S functions are used to explore the data,
fit models, and then carry out graphical diagnostics to check the specifications of

8.2. S FUNCTIONS AND OBJECTS 317

the fitted models. Our goal is to show how the dala are aJuLlyzcd in practice using S,
and how each dataset presents a different challenge. We bt~Kin, however, by rapidly
running through the S functions for fitting and inference t.o give an overview; the
reader need not understand details at this point.

The basic modeling function is loess(), which returns an ohject of class "loess".
Let's apply it to some concocted data in the data frame madeup, which has two
numeric predictors:

> names(madeup)
[1] "response" "one"
> attach(madeup)

"two"

We will fit a Gaussian model with the smoothing parameter, a, equal to 0.8 and
the degree, A, of the locally-fitted polynomial equal to 1:

> madeup.m <- loess(response ~ one * two, span = 0.5, degree = 2)
> madeup.m
Call:
loess(formula z response ~ one • two, span = 0.5, degree = 2)

Number of Observations: 100
Equivalent Number of Parameters: 14.9
Residual Standard Error: 0. 9693
Multiple R-squared: 0.76
Residuals:

min 1st Q median 3rd Q max
-2.289 -0.5064 0.1243 0.7359 2.357

Notice that the printing shows the equivalent number of parameters, p.; this measure
of the amount of smoothing, which is defined in Section 8.4, is analogous to the
number of parameters in a parametric fit. Also shown is an estimate of u, the
standard error of the residuals. Let's update the fit by dropping the square of the
first predictor and making it conditionally parametric:

> madeup.new <- update(madeup.m, drop.square = "one",
+ parametric = "one")
> madeup.new
Call:
loess(formula a response ~ one • two, span = 0.8, degree = 2,

parametric= "one", drop.square ="one")

Number of Observations: 100
Equivalent Number of Parameters: 6.9
Residual Standard Error: 1.48
Multiple R-squared: 0.34
Residuals:

318 CHAPTER B. LOCAL REGRESSION MODELS

min 1st Q median 3rd Q max
-4.758 -0.6449 0.03682 0.9094 2.589

Until now we have been fitting Gaussian models because the argument that con
trols this, family, defaults to "gaussian". Now let us fit a model with the error
distribution specified to be symmetric:

> madeup.nev <- update(madeup.nev, family • "symmetric")
> madeup.nev
Call:
loess(formula = response ~ one • tvo, span = 0.8, degree 2 2,

parametric = "one", drop.square = "one", family = "symmetric")

Number of Observations: 100
Equivalent Number of Parameters: 6.9
Residual Scale Estimate: 1.089
Residuals:

min 1st Q median 3rd Q max
-7.472 -0.726 -0.1287 0.6342 2.594

Also, we have been using the standard normalization to normalize the scales of the
two predictors; this is controlled by the argument normalize, whose default is TRUE.

Let's now remove the normalization:

> madeup.nev <- update(madeup.nev, normalize = FALSE)

The function specs shows all of the aspects of the fit, both the specifications of
the local regression model and the computational options:

> specs(madeup.m)

DATA
formula:
model:

ERRORS
family:
weights:

SURFACE
span:
degree:
normalize:
parametric:
drop. square:
enp:

COMPUTING
surface:
statistics:

response ~ one • tvo
FALSE

gaussian

0.8
2
TRUE

9.7

interpolate
approximate

8.2. S FUNCTIONS AND OBJECTS

cell:
iterations:
method:

0.2
4
loess

319

In the above S expressions, we utilized the generic functions print 0 and update 0.
The generic function predict() can be used to evaluate a fitted surface at a set of
points in the space of the predictors:

> range(one)
[1) -2.809549 3.451000
> range(two)
[1] -1.885139 1.859246
> newdata <- data.frame(one = c(-2.5, 0, 2.5,), two= rep(O, 3))
> newdata

one two
1 -2.5 0
2 0.0 0
3 2.5 0
> predict(madeup.m, newdata)
[1] 8.15678 14.49359 14.85414

In this case, the second argument is a data frame, each of whose rows is a point in
the space of the predictors, and the result is a vector of length equal to the number of
rows. Its ith element is the evaluation at the ith row of newdata. Suppose, however,
that the points over which we want to do the evaluation form a rectangular grid in
the space of the predictors. For example, let us create the following:

> marginal.grid <- list(one a c(-2.5, 0, 2.5), two= c(-1.5, 0, 1.5))
> newdata <- expand.grid(marginal.grid)
> newdata

one two
1 -2.5 -1.5
2 0.0 -1.5
3 2.5 -1.5
4 -2.5 0.0
5 0.0 0.0
6 2.5 0.0
7 -2.5 1.5
8 0.0 1.5
9 2.5 1.5

The two components of marginal. grid are marginal grid points. The function
e:tpand.grid{) expands this marginal information into a data frame whose rows
are the coordinates of the grid points. Let's see what happens when this data frame
is given to predict():

320 CHAPTER B. LOCAL REGRESSION MODELs

> predict(madeup.m, nevdata)
tvo=-1.5 two~ 0.0 two= 1.5

one•-2.5 5.072129 8.15678 -1.207997
one• 0.0 14.111210 14.49359 14.112857
one• 2.5 1.951178 14.85414 3.042429

Thus, in this case, predict() produces an array shaped according to the marginal
grid values.

The function predict() can also be used to compute information about standard
errors:

> nevdata <- data.frame(one = c(-.5, .5), two= rep(0,2))
> nevdata

one two
1 -0.5 0
2 0.5 0
> madeup.se <- predict(madeup.m, nevdata, se.fit =TRUE)
> madeup.se
$fit:
[1) 14.49181 14.38973

$se.fit:
[1] 0.2767463 0.2780086

$residual.scale:
[1) 0.9693021

$df:
[1) 81.23189

The components are fit, the evaluated surface at nevdata; residual.scale, the
estimate of the residual scale; df, the degrees of freedom of the t distribution upon
which the confidence intervals are based; and se.fit, estimates of the standard
errors of the fit. Now we can use pointwise 0 to compute upper and lower confidence
intervals:

> madeup.ci <- pointvise(madeup.se, coverage = .99)
> madeup.ci
$upper:
[1] 15.22179 15.12303

$fit:
[1] 14.49181 14.38973

$lover:
[1] 13.76183 13.65642

8.2. S FUNCTIONS AND OBJECTS 321

The computations of predict() that produce the coefficient." in the m1 11 ponent
8e.fit are much more costly than those that produce fit, so the number olpoints
at which standard errors are computed should be modest ccnnpared to l.hu~~e at
which we do evaluations; this is not a limitation for the practi~:o• of local ruP.••·HHion
m.odeling since it makes statistical and graphical sense to co111pute intc~rvul11 11t a
limited set of points.

In our first model, madeup.m, we took span to be 1/2. Can we incre<lll•• it. and
still get a good fit? The best way to check is to use graphical diagnostics, J.ut. the
analysis of variance can also provide some guidance:

> anova(update(madeup.m, span= .75), madeup.m)
Model 1:
loess(formula =response~ one • two, span= 0.75, degree • 2)
Model 2:
loess(formula = response ~ one • two, span = 0.5, degree = 2)
Analysis of Variance Table

1
2

ENP RSS Test
10.1 93.219
14.9 74.583

1 vs 2
F Value Pr(F)

2.86 0.012145

The results suggest that the increase in span has led to a distortion.
The equivalent number of parameters, p., is related, albeit somewhat roughly, to

the smoothing parameter, a, by the following formula:

where T is the number of monomials used in the local fitting. (If factors are present
in the model, then we must multiply the right side of the above approximation by
the number of levels of the combined factor.) The function loess has an argument
enp that can be used to specify a target value for p.. Then a is computed from this
approximation. The actual equivalent number of parameters, which is what appears
in the printing, will typically be somewhat different, as the following exalllple shows:

> loess(response ~ one • two, enp.target = 15, degree = 2)
Call:
loess(formula = response ~ one • two, enp.target = 15, degree = 2)

Number of Observations: 100
Equivalent Number of Parameters: 15.4
Residual Standard Error: 0. 9.68
Multiple R-squared: 0. 76
Residuals:

min 1st Q median 3rd Q max
-2.292 -0.512 0.09987 0.7253 2.355

322 CHAPTER 8. LOCAL REGRESSION MODELS

For exploratory data analysis and diagnostic checking, we will employ S graph
ics functions extensively, including pairs(), panel. smooth(), scatter. smooth(), and
coplotO, which are discussed in Chapter 3. In addition, the generic function plot{)
takes loess objects and displays the fitted curve or surface. For the remainder of
this chapter, we will set a graphics parameter and stick with it until we exit from
the chapter:

par(pty= "s")

8.2.1 Gas Data

The data frame gas has 22 observations of two variables from an industrial exper
iment that studied exhaust from an experimental one-cylinder engine (Brinkman,
1981). The dependent variable, which will be denoted by NOx, is the concentration
of nitric oxide, NO, plus the concentration of nitrogen dioxide, N02 , normalized
by the amount of work of the engine. The units are fJ9 of NOx per joule. The
predictor is the equivalence ratio, E, at which the engine was run. Eisa measure
of the richness of the air and fuel mixture. Here is a summary:

> summary(gas)
NOx E

Mean 3.546691 0.9249646
Median 3.899600 0.9490000

Min. 0.637000 0.6660000
1st Qu. 2.118000 0.8070000
3rd Qu. 4.937000 1.0210000

Max. 5.344000 1.2240000
NA 's 0 0

Data Exploration

We begin our analysis with an exploration of the data by the scatterplot of NOx
against E in Figure 8.3:

attach(gas)
plot(E, NOx)

The plot shows that there is substantial curvature as a function of E and that the
errors have a small variance compared with the change in the level of NOx·

Fitting a First Model

Because of the substantial curvature in the overall pattern of the data, we will fit a
local regression model using locally quadratic fitting. A reasonable starting point
for the smoothing parameter is a= 2/3. Also, because variation about the overall

8.2. S FUNCTIONS AND OBJECTS 323

0
0 0

0 0

0
0

0
0

0

0
0 0

0

0 (')

z 0

0
0

C\1 0

0
0

0

0

0.7 0.8 0.9 1.0 1.1 1.2

E

Figure 8.3: Gas data-NOx against E.

pattern shows no unusual behavior, we begin with the hope that an assumption of
Gaussian errors is reasonable:

> gas.m <- loess(NOx "' E, span = 2/3, degree • 2)
> gas.m
Call:
loess(formula "' NOx "' E, span • 2/3, degree 2)

Number of Observations: 22
Equivalent Number of Parameters: 6.6
Residual Standard Error: 0.3404
Multiple R-squared: 0.96
Residuals:

min 1st Q median 3rd Q max
-0.6604 -0.213 -0.02611 0.1271 0.6234

The equivalent number of parameters of the fit is 5.5. The estimate of the residual
variance is 0.3404, but we should not take this estimate seriously before carrying

324 CHAPTER 8. LOCAL REGRESSION MODELS

out the diagnostic procedures to come.

Evaluation and Plotting the Curve

Having fitted a model to gas, we can compute g(x) at values of the predictor, E:

> gas.fit.x <- c(min(E), median(E), max(E))
> gas.fit.x
[1] 1.1964144 6. 0687470 0. 6236823
> predict(gas.m, gas.fit.x)
[1] 1.1964144 6.0687470 0.6236823

We could compute the fitted values, Yi = g(xi), by:

predict(gas.m, E)

However they, as well as the residuals, Yi - y;, are stored on the loess object and
can be accessed by the expressions:

fitted(gas.m)
residuals(gas.m)

If our goal is to evaluate the curve just to plot it, we can use plot() to both
evaluate and graph: .

plot(gas.m)

The result is shown in Figure 8.4. For one predictor, the plot() method .for "loess"
objects carries out an evaluation at equally spaced points from the minimum to the
maximum value of the predictor, and makes the plot. An argument, evaluation,
specifies the number of points at which the evaluation is carried out; the default is
50, so in Figure 8.4 the curve is evaluated at 50 equally spaced points and graphed
by connecting successive plotting locations by line segments.

Diagnostic Checking

We turn now to diagnostic checking to accept or reject the specifications of the
model we have fitted. To check the properties of g(x) that are specified by the
choice of a = 2/3 and >. = 2, we plot the residuals, ii, against E to look for lack of
fit:

scatter.smooth(E, residuals(gas.m), span~ 1, degree= 1)
abline(h=O)

The result is shown in Figure 8.5. The function scatter.smoothO makes a scatter
plot and adds a smooth curve using loess fitting. No effect appears to be present
in the diagnostic plot, so a = 2/3 appears to have introduced no lack of fit. But is
there surplus of fit, that is, can we get away with a larger a? To check this, we fit
a new loess model with a= 1:

8.2. S FUNCTIONS AND OBJECTS 325

0.7 0.8 0.9 1.0 1.1 1.2

E

Figure 8.4: Gas data-local regression fit.

gas.m.null <- update(gas.m, span ~ 1)

The residual plot is shown in Figure 8.6. There is a strong signal in the residuals-a
dependence of the level of the ii onE, so a= 1 is too large, which suggests that
a = 2/3 is about as large as we can get away with. Thus, we have verified our
specification of the form of g(x) since there appears to be no surplus or Jack of fit.

Next, we check the distributional specifications for the error terms. To see if
the scale of the residuals depends on the level of the surface, we plot JjiJ against
the fitted values, Yi· Taking the square root tends to symmetrize the distribution
of the absolute residuals. For our current example, with its small sample size of 22,
we would not expect this method to reliably detect anything but a radical change
in scale, but for illustrative purposes we show the plot in Figure 8.7:

scatter.smooth(fitted(gas.m), sqrt(abs(residuals(gas.m))), span= 1,
degree = 1)

The graph does not show any convincing dependence. To check for dependence
of the scale on E, a similar graph was made-but against E instead of the fitted

326 CHAPTER B. LOCAL REGRESSION MODELS

"' 0
0

~
0 0

e N
0

~ 0 0

s
0 0 ., q 0 ... Cii , ,., .. , ... 0"

:::J 0 0
:2 0 0 .,

0 0 e N

9 0

0 0

~ 0 0 9

"! 0

9
0.7 0.8 0.9 1.0 1.1 1.2

E

Figure 8.5: Residuals against E with a scatterplot smoothing-first fit to gas.

values-and, again, no convincing dependence was found. To check the assumption
of a Gaussian distribution of the errors, we will make a Gaussian probability plot
of the residuals. In order to judge the straightness of the points on such plots, we
will write a little function that draws a line through the lower and upper quartiles:

> qqline
function(x)
{

data.quartiles <- quantile(x, c(0.26, 0.76))
norm.quartiles <- qnorm(c(0.26, 0.76))
b <- (data.quartiles[2] - data.quartiles[l])/

(norm.quartiles[2] - norm.quartiles[l])
a <- data.quartiles[l] - norm.quartiles[l] * b
abline(a, b)

Now we make the plot:

qqnorm(residuals(gas.m))

8.2. S FUNCTIONS AND OBJECTS 327

0

0 '0
I()

0 ci

0
3 0 c e 0

ui 0
0

"' ci
.9 0 .,
01
::J 0 :2 ., 0

! I() 0
0

9 0
0

0 0

C! 0

";"

0.7 0.8 0.9 1.0 1.1 1.2

E

Figure 8.6: Residuals against E with a scatterplot smoothing-second fit to gas.

qqline(residuals(gas.m))

The result, shown in Figure 8.8, suggests that the Gaussian specification is justified.

Inference

gas .m has passed the diagnostic tests, which allows us to carry out statistical in
ferences with an assurance of validity. First, we compute 99% pointwise confidence
intervals for g(x) at seven values of E:

> gas.limits.x <- seq(min(E), max(E), length= 7)
> gas.se <- predict(gas.m, gas.limits.x, se.fit • TRUE)
> pointwise(gas.se)
$upper:
[1] 1.986621 4.109807 6.480230 6.666610 3.527610 1.710617
(7] 1. 472049

328 CHAPTER 8. LOCAL REGRESSION MODELS

(D

0 0

0

0 0 0
0

"E <D 0
.; 0

"' 0
.9 0 .,
ftj
:::> ..,

"iii
"<1: ~

Cii" 0

.s:J 0 0 0

~ .,.
0 .,

0

C'f <o
0

0
0 0

0

2 3 4 5

fitted(gas.m)

Figure 8. 7: Square-root absolute residuals against fitted values with a scatterplot smoothing.

$fit:
[1] 1.1964144 3.6794968 6.0567086 5.1362603 3.1436568 1.1969317
[7] 0.6236823

$lower:
[1] 0.4072080 3.2491866 4.6311876 4.7040106 2.7597037 0.6832464
[7] -0.4246841

The function plot 0, which was earlier used to plot the curve, will compute and
add confidence limits to the plot, as shown in Figure 8.9:

plot(gas.m, confidence = 7)

The limits are added at confidence equally spaced points from the minimum to
the maximum of the values of the predictor. Thus, the limits that are plotted in
Figure 8.9 are the same as those we just computed.

We know from the diagnostic checking that gas.m.null does not fit the data.
But for purposes of illustration we will carry out a statistical comparison of the two
models:

: 8.2. S FUNCTIONS AND OBJECTS

~

"':
0

'E C'f
ui

0

"' .!!!
"' 0 ftj d :I

~
~

~
"':
9

"!
9

-2

0

0

0

0

-1

0

0

0

0

0 0
0

Quantiles of Standard Normal

329

0

2

Figure 8.8: Gaussian quantile plot of residuals with line passing through lower and upper
quartiles.

> gas.m
Call:
loess(formula = NOx ~ E, span = 2/3, degree ~ 2)

Number of Observations: 22
Equivalent-Number of Parameters: 5.5
Residual Standard Error: 0.3404
Multiple R-squared: 0.96
Residuals:

min 1st Q median 3rd Q max
-0.5604 -0.213 -0.02511 0.1271 0.6234

> gas.m.null
Call:
loess(formula • NOx ~ E, span • 1, degree = 2)

Number of Observations: 22

330 CHAPTER 8. LOCAL REGRESSION MODELS

0 z

0.7 0.8 0.9 1.0 1.1 1.2

E

Figure 8.9: Gas data-local regression fit with 99% pointwise confidence intervals.

Equivalent Number of Parameters: 3.5
Residual Standard Error: 0.5197
Multiple R-squared: 0.9
Residuals:

min 1st Q median 3rd Q max
-0.9644 -0.4536 -0.1019 0.2914 0.8133

We can see that the increase in a for gas.m.null results in a drop in the equivalent
number of parameters, buts, the estimate of u, increases by a factor of about 1.5.
This is to be expected in view of the lack of fit. We can test gas .m against gas .m.null
by an analysis of variance:

> anova(gas.m.null, gas.m)
Model 1:
loess(formula g NOx ~ E, span • 1, degree • 2)
Hodel 2:
loess(formula • NOx ~ E, span • 2/3, degree • 2)
Analysis of Variance Table

8.2. S FUNCTIONS AND OBJECTS

1

2

ENP RSS
3.6 4.8489
5.5 1. 7769

Test
1 vs 2

F Value Pr(F)
10.14 0.0008601

The result, as expected, is highly significant.

8.2.2 Ethanol Data

331

The experiment that produced the gas data that we just analyzed was also run with
gasoline replaced by ethanol. There were 88 runs and two predictors: E, as before,
and C, the compression ratio of the engine. The data are in ethanol:

> summary(ethanol)
NOx c E

Mean 1.967376 12.03409 0.9264773
Median 1.764600 12.00000 0.9320000

Min. 0.370000 7.60000 0.6360000
1st Qu. 0.944000 8.26000 0.7616000
3rd Qu. 3.042000 16.00000 1.1116000

Max. 4.028000 18.00000 1.2320000
NA's 0 0 0

These data were analyzed previously in Chapter 7. It was di,scovered that an addi
tive fit did not approximate the surface sufficiently well be~ause of an interaction
between C and E. Thus, we will try fitting a local regression model. To make
typing easier we will attach ethanol:

attach(ethanol)

Exploratory Data Display

An exploratory plot useful for starting an analysis with two or more predictors is
the scatterplot matrix, shown in Figure 8.10:

pairs(ethanol)

We will refer to panels in this and other multipanel displays by column and row,
numbering as we would on a graph; thus, the lower left panel is (1,1) and the one
to the right of it is (2,1). The (3,3) panel of the matrix, a scatterplot of NOx
against E, shows a strong nonlinear dependence with a peak between 0.8 and 1.0.
This makes it immediately clear that we need to use locally quadratic fitting. The
(2,3) panel of the scatterplot matrix shows no apparent dependence of NOx on C;
however, we should not at this point draw any firm conclusion since it is possible
that a dependence is being masked by the strong effect of E. The (1,2) panel,
which graphs the configuration of points in the space of the predictors, shows that

332 CHAPTER 8. LOCAL REGRESSION MODELS

8 10 12 14 16 18

8 0 0 Oo ...
3 8

8 0 8 8 dfP ~ 0
0 0 0 ~ 0

0 0 0 0 0

8 0
0 ~0

0 0 0 0 ~

NOx 0 8 o 0 o
0 e 8 0 6't 0 8 0 0

I
00 J 8 8 8 ~ '0 0 0 0 0

"'
0 0 0 0 0 0

8 0 • 0 0 0 ,_,0
0 g II

0

0 0 K o 0 0D 8§
0 0

OIIDOO 00 .. 0 0 <DO 0 0 0 • oo oo o oaa

oo soomooo 0 0 0 00 00 ... 00 0 0 0 0 CZDO 0

c
<IDO 000 CD 0 OOCI> 0 0 00 00 <»000 000

Gil) 0 0 00 0 0 0 OlD 00 000 0 ao 00 CD 0 000

CD
OO<D 0 OOOCIIP 0 00 0 ..., 0 OODCD ... 00 00 0

~ooa
0 0 0 0 8
8

8 0 0 0
0 II 0 0 0

"! -._
0

8 0 0 8 ~o8o 0 R 0
dboo rPo I 0

0 8
C! -

o!fl'o 8 8 0

0 8
0

E
0 o o o[JO~ 8 0 0 0 • eoo o § 0

oo »q,o o 0 §
0 • 0 0 0

80 0 0
0

0
0 0 0

0 0
0 0

2 3 4 0.6 0.8 1.0 1.2

Figure 8.10: Ethanol data-scatterplot matrix ofNOx, C, and E.

8.2. S FUNCTIONS AND OBJECTS 333

the values of the two variables are nearly uncorrelated and that C takes on one of
five values.

Coplots, introduced in Chapter 3, are an essential tool in fitting local regression
models. Figure 8.11 is a coplot of the ethanol data. Thus, the dependence panels
are the 3 x 3 array, and the given panel is at the top. On each dependence panel,
NOx is graphed against C for those observations whose values of E lie in an interval;
on the panel, we are seeing how NOx depends on C forE held fixed to the interval.
The intervals are shown on the given panel; as we move from left to right through
these intervals, we move from left to right and then bottom to top through the
dependence panels.

To produce Figure 8.11, we begin by selecting the intervals:

E.intervals <- co.intervals(E, number = 9, overlap • 1/4)

The result is a 9 X 2 matrix that gives the left endpoints of the intervals in the left
column and the right endpoints in the right column:

> E. intervals
[,1] [,2]

[1,] 0.536 0.686
[2,] 0.665 0.761
[3,] 0.733 0.811
[4,] 0.808 0.899
[6,] 0.892 1.002
[6,] 0.990 1.046
[7 ,] 1.042 1.125
[8,] 1.116 1.189
[9,] 1.175 1.232

The intervals produced by co. intervals have two properties: approximately the
same number of observations lie in each interval and approximately the same number
of observations lie in two successive intervals. The shared number is specified by
the argument overlap as the fraction of points shared by the successive intervals.
For example, if there are approximately 20 points in each interval and overlap is
1/2, then successive intervals share about 10 points. Now we make the coplot:

coplot(NOx "'C I E, given.values "E.intervals,
panel = function(:.:, y) panel.smooth(x, y, degree = 1, span = 1))

The first argument specifies the response, the predictor, and the given variable by
a formula; in the above expression, the formula is read, "Plot NOx against C, given
E." The argument given. values specifies the conditioning values. For a numeric
given predictor, the values can be a two-column matrix as in the example, or they
can be a vector, in which case each element is both the left and right endpoint of
an interval, so the intervals have length 0. We can also condition on the levels of a

334

0 z

N

CHAPTER B. LOCAL REGRESSION MODELS

Given: E

0.6 0.8 1.0 1.2

=
=

... ' ' '. -.::=::::,~ ... =?' ... =?' ... =?' ... =?' ... :7?

··~·······--···

8 10 12 14 16 18

0
0

0

8 0
0 ~

0 0 0
0 0 0 0 -0 0 8 0 0

0 0 0 0 0 II Q 0
0 0 e

0

0

~ 0

0 0
0 0 0 0

0 8 0 -0

0
0 0

0
0 0 0

0

0 0 ~
0

0 0 0 §
0 0

~0
0

0
0

8 10 12 14 16 18 8 10 12 14 16 18

c

N

Figure 8.11: Ethanol data-coplot ofNOx against C given E with scatterylot smoothingl.

8.2. S FUNCTIONS AND OBJECTS 335

factor; in this case the argument is a character vector. The argument panel takes a
function with two arguments :r: and y that determine the method of plotting on each
dependence panel; :r: refers to the abscissae on a panel andy refers to the ordinates.
The default function is points(). In the above expression, the method of plotting
is to create a scatterplot of the data for each panel and a scatterplot smoothing of
the points. To do this, we used the function panel. smooth, which adds curves using
loess smoothing. We defined a function on the fly that involves panel. smooth; this
trick allows us to pass the arguments span and degree into coplot ().

Figure 8.12 is a coplot of NOx against E given C. Since C takes on five values,
we have simply conditioned on each of these five values:

> C.points <- sort(unique(C))
> coplot(NO:r: ~ E I C, given.values = C.points, columns = 3, rows = 2,
+ panel = function(:r:,y) panel.smooth(x, y, d~gree = 2, span= 2/3))

The arguments columns and rows have been used to specify the dependence panels
to be arranged in an array with three columns and two rows.

What have we learned from these coplots? First, NOx does in fact depend on C;
for low values of E, NOx increases with C, and for medium and high values of E,
NOx is constant as a function of C. Thus, there is an interaction between C and E.
Second, over the range of values of E and C in the dataset, NOx undergoes more
rapid change as a function of E for C held fixed than as a function of C for E held
fixed. Finally, the plots show that the amount of noise-that is, the variance, u2 ,

of the ci-is small compared with the effect due toE, and is moderate compared
with the effect due to C.

Modeling the Ethanol Data

It is quite clear from the exploratory plots that we must specify a locally-quadratic
surface-that is, take -\ to be 2-because of the substantial curvature as a function
of E. Also, we will specify a == 0.5 for the first fit:

> ethanol.first <- loess(NO:r: ~ C • E, span= 1/2, degree = 2)
> ethanol. first
Call:
loess(formula "' NO:r: ~ C • E, span • 1/2, degree = 2)

Number of Observations: 88
Equivalent Number of Parameters: 13
Residual Standard Error: 0.2699
Multiple R-squared: 0.96
Residuals:

min 1st Q median 3rd Q max
-0.6017 -0.263 -0.06219 0.1333 0.43

336

0 z

8 10

CHAPTER 8. LOCAL REGRESSION MODELS

Given: C

12 14 16 18

···········-················--·····-···········---····--·····--····--·····--······-·······················---···--······-·····-·····--···········-·······
I

0.6 0.8 1.0 1.2

..

..,

"'

0.6 0.8 1.0 1.2 0.6 0.8 1.0 1.2

E

Figure 8.12: Ethanol data-coplot ofNOK against E given C with scatterplot smoothings.

8.2. S FUNCTIONS AND OBJECTS 337

We begin a search for lack of fit by plotting the residuals against each of the
predictors:

> scatter.smooth(C, residuals(ethanol.first), span= 1, degree • 2,
+ ylab • "Residuals", main • "First Fit")
> abline(h = 0)
> scatter.smooth(E, residuals(ethanol.first), span= 1, degree • 2,
+ ylab'" "Residuals", main= "First Fit")
> abline(h = 0)

The result is shown in the top two panels of Figure 8.13. Clearly there is lack of fit
in the right panel. Thus, we drop span to 1/4:

> ethanol.m <- update(ethanol.first, span a 1/4)
> ethanol.m
Call:
loess(formula = NOx ~ C • E, span = 1/4, degree • 2)

Number of Observations: 88
Equivalent Number of Parameters: 21.6
Residual Standard Error: 0.1761
Multiple R-squared: 0.98
Residuals:

min 1st Q median 3rd Q max
-0.3976 -0.09133 0.00862 0.06417 0.3382

The residual plots, shown in the bottom two panels of Figure 8.13, look much
better. To enhance the comparison of the two sets of residual plots, the values of
the arguments span and degree of scatter. smooth() are the same for all four panels,
as are the vertical scales.

But we must check further; these marginal residual plots can, of course, hide
local lack of fit in the (C,E) plane. We check this by the coplots in Figures 8.14
and 8.15:

> coplot(residuals(ethanol.m) ~ C I E, given.values = E.intervals,
+ panel = function(x, y)
+ panel.smooth(x, y, degree = 1, span = 1, zero.line = TRUE))
> coplot(residuals(ethanol.m) ~ E I C, given.values = C.points,
+ panel c function(x, y)
+ panel.smooth(x, y, columns = 3, rows = 2, degree = 1, span c 1,
+ zero.line = TRUE))

There is some suspicious behavior on the (1,2) and (2,2) dependence panels of
Figure 8.14; almost all of the residuals are positive. The detected effect is, however,
quite minor, so we will ignore it.

We can check the specifications of the error distribution by the same diagnostic
methods used for the gas data-graph Vi€J against fj;, graph M against C and

338

v
ci

N
ci

-*l 0 ::> ci :2
(I)
q)
a:

v
9

v
ci

N
ci

-*l 0 ::> ci
~
q)
a:

v
9

CHAPTER 8. LOCAL REGRESSION MODELS

0

0
0

0 0
0 0

8 8 8
0 0

~ 0 0 8 0 a I! Q
0

(I)

;;;
::>

~ " tl 8
0 0 e

0
0

8 0

I i 0

0
0 0

0 0

:2
(I)
q)
a:

0 0
0 0

8 10 12 14 16 18

c

0 0
0 0

0 0 0

0 8 0

0

§ 8 ~ a Ill __Q_

g l 0 I &I e
0 0

8 • 0
I!

0

0 0

8 10 12 14 16 18

c

v
ci

N
ci

0
ci

"<I;
9

N
ci

0
ci

0
0

0

0

0.6

0

0.6

0 0
0

0
0
0

0.8

0

0

0.8

0
00

0
0 0

c9"' ooo 0

8
~ 0

0

0 0 0

O(j)~

oo
0

1.0 1.2

E

0

1.0 1.2

E

Figure 8.13: Residuals against E and C with scatterplot smoothings. The top row of plo~ _
corresponds to the first fit, the bottom row to the second fit.

8.2. S FUNCTIONS AND OBJECTS

Given: E

0.6 0.8 1.0. 1.2

= =
··-································~---··-·····-·····-···················---····-

··-···~---····-······-·····--·························-·············-···························-·····

8 10 12 14 16 18

0

N
c:i 0 0

0

0
c:i

0 ol& l~...o.. 0 0 "
~0 0 8 0 u

0 0 I 0
N

9 0
0

~
9

~
0 c: co
~

!.
~
::I
:2

0 0
0 0 0 0 0

0~
0

0
0

8~ 0

8 . I o

0
0 0

0 0

0
0

VI
~

0

0 0
0 0

N
0 0 0 8 0 0 0

~
/8 0 _..

" -o 0

~ ol-
_..

;"--._ 0
0-

N

9 0
0 0

0 0

0

~ 0 0

8 10 12 14 16 18 8 10 12 14 16 18

c

Figure 8.14: Coplot of residuals against C given E with scatterplot smoothings.

339

"' 0

0
c:i

340

"' 0

0
ci

8

0

0

<T

0

0

0

-
0

0.6

0

<boo

0

Oo
0

0.8

0

0
0

0

0

0

'0
0
0

0

0

1.0

CHAPTER B. LOCAL REGRESSION MODELS

Given: C

10 12 14

0.6 0.8 1.0 1.2

0

0

0 0

0 0
_8...

0 0

0 0 0 ;-o..._
6l 0 0

0 0

0

0
0

8 0 ~ ~

0 ~
o<P

1.2

E

16

0

~ 0

dJ 0

0

0.6 0.8 1.0

18

0 ~n
0

0

1.2

"' 0

...
9

Figure 8.15: Coplot of residuals against E given C with scatterplot smoothings.

8.2. S FUNCTIONS AND OBJECTS 341

E, and make a Gaussian probability plot of h This was done, and etha1101.m passed
the tests.

· Plotting the Surface

For loess objects with two predictors, plot() displays the fitted surface l.y coplots:

plot(ethanol.m, given • 16, evaluation= 60, confidence = 7,
coverage • .99)

The result is shown in Figures 8.16 and 8.17. Let g(C,E) be the fitt.•·•l surface.
Consider a single panel of Figure 8.16. E has been set to a specific conditioning
value, E = E*; then g(C, E*) has been evaluated for 50 equally spaced values of
C ranging from the minimum value of C in the data to the maximum, and the
surface values have been graphed on the panel against the equally spaced values of
C. Also, 99% confidence intervals are drawn at seven equally spaced points from
the minimum value of C in the data to the maximum. There are 16 equally spaced
conditioning values of E ranging from the minimum value of E in the data to the
maximum; the given panel in Figure 8.16 shows the 16 values. Similarly, Fignre 8.17
shows the dependence of the fitted surface on E for 16 conditioning values of C.

·Dropping Squares and Conditionally Parametric Surfaces

The coplot in Figure 8.16 show that the ethanol fit has an undesirable property:
the surface as a function of C for fixed E has unconvincing undulations, especially
in the (1,1) dependence panel. Our skepticism comes from two sources. First, in
the coplot of the data in Figure 8.11, NOx appears to be a very smooth function
of C; in fact, the coplot suggests that given E, the dependence is actually linear in
C. Second, the undulations in Figure 8.16 are small compared with the sizes of the
confidence intervals.

As we saw from the diagnostic checking, if we increase o and thereby get more
smoothness as a function of C, we introduce lack of fit. Instead, we will cut back on
the variation of the fit as a function of C by dropping C2 from the fitting variables;
this leaves us with a constant, E, C, EC, and E 2 • In addition, we will specify the
surface to be conditionally parametric inC; this will result in a fit that is linear in
C given E:

ethanol.cp <- update(ethanol.m, drop.square = "C", parametric '"' "C")

Let's compare the old fit and the new:

> ethanol.m
Call:
loess(formula • NOx 'V C • E, span • 1/4, degree • 2)

342 CHAPTER 8. LOCAL REGRESSION MODELS

Given: E

0.6 0.8 1.0 1.2

1
···················.··:·················· ······~·········:··························-~·-······-~·-········: 1 ···••·•··•-··············••••••·········.-··•·••••••••••••·•··············-.········A•.........•..

·····:·········:--·----··;·--·······--················-~·-····--·:

8 10 12 14 16 18 8 10 12 14 18 18

I I I I I t-----4
l-1 I I I I 1 I I I I I I 1~1 I I I I I

~ ~ ~
I I I I I M

.. ..

..
0

..,
~ ~

~
~ N

.. ..

~ ~ ~ ~
N

8 10 12 ,. 18 18 8 10 12 14 16 18

c

Figure 8.16: Ethanol data-coplot of the local regression fit with pointwise 99% confidenC8
intervals.

8.2. S FUNCTIONS AND OBJECTS 343

Given: C

: I ~ I I
··········-··-· ... ·········-------------------------. . h: ::~: . : ~ i: ::: ; : . ' ~~ ~= :::: :~:::: :::::::::::::::::::~~~==1

0.6 0.8 1.0 1.2 0.8 0.8 1.0 1.2

1\ 1\ 1\ !\
!\ 1\ 1\ 1\

d z

(\ (\ 1\ 1\
(\ (\ {\ (\

0

0.6 0.8 1.0 1.2 0.8 0.8 1.0 1.2

E

Figure 8.17: Ethanol data-coplot of the local regression fit with pointwise 99% confidence
inten~als.

344 CHAPTER 8. LOCAL REGRESSION MODELS

Number of Observations: 88
Equivalent Number of Parameters: 21.6
Residual Standard Error: 0.1761
Multiple R-squared: 0.98
Residuals:

min 1st Q median 3rd Q max
-0.3975 -0.09133 0.00862 0.06417 0.3382

> ethanol.cp
Call:
loess(formula : NOx ~ C • E, span : 1/4, degree = 2,
parametric = "C", drop. square • "C")

Number of Observations: 88
Equivalent Number of Parameters: 18.2
Residual Standard Error: 0.1808
Kul tiple R-squared: 0. 98
Residuals:

min 1st Q median 3rd Q max
-0.4388 -0.07436 -0.009093 0.06651 0.5485

The equivalent number of parameters has dropped by about 15%, the residual
standard error has increased insignificantly, and diagnostic plots, not shown here,
indicated no lack of fit. But the big gain is that we can now increase span to 1/2
without introducing lack of fit:

> ethanol.cp <- update(ethanol.cp, span = 1/2)
> ethanol.cp
Call:
loess(formula : NOx ~ C • E, span = 1/2, degree '" 2,
parametric : "C", drop.square = "C")

Number of Observations: 88
Equivalent Number of Parameters: 9.2
Residual Standard Error: 0.1842
Multiple R-squared: 0.98
Residuals:

min 1st Q median 3rd Q max
-0.5236 -0.0973 0.01386 0.07345 0.5584

In so doing we have driven the equivalent number of parameters to less than half
of what it was originally and kept the residual standard error about the same. The
coplots in Figures 8.18 and 8.19 show the resulting fitted surface:

plot(ethanol.cp, given= 16, evaluation • 50, confidence • 7,
coverage = 0.99)

f. 8.2. S FUNCTIONS AND OBJECTS
t

'
345

Given: E

................... ' .. : --- -~--- w .. --- ... ~ ~ ~ ... : :
/.===.;==,== : =: ==; .: == . =·===: = = = === _:: I

8 10 12 14 16 18 8 10 12 14 16 18

I I I I I I I

~ ~ ~

0 '
z

~ ~
~

~

~ ~ ~
~

8 10 12 14 16 18 8 10 12 14 16 18

c

Figure 8.18: Ethanol data-coplot of conditionally parametric local-regression fit with
pointwise 99% confidence interoals.

346 CHAPTER B. LOCAL REGRESSION MODELS

Given: C

8 w ~ w ~ ~

r---:- --- - : -- __ ' --- ---; : -.- . -·:- '- -~ m -:--1 .. ., ·······---··················----: .. ,•.. . . .
0.6 0.8 1.0 1.2 0.6 0.8 1.0 1.2

1\ 1\ 1\ 1\
!\ !\ 1\ 1\

d z

... 1\ 1\ !\ !\
1\ 1\ 1\ 1\

o.8 o.8 1.0 1.2 0.6 o.8 1.0 1.2

E

Figure 8.19: Ethanol data-coplot of conditionally parametric local-regression fit with
pointwise 99% confidence interoals.

8.2. S FUNCTIONS AND OBJECTS 347

Computing the Fitted Surface and Confidence Intervals

We turn now to a further discussion of how predict() is used to evaluate a fitted
surface and to compute information for confidence intervals. As we saw at the
beginning of this section, for two or more predictors there are two data structures
that can be given to the second argument, newdata, which specifies the points in the
space of the predictors at which the evaluation takes place. The first data structure
is a plain old data frame:

> newdata
C E

1 7.5 0.6
2 9.0 0.8
3 12.0 1.0
4 15.0 0.8
5 18.0 0.6

The following evaluates the ethanol surface at points in the space of the predictors
given by the rows of newdata:

> predict(ethanol.m, newdata)
[1] 0.2815825 2.5971411 3.0667178 3.2555778 1.0637788

The result is a vector whose length is equal to the number of rows of the data
structure. This is similar to our use of predict 0 for one predictor, but there is now
one difference: the function must be able to match each column of newdata with
a predictor specified by the formula of the loess object. The matching is done by
looking at the column names of newdata and the names of the predictors in formula.
In our example, the columns of newdata are C and E.

A second data structure can be used when the evaluation points form a grid.
For example, to show the curves in Figure 8.18, the function plot() used predict()
to evaluate the ethanol surface on a 50 x 16 grid of 800 points in the (C, E) plane.
We refer to the 800 points as the grid points and the equally spaced values of C and
E that define the grid as the marginal grid points. Let's see how this evaluation is
carried out. First we compute the marginal grid points and put them in a list:

C.marginal <- seq(min(C), maz(C), length= 50)
E.marginal <- seq(min(E), maz(E}, length= 16)
CE.marginal· <- list(C = C.marginal, E • E.marginal}

Then we use the function expand.gridO:

CE.grid <- expand.grid(CE.marginal}

This creates a data frame whose rows are the coordinates of the grid; attributes
of the data frame provide the information that the data structure describes a grid.
Now we do the evaluation:

348 CHAPTER 8. LOCAL REGRESSION MODELs

ethanol.fit <- predict(ethanol.cp, CE.grid)

Matching is done in the same way as for the first data structure. The evaluation is
carried out at the grid values, and the result is a numeric array whose dimension is
equal to the number of predictors:

> dim(ethanol.fit)
[1] 50 16
> names(dimnames(ethanol.fit))
[1] "C" "E"

The (i,j)th element of the array ethanol. fit is the evaluation at the ith marginal
grid point of C and the jth marginal grid point of E.

As with one predictor, confidence-interval information can be computed at each
point of nevdata by setting se.fit=TRUE, but again we point out that this increases
the computational intensity substantially. To get the intervals shown in Figure 8.19,
we do the following:

C.marginal <- seq(min(C), max(C), length= 7)
E.marginal <- seq(min(E), max(E), length= 16)
CE.marginal <- list(C = C.marginal, E = E.marginal)
CE.grid <- expand.grid(CE.marginal)
ethanol.se <- predict(ethanol.cp, CE.grid)
ethanol.ci <- pointvise(ethanol.se, coverage = .99)

8.2.3 Air Data

We turn now to an application with three predictors. The data frame air, which is
used as an example in Chapter 7, contains four variables:

> names(air)
[1) "ozone"
> dim(air)
[1] 111 4

"radiation" "temperature" "wind"

These data are from an environmental study that analyzed how the air pollutant
ozone depends on three meteorological variables: radiation, wind speed, and tem
perature. The data are daily measurements of the four variables for Ill days.

For three or more predictors, carrying out fitting and inference for local regres
sion models in S is no more complicated than for two. What gets harder, of course,
is graphing the data to explore and diagnose. The function coplot 0 can be used
for three predictors since it allows plotting against one predictor, conditioning on
two others. Thus, for three predictors, we can make three coplots, graphing against
each predictor conditional on the other two. Figure 8.20 shows one of the three
coplots for the air data:

8.2. S FUNCTIONS AND OBJECTS

attach(air)
w.given <- co.intervals(wind, 4, 0.6)
t.given <- co.intervals(temperature, 4, 0.6)
coplot(ozone 'V radiation I temperature • wind,

given • list(temperature • t.given, wind= w.given),
panel • function(x,y) panel.smooth(x, y, span = 1, degree = 1))

349

We have conditioned on wind and temperature. The dependence panels are the
4 x 4 matrix of panels. The given panels, one for each conditioning predictor, are to
the right and top. As we move up a column of dependence panels, the intervals of
wind speed increase, and as we move from left to right across a row of dependence
panels, the intervals of temperature increase. For example, the points on the (2,3)
panel of the coplot are observations for which the temperature measurements are
in the second interval and the wind speed measurements are in the third interval.
We omit the two remaining coplots, but in the analysis of these data they were
carefully studied.

Let's fit a local regression model to the data:

> air.m <- loess(ozone 'V radiation • temperature • wind, span = .8,
+ degree .. 2)
> air.m
Call:
loess(formula = ozone 'V radiation • temperature * wind,

span = 0.8, degree = 2)

Number of Observations: 111
Equivalent Number of Parameters: 16.7
Residual Standard Error: 0.4331
Multiple R-squared: 0.81
Residuals:

min 1st Q median 3rd Q max
-1.168 -0.2906 -0.06033 0.2229 0.8758

Diagnostic plots revealed that the specifications of air.m were reasonable assump
tions. Let's now display the fitted surface:

> air.ranges <- list(radiation = quantile(radiation, c(1/4, 3/4)),
+ temperature=· qu~tile(temperature, c(1/4, 3/4)), wind=
+ quantile(vind, c(1/4, 3/4)))
> plot(air.m, given • 5, confidence= 7, which.plots = "radiation",
+ ranges = air.ranges)

The argument which.plots has selected just one of the three possible coplots to be
graphed. The argument ranges has been used to specify the ranges of the evalua
tion points and given values to be the lower and upper quartiles of the predictor
observations rather than the default, which is the minima and the maxima. The
result is shown in Figure 8.21.

350 CHAPTER B. LOCAL REGRESSION MODELS

Given : temperature

60 70

100 200 300

M O 0 00o O 0 00 O

~-0~
N dOoo o oo ~- 0 o

Q)
1::
0
N
0"'

0 0

Oo o oo
0 0 .6'0 on -~
~~;;,o_m_.c--''5o•li;o;-,.,.-:.,o ~ -llo
0 0 00 q,Q) 0

0 0 0

~ 0 0

0

0 0

_o~
~~ QV;;

0

" ~ 0
0 0 ___.i;-.

~"'o '~0\:S
0

60 90

0 100 200 300

0 0
0

~ ~ 0 0

~
0 0

0

2-
0

•

'!.~ 0

00 ~ .,i"/;f o-o
(J 0 0

0

~
(J 0 0

0
N

~

~

"0
c
-~

c
Q)
> a

Figure 8.20: Air data-coplot of ozone perature with scatterplot smoothings. against solar radiation given wind speed and tem-

8.2. S FUNCTIONS AND OBJECTS

Q)
c
~
0

72

~
..;

~ f+H-+H

tt+f-+-+1
::

~ r+t++-H

H+t+H
-

r++H-+1
120 110 200 240

Given : temperature

74 76 76 80 12

120 I&O 200 240 120 110 200 240

I

f+H-+H r+++++i r+++++i

r++++H r+++++i r+++++i
--

r+t++-H r++++-H r++f+H

~ r++++-H ~

H+f+H ~ ~
I

120 110 200 240

radiation

..
-
~~

rtH-H1
::

rtH-H1
~ ..

rtH-H1

rtH+H =
~ ..

~
I .

'--

120 110 200 240

Figure 8.21: Air data-l I oca regression fit . th . un pomtwise 99% confidence intervals.

351

352 CHAPTER 8. LOCAL REGRESSION MODELS

8.2.4 Galaxy Velocities

NGC7531 is a spiral galaxy in the Southern Hemisphere with a very bright inner
ring. When looked at from the earth, the galaxy takes up a small area on the celestial
sphere. Figure 8.22 shows measurements of the radial velocity of the galaxy at 323
locations in this area (Buta, 1987}. The positions have been jittered slightly to
reduce overplotting. The horizontal scale of the graph is the east-west coordinate

0 ~ 9>
0

\ ~§ JD
~

'0 0 0

0'0 'lQ, ~ 8
'0 0 <S>

0 ~~·~ o• N

o~ § eatl#
¥ 0 0

~ 0
co ~~Sib<»>

~<JD~~ o't/i So c:

&o%8 a;"'
~

0 '?:P

"'I~\~
d' 0\ 0

<f) 9 ;
0 0 9 ~ 00 .,.

od3 o <>g
0 0

-40 -20 0 20 40

ew.jittered

Figure 8.22: Galaxy data-locations of velocity measurements.

and the vertical scale is the north-south coordinate. Note that north is up and east
is to the left because we are looking at the celestial sphere from the inside. Each
measurement lies along one of seven slits that nearly intersect at a single point near
the origin, (0,0).

The data are stored in a data frame galaxy:

> names(galu:y)
[1] "east.west" "north.south" "angle"
[3] "radial.position" "velocity"
> dim(galaxy)
[1] 323 5

8.2. S FUNCTIONS AND OBJECTS 353

The first column contains the east-west positions of tht rneasurelllentll and the
second contains the north-south positions. For each obserV<~tion, the Value in angle
is the angle with the horizontal of the slit on which the o),q,,rvation lies· the units
are degrees of counterclockwise rotation from horizontal: '

> attach(galaxy)
> sort(unique(angle))
[1] 12.5 43.0 63.5 92.5 102.5 111.0 133.0

radial. position contains signed distances from the origin to the measuu,1111,nt lo
cations; a distance is multiplied by -1 if the east-west coordinate is negativt, lllld by
1 if it is positive:

> range(radial.position)
[1] -52.4 55.7

Finally, velocity, whose units are km/sec, contains the velocity measurements:

> summary(velocity)
Plin 1Q Median 3Q Plax

[1,] 1409 1522 1586 1669 1775

Data Exploration

Figure 8.22 was made by the following:

attach(galaxy)
ev.jittered <- jitter(east.vest, factor • 1/2)
DS.jittered <- jitter(north.south, factor a 1/2)
lim <- range(ev.jittered, ns.jittered)
plot(ev.jittered, ns.jittered, xlim = lim, ylim m lim)

xl~ and ylim were specified in plot 0 to keep the number of units per em the
same on the vertical and horizontal scales. Figure 8.23 uses coplot 0 to explore the
velocities by graphing velocity against radial position for each slit:

coplot(velocity ~ radial.position I angle, given.values m

sort(unique(angle)}, panel • function(x, y} panel.smooth(x, y,
span• 1/2, degree•2)}

The figure shows that it is sensible to approach modeling velocity dependence by
an overall smooth pattern with random variation superimposed.

Modeling

The goal in the analysis of these data is to understand how galaxy velocity varies
over the measurement region. Thus, velocity is a dependent variable and there are

354

8 ,._

CHAPTER 8. LOCAL REGRESSION MODELS

Given : angle

20 40 60 80 100 120

I
····················-········-·-·--·-··-----·············i·················------·········

J

0

~

·40 ·20 0 20 40 60

~0
o o-~~

0 0

radial. position
-40 -20 0 20 40 60

Figure 8.23: Galaxy data-coplot of velocity against radial position given slit angle.

8.2. S FUNCTIONS AND OBJECTS 355

two predictors: east-west position and south-north position. In Figure 8.23 the
curvature of the underlying pattern is substantial; thus we will specify a locally
quadratic surface. Since many points appear to deviate substantially from the
overall pattern compared to the deviations of the majority of points, it seems pru
dent to specify symmetric errors. Finally, it makes sense to preserve the spatial
metric of the predictors and not normalize the variation in their measurements:

> galaxy.m <-loess(velocity ~ east.vest • north.south, degree = 2,
+ span= 0.35, normalize= F, family= "symmetric")
> galaxy.m
Call:
loess(formula = velocity ~ east.vest • north.south, span = 0.35,

degree= 2, normalize= F, family= "symmetric")

Number of Observations: 323
Equivalent Number of Parameters: 19.6
Residual Scale Estimate: 12.3
Residuals:

min 1st Q median 3rd Q max
-57.23 -5.898 0.2501 9.417 53.52

Let's evaluate the surface on a grid and then make a contour plot:

> galaxy.marginal <- list(east.vest = seq(-29,29),
+ north.south = seq(-49,49))
> galaxy.fit <- predict(galaxy.m, expand.grid(galaxy.marginal))
> contour(galaxy.marginal$east.vest, galaxy.marginal$north.south,
+ galaxy.fit, v = seq(1435, 1755, by= 40), xlim = c(-50, 50),
+ xlab = "EW", ylab = "NS")
> contour(galaxy.marginal$east.west, galaxy.marginal$north.south,
+ galaxy.fit, v = seq(1435, 1755, by= 20), labex=O, add=T)

The result is shown in Figure 8.24. Recall that we studied the fits to ethanol and
air by coplots, but in this application it makes sense to use a contour plot since
we want to see the surface as a whole entity-finding peaks, troughs, ridges, steep
terrain, and so forth-and are not interested in conditional dependence.

Diagnostic Checking

Of course, we must carry out diagnostic checking to make sure we have not plotted
nonsense in Figure 8.24. First, in Figure 8.25, we make a coplot of the residuals,
displaying them as we did the original data:

coplot(residuals(galaxy.m) ~ radial.position I angle,
given= sort(unique(angle)), panel • function(x, y)
panel.smooth(x, y, span a 1, degree = 2, zero.line = TRUE))

356

en z

CHAPTER 8. LOCAL REGRESSION MODELS

EW

Figure 8.24: Galaxy data-contour plot of local regression fit.

8.2. S FUNCTIONS AND OBJECTS 357

Given : angle

20 40 60 80 100 120

I ... i

·· ! .. .
I

0
0

0

"'
0

0

0

q,<l> 0

- 0 0 'boo
0

6'
<IQ>'O

00~
'1'

~ -40 ·20 0 20 40 60

0

e
>.
~
(ij
Ol
fi)
(ij
:::1

"C
'iii

00

\;0~
0 0

00 0 0 0
0 00

~ '\ 0 <I> 6'.JJ..6' 0 ~~o<l>~o Oo 0

v

~ 'f:"oe·-o;; oO'o "',;o "
IV

oo'l!"'o o-a>v -0 '()

0

0
0 0 0 0

0
0 0 0

0

0

!!? 0
0 0

0
0

0

0
0 ..,
0

"'
0

Ill

0 0 c9

o~o 'b o o O'o~o ~c!' ~ 0 0 Q)
(IJ) 0 0 ...----'-- 0-

0 oo~o 0 --0 0<9 0 - 0 0 0
0 0

II o o 0 0 0 0
0 0

0

0 c!' 0

~
0

-40 -20 0 20 40 60 -40 ·20 0 20 40 60

radial. position

Figure 8.25: Coplot of residuals with scatterplot smoothings.

358 CHAPTER B. LOCAL REGRESSION MODELS

The (1,2} dependence panel shows some clear lack of fit. At the left extreme, the
distortion is as large as 40 kmfsec, which is more than we would like. But since
the fraction of observations that are affected is small we push on, but noting that
our results are somewhat tainted. Figure 8.26 is a normal probability plot of the
residuals:

qqnorm(residuals(galaxy.m))
qqline(residuals(galaxy.m))

0 •

e ~
,;...

~
0

~
iii
::>

~ ~ !!!
0
0

0 §> ..,. ~
c:tl

0

0 0 0

~

-3 ·2 ·1 0

Quantlles of Standard Normal

0

00
0

2 3

Figure 8.26: Gaussian quantile plot of residuals.

The distribution of the residuals is symmetric and strikingly leptokurtic. The robust
estimation is clearly justified, and we should feel quite smug at having guessed
correctly from the exploratory coplot.

Confidence Intervals

Figun~ 8.24 shows that the velocity surface has a backbone of sorts. Consider
the liut• in the plane of the predictors that goes through the origin and through

8.2. S FUNCTIONS AND OBJECTS 359

the position, (10, -37), where the maximum of the surface occurs. The surface is
roughly symmetric in directions perpendicular to the line. Also, the line passes
close to the minimum of the surface. Let's evaluate the surface along this line and
compute confidence intervals at selected positions:

ns <- seq(-49, 49, length • 100)
ev <- ns/(-3.7)
fit.nevdata <- data.frame(east.vest = ev, north.south = ns)
spine.fit <- predict(galazy.m, fit.nevdata)
ns <- seq(-49, 49, length = 15)
ev <- ev/(-3.7)
limits.nevdata <- data.frame(east.vest ~ ev, north.south = ns)
spine.se <- predict(galaxy.m, limits.nevdata, se.fit = TRUE)
spine.limits <- pointvise(spine.se, coverage = .99)

Figure 8.27 plots the fit against north-south position, and shows the 99% confidence
intervals: ·

ylim <- range(spine.fit, spine.limits$upper, spine.limits$lover)
plot(fit.nevdata$east.vest, spine.fit, xlab = "North-South Coordinate",

ylab = "Velocity", ylim • ylim, type= "1")
segments(limits.nevdata$east.vest, spine.limits$lover,

limits.nevdata$east.vest, spine.limits$upper)

8.2.5 Fuel Comparison Data

For the gas data in Section 8.2.1, the fuel used in the engine experiment was gas,
and for the ethanol data Section 8.2.2, the fuel was ethanol. In the first case, the
compression ratio, C, was equal to 7 .5, and in the second case, C took on five
values, one of which was 7.5. To compare the two fuels we form a new data frame,
fc, which consists of the 22 ethanol observations for which C = 7.5 and the 22 gas
observations:

> summary(fc)
> summary(fc)

NOx
Min. :0.54
1st Qu.:1.60
Median :2.70
Mean :2.80
3rd Qu. :3.90
Max. :5.30

E
Min. :0.63
1st Qu. : 0. 78
Median :0.90
Mean :0.91
3rd Qu.: 1.00
Maz. :1.20

Fuel
ethanol:22
gas :22

Thus, the two predictors are E, which is numeric, and Fuel, which is a factor.

360 CHAPTER 8. LOCAL REGRESSION MODELS

1:- 0
'6 0

CD .2 -~

0
0 .,., -
0
0
'<!' - -40 ·20 0 20 40

North-South Coordinate

Figure 8.27: Galaxy data-local regression fit along the backbone with pointwise 99% con
fidence intervals.

Exploratory Data Display

The plotting function coplot 0 allows a given variable to be a factor, so we can use
it to graph the fc data:

coplot(NOx ~ E I Fuel, given.values = unique(Fuel),
columns 2 2, rows = 1, data = fc)

The result is shown in Figure 8.28.

Modeling

As with the gas data, we fit a locally-quadratic model with span equal to 2/3:

> attach(fc)
> fc.m <- loess(NOx ~ E • Fuel, span • 2/3, degree • 2)
> fc.m
Call:

8.2. S FUNCTIONS AND OBJECTS 361

Given: Fuel

ethanol gas

0.7 0.8 0.9 1.0 1.1 1.2

0
oo

10 0 co
0

0 0

0 ..,..,
0

0 0
99

C) 0 0
C') '0 0 z

0

00 0
0

C\1

J
,f

0 0
0

0 0 0
0 0

0 0

0.7 0.8 0.9 1.0 1.1 1.2

E

Figure 8.28: Fuel comparison data-coplot of NOx against E given fuel type.

362 CHAPTER B. LOCAL REGRESSION MODELS

loess(formula = NOx ~ E • Fuel, span 2/3, degree = 2)

Number of Observations: 44
Equivalent Number of Parameters: 11.1
Residual Standard Error: 0.2691
Multiple R-squared: 0.98
Residuals:

min 1st Q median 3rd Q max
-0.5604 -0.1283 -0.01978 0.06869 0.6234

Diagnostic Checking

Figure 8.29 is a coplot of the residuals:

coplot(residuals(fc.m) ~ E I Fuel, given.values • unique(Fuel),
panel = function(x, y) panel.smooth(x, y, span= 1, degree = 1),
zero.line = TRUE, columns = 2, rows = 1)

No lack of fit appears, but one serious problem does stand out glaringly in the
figure; the gas residuals have a wider spread. That is, the specification of a constant
variance, o-2 , appears incorrect. The estimate of a, which is pooled over both levels
of Fuel, is s = 0.27. The estimate from the observations, where Fuel is equal to
"ethanol", is shown by the following:

> f c . ethanol. m
Call:
loess(formula = NOx "' E • Fuel, subset = Fuel

span = 2/3, degree • 2)

Number of Observations: 22
Equivalent Number of Parameters: 5.6
Residual Standard Error: 0.1696
Multiple R-squared: 0.98
Residuals:

min 1st Q median 3rd Q max
-0.2487 -0.1022 -0.0126 0.05354 0.3094

"ethanol",

The estimate with Fuel equal to "gas" is shown by the following:

> fc.gas.m
Call:
loess(formula • NOx "' E • Fuel, subset = Fuel •= "gas", span = 2/3,

degree • 2)

Number of Observations: 22
Equivalent Number ot Parameters: 5.5

8.2. S FUNCTIONS AND OBJECTS 363

Given: Fuel

ethanol gas

0.7 0.8 0.9 1.0 1.1 1.2
l

co
c:)

0

'o:t
c:) -

0 8

e C\1

~
c:)

Ill

0

0
0 0 0

000
0

I o R oo n
:I 0

:a C\1 ! 9
0 0 00 0

u 0
0 0

8o 0
0 0 0

0 0

co 0

9 I

0. 7 0.8 0.9 1.0 1.1 1.2

E

Figure 8.29: Coplot of residuals with scatterplot smoothings.

364 CHAPTER 8. LOCAL REGRESSION MODELS

Residual Standard Error: 0.~404
Multiple R-squared: 0.96
Residuals:

min 1st Q median 3rd Q max
-0.5604 -0.213 -0.02511 0.1271 0.6234

Thus, the estimate of u for "gas" is about double that for "ethanol". We clearly
need to rethink the model.

A New Model

One action we can take is to analyze the gas data and the ethanol data separately.
(We have already fitted a satisfactory model, gas.m, to the gas data in Section 8.2.1.)
Instead, let's cheat a bit. Suppose that u2 for "gas" is four times that for "ethanol",
and that we knew this a priori. We will fit a model using a priori weights that gives
weight 4 to the ethanol observations and weight 1 to the gas observations:

> fc.weights <- c(1,4)[match(Fuel, c("gae","ethanol"))]
> fc.new.m <- update(fc.m, weights = fc.weights)
> fc.nev.m
Call:
loess(formula = NOx ~ E • Fuel, weights • fc.weights, span • 2/3,

degree = 2)

Number of Observations: 44
Equivalent Number of Parameters: 11.1
Residual Standard Error: 0. 3398
Residuals:

min 1st Q median 3rd Q max
-0.5604 -0.1283 -0.01978 0.06869 0.6234

Notice that the estimate of u is close to that obtained for the fit using just the
gas data. The reason is that in our new weighted analysis we have defined the
a priori weights to be 1 for "gas", so the error standard deviation for these runs is
u. Figure 8.30 shows the fitted curves and 99% confidence intervals:

plot(fc.new.m, confidence = 7, columns = 2, rows = 1)

Notice that the intervals for ethanol are smaller than those for gas; the reason, of
course, is the larger error variance for gas.

Diagnostic Checking

Consider carrying out diagnostics for fc.nev.m. First, the fit is the same as for fc.m
because in the multiple-fit procedure for factors, curves are fitted separately and

8.2. S FUNCTIONS AND OBJECTS 365

Given: Fuel

ethanol gas

0. 7 0.8 0.9 1.0 1.1 1.2

0. 7 0.8 0.9 1.0 1.1 1.2

E

Figure 8.30: Fuel comparison data-coplot of local regression fit with 99% confidence in
teroals.

366 CHAPTER 8. LOCAL REGRESSION MODELS

independently to the ethanol runs and to the gas runs. (N.B. This would not be
true if we used a robust loess estimate, because m, the residual absolute deviation
used in the robustness iterations, is based on all of the residuals.) Thus, Figure 8.29
is also the diagnostic residual plot for fc.new.m. As we have already concluded, the
fit appears satisfactory. To investigate the distributional assumptions, we use the
standardized residuals, t;, which are computed by:

residuals(fc.new.m)•sqrt(fc.weights)

A normal probability plot of e; justified the assumption of normality, and a plot of
JiT;I against Yi revealed no dependence of scale on the fitted values. Thus, all is
well with fc. new .m, but in our elation we must not forget that the analysis is tainted
by having used an estimated variance ratio as given a priori.

8.3 Specializing and Extending the Computations

8.3.1 Computation

In the examples of Section 8.2, the function predict{) did not use the loess fit
ting method to compute surfaces directly at every evaluation point. Rather, to get
very fast computation, a default algorithm was used that employs interpolation.
In this algorithm, a set of points, typically small in number, is selected for direct
computation using the loess fitting method, and a surface is evaluated using an in
terpolation method that is based on blending functions. The space of the predictors
is divided into rectangular cells using an algorithm based on k-d trees. The loess fit
is evaluated at the cell vertices, and then blending functions do the interpolation.
The loess objects contain data structures that store the k-d trees and the fits at
the vertices. This information is used by predict{) to carry out the interpolation.
Of course, the resulting interpolated surface is not exactly the same as that of a
surface computed directly, but the agreement is typically excellent. Even when it
is not, the interpolation method is a perfectly logical smoothing method that has
a number of desirable properties. This approach is what allows us, for example, to
rapidly compute the surface of the galaxy data at a grid of 5841 values. Doing a
direct loess evaluation at all of these points would be expensive. The interpolation
method, however, results in one restriction: the surface cannot be evaluated outside
the range of the data; that is, the value of each numeric variable for an evaluation
point must lie within the range of the observations of that variable in the data.
This is not the case for the direct computation method, so evaluation can be done
anywhere.

The local regression functions produce quantities that express in various ways
information about degrees of freedom. loess() returns the equivalent number of pa
rameters, predict 0 returns the degrees of freedom oft-intervals, and anova returns

8.3. SPECIALIZING AND EXTENDING THE COMPUTATIONS 367

the numerator and denominator degrees of freedom of an F-test. In the examples
of Section 8.2, these quantities, which are defined in Section 8.4, are computed by
an approximation method that is described in Section 8.4. A supercomputer en
vironment (or a user with a great deal of patience) would be needed to routinely
compute these statistical quantities exactly.

Most users will not want to use direct computation of surfaces or exact compu
tation of the statistical quantities. However, those who want to explore the com
putational and statistical methods of loess fitting can change the computational
methods using the argument control of loess 0. The argument is specified by the
output of the function loess. control 0:

my.control <- loess.control(surface ="direct", statistics"' "exact")
gas.slover <- loess(NOx ~ E, data = gas, control = my.control)

In these expressions we have used the argument surface to switch the computation
of the surface from "interpolate" to "direct", and the computation of the statistical
quantities from "approximate" to "exact".

The function loess. control 0 can also be used to control two other computa
tional matters. When interpolation is used, an argument cell controls the cell size
of the k-d tree. The maximum fraction of points allowed inside a cell is celhspan;
in the algorithm, a cell is divided if the maximum is exceeded. Also, the argument
iterations specifies the number of iterations of the loess robust estimat!'l.

8.3.2 Inference

We stressed in Section 8.2 that it is critical to carry out diagnostic methods to
study, among other things, surplus and lack of fit. In some applications, however,
a clearly identifiable lack of fit might be acceptable if the identified magnitude of
the distortion is judged to be small for the purpose to which the fit is put. For
example, we might want a distorted surface if it made communication simpler and
the distortion did not interfere with the judgment of salient features. But one
problem is that an estimate, s, of u based on a distorted fit would be biased, and
thus a confidence interval based on this estimate would not have the stated coverage.
There is a remedy. Suppose we have two loess fits, fit. biased and fit. unbiased, the
first distorted and the second not. We can use the value of s from the undistorted fit
to form confidence intervals for the distorted fit. We do this by changing fit. biased:

fit.biased$inference <- fit.unbiased$inference

Now giving fit.biased to predict() gives correct confidence intervals. It should
be appreciated that the intervals are not for the true surface, but rather for the
expected value of the distorted estimate.

368 CHAPTER B. LOCAL REGRESSION MODELS

8.3.3 Graphics

In some cases, enough evaluation is done by plot() for loess objects that we want
to save the fit and confidence intervals for future renderings of the graph. This
can be done using the function preplotO, which saves the computations for future
plotting by plot():

ethanol.plot <- preplot(ethanol.cp, confidence = 7)
plot(ethanol.plot)

8.4 Statistical and Computational Methods

In this section we discuss computational and statistical methods in the fitting of
local regression models. In Section 8.4.1, we discuss the methods of inference that
arise from the loess fitting method. In SPction 8.4.2, we discuss computational
methods that underlie loess fitting, and numerical problems that can arise. To
keep the discussion from being cumbersome, we suppose that the predictors are
all numeric. Extending the results to the case where factors are present is quite
obvious.

8.4.1 Statistical Inference

Initially, we will suppose that the errors have been specified to be Gaussian and the
variances have been specified to be constant.

One important property of a Gaussian-error loess estimate, g(x), is that it is
linear in y;-that is,

n

g(x) = ~);(x)y;
i=l

where the l;(x) do not depend on the Yi· This linearity results in distribution
properties of the estimate that are very similar to those for classical parametric
fitting.

Suppose that the diagnostic methods have been applied and have revealed no
lack of fit in g(x); we will take this to mean that Eg(x)- g(x) is small. Suppose
further that diagnostic checking has verified the specifications of the error terms in
the model.

Estimation of a

Since g(x) is linear in y;, the fitted value at x; can be written

n

y; = Lli(x;)yi.
j=l

8.4. STATISTICAL AND COMPUTATIONAL METHODS

J.,et L be the matrix whose {i,j)th element is li(xi) and let

L=I-L

where I is the n x n identity matrix. For k = 1 and 2, let

We estimate a by the scale estimate

s=

Confidence Intervals for g(x)

Since
n

g(x) = :L>(x)y;,
i=l

the standard deviation of g(x) is

n

a(x) =a Lll(x).
i=l

We estimate a{x) by
n

s(x) = s Li1(x).
i=l

Let

The distribution of
g(x)- g(x)

s(x)

369

is well approximated by a t distribution with p degrees of freedom; we can use this
result to form confidence intervals for g(x) based on g(x). Notice that the value 81

by which we divide the sum-of-squares of residuals is not the same as the value p
used for the degrees of freedom of the t distribution. For classical parametric fitting,
these two values are equal. For loess, they are typically close but not close enough
to ignore the difference. We will refer to p as the look-up degrees of freedom since it
is the degrees of freedom of the distribution that we look up to get the confidence
interval.

370 CHAPTER B. LOCAL REGRESSION MODELS

Analysis of Variance for Nested Models

We can use the analysis of variance to test a null local regression model against an
alternative one. Let the parameters of the null model be a<n>, A(n), 8~n>, and 8~n>.
Let the parameters of the alternative model be a, A, 81 , and 82 • For the test to
make sense, the null model should be nested in the alternative; we will define this
concept shortly. Let rss be the residual sum-of-squares of the alternative model,
and let rss<n) be the residual sum-of-squares of the null model.

The test statistic, which is analogous to that for the analysis of variance in the
parametric case, is

F = (rss<nl- rss)/(8~n)- 81)

rss/8t

F has a distribution that is well approximated by an F distribution with denomi
nator look-up degrees of freedom p, defined earlier, and numerator look-up degrees
of freedom

(8~n)- 8t)2

v=
8~n)- 82

The concept of a null model being nested in the alternative expresses the idea
that the alternative is capable of capturing any effect that the null can capture, but
the definition is more precisely a specification of when it makes sense to use the
analysis of variance to compare two models. The null is nested in the alternative if
the following conditions hold:

(1) a<nl ~a.

(2) A(n) ~A.

(3) If the square of a numeric predictor is dropped from the alternative model,
then it must not be present in the null model; the converse need not be true.

(4) The models must have the same numeric predictors with the following ex
ception: a conditionally parametric predictor in the alternative need not be
present in the null; if present, though, it must also be conditionally parametric.

Conditions (2) to (4) can be expressed in a different way. To explain, we need to
differentiate neighborhood variables--the predictors used to determine the neigh·
borhoods in the loess fitting-and fitting variables--the predictors that are fitted
locally by weighted least squares. Let's take a specific example. Suppose there are
three numeric predictors: u, v, and w. Suppose A = 2, u is taken to be conditionallY
parametric, and the square of w is dropped. The neighborhood variables are v and
w. The fitting variables are a constant, u, u2 , v, v2 , w, uv, and vw. Now we can
reexpress (2} to (4) by the following:

8.4. STATISTICAL AND COMPUTATIONAL METHODS 371

(2)' The null and alternative models have the same neighborhood variables.

(3)' The fitting variables of the null model are a subset of the fitting variables of
the alternative model.

The Equivalent Number of Parameters

Let
J.L = tr(L' L).

If the f;; are the fitted values, then

L~-l Variance(fl;)
J.L = o-2 •

We will call J.L the equivalent number of parameters since if the Yi were the fitted
values for a linear model, the right side of the last equation would be the num
ber of estimated parameters. J.L is greater than or equal to T, the number of fitting
variables, and approaches T as a tends to infinity. The equivalent number of param
eters is one measure of the amount of smoothing. (Chapter 7 has another.) Strictly
speaking, J.L depends on ct, on the values of the predictors, and on the choices of the
neighborhood and fitting variables. However, having selected all of these factors
except ct, we can get, approximately, a desired value J.L by taking ct to be 1.2r J J.L,
where T is the number of fitting variables.

Symmetric Errors

When the error distribution is specified to be symmetric, inferences are based on
pseudo-values. Let the robustness weights and the median absolute residual used in
the final update of the fit, g(x), be r; and m, respectively, and let 1/J(u; b) = uB(u; b).
The pseudo-values are

iii = iii + cr;€;

where f;; are the fitted values, €; are the residuals, and

n
c= n .

Li=ll/l'(€;; 6m)

Inferences are carried out by applying the inference procedures of the Gaussian
case but replacing the observations of the response Yi by the pseudo-values ji;. For
example, suppose we want to compute a confidence interval for g(x) about the robust
estimate, g(x). Using the pseudo-values as the response, we compute a Gaussian
error estimate, p, and s(x) as described above. The confidence interval for g(x) is
the g(x) plus and minus s(x) times at value with p degrees of freedom. The true
coverage using this procedure is well approximated by the nominal coverage. For

372 CHAPTER 8. LOCAL REGRESSION MODELS

the analysis of variance, we proceed in a similar fashion using the pseudo-values
from the alternative model and carrying out the Gaussian-error procedures. For
small samples, the approximation is not as good as for confidence intervals and
produces optimistic results, but work is under way to find methods for adjusting
degrees of freedom that will improve the approximations.

Errors with Unequal Scales

Suppose we have specified that the random errors c; in the model have the property
that a;e:; are identically distributed where the a priori weights, a;, are positive and
known. Then various modifications are made to the methods of inference.

For the Gaussian-error estimate, the operator matrix L is, of course, different
from that in the equal-variance case, but 61 and 62 are defined in terms of L as
before. The estimate of u becomes

s=

and the estimate of the standard deviation of g(x) becomes

n

s(x) = s Lq(x)ja;.
i=l

For the analysis of variance, all residual sum-of-squares are modified by adding the
terms ai, as done above for s.

For the robust estimate, the median absolute residual is defined using the stan
dardized residuals

That is,
m = median(liil).

Similarly, the robustness weights are

The pseudo-values are

where c is now

8.4. STATISTICAL AND COMPUTATIONAL METHODS

8.4.2 Computational Methods

Interpolation by k-d Trees and Blending

373

The k-d tree is a particular data structure for partitioning space by recursively cut
ting cells in half by a hyperplane orthogonal to one of the coordinate axes (Bentley,
1975). For our application, the k in the name refers to the number of neighborhood
variables, those predictors that are used to define the neighborhoods.

Here is how the k-d tree is formed. Start with a rectangular cell just containing
the values of the neighborhood variables. Pick the predictor whose spread is the
greatest and divide the cell in half at the median along the axis of that predictor.
Recursively apply the same division procedure to each subcell. If a cell contains
fewer than {Jn points, where {J is a small fraction, do not refine it. Figure 8.31 shows
a k-d tree for two predictors, n = 500, and {J = 0.05.

Once the k-d tree is built, g(x) is directly computed at the vertices. By "vertex,"
we just mean a corner of a cell; "vertex" seems a better term than "corner" because a
vertex of one cell typically lies in the middle of a side of an adjacent cell. In addition
to computing g(x) at a vertex, a derivative of gat the vertex is approximated by
the derivative of the locally-fitted surface. This derivative is a natural by-product
of the least-squares computation and costs nothing extra to obtain.

Typically, the number of vertices, v, will be much smaller than n. This is at
least true asymptotically, because the number of cells needed to achieve a certain
accuracy of approximation depends on the smoothness of g(x), not n. In Figure 8.31
there are 66 vertices, so we solve 66 least-squares problems instead of one problem
per evaluation of g(x). (Recall that for the galaxy surface we carried out 5841
evaluations to make a contour plot.) The amount of work in general to construct
the k-d tree, including vertex coefficients, is O{v((1.5 + 07)n + 7 3)). After building
the tree, each interpolation costs O(log v). Since 7 is fixed and v is asymptotically
bounded, the total running time is linear in the size of the input and output.

Let's turn now to the scheme used to build a piecewise polynomial approximation
to g .. To simplify the discussion, we will suppose that there are two neighborhood
variables. For our k-d tree, the boundary of each rectangular cell is cut into segments
by vertices. (There are four sides, some of which will likely contain internal vertices,
breaking them into more segments.) 'On each segment, the surface is interpolated
using the unique cubic polynomial determined by the fits and derivatives at the
vertices. To interpolate in the interior of the cell, we apply blending functions, also
known as transfinite interpolants (Cavendish, 1975). This technique, well known
in computer-aided design, takes a certain combination of univariate interpolants
in each variable separately to build a surface. In effect, each cell is subdivided
and on each piece a cubic polynomial in two variables is constructed although the
computation is not actually done this way.

For one and two neighborhood variables, the interpolation function is C1, but

374 CHAPTER B. LOCAL REGRESSION MODELS

"' oo olooo oo

0

0

0 "' 0 8 00
0

0 0 0
0

00

p

-4 -2 0 2

Flrst Predictor

Figure 8.31: A k-d tree.

8.4. STATISTICAL AND COMPUTATIONAL METHODS 375

for more variables, the present code does not use enough vertices to guarantee a
consistent approximation across cell facets. Hence the overall approximation may
not be C 1 or even CO. This defect will be removed in a future implementation.

Computing 6i

Three statistical quantities are described in Section 8.4.1 that provide information
about degrees of freedom-p., p, and v. These three quantities are functions of 6t.
62 , and n. Straightforward computation of the 6; is horrendously expensive, so we
have developed methods of approximation. First, we generated a large number of
datasets, each with a response and one or more predictors, and computed the 6; for
each. We discovered, through substantial graphical analysis, that the 6; could be
predicted to within a few percent by the following predictors: .X, n, T, and

Jr/tr(L}- .;:;J1i (= ..:!..-..:'--''--'-;;==---'----
1-fln

The model that was fitted is semiparametric, involving both parametric functions
and a local regression model.

Error Messages from the Bowels of Loess

Although loess fitting is based on sound numerical methods, some delicate situations
can arise that require the judgment of the user. When problems are detected by
the loess FOIITRAN routines, messages are transmitted up to the S user.

One class of messages involves the smoothing parameter cr. In order for the
least-squares problem in a direct computation of g(x} to be well posed, cr must
be large enough that there are as many data points in the neighborhood as fitting
variables, r, in the local regression. Moreover, since neighborhood weights drop to 0
at the boundary, at least T of these points must be strictly inside the neighborhood.
If cr is too small, the fix is to increase it or reduce r by lowering .X or dropping
squares.

The sample points must be sufficiently well distributed as well as sufficiently nu
merous. For example, consider locally quadratic fitting in one predictor. If, because
of multiplicities, there are only two distinct sample locations inside a neighborhood,
then a quadratic polynomial is not uniquely determined.

When numerical problems arise because of poor conditioning of the design ma
trix of the local regression, small eigenvalues are set to zero and a pseudo-inverse
message is sent. None of this means the fit has a problem, but a pseudo-inverse
message is a caution that extra alertness must be used in examining the diagnostic
displays.

Mathematically, tr(L} is greater than or equal tor, the number of fitting vari
ables. Numerically, however, if eigenvalues are set to zero, tr(L} can drop below T,

376 CHAPTER 8. LOCAL REGRESSION MODELs

which causes the method of computing 0; approximately to abort. If this indicator
of an eigenvalue meltdown occurs, the coded message "Chernobyl" is sent up to the
S user.

Finally, when the interpolation method is used, the FORTRAN code must allocate
space based on a prediction from the number of observations, the number of numeric
predictors, and the specification of the surface and errors. If this allocated space is
too small, the k-d tree division is truncated and a warning message sent up. In some
cases the problem is extreme enough that the fit is not carried out; this necessitates
increasing the value of a.

Bibliographic Notes

Local regression models are treated in detail in a new book by Cleveland and Grosse
(forthcoming). But methods of local fitting date back at least to the 1920s. Initial
applications were to smooth a time series (Macauley, 1931). An early use of local
fitting for the general regression problem was investigated by Watson (1964). The
method amounted to fitting a constant locally-in other words, taking the polyno
mial degree ~ to be zero. This came to be known as kernel smoothing. It leads to
very interesting theoretical work but is not of use in practice since it is hard to coax
the method into following the patterns in most datasets. More serious attempts
at local fitting were suggested by McLain (1974), who fitted quadratic polynomi
als, and Stone (1977), who fitted linear polynomials. The method of fitting used
here was described by Cleveland (1979) for one predictor, and is the basis of the S
function lovess, which has now been upgraded to the function scatter. smooth().
Cleveland and Devlin (1988) extended the method to two or more predictors and
investigated the sampling properties in the Gaussian case. (Sampling properties
in the symmetric case are still under development.) The computational methods
described in Sections 8.3 and 8.4, which are crucial to local regression being useful
in practice, are due to Cleveland and Grosse (1991).

Chapter 9

Tree-Based Models

Linda A. Clark
Daryl Pregibon

This chapter describes S functions for tree-based modeling. Tree-based models pro
vide an alternative to linear and additive models for regression problems and to
linear logistic and additive logistic models for classification problems. The models
are fitted by binary recursive partitioning whereby a dataset is successively split
into increasingly homogeneous subsets until it is infeasible to continue. The imple
mentation described in this chapter consists of a number of functions for growing,
displaying, and interacting with tree-based models. This approach to tree-based
models is consistent with the data-analytic approach to other models, and consists
primarily of fits, residual analyses, and interactive graphical inspection.

9.1 Tree-Based Models in Statistics

Tree-based modeling is an exploratory technique for uncovering structure in data.
Specifically, the technique is useful for classification and regression problems where
one has a set of classification or predictor variables (z) and a single-response variable
(y). When y is a factor, decision or classification rules are determined from the
data-for example,

if (x1:::; 2.3) and (x3 E {A,B})
then y is most likely to be in level 5.

When y is numeric, regression rules for description or prediction are of the form
if (x2:::; 413) and (xg E {C,D,F}) and (xs:::; 3.5)

then the predicted value of y is 4. 75.

377

378 CHAPTER 9. TREE-BASED MODELS

A classification or regression tree is the collection of many such rules determined
by a procedure known as recursive partitioning, which is discussed in detail in
Section 9.4. This form of classification or prediction rule is very different from
that given by more classical models, such as logistic and linear regression analyses,
where linear combinations are the primary mode of expressing relationships between
variables. Indeed, this difference is both the strength of the method and also its
weakness.

Statistical inference for tree-based models is in its infancy and far behind that
for logistic and linear regression analyses. This is partly because a particular type
of variable selection underlies tree-based models (e.g., each rule contains only a
subset of the available classification or predictor variables, and some may not be
used at all). Despite the lack of formal procedures for inference, the method is
gaining widespread popularity as a means of devising prediction rules for rapid and
repeated evaluation, as a screening method for variables, as a diagnostic technique to
assess the adequacy of linear models, and simply for summarizing large multivariate
datasets. Some possible reasons for its recent popularity are that:

• in certain applications, especially where the set of predictors contains a mix
of numeric variables and factors, tree-based models are sometimes easier to
interpret and discuss than linear models;

• tree-based models are invariant to monotone reexpressions of predictor vari
ables so that the precise form in which these appear in a model formula is
irrelevant;

• the treatment of missing values (N As) is more satisfactory for tree-based mod
els than for linear models; and

• tree-based models are more adept at capturing nonadditive behavior; the stan
dard linear model does not allow interactions between variables unless they
are prespecified and of a particular multiplicative form.

Among the other models covered in this book, tree-based models provide the only
means of analysis for factor response variables at more than two levels.

Tree-based models are so-called because the primary method of displaying the
fit is in the form of a binary tree. We now provide several examples to motivate
the range of application of the methods. The examples are organized according to
the type (numeric or factor) of the response variable (y) and the classification or
predictor variables (x) involved.

9.1.1 Numeric Response and a Single Numeric Predictor

Figure 9.1 displays two views of a tree-based model relating mileage to weight of
automobiles in the car. teat. frame data frame. The left panel of the figure is the

9.1. TREE-BASED MODELS IN STATISTICS

23.3 24.1 20.5 22.0

..,
"'

0

"'

0

"'

379

0

0

2000 2500 3000 3500

Weight

Figure 9.1: Displays of a tree-based model relating mileage to automobile weight. The plot
in the left panel shows how a tree is typically displayed, whereby successive partitions of the
data into homogeneous subsets are shown with the role labeling each split. The overplotting
of labels is a common occurrence with this type of display. The plot in the right panel shows
a function plot of the same tree together with the actual data values. This representation
is only practical for at most two predictor variables.

standard method of displaying a tree-based model. The idea is that in order to
predict mileage from weight, one follows the path from the top node of the tree,
called the root, to a terminal node, called a leaf, according to the rules, called splits,
at the interior nodes. Automobiles are first split depending on whether they weigh
less than 2567.5 pounds. If so, they are again split according to weight being less
than 2280 pounds, with the lighter cars having predicted mileage of 34 miles/gallon
and the heavier cars having slightly lower mileage of 28.9 miles/gallon. For those
automobiles weighing more than 2567.5 pounds, six weight classes are ultimately
formed, with predicted mileage varying from 25.6 miles/gallon to a gas-guzzling low
of 18.7 miles/gallon. The relationship between mileage and weight seems to behave
according to intuition, with heavier cars having poorer mileage than the lighter cars.
It appears that doubling the weight of an automobile roughly halves its mileage.

The right panel displays the tree-based model in a more specialized form and
one that is more conventional for data of this sort. Here the data themselves and
the fitted model are displayed together. As a function of automobile weight, the

380 CHAPTER 9. TREE-BASED MODELS

fitted model is a step function. The height of each step corresponds to the average
mileage for automobiles in the weight range under that step. There are a total of
eight steps, one for each of the terminal nodes in the tree in the left panel.

9.1.2 Factor Response and Numeric Predictors

The data in this section are from the kyphosis data frame introduced in Chapter 6
and analyzed further in Chapter 7. Recall that in those chapters linear and additive
logistic models predict the probability of developing Kyphosis from the variables Age,
Start, and Number. The resulting prediction equations are smooth functions of the
first two predictors. By contrast, we now demonstrate tree-based prediction equa
tions that are not smooth but share the essential features of these more traditional
analyses.

~ T ~ 0 T
I 0

~ EJr .. 11:
I jQ) I T

=~

8? ' c .!! T T 0 !0 E8 ~CD :s ~~ .5,.... .2l i .,
lilil

E
~" 81 "' I

0 I
0

0 1
"' 1 0 1

absent present absent present absent present

kyphosis kyphosis kyphosis

Figure 9.2: Boxplots of the three numeric predictor variables in the kyphosis data frame.
For each variable, the distribution of individuals with and without Kyphosis are displayed
side by side. The predictor Start exhibits the greatest difference in these distributions since
the lower quartile of those without Kyphosis is just below the upper quartile of those with
Kyphosis.

The distributions of the predictor variables are plotted as a function of Kyphosis
in Figure 9.2. Of the three predictors, Start appears to be the best single predictor
since there is a much greater propensity of Kyphosis for individuals having Start~
12 than those with Start> 12. The algorithm underlying tree-based prediction
determines this cutoff more objectively (by optimization) as 12.5. Moreover, the
method then applies the same principle separately to individuals with Start~ 12.5
and those with Start> 12.5-namely, comparing the distributions of the predictors
as functions of Kyphosis. The result of repeated application of this idea leads to
the tree displayed in Table 9.1. This semigraphical representation is different from
those used in Figure 9.1. It is most useful when the details of the fitting procedure
are of interest.

9.1. TREE-"BASED MODELS IN STATISTICS

node), split, n, deviance, yval, (yprob)
• denotes terminal node

1) root 81 83.234001 absent (0.790 0.2100)
2) Start<12.5 35 47.804001 absent (0.571 0.4290)

4) Age<34.5 10 6.5019999 absent (0.900 0.1000) •
5) Age>34.5 25 34.296001 present (0.440 0.5600)

10) Number<4.5 12 16.301001 absent (0.583 0.4170)
20) Age<127.5 7 8.3760004 absent (0.714 0.2860) •
21) Age>127.5 5 6.73 present (0.400 0.6000) •

11) Number>4.5 13 16.048 present (0.308 0.6920)
22) Start<8.5 8 6.0279999 present (0.125 0.8750) •
23) Start>8.5 5 6.73 absent (0.600 0.4000) •

3) Start>12.5 46 16.454 absent (0.957 0.0435)
6) Start<14.5 17 12.315 absent (0.882 0.1180)

12) Age<59 5 0 absent (1.000 0.0000) •
13) Age>59 12 10.813 absent (0.833 0.1670)

26) Age<157.5 7 8.3760004 absent (0.714 0.2860) •
27) Age>157.5 50 absent (1.000 0.0000) •

7) Start>14:5 29 0 absent (1.000 0.0000) •

381

Table 9.1: A tree-based model for predicting Kyphosis. The first number after the split is
the number of obseroations. The second number is the deviance, which is the measure of
node heterogeneity used in the tree-growing algorithm. A deviance of zero corresponds to
a perfectly homogeneous node. This term is defined more precisely in Section 9.4.

The split on Start partitions the 81 observations into groups of 35 and 46 individ
uals (nodes 2 and 3), with probability of Kyphosis of 0.429 and 0.0435, respectively.
This first group is then partitioned into groups of 10 and 25 individuals (nodes 4
and 5), depending on whether Age is less than 34.5 years or not. The former group,
with probability of Kyphosis of 0.10, is not subdivided further. The latter group is
subdivided into groups of 12 and 13 individuals (nodes 10 and 11), depending on
whether or not Number is less than 4.5. The respective probabilities for these groups
are 0.417 and 0.692. This procedure continues, yielding nine distinct probabilities
of Kyphosis ranging from 0.0 to 0.875. Clearly, as the partitioning continues, our
trust in the individual estimated probabilities decreases as they are based on less
and less data. Many of the tools discussed in Section 9.2 are aimed at assessing the
degree of over- or underfitting of a tree-based model.

382 CHAPTER 9. TREE-BASED MODELS

9.1.3 Factor Response and Mixed Predictor Variables

The data are from the market. survey data frame introduced in Chapter 3 _and sub
sequently analyzed in Chapters 6 and 7. Here we briefly review the available data,
which were obtained from a survey of 1000 people; for now, we concentrate on
the 759 individuals for whom complete data were obtained. The aim of the sur
vey was to identify segments of the residential long-distance market, where AT&T
should concentrate its marketing efforts. The variables collected include household
income (income), number of household moves in the past five years (moves), age of
respondent (age), education level (education), employment category (employment},
average monthly usage (usage), whether the respondent has a nonpublished phone
number (nonpub), whether the respondent participates in the Reach Out Amer
ica Plan (reach. out), whether the respondent holds a calling card (card), and the
respondent's chosen long-distance carrier (pick).

The tree in Figure 9.3 provides a particularly simple prediction rule for long
distance carrier. For average usage of more than $12.50 per month, the preferred
choice is AT&T. For average usage of less than $12.50 per month, the choice depends
on whether the respondent has a nonpublished directory listing. If so, then AT&T
is again the preferred choice, but if the directory listing is published, then an "other
common carrier" (OCC) is preferred. (Evidently the OCC folks did some tele
marketing themselves!)

9.2 S Functions and Objects

Our approach is not to have a single function for tree-based modeling, but rather
a collection of functions, which, together with existing S functions, form a basis for
building and assessing this new class of models. Our implementation centers around
the idea of a tree object. This object provides commonality among functions to
grow, manipulate, and display trees.

9.2.1 Growing a Tree

There is a single function to grow a tree, named tree(). The expression

> z.auto <- tree(Mileage ~ Weight, car.test.frame)

grows a regression tree using the variables Mileage and Weight from the data frame
car. test. frame and gives the name z. auto to the resulting tree object. Similarly,
the expression

> z.kyph <- tree(Kyphosis ~ Age + Number + Start, kyphosis)

9.2. S FUNCTIONS AND OBJECTS

occ

1 /3

;:L,
~

G
40/109

383

Figure 9.3: A display of a tree fitted to the long-distance marketing data. This form of tree
display is primarily for presentation purposes as it conceals the details of the tree-growing
process. The edges connecting the nodes are labeled by the left and right splits. Interior
nodes are denoted by ellipses and terminal nodes by rectangles, with the predicted value of
the response variable centered in the node. The number under each terminal node is the
misclassification error rote; for example, in the rightmost node, which is labeled ATT, 95
out of the ~95 respondents in the node actually picked OCC.

grows a classification tree using the variables from the data frame kyphosis and
gives the name z.kyph to the resulting tree object. The function tree() automati
cally distinguishes between regression and classification trees according to whether
the response variable is numeric or a factor. It implements a binary recursive parti
tioning algorithm described in Section 9.4. The only detail relevant to the present
discussion is that the algorithm adds nodes until they are homogeneous or contain
too few observations (:::;: 5, by default).

The function tree() takes two arguments, a formula object and a data. frame,
either of which can be missing. As with all modeling functions, a missing data. frame
argument simply means that the functions expect the variables named in formula to
be in the search list. If formula is missing, then it is constructed automatically from

384 CHAPTER 9. TREE-BASED MODELS

the data.frame using the first variable as the response. For example, an equivalent
expression defining z.kyph is tree(kyphosis). Valid formulas for trees allow all
standard manipulations of variables such as cut(), logO, I(), etc. These are
seldom used on the right side of a formula since trees are invariant to monotone
reexpressions of individual predictor variables. The only meaningful operator in a
formula for trees is " + ," indicating which variables are to be included as predictors.
This is so because trees capture interactions without explicit specification. Given
these points, it may seem that formulas for trees are a gross overkill as a means
of specifying the terms used in the model. Nonetheless, they provide a convenient
means to specify reexpressions of the response variable and, more importantly, to
facilitate applying quite different models to the same data.

A tree object contains information regarding the partitioning of the predictor
variables into homogeneous regions that is required by subsequent functions for
manipulating and displaying trees. Predictably, a tree object has class "tree".
Generic functions such as summary(), print(), plot(), residuals(), and predict()
work as expected for objects of class "tree". A summary of a fitted tree-based model
is available by the summary 0 function:

> summary(z.auto)

Regression tree:
tree(formula • Mileage
Number of terminal nodes:
Residual mean deviance:
Distribution of residuals:

Weight, car.test.frame)
8

4.208 - 218.819 I 52

Min. 1st Qu. Median Mean 3rd Qu.
-3.889 -1.111 0.000 0.000 1.167

Max.
4.375

> summary(z.kyph)

Classification tree:
tree(formula ~ Kyphosis ~ Age + Number + Start, kyphosis)
Number of terminal nodes: 9
Residual mean deviance: 0.594 = 42.742 I 72
Misclassification error rate: 0.123 • 10 I 81

Notice that there is some difference in the summary depending on whether the tree
is a classification or a regression tree.

A tree prints using indentation as a key to the underlying structure. Since
print() is invoked upon typing the name of an object, a tree can be printed sim
ply by typing its name. The example given in Table 9.1 was constructed with the
expression z.kyph. The amount of information displayed by print() relative to
summary() might seem disproportionate for objects of class "tree", but the philoso
phy that printO should provide a quick look at the object is maintained, as it does

i 9.2. S FUNCTIONS AND OBJECTS 385

t little more than format the contents of a tree object. The summary() function on
the other hand does involve computation that can result in less than instantaneous
response.

Subtrees

A subtree of a tree object can be selected or deleted in a natural way through
subscripting; for example, a positive subscript corresponds to selecting a subtree
and a negative subscript corresponds to deleting a subtree. This implies that there
is an ordering or index to tree objects that permits identification by number. Indeed,
nodes of a tree object are numbered to succinctly capture the tree topology and
to provide quick reference. An example of the numbering scheme is that given in

- 'Th.ble 9.1 for the tree grown to the kyphosis data. Descendants of node number 3
can be removed, or a new subtree can be rooted at node 3, as follows:

> z.kyph[-3]
node), split, n, deviance, yval, (yprob)

• denotes terminal node

1) root 81 83.234 absent (0.790 0.2100)
2) Start<12.5 35 47.804 absent (0.571 0.4290)

4) Age<34.5 10 6.502 absent (0.900 0.1000) •
5) Age>34.5 25 34.296 present (0.440 0.5600)
10) Number<4.5 12 16.301 absent (0.583 0.4170)

20) Age<127.5 7 8.376 absent (0.714 0.2860) •
21) Age>127.5 5 6.73 present (0.400 0.6000) •

11) Number>4.5 13 16.048 present (0.308 0.6920)
22) Start<8.5 8 6.028 present (0.125 0.8750) •
23) Start>8.5 5 6.73 absent (0.600 0.4000) •

3) Start>12.5 46 16.454 absent (0.957 0.0435) •

> z.kyph[3]
node), split, n, deviance, yval, (yprob)

• denotes terminal node

3) Start>12.5 46 16.454 absent (0.957 0.0435)
6) Start<14.5 17 12.315 absent (0.882 0.1180)

12) Age<59 5 0 absent (1.000 0.0000) •
13) Age>59 12 10.813 absent (0.833 0.1670)

26) Age<157.5 7 8.376 absent (0.714 0.2860) •
27) Age>157.5 50 absent (1.000 0.0000) •

7) Start>14.5 29 0 absent (1.000 0.0000) •

Implicit in our discussion above is that a subtree of a tree object is itself a tree
object. This allows a subtree to be printed with the same ease as the original tree.

386 CHAPTER 9. TREE-BASED MODELS

The importance of tree subscripting becomes apparent as tree size gets larger. For
example, consider growing a tree to the long-distance marketing data:

> z.survey <- tree(market.survey, na.action ~ na.omit)

The tree displayed earlier in Figure 9.3 is a particularly terse summary of this tree
obtained with the expression z.survey[-c(4,5,3)]. The complete tree, z.survey,

is displayed using the plot() function in Figure 9.4. The function displays a tree
as an unlabeled dendrogram, rooted at the top of the figure. The plot. tree 0
method takes an optional argument, type=, which controls node placement. The
default is nonuniform spacing whereby the vertical position of a node pair is a
function of the importance of the parent split. It is particularly appropriate during
analysis where the primary consideration is often one of tree simplification. The
alternate (type="u") behavior uses node depth to guide vertical placement of nodes.
This results in a uniform layout that is useful for subsequent labeling. The tree
displayed in the left panel of Figure 9.4 was obtained with the default node spacing,
e.g., plot(z.survey), while that in the right panel was obtained by plot(z.survey,
type = "u"). In the former plot, the importance of the first few splits is readily
apparent. This insight is at the expense of reduced resolution at the leaves of the
tree, where detail is arguably of lesser importance. · ·

Labeling a tree is distinct from plotting a tree. The size of the tree displayed
in Figure 9.4 demonstrates why two separate functions are required; once the tree
is plotted, labeling may or may not follow depending on its topology. The textO
method for trees provides a means to label the dendrogram displayed by plotO.
The user has control over what components of the tree object are used as labels at
interior or leaf nodes. The tree displayed in the left panel of Figure 9.1 was labeled
with text (z. auto).

Tree-based modeling is similar in many ways to that discussed in previous chap
ters. An important similarity is the degree to which tools to diagnose model ade
quacy are applied. Figure 9.5 displays two commonly used plots for regression mod·
els as applied to the automobile mileage example-namely, a scatterplot of residuals
versus fitted values and a normal probability plot of residuals. The fitted values are
obtained with the expression predict(z.auto). The residuals, observed-fitted, are
obtained by subtracting the fitted values from the response variable, or directly with
the expression residuals (z. auto). The normal probability plot does not suggest any
unusual patterns, but the plot of residuals versus fitted values demonstrates het·
eroscedasticity. This pattern, together with the moderate curvature demonstrated
in Figure 9.1, suggests that a reexpression of the response variable, say from miles
per gallon to gallons per mile, might be more appropriate.

9.2. S FUNCTIONS AND OBJECTS 387

Figure 9.4: Dendrograms of the tree z. survey groum to the long-distance marketing data.
The dendrogram on the left uses the change in deviance to guide the vertical positioning of
each pair of nodes. Resolution at the leaves of the tree is sacrificed to provide a visual cue
of split importance. The dendrogram on the right uses node depth to guide the placement
of each node. {The root has depth 0.)

Pruning and Shrinking

Another aspect of assessing a fitted tree-based model is the extent to which it can
be simplified without sacrificing goodness-of-fit_ This is also an important consid
eration for prediction. Since tree size is intentionally not limited in the growing
process, a certain degree of overfitting has occurred- There are two ways to ad
drP.Ss this problem; the one to choose depends upon whether the primary concern
is parsimonious description or accurate prediction.

Figure 9.6 displays three variations of z.kyph, the classification tree grown to the
kyphosis data. The first panel is the dendrogram for the full tree with nine terminal
nodes. The second panel is a pruned version with three terminal nodes- The third
panel is a shrunken version with nine actual terminal nodes and about three effective
terminal nodes. Note that the pruned tree shares the same estimated probabilities
as the full tree but that apart from the root node, those of the shrunken tree are
completely different. Summaries of the pruned and shrunken trees are:

388 CHAPTER 9. TREE-BASED MODELS

0
0 00

0
00

0 0 #'
g "' 0 g "' 0

a! 0 0 0 :::> #'
0 00 0 ~ / ~ 0 0 .!:!. 0 _o en

iii 0 iii 0
:::>

0 0 0
:::> ,/ "0 ~ -~ 0 0 0 0

0 0 I!! f
~ 0 00 0 ~

rxJDsl' 0 0
0 0 0

-r 0 -r 0

20 25 30 ·2 ·1 0 2

predict(z.auto) Quantiles of Standard Normal

Figure 9.5: Two standard diagnostic plots for regression data as applied to the fit described
by z. auto. The plot in the left panel is that of residuals versus fitted values. The plot in
the right panel is a nonnal probability plot of residuals. These plots suggest that there are
no apparent outliers but that the variance seems to increase with level.

> summary(zp.kyph)

Classification tree:
prune.tree(tree = z.kyph, k = 5)
Variables actually used in tree construction:
[1] "Age" "Start"
Number of terminal nodes: 3
Residual mean deviance: 0.734 = 57.252 I 78
Misclassification error rate: 0.173 = 14 I 81

> summary(zs.kyph)

Classification tree:
shrink.tree(tree = z.kyph, k = 0.25)
Number of terminal nodes: 9
Effective number of terminal nodes: 2.8
Residual mean deviance: 0.739 = 57.754 I 78.2
Misclassification error rate: 0.136 = 11 I 81

Which tree is better? In one sense, the pruned tree, since it provides a much more

9.2. S FUNCTIONS AND OBJECTS 389

Figure 9.6: Three variations of the tree grown to the kyphosis data. All plots are on a
common scale, and nonunifonn (vertical) spacing of nodes is used. The nodes are labeled
with the estimated probability that Kyphosis==absent. The node labels have been rotated to
improve readability. The first panel is the full tree z.kyph; it is a graphical representation
of the tabular version presented in Table 9.1. The second panel is a pruned version of
z.kyph, whereby the least important splits have been pruned off. Note that the estimated
probabilities and node heights match those of the full tree. The third panel is a shrunken
version ofz.kyph, whereby the estimated probabilities have been pulled back or shrunken
toward the root. Apart from the root, neither the estimated probabilities nor the node heights
match those of the full tree. The squashing of the dendrogram at the bottom indicates that
these nodes have been shrunk completely to their parents.

succinct description of the data (note that only two out of the three predictors
remain). In another sense, the shrunken tree, since its misclassification error rate is
lower than that of the pruned tree. Thus, there is no hard and fast rule on which is
better; the choice depends on where your priorities lie (simplicity versus accuracy).
We now proceed to describe these methods in more detail.

The function prune.tree() takes a tree object as a required argument. If no
additional arguments are supplied, it determines a nested sequence of subtrees of
the supplied tree by recursively snipping off the least important splits. Importance
is captured by the cost-complexity measure:

DQ(T') = D(T') + asize(T')

390 CHAPTER 9. TREE-BASED MODELS

where D(T') is the deviance of the subtree T', size(T') is the number of terminal
nodes ofT', and a is the cost-complexity parameter. For any specified a, cost
complexity pruning determines the subtree T' that minimizes D0 (T') over all sub
trees ofT. The optimal subtree for a given a is obtained by supplying prune. tree()
with the argument k=a. For example, the tree displayed in the second panel of
Figure 9.6 was obtained by prune. tree(z.kyph, 5). If k•a is a vector, the sequence
of subtrees that minimize the cost-complexity measure is returned rather than a
tree object.

The function shrink. tree() takes a tree object as a required argument. If no
additional arguments are supplied, it determines a sequence of trees of the supplied
tree that differ in their fitted values. A particular tree in the sequence is indexed
by a, which defines shrunken fitted values according to the recursion:

y(node) = ay(node) + (1- a)y(parent)

where y(node) is the usual fitted value for a node, and y(parent) is the shrunken
fitted value for the node's parent-that is, it was obtained by applying the same
recursion. The function shrink. tree() uses a particular parametrization of a that
optimally shrinks children nodes to their parent based on the magnitude of the
difference between y(node) and y(parent). The sequence is anchored between the
full tree (a= 1) and the root node tree (a= 0). A heuristic argument allows one to
map a into the number of effective terminal nodes, thereby facilitating comparison
with pruning. The tree for a given a is obtained by supplying shrink. tree() with
the argument k=a. For example, the tree displayed in the third panel of Figure 9.6
was obtained by shrink. tree (z.kyph, .25). If k•a is a vector, the sequence of trees
that are determined by these shrinkage parameters is returned rather than a tree
object.

Figure 9.7 displays the sequences for pruning and shrinking z.survey. These
are obtained by omitting the k• argument and plotting the resulting object. These
objects have class "tree. sequence" for which a plot() method exists. Each panel
displays the deviance versus size (the number of terminal nodes or the number
of effective terminal nodes) for each tree in the sequence. An additional (upper)
axis shows the mapping between size and k for each method. By construction,
the deviance decreases as tree size increases, a common phenomenon in model
fitting (i.e., the fit improves as parameters are added to the model). This limits
the usefulness of the plot except in those situations where a dramatic change in
deviance occurs at a particular value of k.

It should not be surprising that the sequences produced by these methods pro
vide little guidance on what size tree is adequate. The same data that were used
to grow the tree are being asked to provide this additional information. But since
the tree was optimized for the supplied data, the tree sequences have no possible
alternative but to behave as observed. There are two ways out of this dilemma:

9.2. S FUNCTIONS AND OBJECTS 391

0 0.23 0.46 41.0 4.9 2.2

0 ~ § 0
0 0

\ S'!
0

0 \ 0 0
(J)

\ :;:
8 0 B
c 0

\ :ii 0

-~ li:l ·;: li:l .., ~
0

0

""
0

R 0

0"'-
.....

~
o,

o,
0.0

~

20 40 60 80 20 40 60 80 99

size size

Figure 9.7: Plots of deviance versus size (number of terminal nodes) for sequences of
subtrees of z. survey. The left panel is based on optimal shrinking while the right banel
is based on cost-complexity pruning. The former is plotted as a continuous function to
reinforce its continuous behavior. The latter is plotted as a step function because optimal
subtrees remain constant between adjacent values of k. Each panel has an additional axis
along the top indicating the values of k that correspond to the different sized subtrees in
the sequence.

one is to use new (independent) data to guide the selection of the right size tree,
and the other is to reuse the existing data by the method of cross-tJalidation. In
either case, the issue of tree-based prediction of new data arises. Let's pursue this
diversion before returning and concluding our discussion of choosing the right size
tree.

Prediction

An important use of tree-based models is predicting the value of a response variable
for a known set of predictor variables. By prediction we mean to evaluate the splits
describing a tree-based model for a set of predictor variables and defining the yval
at the deepest node reached as the prediction. Normally this corresponds to a leaf
node of the tree, but we adopt the convention that a prediction may reside in a
nonterminal node if, in following along the path defined by the set of predictor
variables for a new observation, a value of a predictor is encountered that has

392 CHAPTER 9. TREE-BASED MODELS

never been seen at that node in the tree-growing process. The classic case of this
is encountering a missing value (NA) when only complete observations were used
to grow the tree. More generally and more subtly, this condition occurs for factor
predictors whenever a split is encountered where the value goes neither left nor right
(e.g., if x = B and the left and right splits at a node are, respectively, x E {A, C}
and x E {D,E}).

occ

44/1 2

8
;:r_,
~

32176

Figure 9.8: !Tee representation of prediction from the classification tree zs.survey. The
node labels are the predicted values of pick. The numbers displayed under each node rep
resent the misclassification error rate for the new data na.market.survey. The overall
misclassification error rate is quite high (0.41}. Four of the respondents remain at the root
node due to missing values in the predictor usage.

We return to the long-distance marketing example where we illustrate prediction
using an additional 241 survey respondents. These respondents were part of the
initial survey but were omitted from the preliminary analysis because of missing
values in the variables. The data are collected in the data frame na.market.survey.
Predictions from the tree in Figure 9.3 are displayed in Figure 9.8. The figure shows
the disposition of the 241 observations along the prediction paths of the tree. Of
the 241 observations, 161 are directed to the left (OCC), 76 to the right (ATT), and

9.2. S FUNCTIONS AND OBJECTS 393

4 remain at the root node (due to missing values for usage). Of the 1111, 132 are
directed to the left (OCC) and 29 to the right (ATT). The misclassifiLnt.ion error
rate associated with these predictions is quite high (41%). This error htte varies
from leaf node to leaf node, from 33% (leftmost leaf), to 66% (middh~ k•lf) to 42%
(rightmOst leaf). '

The tree displayed in Figure 9.8 was obtained with the expressiou:

zd.survey <- predict(zs.survey, na.market.survey, type ~ "tree"J

The predict() method takes a tree object and a data frame. The tree obj., .. , is lik•·lv
to be a simplified version of that provided by tree 0. The names of the v1uiahf1;,;

in the data frame must include the predictors in the formula used to cou.,truct th•~
tree. The function returns the values predicted by the tree for the dnt.1t in th•~

data frame, either as a vector (the default) or as a tree object, type="tlDe". If a
data frame is not supplied, predict() returns the fitted values for the dat11 used to
construct the tree; we used this feature in our earlier discussion of residual plots.

Cross-validation

We now return to the topic of choosing the right size tree based on data not used
to grow the tree. Test data can be supplied to the functions prune.tree() and
shrink.treeO with the nevdata= argument. The functions return an object of class
•tree. sequence" containing the sequence evaluated on the test data. Figure 9.9
illustrates this functionality for the market survey data, where the new data consist
of those held back due to missing values. These plots span a wide range of tree
sizes, but the most promising are those with fewer than a dozen nodes. The range
can be restricted by suitable specification of the argument k. Panel1 of Figure 9.10
demonstrates such a restriction for k in the range 0.05 to 0.20 for the optimal
shrinking sequence. Evidently, either a very small tree is called for or the data with
NAs are not drawn from the same population as those without.

The function cv.tree() can be used to address this ambiguity by applying a
procedure described in Section 9.3 called cross-validation. The basic idea is to
divide the original data into mutually exclusive sets. For each set, a tree is grown
to the remaining sets and a subtree sequence obtained; the set held out is then used
to evaluate the sequence. Deviances from each set are accumulated (as a function of
k) and returned as an object of class "tree. sequence". A plot of the cross-validated
deviance versus tree size is seldom monotone decreasing since data used to evaluate
the sequences were not used to construct them. A common feature of the plot is a
fairly flat minimum, and trees in this region are candidates for further consideration.
The result of tenfold cross-validation of the tree z.survey is displayed in the right
panel of Figure 9.10. The plot was obtained by the expressions

394 CHAPTER 9. TREE-BASED MODELS

0 0.23 0.46 41.0 4.9 2.2

0

~ I 0

~
0

8 I 8
c 0 c

'" 0 I ·! § ·~ ~
'C 0 'C

/
0

/
0 0 0

~ 0/ ~

oo/
0

20 40 60 80 20 40 60 80 99

size size

Figure 9.9: Plots of deviance versus size for sequences of subtrees ofz.aurvey evaluated on
new data. The new data are from the data frame market. survey but were omitted from the
fit due to missing values in some of the predictors. The na.trae.raplacaO function was
used to replace NAs with an additional factor level. Since the original tree was constructed
from data without missing values, this in effect means that when the new level "NA" is
encountered, the deviance at that node is used. The left panel is based on optimal shrinking
while the right panel is based on cost-complexity pruning. Comparison with Figure 9. 7
highlights the differences in these sequences when based on training and independent test
data. This figure suggests that either a very simple tree (at most three nodes} be used to
summarize these data, or that the two datasets, those with and those without NAs, are
qualitatively different.

> k <- seq(.05, .20, length • 10)
> cv.survey <- cv.tree(z.survey, r.survey, k • k)
> plot(cv.survey, type • "b")

The dataset r. survey contains a random permutation of the integers 1 to 10, of
length length(pick), denoting the assignment of the observations into 10 mutually
exclusive sets. The function cv. tree 0 will determine a permutation by default, but
it is often useful to specify one, especially if comparison with another sequencing
method is desired. The final argument, FUN•, specifies which sequencing function is
to be used; the default is shrink. tree.

9.2. S FUNCTIONS AND OBJECTS 395

0.085 0.160 0.190 0.085 0.160 0.190

0
0 ~ 0

~ I \
N

0

"' 0 0 ~ 0

"'

I I \ 8 0 8
fi ~

c: 0 0 .!! .i > 0 \ "' '0 0 '0
ID

I N 0 0 "'

\
0 \ 0

ID 0 ~
PI I 0

\ 0
0
ooo 0-o-o-o__....--

~ en
2 4 6 8 10 12 2 4 6 8 10 12

size size

Figure 9.10: Plots of deviance versus size for sequences of shrunken trees of z. survey. The
range of trees considered was restricted to values oft between 0.05 and 0.20, corresponding
to trees with effective size from 1 to 12. The left panel is based on evaluating the sequence
on new data while the right panel is based on cross-validation. The left panel provides
sharp discrimination in tree size, strongly suggesting a three-node tree. The right panel is
not so sharp and is typical of sequences computed by cross-validation. Even so, a modest
seven-node tree is suggested.

9.2.2 Functions for Diagnosis

Residual analysis is important and not peculiar to a single class of models. In
the cas~ of trees, it is natural to exploit the very representation that is used to
capture and describe the fitted model-namely, the dendrogram-as the primary
means of diagnosis. We now introduce functions that utilize the tree metaphor to
facilitate and guide diagnosis. The functions divide themselves along the natural
components of a tree-based model-namely, subtrees, nodes, splits, and leaves. Most
of the methods involve interacting with trees, and by this we usually mean graphical
interaction. We note parenthetically, and sometimes explicitly below, that all the
functions can be used noninteractively (by including a list of node numbers as
an argument), but their usefulness seems to be significantly enhanced when used
interactively.

In certain of the figures in this section, a (new} general mechanism to obtain
multiple figures within the S graphics model is used. The split-screen mode is an

396 CHAPTER 9. TREE-BASED MODELS

alternative to par(mfrov) that allows arbitrary rectangular regions (called screens)
to be specified for graphics input and output. We use this mechanism rather than
the standard multifigure format not only to attain a more flexible layout style, but
also because the order in which screens are accessed is under user control. It is
able, for example, to arbitrarily receive graphics input from one screen and send
graphics output to another. We have attempted to restrict our use of the split
screen mode to minimize the introduction of too much ancillary material. A single
function tree. screens(), called without arguments, will set up a generic partition
of the figure region used by the tree-specific functions that we provide. See the
detailed documentation of split . screen 0 for further information.

9.2.3 Examining Subtrees

The function snip. tree 0 allows the analyst to snip off branches of a tree either
through a specified list of nodes, or interactively by graphic input. For the former,
the subset method for tree objects described earlier, "[.tree" 0, is a convenient
shorthand. For example, the expression z.auto[-2] is equivalent to the expression
snip. tree (z. auto, 2). This usage requires knowing the number of the node or
nodes in question; the interactive approach obviates this need. It is most convenient
when working at a high-resolution graphics terminal and provides a type of what-if
analysis on the displayed tree. The graphical interface is such that a single click
of the graphics input device (e.g., a mouse) informs the user of the change in tree
deviance that would result if the subtree rooted at the selected node is snipped
off; a second click on the same node actually does the snipping. By snipping,
we mean that the tree object is modified to reflect the deleted subtree and also
that the portion of the plotted dendrogram corresponding to the subtree rooted at
the selected node is "erased." The process can be continued, and, on exit, what
remains of the original tree is returned as a tree object. An example of the textual
information displayed during this process is as follows:

> zsnip.survey <- snip.tree(z.survey)
node number: 4

tree deviance = 562.518
subtree deviance = 741.663

node number: 10
tree deviance • 741.663
subtree deviance = 786.214

node number: 7
tree deviance • 786.214
subtree deviance= 962.767

Here we first selected and then reselected nodes 4, 10, and 7 of the tree z.survey.
Note how the subtree deviance at one stage becomes the tree deviance at the next
stage. The graphical result of this process is displayed in Figure 9.11. The second

9.2. S FUNCTIONS AND OBJECTS 397

usa <12.5

emplo t:S.U

ATT ATT

ATT ATT

Figure 9.11: An illustmtion of intemctive snipping of subtrees. The full tree z.survey is
plotted in the first panel. Upon selection of a node, the change in deviance that would result
by snipping off the subtree rooted at that node is displayed. If it is reselected, the subtree
is snipped off, which has the side effect of emsing the subtree from the dendrogram. The
second panel shows what remains of the tree after the subtrees rooted at nodes 4, 10, and
7 are snipped off. The final panel replots and labels the snipped tree. ,

panel shows the result of snipping off the subtrees rooted at nodes 4, 10, and 7.
The final panel replots the snipped tree zsnip.survey and labels it. This points
out one reason for snipping-gaining resolution at the top of the tree so that it
can be usefully labeled. The node numbers of the branches that were snipped off
are collected together and pasted into the call component of the tree object to
inform the user that the result was obtained by snipping nodes so-and-so from tree
such-and-such. For example, the call component of zsnip.survey is

> zsnip.survey$call
snip.tree(tree = z.survey, nodes = c(4, 10, 7))

The function select.tree() is the dual of snip.tree(). It allows individual
subtrees of a specified tree to be selected and assigned. For each node number
supplied, the function returns a tree object rooted at that node. If no nodes are
supplied, the function expects them to be selected by graphical interaction. When
more than one node is specified or selected, the subtrees are organized as a list,
with the node number naming the individual elements. One might reasonably call

398 CHAPTER 9. TREE-BASED MODELS

stand.survey[['4']J stand.surveYII'1 O'J) stand.survey[r7'JJ

Figure 9.12: An illustration of a stand of trees. The three panels contain the subtrees of
z.survey that were snipped off in Figure 9.11. Each tree in the stand is amenable to all
methods for tree objects, including plot methods. The pan~ls in the figure were obtained by
applying the plot() method to the stand stand. survey. ·

such a list a stand (of trees). An interesting feature of stands results from the fact
that the trees it contains are bona fide tree objects. Thus, they are amenable to
any and all display and analysis functions for trees. A useful way to peruse a stand
is by applying a function to it using apply(). For example, Figure 9.12 is obtained
by the expression

> stand.survey <- select.tree(z.survey, nodes = c(4, 10, 7))
> sapply(stand.survey, plot)

Like snip.tree(), the subset method for tree objects, "[.tree"(), is a convenient
shorthand for select.tree(). For example, z.survey[c(4, 10, 7)] is equivalent
to the expression given above for stand.survey. Also like snip.treeO, the call
component of a selected subtree is constructed to inform the user that the result
was obtained by selecting subtree so-and-so from tree such-and-such.

9.2.4 Examining Nodes

Much information concerning a fitted tree resides in the nodes. It is important
that this information be readily available, and yet, there is too much information to

9.2. S FUNCTIONS AND OBJECTS 399

usefully label a dendrogram with. We now introduce some tree-specific functions to
encourage users to browse the nodes of a fitted tree-based model. Let's introduce a
new example based on the data frame cu. summary described in Section 3.1.1. The
data are summarized as follows:

summary (cu. summary)
Price

Min. : 5866 USA
1st Qu. : 10090
Median :13150

Country
:49

Mean :15740

Japan :31
Germany :11
Japan/USA: 9

3rd Qu.:19160 Sweden
Max. :41990 Korea

5
5
7

Mileage
Min. :18.00
1st Qu. :21.00
Median :23.00
Mean :24.58
3rd Qu. : 27. 00
Max. :37.00
NAs :57

(Other)

Type
Compact:22
Large : 7
Medium :30
Small :22
Sporty :26
Van :10

Reliability
Much worse : 18
worse :12
average :26
better : 8
Much better:21
NAs :32

The model we entertain addresses the relationship of automobile characteristics to
automobile reliability. The fitted tree-based model is obtained by the expression

> f.cu <- formula(Reliability ~Price +Country+ Mileage +Type)
> z.cu <- tree(f.cu, cu.summary, na.action = na.tree.replace)

and is plotted in Figure 9.13. Since this is a classification tree with a five-level
response variable, much information has been suppressed in the labeled dendrogram.
Node contents may be inspected with the browser() method for trees, which takes
a tree object as a required argument and an optional list of nodes. If the latter
is omitted, the function waits for the user to select nodes with the graphics input
device. For example, clicking on the left-child of the root node of the tree z. cu
yields:

> browser(z.cu)
node number: 2
split: Country:Japan,Japan/USA
n: 27
dev: 36.9219
yval: Much better
Much worse worse average better Much better

0 0 0.1111111 0.1111111 0.7777778

400 CHAPTER 9. TREE-BASED MODELS

Figure 9.13: A display of a tree fitted to the automobile reliability data. The response
variable has levels Kuch Worse, vorse, average, batter, Kuch Better. The predicted value
of the response variable is centered in the node. The number under each terminal node
is the misclassification error rate. The split at the root node suggests that Japanese cars,
whether manufactured here or abroad, have much better perceived reliability than cars of
other nationalities.

9.2. S FUNCTIONS AND OBJECTS 401

The identify() method also takes a tree object as a required argument and an
optional list of nodes. If the latter is omitted, the function waits for the user to
select nodes from the dendrogram. The function returns a list, with one component
for each node selected, containing the names of the observations falling in the node.
For example, clicking on the leftmost node of the tree z. cu yields:

> identify{z.cu)
node number: 4

Acura Integra 4
GEO Prizm 4
Honda Civic 4
Mazda Protege 4
Nissan Sentra 4
Subaru Loyale 4
Toyota Corolla 4
Toyota Tercel 4
Honda Civic CRX Si 4
Honda Accord 4
Nissan Stanza 4
Subaru Legacy 4
Toyota Camry 4

The "4" following each automobile name is actually part of the name (these are all
four-cylinder cars) and has nothing to do with the fact that node 4 was selected. If
the result of identify{) is assigned, these names can then be used as subscripts to
examine data specific to individual nodes. The following expressions demonstrate
how the predictor Price varies for observations in nodes 2 and 3:

> node2.3 <- identify{z.cu, 2:3)
> quantile (Price [node2. 3 [["2"]]])
[1] 6488.00 9730.50 12145.00 17145.25 24760.00
> quantile{Price[node2.3[["3"]]])
[1] 5899.0 9995.0 13072.5 20225.0 39950.0

Nodes 2 and 3 are the left and right children, respectively, of the root node. Given
that the more reliable cars follow the left path rather than the right, apart from the
least expensive automobiles, it appears that you pay more for more troublesome
cars!

The function path. tree() allows the user to obtain the path (sequence of splits)
from the root to any node of a tree. It takes a tree object as a required argument and
an optional list of nodes. If the latter is omitted, the function waits for the user to
select nodes from the dendrogram. The function returns a list, with one component
for each node specified or selected. The component contains the sequence of splits
!'earling to that node. In interactive mode, the individual paths are (optionally)
printed out as nodes are selected. The function is useful in those cases where tree.

402 CHAPTER 9. TREE-BASED MODELS

size or label lengths are such that severe overplotting results if the tree is labeled
indiscriminately. For example, selecting one of the deep nodes of the tree z. cu
yields:

> path.tree(z.cu)
node number: 26

root
Country:Germany,Korea,Mexico,Sveden,USA
Type:Compact,Small
Country:Korea,Sveden,USA
Mileage:23+ thru 27,27+ thru 37

By examining the path, we can see that the automobiles in this node consist of
those manufactured in Korea, Sweden, and USA, which are compact or small, and
for which the reported mileage is between 23 and 37 mpg.

9.2.5 Examining Splits

The tree grown to the automobile reliability data suggests that Japanese cars,
whether manufactured here or abroad, are more reliable than cars of other na
tionalities. Should we believe this? The answer in general is no; the recursive
partitioning algorithm underlying the tree() function is just that: an algorithm.
There may well be other variables, or even other partitions of the variable Country,
that discriminate reliable from unreliable cars, but these just miss out being the
"best" split among all possible. The function burl. tree 0 allows the user to select
nodes and observe the competition for the best split at that node. For numeric
predictors, a high density plot is used to show the goodness-of-split at each possible
cut-point split. For factor predictors, a scatterplot plot displays goodness-of-split
versus a decimal equivalent of the binary representation of each possible subset split;
the plotting character is a string labeling the left split. Figure 9.14 provides an ex
ample for the tree z. cu. The plots under the dendrogram show a clear preference
for splits involving the variable Country. Figure 9.15 is an enlargement of the scat
terplot for Country. We see that the candidate splits divide into two groups, one of
which (top) discriminates better than the other (bottom). Among those in the top
portion, that labeled ef=Japan, Japan/USA is the best; moreover, it is the common
intersection of all the candidate splits in the top portion. Given this information,
we are more likely to believe that this split is meaningful.

The function hist. tree() also focuses on splits at specified or interactively se
lected nodes by displaying side-by-side histograms of supplied variables. Specifi·
cally, the histogram on the left displays the distribution of the observations on that
variable following the left split, while the histogram on the right displays the distri·
bution of the observations following the right split. It is similar to burl. treeO in
that it displays a variable's discriminating ability, but is different in that it alloWS

9.2. S FUNCTIONS AND OBJECTS 403

worse average average average

Price Counlry Mileage

Figure 9.14: An illustration of burling a tree-based model. The top panel displays the labeled
dendrogram of z. cu; initially, the lower portion is empty. Upon selection of the root node,
the plots in the lower four panels are displayed. These show, for each predictor in the
model formula, the goodness-of-split criterion for each possible split. The goodness-of-split
criterion is the difference in deviance between the parent (in this case the root node) and its
children (defined by the tentative split}; large deviance differences correspond to important
splits. For numeric predictors, a high-density plot conveys the importance of each possible
cut-point split. For factor predictors, an arbitrary ordering is used along the abscissa (x-
03:is) to separate different subset splits; the left split is used as a plotting character. The
ordinate (y-axis} of all plots is identical. These plots show that, at the root node, Country
i8 the best discriminator of automobile reliability. It also shows that there are many good
subset splits on Country, the "best" being the one labeled ef in the upper left. Upon selection
of another node in the dendrogram, the lower portion of the screen is erased and refreshed
With four new panels displaying the splits relevant at that node.

404

ef

e

de

del
elg

delg

etgh

delgh

CHAPTER 9. TREE-BASED MODELS

elh

delh

eh

elhi

delhi elghi

defghi

deh ehi

eli

elgi deli

delgi

ei

a Brazil
b England
cFrance
dGermany
eJapan
I Japan/USA
g Korea
h Mexico eg eghth dh

dllg degdegn lgl'lllh e i ':Jlhi egl dei ; Sweden
. fj)Jhi im&d'l9l tgli J USA

dfg ..dah dfgh dtllhl dffiighi u'!I'Wig dfgidfi ,...,..,. ____ _,
~---.-~~~-~--~-~~--~~--d~i~
0 10 20 30 40 50 60

Declmal equivalent of binary subset split

Figure 9.15: A scatteTplot of the competing subset splits on Country at the root node of
the tree z.cu. The plotted character strings are the left splits; none contain j since it
is the last level of Country and, by construction, resides in right splits only. No subsets
contain abc since automobiles from these countries were omitted due to missing values of
the response variable Reliability; this occurred silently by na.tree.replaceO when z.cu
was grown. There are no singleton splits ford, g, h, or 1' since these countries have fewer
than five automobiles in the model frame and the algorithm has a minimum subset size of
five. The splits seem to divide into two groups: those having good discriminating power
(upper portion), and those having mediocre to poor power (lower portion). The former all
contain ef, supporting its selection as the best discriminating subset.

variables other than predictors to be displayed. Figure 9.16 provides an example
for the tree z. cu fitted to the automobile reliability data. This example resulted
from the expression:

> hist.tree(z.cu, Reliability, Price, Mileage, nodes = 1)

At a glance we see the complete distribution of the response variable Reliability
for nodes 2 and 3 (the children nodes of the root). It is interesting that not a single
Much Better car follows the right split. The second panel (Price) graphically conveys
what our earlier analysis using identify() suggested: that the most reliable cars are
not the most expensive ones. It appears that status and reliability are incompatible
in these data.

9.2. S FUNCTIONS AND OBJECTS

Price

worse average average average
Mileage

405

Figure 9.16: A illustration of the function hist.tree() at the root node of the automo
bile reliability tree z.cu. The upper portion of the plot contains the labeled dendrogram.
The lower portion displays a side-by-side histogram for each of the variables Reliability,
Price, and Mileage. The left-side histogram summarizes the obseroations following the left
split, and similarly for the right. The figure shows that Japanese cars manufactured here
or abroad tend to be more reliable, less expensive, and more fuel efficient than others.

9.2.6 Examining Leaves

Often it is useful to observe the distribution of a variable over the leaves of a
tree. Two related (noninteractive) functions encourage this functionality. They are
noninteractive since they do not depend on user selection of a particular node; their
intended effect is across all terminal nodes. The function tile. tree 0 augments
the bottom of a dendrogram with a plot that shows the distribution of a specified
factor for observations in each leaf. These distributions are encoded into the widths
of tiles that are lined up with each leaf. If numeric variables are supplied, they are
automatically quantized. One use of this function is for displaying class probabilities
across the leaves of a tree. An example is displayed in Figure 9.17. A related
function rug. tree() augments the bottom of a dendrogram with a (high-density)
plot that shows the average value of the specified variable for observations in each
leaf. These averages are encoded into lengths of line segments that are lined up with
each leaf. The function takes an optional argument, FUN=, so that summaries other
than simple averages (e.g., trimmed means) can be obtained. Figure 9.18 displays

406 CHAPTER 9. TREE-BASED MODELS

Figure 9.17: The dendrogram of the automobile reliability tree z.cu enhanced with a tiling
of the variable Reliability. The distribution of Reliability over the leaves of the tree
is readily discerned. Successive calls to tile. tree 0 with other variables is encouraged by
not replotting the dendrogram-only the new tiling is plotted after the bottom screen is
"erased".

the distribution of the variable usage for the tree grown to the market survey data.
Recalling that the split at the root node was usage ~ 12.5, the general shape of the
rug is as expected: lower on the left and higher on the right. Somewhat unexpected
is the fact that the heavier users are, by and large, much heavier users.

9.3 Specializing the Computations

As described in the preceding section, the tree object is a repository for a number of
by-products of the tree-growing algorithm. The named components of a tree object
are

> names(z.survey)
[1) "frame" "where" "terms.. 11 Call''

The frame component is a data frame, one row for each node in the tree. The
row labels, row.names(frame), are node numbers defining the topology of the tree.
Nodes of a (full) binary tree are laid out in a regular pattern:

9.3. SPECIALIZING THE COMPUTATIONS 407

........ dt.l ,,,, 1.11 ..••.• 1. ldilllilllllliillldll,,,lllllliillil
Figure 9.18: The dendrogram of the long-distance marketing tree z.survey enhanced with
a rug of the variable usage. The distribution of this variable over the leaves of the tree is
readily discerned. Successive calls to rug. tree() with other variables is encouraged by not
replotting the dendrogram-only the new rug is plotted after the bottom screen is erased.

1
2 3

4 5 6 7

More generally; nodes at depth d axe integers n, 2d ~ n < 2d+1. Of course, any
specific tree is not full and consists of a subset of all possible nodes. The ordering
of the nodes in the frame corresponds to a depth-first traversal of the tree according
to this numbering scheme.

The elements (columns) of frame contain the following node-specific information:

• the variable used in the split at that node (var)

• the number of observations in the node (n)

• a measure of node heterogeneity (dev)

• the fitted value of the node (yval)

• the matrix of left and right split values (splits).

Routine application of the functions in this chapter does not require users to mar
nipulate this object directly, but for concreteness we display the 21 row z.cu$frame
here:

408 CHAPTER 9. TREE-BASED MODELS

var n dev yval splits.left splits.right
1 Country 85 260.997544 average :ef :dghij
2 Price 27 36.921901 Much better <12197 >12197
4 <leaf> 14 0.000000 Much better
5 Type 13 26.262594 Much better :ae :cf

10 <leaf> 8 17.315128 better
11 <leaf> 5 5.004024 Much better
3 Type 58 146.993133 average :ad :beef
6 Country 22 59.455690 vorse :dh :gij

12 <leaf> 5 6. 730117 average
13 Mileage 17 42.603572 vorse :cd :be
26 <leaf> 7 15.105891 better
27 <leaf> 10 19.005411 vorse

7 Type 36 68.976020 average :e :bcf
14 <leaf> 9 9.534712 Much vorse
15 Type 27 50.919255 average :c :bf
30 Mileage 16 33.271065 average :ab :e
60 <leaf> 7 14.059395 vorse
61 <leaf> 9 16.863990 average
31 Price 11 12.890958 average <15770 >15770
62 <leaf> 5 6.730117 average
63 <leaf> 6 5.406735 average

This example illustrates a. labeling convention specific to trees whereby levels
of factor predictors are assigned successive lower-case letters. Thus, the first right
'Split, :dghij (on Country), is shorthand for :Germany ,Korea,Mexico,Sveden,USA. Such
a. convention is necessary in order to provide meaningful information about splits
in a. limited amount of space. The problem is particularly acute for labeling plotted
dendrograms but is also important in tabular displays such as that resulting from
print{). The labels{) method for trees allows full control over which style of labels
is desired; it is usually invoked by printing and plotting functions rather than called
directly by the user.

In the case of classification trees, a.n additional component of the frame object
is the matrix (yprob) containing the class probability vectors of the nodes labeled
by the levels of the response variable. We omitted this in the above display of
z. cu$frame in order to conserve space.

The vhere component of a. tree object is a. vector containing the row number
(in frame) of the terminal node that each observation falls into. It has a names
attribute that corresponds to the rov. names of the model frame used to grow or
otherwise define the tree. Like the frame component, it is heavily used in many
of the functions that manipulate trees. For example, the vector of fitted values is
obtained as z$frame[z$vhere, "yval"]. The remaining components, "terms" and
"call", are identical to those described in previous chapters.

9.3. SPECIALIZING THE COMPUTATIONS 409

We emphasize that for the most part you will not have to look directly at the
values of these components. However, in order to modify the behavior of any of
the supplied functions, or to construct new ones, you should first feel comfortable
JDailipulating these components. For example, consider the following function (pro
vided in the library):

meanvar.tree() <- function(tree, xlab = "ave(y)",
ylab = "ave(deviance)", ...) {

if{!inherits(tree, "tree"))

}

stop("Not legitimate tree")
if (!is. null (attr(tree, "ylevels")))

stop("Plot not useful for probability trees")
frame <- tree$frame
frame <- frame [frame$var == "<leaf>",
x <- frame$yval
y <- frame$dev/frame$n
label <- rov.names(frame)
plot(x, y, xlab = xlab, ylab = ylab, type= "n", ...)
text(x, y, label)
invisible(list(x = x, y = y, label = label))

This function uses only the frame component to produce a plot of the within-node
variance (dev/n) versus the within-node average (yval) for numeric responses. The
node number is used as the plotting character. This plot is useful for assessing the
assumption of constant variability throughout predictor space. If trend is apparent
in the plot, a reexpression of the response variable y is recommended for proper
trees to be grown.

The functions we provide are intended to make the task of modeling data with
binary trees more pleasant and at the same time more powerful. The examples in
the previous sections showed how the user might directly use these functions during
an analysis. Of course, the functions can also be called by other functions and thus
form the building blocks for more specialized functions or even more complicated
manipulations of tree-based models.

The single best example illustrating the power of using the functions as prim
itives in a more complicated function is given by the technique known as cross
validation. Specifically, consider the problem of selecting the optimal tree in a
pruning or shrinking sequence. The general idea is that the deviances, used as
a measure of predictive ability, for any of the trees in the sequence are far too
optimistic-that is, too small-as they are based on the same data used to construct
the tree. It would be better-that is, less biased-to use an independent sample
with which to assess the predictive ability of any specific tree. Cross-validation
is an attempt to do just this where the original dataset is carved into K mutually
exclusive subsets, each of which will serve as an independent test set for trees grown

410 CHAPTER 9. TREE-BASED MODELS

on learning sets composed of the union of the K - 1 remaining subsets. For each
of the learning sets, a tree must be grown and a pruning or shrinking sequence
determined. The corresponding test set must then be dropped down the trees in
the sequence and some measure of goodness computed (e.g., misclassification error
rate or deviance--we use the latter). These are then summed over the induced
replications and displayed. An implementation is as follows:

cv.tree <- function(tree, rand, FUN= shrink.tree, ...)
{

}

if(!inherits(object, "tree"))
stop("Not legitimate tree")

m <- model.frame(object)
p <- FUN(object, ...)
if(missing(rand))

rand<- sample(10, length(m[[1]]), replace= T)

which <- unique(rand)
cvdev <- 0
for(i in which) {

}

tlearn <- tree(model = m[rand != i,])
plearn <- FUN(tlearn, newdata = m[rand == i,], p$k, ...)
cvdev <- cvdev + plearn$dev

p$dev <- cvdev
p

Apart from some initialization steps, the function first sequences the original tree
and assigns the result to p. In the for loop, we use two different high-level tree
manipulation functions. We first use tree() to grow a tree to the learning model,
m [rand ! = i, J . This is followed by a call to the sequencing function, shrink. tree ()
by default, to produce the sequence for the learning tree and to evaluate the sequence
for the model containing the test data, m [rand == i, J . Finally, the deviances are
summed across samples and returned for subsequent plotting.

Other functions for tree-based modeling are included in the library that have
not been explicitly mentioned in the text. Some are low-level utility functions that
are called by the high-level functions accessed directly by the user. Others are high
level functions that are specialized for certain numerical or graphical purposes. The
function basis. tree 0 is an example of the former whereby an orthogonal basis for a
fitted tree is computed. There is one basis vector for each split and one for the root
{th<! unit vector). A linear model fitted to this basis yields fitted values identical to
tho~<! from the tree. This linear model representation of a fitted tree-based model is
somPI.irnes useful for suggesting new methods for understanding trees (e.g., shrink
age <:Htimation.) The functions post.tree() and partition.tree() are examples
of HP<•c:ial purpose graphics functions. The function post. tree 0 does not require

9.3. SPECIALIZING THE COMPUTATIONS 411

1.000

+
O:SS2

+

+ ++

+

+ +

0.900 0.440
+ + +

+ +

+

+ +

0 50 100 150 200

Age

Figure 9.19: A display ofz.kyph[-c(5, 6)], a subtree ofz.kyph depending on the variables
Age and Start. The plot was obtained with the expression partition.tree(z.kyph[-c(5,

6)], label m "absent"). The data values appear on the plot as the plotting characters
"-" and "+." These were added with the expression text (Age, Start, if else (Kyphosis

=~ "absent'', "-", "+")). Three of the four regions are quite homogeneous; no apparent
structure is discernible in the remaining one.

activation of a graphics device, but rather that the user has access to a printer
compatible with the PostScript page-description language. The trees displayed in
Figures 9.3, 9.8, and 9.13 were produced by post.tree(). This "pretty printed"
display of a tree uses uniform vertical spacing of nodes and is more appropriate for
presentation than for diagnosis.

The function partition. tree() is peculiar to trees that depend on at most two
predictor variables. For a single predictor, partition.treeO displays the tree as
a step function, each step corresponding to a terminal node of the tree. This
display sacrifices the information in the tree object concerning the sequence of splits
leading to the leaf nodes, but gains familiarity of expression when one regards y

412 CHAPTER 9. TREE-BASED MODELS

as a function of x. The example in the right panel of Figure 9.1 was created with
partition. tree(). For two predictors, partition. tree() displays the partition of
the plane into homogeneous regions, each rectangular region corresponding to a
terminal node of the tree. In certain cases it is possible to reconstruct the sequence
of splits giving rise to the partition from the display, although this is not the primary
intended purpose. An optional argument, label, allows the user to specify the
labels associated with the partition, the default being the fitted value yval. For
classification trees, a specific level of the response factor can be specified. Figure 9.19
demonstrates a two-variable example based on the subtree z. kyph [-c (5, 6)].

Certain enhancements to the display functions are desirable so that more in
formation can be displayed subject to the constraint of minimal overplotting. For
example, the text() method for trees introduced in Section 9.2 allows an argument,
FUN=, to encourage users to explore interactive labeling. Suppose a user had a func
tion, say brush(), which allowed one to paint on labels (say with button 1) as well
as erase them (say with button 2). By paint we mean that buttons are depressed
and held rather than simply clicked. Then one could selectively label a plotted den
drogram in those cases where unrestricted labeling would conceal the dendrogram
itself.

A somewhat different specific proposal that we considered was displaying a his
togram or a boxplot of the distribution of y at each node of the tree. This would
allow comparison of scale and shape changes as nodes are split in addition to loca
tion differences, as is currently done. A function zoom. tree 0 might then be written
so that selecting a node might zoom in or otherwise provide an enlargement of the
histogram. This would necessitate some device-specific graphics functions, which
we have attempted to avoid.

9.4 Numerical and Statistical Methods

Tree-based models are defined most precisely by the algorithm used to fit them.
The algorithm attempts to partition the space of predictor variables (X) into ho
mogeneous regions, such that within each region the conditional distribution of y
given a:, f(yix), does not depend on a:. We first present the algorithm and then
discuss the three essential components as regards our implementation.

Initialize: current node = root = { y; , i = 1, ... , n}
stack= NULL

Recurse: for current node =/= NULL

Loop: for each xi partition x into two sets XLEFT and XRIGHT such that
f(yiXLEFT) and f(yiX RIGHT) are most different

g,4. NUMERICAL AND STATISTICAL METHODS 413

Split node: split current node into YLEFT and YRIGHT according to the x 1
and the associated split that is best among all x's

Test: if ok to split YnwHT

push YRIGHT onto stack

if ok to split YLEFT

current node= YLEFT

else pop stack

Partitioning the Predictors

Predictor variables appropriate for tree-based models can be of several types: fac
tors, ordered factors, and numeric. Partitions are governed solely by variable type
and therefore do not require explicit specification by the user.

If x is a factor, with say k levels, then the class of splits consists of all possible
ways to assign the k levels into two subsets. In general, there are 2k-1-l possibilities
(order is unimportant and the empty set is not allowed). So, for example, if x has
three levels (a, b, c), the possible splits consist of albc, able, and blac.

If x is an ordered factor with k ordered levels, or if x is numeric with k distinct
values, then the class of splits consists of the k - 1 ways to divide the levels/values
into two contiguous, nonoverlapping sets. These splits can be indexed by the mid
points of adjacent levels/values, which we call cutpoints. By convention, we implic
itly extend the range beyond the •observed data, so that at the left-most cutpoint,
CL defines the split -co < x ~ cL, and similarly for the right-most cutpoint. Note
that the values of a numeric predictor are not used in defining splits, only their
ronks. Indeed, it is this aspect of tree-based models for numeric predictors that
render them invariant under monotone transformations of x.

Comparing Distributions at a Node

We depart slightly from most previous authors on recursive partitioning methods
in that our view is more closely akin to classical models and methods for regression
and classification data. Our view is that we are estimating a step function r(x)
that is simply related to a primary parameter in the conditional distribution of
ylx. The likelihood function provides the basis for choosing partitions. Specifically,
we use the deviance (likelihood ratio statistic) to determine which partition of a
node is "most likely" given the data. The implementation is such that the type of
the response variable is the sole determinant of whether a classification tree (factor
response y) or a regression tree (numeric y) is grown. The current impl!lmentation
ignores any possible ordering of an ordered factor response variable; arguably, this
should be exploited in the fitting.

414 CHAPTER 9. TREE-BASED MODELS

The model we use for classification is based on the multinomial distribution
where we use the notation, for example,

y = (0, 0, 1, 0)

to denote the response y falling into the third level out of four possible. The vector
J.L = (pl,P2,P3,P4), such that :EPk = 1, denotes the probability that y falls into
each of the possible levels. In the terminology of Chapter 6, the model consists of
the stochastic component,

Y;"'M(J.L;), i = l, ... ,N

and the structural component
J.L; = r(:z:;).

The deviance function for an observation is defined as minus twice the log-likelihood,

K

D(J.Lii y;) = -2 LYik log(p;k).
k=l

The model we use for regression is based on the normal (Gaussian) distribution,
consisting of the stochastic component,

Y;"'N(J.L;, 0"2), i = 1, ... , N

and the structural component
f:J.; = r(:z:;).

The deviance function for an observation is defined as

D(tJ.;iY;) = (y;- J.L;) 2 ,

which is minus twice the log-likelihood scaled by 0"2, which is assumed constant for
all i.

At a given node, the mean parameter J.L is constant for all observations. The
maximum-likelihood estimate of fJ., or equivalently the minimum-deviance estimate,
is given by the node proportions (classification) or the node average (regression).

The deviance of a node is defined as the sum of the deviances of all observations
in the node D(P,; y) = L D(P,; y;). The deviance is identically zero if all the y's are
the same (i.e., the node is pure), and increases as the y's deviate from this ideal.
Splitting proceeds by comparing this deviance to that of candidate children nodes
that allow for separate means in the left and right splits,

D(P,L, P,n; y) = L D(ii-L; y;) + L D(P,n; y;)
L R

The split that maximizes the change in deviance (goodness-of-split)

AD = D(P,; y) - D(P,L, P,n; y)

is the split chosen at a given node.

9.4. NUMERICAL AND STATISTICAL METHODS 415

Limiting Node Expansion

The above discussion implies that nodes become more and more pure as splitting
progresses. In the limit a tree can have as many terminal nodes as there are obser
vations. In practice this is far too many, and some reasonable constraints should be
applied to reduce the number. We use two different criteria for deciding if a node
is suitable for splitting. Do not split:

• if the node deviance is less than some small fraction of the root node deviance
(say I%}; and

• if the node is smaller than some absolute minimum size (say 10}.

These limits are implemented through the arguments mindev and minsize, respec
tively, in the function tree. control (). The current defaults ar-e given above in
parentheses.

The default is quite liberal and will still result in an overly large tree with roughly
N /10 terminal nodes. This is intentional and mimics "best current practice" in
recursive partitioning methods. Indeed, the major problem of early tree-building
algorithms was deciding when to stop expanding nodes. It was indeed critical as the
tree was built in a forward stepwise manner, and once the final node was expanded,
modeling was complete. The approach we adopt is not to limit node expansion in
the tree-growing process. Instead, an overly large tree is grown, and one must decide
which branches to prune off or find some other way account for overfitting (e.g.,
recursive shrinking). The difference in the approaches is similar to that between
forward and backward stepwise selection of variables in linear models. Forward
methods can be fooled when the best early split does not meet the criterion of
splitting and tree growth is halted-when in fact this split is necessary to clear the
field for very important succeeding splits. The example of looking for interactions
in linear model residuals provides an illustration.

The design of our functions had this concept in mind from its inception, pro
viding a simple interface to growing a large tree, while providing a collection of
interactive functions to inspect nodes, identify observations, snip branches, select
subtrees, etc. Our recommended approach to tree building is far less automatic
than that provided by other software for the same purpose, as the unbundling of
procedures for growing, displaying, and challenging trees requires user initiation in
all phases. We now turn to another issue that also requires the user to get involved
in the modeling process.

9.4.1 Handling Missing Values

Tree-based models are well suited to handling missing values and several possibili
ties exist for building trees and predicting from them in the face of NAs. For tree

416 CHAPTER 9. TREE-BASED MODELS

building itself, the current implementation of tree() only permits NAs in predictor&
and only if requested by the special na.actionO for trees, na.tree.replace(). Th~
effect of this function is to add a new level named "NA" to any predictor with
missing values; numeric predictors are first quantized. The net effect of using
na.tree.replace() is that the new variable is treated like any other factor as re
gards determination of the optimal split. If x has three levels (a, b, c), the candidate
splits accommodating missing values are NAiabc, NAalbc, NAablc, NAblac, NAclab,
NAbcla, and NAac!b. Other possible ways to adapt tree() to allow missing val
ues in ordinal and numeric variables would likely require changes in the underlying
algorithm.

As described earlier on page 392, the approach we adopt for prediction is that
once anNA is detected while dropping a (new) observation down a fitted tree, the
observation "stops" at that point where the missing value is required to continue
the path down the tree. This is equivalent to sending the observation down both
sides of any split requiring the missing value and taking the weighted average of
the vector of predictions in the resulting set of terminal nodes. We chose this
method over that based on so-called surrogate splits because we believe it to be
less affected by nonresponse bia.'l. A surrogate split at a given node is a split on
a variable other than the optimal one that best predicts the optimal split. If a
new observation is being predicted that has a missing value on the split-defining
variable, then prediction continues down the tree so long as there is data on the
variable given by the surrogate split.

We note in passing another function concerned with missing values., The function
na.patternO enumerates the distinct pattern of missing values in a data frame,
together with the number of occurrences. For example,

> na.pattern(market.survey)
0000000000 0000000011 0000000100 0000100000 0001000000 0010000000

759 16 4 3 2 1

0100000000 0100000011 0100010000 0100100000 0100110000 0101000000
168 2 5 4 10

0101100000 0101110000 0110000000 0110100000 0111110000
8 2 2 12

indicates that all but 241 observations were complete, and of these 168 had informa
tion missing on the second variable (income!) alone. The remaining 73 observations
have a variety of patterns of missing values; of these, all but 26 have income among
the missing fields.

9.4. NUMERICAL AND STATISTICAL METHODS 417

9.4.2 Some Computational Issues

It should be clear that a fair amount of computation is required to select the best
split at a given node. The algorithm underlying tree-based models is computation
ally intensive. Although it is possible to implement it entirely in the S language, we
chose instead to write several of the underlying routines in c. Most have to do with
the actual tree-growing process (grov.c, splitvar.c, and vsplit.c), others are for
sequencing (prune.c and shrink.c), another for efficient prediction (pred.c), and,
finally, others for character manipulation (btoa.c) and printing labels (prlab.c).
Most users will not have to deal with this underlying code, but there are cases
where it is unavoidable and even desirable to modify code at this level for some
desired effect. Ultimately, such changes need to be compiled and loaded into S.

Our implementation is efficient in the sense that excessive computation is avoided
by updating, whereby the assessment of split optimality (dD) is done incrementally
after it has been done once for a particular split. FUrther computational improve
mentis possible for splits of factor predictors (where it is needed most!) provided
that y is numeric or has at most two levels. If this is the case, then the average
value of y in each level of the factor can be used to order the levels so that the
best split is among the k - 1 contiguous splits after reordering. This fails for factor
responses with more than two levels since it is unclear how a reordering is to be
effected.

9.4.3 Extending the Computations

Tree-based models can be extended to response variables from the exponential fam
ily of distributions f(y; J.L) described in Chapter 6. This results in the class of gen
eralized tree-based models (GTMs), whereby the stochastic component of a response
is assumed to be an exponential family member and the structural component is
described by a tree structure. Thus, for exponential family distributions, there is
a logic&~ progression of models of the structural component afforded by linear pre
dictors (GLMs, Chapter 6), additive predictors (GAMs, Chapter 7), and tree-based
predictors (GTMS). In principle, the extension is quite straightforward as the only
change to the existing software is in the form of the deviance function. Note in
particular that specification of a link function is not necessary since the estimate of
J.L in each node is the within-node average for all exponential family distributions.
However, link specification would be necessary in the event that an offset is used.
More importantly, an offset induces iteration in the calculation of the within-node
fitted value. For computational efficiency, one would determine splitting rules using
an approximation to the deviance, say the score function, and only iterate to con
vergence once a candidate variable and splitting rule have been determined. This
would increase the amount of computation by only a trivial amount relative to the
current implementation for classification and regression.

418 CHAPTER 9. TREE-BASED MODELS

Another possible generalization is the enlargement of the class of splitting rules
allowed by our tree-growing algorithm. Specific possibilities include linear combi
nation splits for selected sets of numeric predictors, as well as boolean combinations
whereby splits on individual factor predictors are ANDed and ORed to form a sin
gle split at a node. A convenient user interface is obtained by allowing a matrix
data type in the formula expression supplied to tree(), such that columns of the
matrix represent the individual variables to be combined: a matrix of numeric vari
ables for linear combination splits, and a logical matrix for boolean combination
splits. Thus, splits for these variable types are defined implicitly just as they are
for numeric predictors and factors. The computational complexity of such splitting
is unwieldy, and only suboptimal selections using heuristics are likely to be feasible.

Another interesting possibility is to consider hierarchical or conditional variables
that are typical of surveys. For example, depending on whether or not a person is
head of household, certain sections of a survey are not completed by the respondent.
For others, the values for the entries in these sections are missing, not at random, but
because of the structure ofthe instrument. Tree-based models are particularly adept
at capturing these types of data since by decomposing the sample into homogeneous
subgroups, the responses to the conditional part of these questions are appropriate
once the primary variable has been used in a split. It would seem that a useful way
to implement such variables is through an activation bit, which is on for all primary
variables, but gets turned on for the secondary ones only when their primary variable
is used in a split.

Bibliographic Notes

The introduction of tree-based models in statistics, particularly statistics for the
social sciences, is due to Sonquist and Morgan (1964). An implementation of their
ideas was realized in the computer program AID (Automatic Interaction Detection),
which served to stimulate much subsequent research, such as THAID (Morgan and
Messenger, 1973) and CHAID (Kass, 1980). These methods differed primarily in the
stopping rules used to halt tree growth.

The inclusion of a chapter on tree-based modeling in this book is due to the
influence of the work on classification and regression trees by Breiman et al. (1984).
Besides masterfully presenting the material to the mainstream statistical audience,
they are responsible for several important pioneering ideas that have redefined the
state-of-the-art of tree-based methods. The primary innovation was not to limit
node expansion "in the tree-growing process. They recommended growing an overly
large tree and spending one's effort deciding which branches to prune off. Their
method of determining a pruning sequence, based on the concept of minimal cost
complexity, forms the basis for the function prune. tree 0. Subsequent work by
Chou et al. (1989) generalizes this concept to other tree functionals besides tree

9.4. NUMERICAL AND STATISTICAL METHODS 419

size. Their other important innovation was the introduction of surrogate splits to
provide a mechanism to grow trees and make predictions in the presence of NAs
and also to provide a measure of variable importance.

Our methodology parallels that of Ciampi et al. (1987) in the use of the like
lihood function as the basis for choosing partitions. This is a departure from that
of Breiman et al. who use a variety of measures for tree growing and subsequent
pruning. The precise definition of the shrinkage scheme discussed in Section 9.2 is
also based on the likelihood (deviance) function. Recursive shrinking of tree-based
models is a relatively new application of shrinkage estimators due to Hastie and
Pregibon (1990). It has not been used as extensively as cost-complexity pruning
nor have extensive comparisons been performed with it.

The computational shortcut for' enumerating subset splits for factors and nu
meric responses dates back to Fisher (1958). This shortcut extends to binary re
sponses but not to factor responses with more than two levels. Chou (1988) suggests
a heuristic that restricts search to a (possibly) nonoptimal set of partitions. The
split produced by the heuristic gets closer to the optimal split as the number of the
levels of the factor increase-exactly the case where exhaustive search is infeasible.
The current implementation of tree() does not incorporate this heuristic.

Chapter 10

Nonlinear Models

Douglas M. Bates
John M. Chambers

This chapter discusses the analysis of data using nonlinear models such as nonlinear
regression, general likelihood models, or Bayesian estimation.

Throughout this book, statistical models have been defined by a three-part
paradigm:

• a formula that specified the structural form of the models;

• data that corresponded to the variables in the formula;

• further specifications, such as probabilistic assumptions, that completed the
definition of the model sufficiently to allow fitting.

We first introduced the paradigm in Chapter 2, in a specialized form. For linear
models, the formula could use a shorthand that omitted explicit mention of the
parameters to be estimated and used special interpretations of some S operators
to allow compact specification of commonly occurring models. The formula rep
resented an additive prediction from one or more terms. Further, the expressions
for the terms, when evaluated using the data supplied, always produced vectors or
matrices with elements or rows corresponding to the same set of observations. Use
of data frame objects went along with this specialization of models. Subsequent
chapters dealt with a variety of models more general than ordinary linear models,
but which could still use the specialized version of the paradigm, along with some
additional specifications.

421

422 CHAPTER 10. NONLINEAR MODELS

We now must use a more general interpretation of formulas, to deal with the
more general models considered in this chapter. These model formulas contain the
parameters of the model explicitly, no restrictions are put on the data, and the
criteria for fitting the models are essentially unlimited. However, model formulas
are often quite similar to the special cases, and data frames can still be used, often
in an extended form.

This generality does mean that the user needs to supply more information.
In many examples, the computations will also be more difficult, and successful
numerical solution to the estimation problem will not be guaranteed. So nonlinear
models come with a cautionary warning that getting answers out may not be as
easy as before. What one buys with the extra difficulty is a completely unrestricted
range of models. While models of specialized types might be more convenient or
numerically easier, if they conflict either with the data or with the subject-matter
understanding of the problem, you should try to fit a model you believe to be more
appropriate. Here are the techniques that may make that possible.

The estimation techniques for nonlinear models differ from those in many other
chapters in that the techniques to determine parameter estimates are explicitly it
erative. The desired parameter estimates are required to optimize some objective
function, such as the sum of squared residuals or the likelihood function. The ad
vantage of using S for nonlinear model applications is that expressions and functions
can be described easily in S. The basic paradigm remains: model formulas are S
expressions, data are organized into data frames, and the functions of this chapter
organize the information to set up and carry out the iterative fitting required.

The primary S functions described in this chapter provide an interface to non
linear optimization routines and to nonlinear regression. We describe the use of
these functions for some common types of nonlinear models, summaries of these
models, and methods for studying the variability in the estimates. Some special
cases, such as partially linear models, will be discussed. As in earlier chapters, the
S functions and underlying software can be used for more advanced or specialized
applications. The statistical summaries and diagnostics in this chapter are more
rudimentary than in most earlier chapters, partly because the range of nonlinear
models is so large that little statistical theory can be assumed. Applications with
a more limited range of models may be able to design specialized summaries based
on more specific assumptions.

10.1 Statistical Methods

The statistical models to be mnsidered use various general fitting criteria. In prac
tice, two kinds of criteria oceur most frequently: minimizing sums of contributions
from observation::;, and the specialization of this to the case of nonlinear regression
by least squares. Thenl arc plenty of other criteria, and the numerical techniques

10.1. STATISTICAL METHODS 423

of the chapter can be adapted to them, but these two organize the statistical in
formation from the model in a form that facilitates summaries and diagnostics.
They also retain many of the concepts developed in earlier chapters, in extended or
approximate form.

Typical minimum-sum fitting criteria arise from probability models, in which
parameters are estimated by maximizing the likelihood or by some other com
putationally similar criterion. A model in which n independent observations are
distributed with probability densities p;(IJ) for some vector of parameters (} leads
to maximum-likelihood estimation framed in terms of minimizing the negative log
likelihood:

n

1!(0) = ~) -log(p;(O)))
i=l

The individual probabilities generally depend, of course, on the data.
As an example, consider some data on the results of table tennis matches. The

United States Table Tennis Association assigns each of its members a numerical
rating, based on the member's performance in tournaments. Winning a match
boosts the winner's rating and lowers the loser's rating by some number of points,
depending on their current ratings. The intuitive notion is that players with a
higher rating should tend to win over players with a lower rating, and the greater the
difference in rating, the more likely the higher-rated player is to win. Colin Mallows
fitted a probability model to the results of 3017 matches to study the relation
between rating and chance of winning. The model assumes a logistic distribution in
which log(p/(1- p)) was proportional to the difference in rating between the winner
and loser:

eD;a

Pi = 1 + eD;a (10.1)

where D; = W; - L;, the difference between the ratings of the winner and loser of
the ith match. This is about the simplest nontrivial model. It has one parameter,
o, representing the effect of a unit difference in the ratings. The point of main
interest was whether in fact this effect was the same for all levels of play, whatever
the average rating of the two players. We can add this into the model with a second
parameter. Letting R; = .5(W; + L;),

eD;a+R;(J

Pi = 1 + eD;a+R;(J

To fit the model, we minimize the negative log-likelihood,

(10.2)

in the case of one parameter. This model is, in fact, treatable as a generalized linear
model, as in Chapter 6. However, it is a very simple model presented as is, and will
help to illustrate a number of techniques.

424 CHAPTER 10. NONLINEAR MODELS

As a second example, consider the data presented in Chapter 1 on visible skips
in an industrial experiment on wave soldering. We have already analyzed these data
by a variety of models, but in fact only in this chapter can we tackle directly models
that fully reflect the physical intuition and the observed behavior of the data, as we
hinted at the end of Chapter 1.

Physical theory and intuition suggest a model in which the process is in either
a "perfect" or "imperfect" state. In the perfect state, no defects will occur. In
the imperfect state, there may or may not be defects, manifesting themselves as
skips in the soldering. Both the probability of being in the imperfect state and the
distribution of skips in that state depend on the factors in the experiment. One
form of the model can be described by postulating that some "stress" depending on
the factor levels induces the process to be in the imperfect state and also increases
the tendency to generate skips when in the imperfect state.

For the ith experimental run, the corresponding factor levels determine a stress,
say S;. The stress is itself a parametric function of the levels of the factors chosen
for inclusion in the model, exactly as in Chapter 5. The stress is a linear function,

p

S; = Ex;;.B;
i=l

where .B is the vector of parameters resulting from some suitable coding of qual
itative factors (and possibly their interactions). The probability of being in the
imperfect state is monotonically related to the stress by a logistic distribution:

1
1 + e-TS;

As the stress increases, this probability approaches 1. Given that the process is in
the imperfect state, the probability of k; skips is modeled by the Poisson distribution
with mean, say~;:

-.>.-~/· e •--
k;!

For y; = 0, the probability that y = y; is the probability of the perfect state plus
the probability of being in the imperfect state and having 0 skips. For y; > 0, it is
the probability of being in the imperfect state and having y; skips:

{
e-~s, e->.;

p b(_ ·) _ l+e-~s, + l+e-~s, ro y - y, - 1 -.>.. ~
l+e-~s, e • A:;!

if y; = 0

if y; > 0

The mean skips in the imperfect state is always positive and modeled in terms of
the stress by

10.1. STATISTICAL METHODS 425

Since the stress is an arbitrarily-scaled linear function, we only need one scale!
parameter, r, which we can apply to either the logistic or the Poisson part of the
model. We can now proceed to estimate {3 and r by maximizing the likelihood, or
equivalently by minimizing the negative log-likelihood. As in the previous example,
we can write a formula for this in terms of the data and the parameters, from the
probability specified above. The ith element of the negative log-likelihood can be
written

if Yi = 0
if y; > 0

(10.3)

omitting expressions that do not involve the parameters of the model. This model
does not reduce to any of the techniques of earlier chapters. Fitting it with sizable
quantities of data is a challenging task. We will study it in the following sections;
for a full discussion, see Lambert (1991).

As a third example, consider a nonlinear regression model. Data from a biochem
ical experiment where the initial velocity of a reaction was measured for different
concentrations of the substrate are given in the data frame Puromycin. The data
came from two runs, one on cells treated with the drug Puromycin and one on cells
without the drug. The three variables in the data frame are the concentration of
the substrate, the initial velocity of the reaction, and an indicator of treated or
untreated. The experimenters expected a Michaelis-Menten relationship between
the reaction velocity and the concentration, modeled by

V VmaxC =--+c
K+c

(10.4)

where V is the velocity, cis the enzyme concentration, Vmax is a parameter repre
senting the asymptotic velocity as c -+ oo, K is the Michaelis parameter and E is
experimental error. Furthermore, they expected that the treatment with the drug
would change Vmax but would not change K appreciably.

By plotting velocity against concentration separately for the two levels of treat
ment, we can see the general pattern directly (Figure 10.1). The plot can be made
as follows:

> attach(Puromycin)
> plot(conc, vel, type"'"n")
> text(conc, vel, ifelse(state == "treated", "T", "U"))

There does indeed seem to be a change in the asymptotic velocity for the two
different runs. It is a little more difficult to tell about the Michaelis parameter, K,
since it determines the shape of the curve. This parameter is the concentration at
which the velocity becomes half the asymptotic velocity.

426 CHAPTER 10. NONLINEAR MODELS

8 T
T
T

"' T

0 f u u
Ill

T
u

Q)

~ !! T
u

0 T
0 TU

y
T
u

0

"'
Ill

0.0 0.2 0.4 0.6 0.8 1.0

cone

Figure 10.1: Initial velocity of the enzymatic reaction versus the concentration of the sub
strate. Treated and untreated runs are plotted as "T" and "U".

By analogy with the linear model {Chapter 4), the parameter estimates Vmax
and k can be chosen to minimize the sum-of-squares of the residuals:

The parameter K enters the expression for the fit nonlinearly. The sum-of-squares
criterion can be derived as a special case of a sum of contributions to the negative
log-likelihood if we assume E in {10.4) is Gaussian with constant variance. Since the
plot indicates that the variability for replicate observations is reasonably constant
across the range of the data, the use of nonlinear least squares appears warranted.
As with a linear model, nonlinear least squares estimates are often useful even when
the error term is not assumed to be Gaussian with constant variance.

Unlike the linear model, nonlinear regression needs starting estimates for the
parameters. These can be obtained from the plot which suggests that Vmax is near
200 for the treated cells and near 160 for the untreated cells. Since the value of K
is the concentration at which V reaches Vmax/2, we expect this to be near 0.1 for
both runs.

10.2. S FUNCTIONS 427

Examples such as these lead us to formulate models to be estimated either by
minimizing a function (typically the negative log-likelihood) or by formulating a
nonlinear least-squares criterion. As with linear models, maximum likelihood and
nonlinear regression produce estimates for the parameter. In addition, the com
putations lead to a description of the objective function or the model surface in
the neighborhood of the parameter estimates. Such descriptions can sometimes be
used to give approximations to quantities such as the standard errors or correla
tions of the parameter estimates, as in earlier chapters. The theory supporting
these approximations is weaker than for ordinary linear models, however. The ap
proximation used in nonlinear regression is to replace the nonlinear model by its
linear Taylor series approximation at the parameter estimates and to use methods
for linear statistical models on the approximation. These results are called the
linear approximation results. For likelihood models, the distributional results are
asymptotic; namely, maximum-likelihood estimates tend, for large samples, toward
a normal distribution with mean equal to the true parameter and variance matrix
given by the inverse of the information matrix, the negative of the matrix of second
derivatives of the log-likelihood, given suitable regularity assumptions about the
model. It is not possible to make any precise distributional statement in general
about finite-sample distributions in either case. Statistical assumptions underlying
any model need always to be questioned and tested; for nonlinear models, extra
caution is called for.

Nonlinear regression models are obviously special cases of the general minimum
sum fitting criteria, so one might think of them as redundant. The specialization
is worthwhile, however, both because the numerical fitting in this case is often
more efficient and because the direct use of the linearized approximation helps in
summarizing the model.

10.2 S Functions

Now we proceed to describe and illustrate the software for fitting and summarizing
nonlinear models. Section 10.2.1 presents the functions that fit the models; this
section needs some careful reading, even if you are familiar with earlier chapters,
because of the more general form of nonlinear models. Section 10.2.2 covers the
summary and diagnostic functions. Section 10.2.3 discusses a topic specific to this
chapter: the computation of derivatives for nonlinear models. Section 10.2.4 extends
the summary techniques to profiling, refitting the model with some parameters held
fixed, to show the variability of the parameter estimates more directly. Finally,
Section 10.2.5 covers an important special case of nonlinear regression, in which
some of the parameters enter linearly.

428 CHAPTER 10. NONLINEAR MODELS

10.2.1 Fitting the Models

This chapter has two fitting functions, one for general minimization models and one
for nonlinear regression. In typical use, they both have three arguments, specifying
the model, the data, and starting estimates for the parameters.

ms(formula, data, start)
nls(formula, data, start)

As usual, these functions return objects describing the fitted model. The formula
argument gives the structural form of the model. If provided, data is a frame
containing the data referenced in the model. The optional argument start specifies
starting values for the parameters to be estimated. The object returned has class
"ms" or "nls". Each of the three arguments involves some new ideas, so let's consider
them in turn.

Formula

The formula in nonlinear models is an expression in S, involving data, parameters
in the model, and any other relevant quantities. As in earlier chapters, the operator
""marks off the prediction and, for nonlinear regression, the response. For instance,
the nonlinear regression model (10.4) on page 425 can be written:

vel "" Vm•conc/ (K + cone)

As usual, we read this as: "Model vel as ... ". Also as usual, the left and right sides
of the ""represent response and predictor. The key difference, however, is that the
expression on the right includes all the parameters as well as the data. The formula
contains both variables like vel and cone, and parameters like Vm and K. This must
be so since we no longer assume a linear or additive model that would define the
coefficients implicitly. When operators like + or I appear in nonlinear formulas,
they mean just what they mean in ordinary S expressions; they do not imply the
special shorthand used in formulas in earlier chapters.

Minimization models have no explicit response. Instead, the formula is written
with the"" symbol at the left. In the table tennis example, equation (10.2) on page
423 corresponds to a model formula

"" - D • alpha + log(1 + exp(D • alpha))

where D is a variable in the data and alpha is the parameter to fit. This can be read
the same way as the previous formula: "Model as -D • alpha ... ".

What specifically do these formulas compute? The nonlinear least-squares for
mula defines the response as the left operand of "' and the prediction as the right
operand. These must evaluate to numeric objects of the same length. The nlsO
function tries to estimate parameters to minimize the sum of squared differences

10.2. S FUNCTIONS 429

between response and prediction. The function nla 0 can also handle formulas
where only the right side of the ~ operator is supplied. In this case the formula is
interpreted as the residual vector. See St!(:f.ion 10.3.3 fol' nn example.

The minimization formula computes some numeric v•wlor, and 1118 () estimates
parameters to minimize the sum of this vector. The •~oncept here is linked to
maximum-likelihood models, with the formula defined to eompute the vector of
elements of the negative log-likelihood, as t.he examples will illustrate. The com
putational form, however, does not depend on this concept.. The elements can be
anything and there need not be more than one of them, so that any optimization
problem can be presented toms(). The advantage of having individual elements
is only that they may be convenient for purposes of summaries and diagnostics, if
they help to point out the contribution of individual observations.

The evaluated model formulas can include derivatives with respect to the param
eters. The derivatives are supplied as attributes to the vector that results when the
right operand of ~ is evaluated. The derivative values are used by the fitting algo
rithms. When explicit derivatives are not supplied, the algorithms will use numeric
approximations. These approximations usually increase the amount of computation
needed and sometimes may introduce numeric problems. Accurate derivatives are
sometimes crucial to success in numerical estimation for nonlinear models. However,
expressions for derivatives are often difficult to get right. If you can try out some
initial examples without computing derivatives, you will get a feeling for nonlinear
models more easily. Section 10.2.3 explains how to supply derivatives and provides
some tools to help construct the necessary expressions.

Data; Parametrized Data Frames

In most nonlinear modeling, the relevant data include not only variables similar
to those encountered earlier, but also other quantities such as initial estimates for
parameters or fixed values occurring in the model formula. These should usually go
along with the data but they are not columns of the data frame. For this purpose
parametrized data frames are convenient. These were introduced in Section 3.3.4.
The function parameters() can be used to extract or to set the parameter attributes
of a data frame to any list of named values. Setting parameters automatically pro
motes the data frame to be a pframe object. Attaching such an object automatically
makes the parameters, as well as the variables, available for computation by name.

Parameters of a data frame can appear anywhere in a model formula. Unlike
variables, however, parameters can have any length or mode, and no checking or
coercion is done. For example, the table tennis model needed to estimate alpha and
p. If some computations have produced aO and p0 as initial values that we would
like to carry along with the pingpong data frame, they will be set as follows:

> parameters(pingpong) <- liat(alpha = aO, p = pO)

430 CHAPTER 10. NONLINEAR MODELS

This assignment turns pingpong into a pframe object. Another, perhaps more typi
cal, approach to introducing starting estimates as parameters is shown on page 431.
Throughout this chapter, when we refer to a data frame we expect that in fact this
will be a parametrized data frame.

Starting Values; Identifying Parameters

The fitting functions nlsO and msO have to know which names in the formula
correspond to parameters to be estimated. Starting values must be supplied for
these parameters. The functions apply the following two rules:

1. If the argument start is supplied, its names are the names of the parameters
to be estimated, and the values are the corresponding starting estimates. The
object can be either numeric or a list; in the latter case, more than one value
can be associated with each name.

2. If start is missing, the parameters attribute of the data argument defines the
parameter names and values.

We recommend using an explicit start argument to name and initialize parameters,
for most applications. You can easily see what starting values were supplied and,
as we will show, you can arrange to keep particular parameters constant when
that makes sense. Keeping the starting values with the data frame is sometimes
convenient and acceptable as an alternative.

Examples

A nonlinear regression corresponding to (10.4) can be fitted to the treated data in
the Puromycin frame as follows:

>Treated<- Puromycin[Puromycin$state == "treated",
> Purfitl <- nls(vel ~ Vm•conc/(K +cone), Treated,
+ list(Vm = 200, K = 0.1))

Treated is a new data frame with only the treated observations from Puromycin,
and the start argument is a list with two elements for the two parameters to be
estimated.

Let's look at a sec.ond example, and illustrate typical calculations to come up
with starting estimates. To fit the model for the table tennis data, we need an
initial estimate for alpha. A very crude estimate would come from replacing all the
differences in ratings by ±cl, where cl is the mean difference, say. Then for each
match, the probability from the model that the winner had a higher rating always
satisfies

d• Q = log(p/(1 - p))

10.2. S FUNCTIONS 431

We can solve this for an initial estimate of o if we replace p by the observed frequency
with which the player with the higher rating wins.

The difference in the ratings, say D, will be required every time we evaluate
the likelihood, so it pays to precompute it and save it in the data frame. Initially,
the frame contains only the ratings of the winner and loser, along with a category
identifying the matches. The following calculations turn it into a parametrized data
frame with an additional variable and two parameters.

> param(pingpong, "p") <- 0
> attach(pingpong, 1)
> D <- winner - loser
> p <- sum(vinner>loser)/length(winner)
> p
[1) 0.8223401
> alpha <- log(p/(1-p))/mean(D)
> alpha
[1] 0.007660995
> detach(1, save = "pingpong")

The first assignment just converts the data frame into a pframe, if it wasn't before.
Now we attach it as the working data and do some calculations to create D, alpha,
and p to provide the new variable and the initial values for the fitting. Detaching
and saving will convert the latt_er two to parameters, since they are of the wrong
length to be variables. Saving back on top of the original data frame is rather bold,
and we don't recommend it as a general practice. We can now proceed to fitting
with ms(), omitting the start argument, since we arranged for the parameters to
be in the data frame.

Where a nonlinear model is at all complicated, you should organize it as a simple
expression involving one or more S functions that do all the hard work. Even in
this simple example, a little preliminary work will be worthwhile. Notice that
the expression D * alpha appears twice in the formula on page 428. We can write a
general function for the log-likelihood in any similar model in terms of this quantity.

lprob <- function(lp)log(1 + exp(lp)) - lp

If you have read the chapter on generalized linear models, you may recognize D *
alpha as the linear predictor. If we added more terms and more parameters to our
model, the argument to lprobO would be expanded accordingly, but lprob() would
not change.

Isolating the nontrivial computations in a separate function is slightly more
efficient in most cases, but more importantly it lets us concentrate on those compu
tations and see where some care needs to be taken. Even in this model, some care
is indeed needed, as we will note later. For the moment, however, we can plunge in:

> fit.alpha <- ms(~ lprob(D *alpha), pingpong)

432

> fit.alpha
value: 1127.635
parameters:

alpha
0.0111425

formula: "' lprob(D * alpha)
3017 observations

CHAPTER 10. NONLINEAR MODELS

call: ms(formula ="' lprob(D *alpha), data= pingpong)

We will come back to look in more detail at this fit in Section 10.2.3.

10.2.2 Summaries

As with fitted model objects in previous chapters, there is a special printing method
for ms and nls objects that prints out the information in the object suitable for
looking at directly. The output from printing the fit was illustrated above. There
are also summary() methods for both classes of objects.

Fitting the treated data from the Puromycin data frame produced the model
PurfitL Suppose Purfit2 is the result of fitting the same model to the untreated
data from the same source. The two summaries for these models are:

> summary(Purfit1)
Formula: vel "' (Vm * conc)/(K + cone)
Parameters:

Value Std. Error t value
Vm 212.6830000 6.94709000 30.~1460
K 0.0641194 0.00828075 7.74319

Residual standard error: 10.9337 on 10 degrees of freedom
Correlation of Parameter Estimates:

Vm
K 0.765
> summary(Purfit2)
Formula: vel "' (Vm * conc)/(K + cone)
Parameters:

Value Std. Error t value
Vm 160.2770000 6.48000000 24.73400
K 0.0477027 0.00778116 6.13054

Residual standard error: 9.773 on 9 degrees of freedom
Correlation of Parameter Estimates:

Vm
K 0.777
> (0.0641194 - 0.0477027)/sqrt(0.00828075h2 + 0.00778116A2)
[1] 1. 444753

The last calculation shows that the difference in the fitted values of K is about 1.5
times its standard error, so the experimenters' feeling that treatment with the drug

10.2. S FUNCTIONS 433

should not change K may be warranted. We should check this by actually fitting
data from both runs using a common K, as follows:

> Purboth <- nls(vel ~ (Vm + delV•(state=="treated"))•conc/
+ (K +cone), Puromycin, list(Vm=160, delV=40, Ke0.05))
> summary(Purbotb)
Formula: vel~ ((Vm + delV•(state=="treated"))•conc}/(K + cone)
Parameters:

Value Std. Error t value
Vm 166.6030000 5.80737000 28.68820

delV 42.0254000 6.27209000 6.70038
K 0.0579696 0.00590999 9.80875

Residual standard error: 10.5851 on 20 degrees of freedom
Correlation of Parameter Estimates:

Vm delV
delV -0.5410

K 0.6110 0.0644
> combinedSS <- sum(Purfit1$resA2) + sum(Purfit2$resA2)
> Fval <- (sum(Purboth$resA2) - combinedSS)/(combinedSS/19)
> 1-pf(Fval, 1, 19)
[1] 0. 2055524

A detailed explanation of the statistical evaluation of whether the Ks could be equal
is beyond the scope of this book. Briefly, we can say that the last three calculations
are to determine the p value for an F-test of identical Ks versus different Ks. Since
the p value is 20%, the identical Ks appear reasonable.

Further study of nonlinear models often involves calculations specific to the
particular model. General statistical techniques such as Monte-Carlo sampling, re
sampling, and cross-validation are particularly valuable for nonlinear models. The
technique of profiling--refitting holding all but one of the parameters constant-is
another important mechanism. Its application to nonlinear regression is described
in Section 10.2.4. These techniques differ from the asymptotic summaries in the
important sense that they can provide some direct, although approximate, infor
mation about the behavior of the model in finite samples. The price is that these
techniques nearly always require much more computation.

10;2.3 Derivatives

Numerical methods for fitting nonlinear models typically can make use of the deriva
tives of the objective function (in optimization) or of the predictor (in nonlinear
least-squares) with respect to the parameters to be estimated. While the algo
rithms can proceed by using numerical estimates of these derivatives instead, these
numerical estimates typically require more computation. Particularly in the case of
models with many parameters, figuring out the derivatives analytically often speeds

434 CHAPTER 10. NONLINEAR MODELS

up the computation. Even if efficiency is not a concern, numerical accuracy may
still suffer when the derivatives are estimated numerically. Some examples fail to
converge numerically if the derivatives are not computed analytically. So providing
analytical derivatives may be necessary: it is also a frequent source of aggravation
and human error. Fortunately, some computing tools are available that make the
work somewhat easier and the errors somewhat less likely.

Let's go back to the negative log-likelihood for the table tennis example, in its
simplest form:

L log(I + eD'o:) - Dio

The corresponding S formula was

~ log(1 + exp(D • alpha)) - D • alpha

Differentiating with respect to o and simplifying a little gives

and the corresponding S expression would be:

-D I (1 + exp(D • alpha))

This model has only one parameter; usually, there would be derivatives for each of
the parameters in the model. Keep in mind that evaluating the' formula in a data
frame with n observations produces the vector of n values, whose sum is the negative
log-likelihood. Similarly, evaluating the derivative expression gives n values for each
parameter. The gradient expression for a model with p parameters should evaluate
to an n by p matrix. This is the same shape as a matrix corresponding to p numeric
x variables in a linear model. In fact, the gradient matrix in a nonlinear model
plays the role of a "local" linear model in many respects, as we will see.

The gradient is supplied to the nonlinear fitting functions as an attribute. The
attribute can be attached directly to the formula; for example,

> fg.alpha <- ~ log(1 + exp(D • alpha)
> attr(fg.alpha, "gradient") <- ~ -D I (
> fg.alpha
~ log(1 + exp(D • alpha)) - D • alpha

Gradient: -01(1 + exp(D • alpha))

- D • alpha
1 + exp(D • alpha)

The object fg.alpha has class "formula" and can be supplied to msO as the formula
in fitting our table tennis model. The presence of the gradient attribute tells msO
to use derivatives.

Most models are too complicated to write out the expression for the values and
the gradient explicitly. In this case, as we illustrated before, one writes a function
that captures the computations for the model, often in a more general form so the

10.2. S FUNCTIONS 435

same computations can be used in other, similar models. Gradients follow along in
this case in just the same way: the function should return a value for the model
as before, but attach to it an attribute containing the gradient matrix. Consider
our function lprob() on page 431. We can arrange for it to compute the derivative
with respect to alpha as well. By observing the expression for the gradient, we note
that it can be computed from the quantities used in the previous version, plus the
same quantity that appeared as the multiplier of alpha. This leads to the following
function:

lprob2 <- function(lp, X){
elp <- exp(lp)
z <- 1 + elp
value <- log(z)-lp
attr(value, "gradient") <- -X/z
value

Here lp is again the linear predictor and X is, in general, the data in· that linear
predictor. In our one-parameter example, it reduces to D. Notice that z was used
for both the value and the gradient. Such gains in efficiency are common, and
are one reason to prefer computing derivatives where possible. With the gradient
computations carried out inside lprob2 0, we will not be giving a separate gradient
expression in the explicit formula. Instead, the model-fitting functions will look
at the evaluated model for a gradient attribute and behave appropriately. Given p
parameters and n observations, the gradient needs to be an n by p matrix-not a
problem in this case, since the corresponding X will be a matrix of that dimension.
Generally, gradient computations need to take some care to get dimensionality
correct.

The fitting algorithm for minimization can use second derivatives of the model
as well. The procedure is entirely analogous: in this case, an attribute "hessian"
is provided as well as the "gradient" argument. The hessian expression should
produce an n by p by p array of computed second derivatives. Here's how it works:

lprob3 <- function(lp, X){
elp <- exp(lp)
z <- 1 + elp
value <- log(z) - lp
attr(value, "gradient") <- -X/z
if(length(dx <- dim(X))==2) {

n <- dx[1]; p <-dx[2]
}
else { n <- length(X); p <- 1}
xx <- array(x, c(n, p, p))
attr(value, "hessian") <- xx • aperm(xx, c(1, 3, 2)) • elp/z"2
value

436 CHAPTER 10. NONLINEAR MODELS

Need we add that all the cautions about checking the computations apply to com.
puting second derivatives as well, only more so?

The mathematics required to compute the gradient in most models encountered
in practice will be a good deal harder than it was in these examples. Computing
tools should be used to assist in this chore, even though they cannot take over com
pletely. Two kinds of assistance are available: symbolic differentiation of S expres
sions and routines to approximate derivatives numerically. Symbolic differentiation
does not work on all expressions and the results nearly always need to be examined
to see potentially faster computations, but it can be a useful starting point that
saves human error. Comparing numerical approximations to the evaluated versions
of the exact gradient expression will catch most remaining errors.

A symbolic differentiation function, DO, was defined in an example in ~ (page
298). It returns an expression representing the derivative of its first argument with
respect to the name or names specified in its second argument. Let's see what it
can do with our formula:

> D(substitute(log(l+exp(D*alpha)) - D*alpha), "alpha")
(exp(D * alpha) * D)/(1 + exp(D * alpha)) - D

Not too bad, but as is typical, this is the expression without "simplifying a little".
For nonlinear models, we provide a somewhat more sophisticated version of sym

bolic differentiation via the function deriv(). This does some of the elimination of
common expressions in the formula and its gradient. It also produces an expression
in the form expected for nonlinear models.

> formula! <- ~ log(1+exp(D*alpha))-D*alpha
> deriv(formulal, "alpha")
expression({

}
)

.exprl <- D * alpha

.expr2 <- exp(.exprl)

.expr3 <- 1 + .expr2

.value<- (log(.expr3)) - .exprl

.grad<- array(O, c(length(.value), 1), list(NULL, "alpha"))

.grad[. "alpha"] <- ((.expr2 * D)/.expr3) - D
attr(.value, "gradient") <- .grad
.value

The value of derivO is an S expression object. Evaluating this expression will
produce both the formula value and its gradient, with most of the common subex
pressions evaluated only once. Alternatively, derivO will create a function object
that, when called, produces the appropriate values and gradients. To do this, give

10.2. S FUNCTIONS 437

derivO a third argument that identifies the names of the arguments to the func
tion you want to create. In our example, let's produce a function lprobg(), with
arguments D and alpha, to evaluate formula1 and its derivative:

> lprobg <- deriv(formula!, "alpha", c("D", "alpha"))
> lprobg
function(D, alpha)
{

}

.expr1 <- D * alpha

.expr2 <- exp(.exprl)

.expr3 <- 1 + .expr2

.value <- (log(.expr3)) - .expr1

.grad<- array(O, c(length(.value), 1), list(NULL, "alpha"))

.grad[, "alpha") <- ((.expr2 * D)/.expr3) - D
attr(. value, "gradient") <- . grad
.value

The third argument could also have been a function definition. This acts as a
dummy version of the function to be returned, and is useful if we want to give
default values to the arguments. For example,

deriv(formulal, "alpha", function(D=1, alpha=O)NULL)

will produce a function with the default values as shown. The body of the function
in the argument is irrelevant. Comparing lprobg() to lprob2() above shows that, in
this example, the mechanical derivatives do nearly as well as the hand-coded ones
(and without the errors humans tend to produce). The expressions generated by
derivO use names beginning with "." to avoid conflicting with names chosen by
the user. For more complicated problems, it is sometimes possible to do a better
job of coding the derivatives "by hand" but the expressions from derivO provide a
good starting point for determining the derivatives yourself.

The second argument to derivO can be a vector of parameter names:

> deriv(vel "' Vm * (conc/(K + cone)), c("Vm", "K"))
expression({

}>

.exprl <- K + cone

.expr2 <- conc/.expr1

.value <- Vm * .expr2

.grad<- array(O, c(length(.value), 2), list(NULL, c("Vm", "K")))

.grad[, "Vm"] <- .expr2

.grad[. "K") <- - (Vm * (conc/(.expr1"2)))
attr(.value, "gradient") <- .grad
.value

438 CHAPTER 10. NONLINEAR MODELS

The symbolic differentiation interprets each parameter name as a scalar. F\mc
tions such as lprob2() on page 435 cannot be produced directly from derivO; the
generalization from a scalar to a vector parameter must be done by hand.

Use of parentheses can help derivO to isolate relevant subexpressions. This is
desirable if you know that the subexpression will appear as part of the gradient.
In our example, we put a redundant set of parentheses around conc/(K + cone),
forcing this to be a single expression, since this expression is the derivative with
respect to Vm.

10.2.4 Profiling the Objective Function

The methods presented in Section 10.2.2 for assessing the uncertainty in the parame
ter estimates were based on a local quadratic approximation to the log-likelihood, or
a local linear approximation to the nonlinear least-squares predictor. In both these
cases, the approximation results in a local quadratic approximation to the objective
function, which is either the negative log-likelihood or the residual sum-of-squares.

A more accurate picture of the uncertainty in the parameter estimates can be
obtained by examining the objective function directly. When there are only two
parameters, contours of the objective function can be plotted by generating a grid
of values and using the contour function in S. When there are more than two pa
rameters, direct examination of the objective function becomes much more difficult.
Fixing, all but two of the parameters at their estimated value and creating a grid
of the objective function by varying the remaining two gives a "slice" through the
higher-dimensional contour. However, this is not the appropriate computation.
When assessing the uncertainty in the parameter estimates we usually want to see
the projections of the higher-dimensional contour instead of such slices.

Although getting two-dimensional or three-dimensional projections of the ob
jective function contours would often be too time consuming, in most cases it is
feasible to look at one-dimensional projections or profiles of the objective func
tion. These 1:an be used to reconstruct some of the important features of the two
or three-dimc~nsional projections; in particular, the extent of the cqntours can be
determined.

To profile l.he objective function, we choose a parameter, say delV in the last
example of S•dion 10.2.2, and fix it at a value different from the estimate, say 40
instead of 42 1125. We then optimize the objective with respect to the remaining
parameters:

> Pur.pro •- Puromycin
> parametbrA(Pur.pro) <- list(delV = 40)
> Pur .40 < nls(vel ~ (Vm +delV•(statezoa"treated")) •conc/(K + cone),
+ Pur.pro, list(Vm • 160, K ,. 0.05))
> sum(Pur.4ueres"2)
[1] 2252.661

10.2. S FUNCTIONS 439

The minimum residual sum-of-squares with de 1 V = 40 is greater than at the least
squares estimate, as it should be:

> sum(Purboth$resA2)
[1] 2240.891

By repeating the procedure of fixing del Vat a value and minimizing the objective
function with respect to the other parameters, we could build up the table

delV profile.SS
[1,] 36.00000 2344.253
[2,] 38.00000 2286.983
[3,] 40.00000 2252.551
[4,] 42.02542 2240.891
[5,] 44.00000 2251.934
[6,] 46.00000 2285.585

Plotting these values shows that the profile sum-of-squares is very close to quadratic
over this range.

Since it is easier to evaluate deviations from straight line behavior than to evalu
ate deviations from quadratic behavior, the profiled objective function is converted
to the "signed square-root" scale. If we write the profiled objective as S and the
parameter as (}, the converted profile is

sign((}- o)..j s- s (10.5)

When the objective is quadratic in the parameters, this quantity will be linear in 0.
For the special case of the linear regression model, scaling (10.5) by 1/s produces

the t statistic for the parameter 0. By analogy, when S is the residual sum-of-
squares, we use

T = (sign((}- O)..j 8- S) js

as the nonlinear t statistic. If S is the negative log-likelihood, then

(=sign((}- O)V S ~ S

would be the analogue of the z statistic for 0. Even if neither of these statistical
interpretations holds, (10.5) provides a way of visually assessing the validity of the
quadratic approximation. In addition, it provides an empirical transformation of 0,
say by fitting a spline to the (0, () pairs, under which the objective function is much
closer to being quadratic. This can be useful for Monte-Carlo techniques such as
importance sampling.

The function profile is used to automate the process of creating the profiles.
The arguments are:

440 CHAPTER 10. NONLINEAR MODELS

• the object returned by msO or nls();

• the index of the parameter or parameters to be profiled;

• a vector of initial step sizes;

• a cut-off value on the scale of (for an ms object or T for an nls object to
indicate the magnitude at which the profiling should be terminated.

This function returns a list of data frames corresponding to the parameters being
profiled. Each data frame contains a variable for the ((or r) values and a ma
trix variable containing the parameter values. The values of the parameters being
optimized are called the profile traces. These provide additional valuable informa
tion about the behavior of the objective function and can be used to reconstruct
two-dimensional projections of contours of the objective (Bates and Watts, 1988,
Appendix 6).

When the object from the nonlinear fit contains enough information to construct
a quadratic approximation to the objective function, defaults are available for the
step sizes and the cutoff. The indices always default to selecting all the parameters.
The default profile for the Purboth fit is as follows:

> Pur.pro <- profile(Purboth)
> names(Pur.pro)
[1] "Vm" "delV" "K"
> plot(Pur.pro)

The plot produced by the plotting method for profiles is shown in Figure 10.2. For
each parameter being profiled, the method plots the r or (value for each fit against
the corresponding parameter value, using a smooth curve through the fitted points.

10.2.5 Partially Linear Models

We have said that all the parameters in a model must be given initial estimates,
either through the start argument or within the data frame. This is not always the
case in nonlinear least squares. There is an alternate form of the nlsO function
for partially linear regression models where some of the parameters appear linearly
in the predictor. When values for the other parameters are chosen, the conditional
least squares estimates for these linear parameters can be easily calculated using
linear least squares. This is done automatically for the starting values and at every
other stage in the iterations.

The Michaelis-Menten model is an example of a partially linear model since
the parameter Vmax behaves as a linear parameter. We can refit the model to the
treated enzyme data as shown on page 430:

10.2. S FUNCTIONS 441

• • v

C\1 C\1 C\1

::J ::J ::J
,Bo .Bo _Bo

C}l C}l ~

.., .., ..,
150 170 190 20 40 60 0.04 0.06 0.08

Vm Vm Vm

Figure 10.2: The profile of the three-parameter fit Purboth shoum on page 433. Each of
the three panels shows the fit, on the square-root scale (r }, when the parameter on the
:&-axis ranges over the values shown, and the other two parameters are optimized. Over
this range, the model appears linear in delV, nearly so in Vm, and slightly less so inK. The
cross (+) shows the global fit.

>Treated<- Puromycin[Puromycin$state == "treated",
> Purfit.pl <- nls(vel ~ conc/(K +cone), Treated,
+ list(K = 0.1), alg = "plinear")
> Purfit.pl
Residual s~-of-squares : 1195.449
parameters:

K .linl
0.06411777 212.6815

formula: vel ~ conc/(K + cone)
12 observations

Although it appears that K is the only parameter being varied, the current optimal
value of Vmax is being used at each iteration and is available after convergence.
Since this parameter is an implicit parameter, it is given the name .linl. More
details on the actual algorithm are given in Section 10.4.

The formula is interpreted slightly differently for partially linear models. The
expression on the right of the, must evaluate to a vector or a matrix. If it is a
vector, it is implicitly converted to a matrix with as many rows as the length of the
response on the left.

Another example may make this clearer. The data frame Lubricant contains
the logarithm of the viscosity of a lubricant at various temperatures and pressures
(Bates and Watts, 1988, Appendix Al.8), as shown in Figure 10.3:

> attach(Lubricant)
> unique(tempC)

442 CHAPTER 10. NONLINEAR MODELS

[1] 0.00000 25.00000 37.77778 98.88889
> plot(pressure, viscos, type = "n")
> text(pressure, viscos, match(tempC, unique(tempC)))

3

~
1 2

1 2 3

2 3
~

2 3 ., 3 4
8 ~ 4 ., <XI

'f. 4 ·;;;
1 ,(<
233 4

"' 1 ~3~ $
4

1 :a 4

... ~3 4 4

4

0 2000 4000 6000

pressure

4

Figure 10.3: Logarithm of the viscosity of a lubricant versus pressure for different temper
atures.

The experimenters proposed a model of

where v is the log viscosity, p is the pressure, and T is the temperature (Celsius).
Six of the parameters (81. 93 , 84 , ••• , 87) behave linearly. Since the expression for
the model is more complicated than we would want to type in a call to nls 0, we
define a function that returns a vector of the multipliers of these parameters:

Lub.mod <- function(temp, press, t2, t8, t9)
{

efac <- press • exp((- temp)/(t8 + t9 • pressA2))
c(1/(t2 +temp), press, pressA2, pressA3, efac, efac • pressA2)

10.2. S FUNCTIONS 443

There are 53 observations of the viscosity. The value returned by this function has
length 318 = 53 x 6, giving a 53 by 6 model matrix for the 6 linear parameters.

To fit this model we only need initial estimates for the nonlinear parameters 02 ,

Os, and (}g. Even guessing just these three could be difficult, however, and we have
to make some coarse approximations. Roughly we could say that 02 must be of the
same order of magnitude as the temperature to have any effect. Very small values
of 02 will be dominated by T in {}z + T. Very large values of 02 will dominate T
and change the model to a different form. Using this reasoning, we could start (}2

at 100. Similar reasoning would give a value around 100 for (}8 • Turning to (}9 , it
is not even clear if this parameter should be positive or negative. We may start it
out at 0 and see what happens. Adding these as parameters to the data frame, we
can try to fit the model:

> parameters(Lubricant) <- list(t2 = 100, tS = 100, t9 = 0)
> Lubfit <- nls(viscos ~ Lub.mod(tempC,pressure,t2,t8,t9),
+ Lubricant, alg -= "plinear")
Error in call to "nls": singular gradient matrix
Dumped

This failed to converge. If we repeat the call to nls with tracing enabled (see
Section 10.3.1), we find that even though the sum-of-squares is being reduced, the
parameter tS is taking on unreaso~able values. Eventually, the gradient matrix
becomes singular. ·

Our coarse starting estimates are inadequate and must be refined. We can use
nlsO to help up do this by keeping some of the parameters fixed while refining the
values of the others. For example, we could see if 100 is actually a good estimate
for (}2 in the lubricant data when Os = 100 and (}9 = 0. Since the parameters listed
in the start argument override the parameters in the data frame, we do not need
to modify the data frame; we simply list the parameters that we want to be varied
in the start argument. The others will retain their values from the data frame. For
example,

> Lubfit <- nls(viscos ~ Lub.mod(tempC,pressure,t2,t8,t9),
+ Lubricant, list(t:.! = 100), alg = "plinear")
> Lubfit$parameters

t2 .. .
218.979 .. .

It appears that the value of (}2 should be closer to 200 than to 100. Next we optimize
over both 02 and (}8 , then finally over all three nonlinear parameters:

> Lubfit <- nls(viscos ~ Lub.mod(tempC,pressure,t2,t8,t9),
+ Lubricant, list(t2•219, t8•100), alg = "plinear")
> Lubfit$parameters

t2 t8 ...

444 CHAPTER 10. NONLINEAR MODELS

209.514 47.7296 ...
> Lubfit <- nls(viscos ~ Lub.mod(tempC,pressure,t2,t8,t9),
+ Lubricant, list(t2=210, t8=48, t9=0), alg = "plinear")
> Lubfit
Residual sum-of-squares 0.08702405
parameters:

t2 t8 t9 .lin1 .lin2
206.5461 57.40411 -4.766996e-07 1054.542 0.001460311

.lin3 .lin4 .lin5 .lin6
-2.596517e-07 2.257323e-11 0.0004013854 3.528393e-11

formula: viscos ~ Lub.mod(tempC, pressure, t2, t8, t9)
53 observations

Now we have estimates for all nine parameters in the model.
The general approach of building from simpler models to more complex models,

as in this example, is very useful in fitting nonlinear models. The ability to keep
some parameters fixed while optimizing over others can be used to simplify the
model temporarily.

10.3 Some Details

This section covers some additional details and special cases in nonlinear fitting.
Section 10.3.1 summarizes some of the special settings that can be used to control
the iterative fitting. Section 10.3.2 looks at an example of the detailed numerical
examination sometimes needed in nonlinear models. Section 10.3.3 considers the
use of weighted nonlinear least-squares fitting.

10.3.1 Controlling the Fitting

Both ms() and nls() use several values to control characteristics of their optimiza
tion algorithms. The argument control is used to specify a list of control values
to these functions. Any control parameters not specified are computed at default
values by the fitting function. So, for example, to set the maximum number of
iterations to 10 but leave all other control values at their defaults, we use:

myfit <- nls(myformula, control = list(maxiter=10))

The same mechanism works for either nlsO or ms().
To see all the possible controls, do ?nls. control or ?ms. control. Here are the

three most common controls; they are supplied the same way for both fitting func
tions:

maxiter: the maximum number of steps in the iteration (default 50);

10.3. SOME DETAILS

tolerance: the tolerance for convergence of the iteration (the default
depends on the function);

trace: control of trace printing during the iteration (default FALSE).

445

Either a logical value or a function can be given for trace. The trace, if done, is
also stored in the component trace of the output structure. When trace is false,
no summary of the iterations is printed or saved. Advanced users can define their
own function to generate the trace in the form they wish to see it-the function
trace.msO illustrates how a trace function is called.

By default, the maximum number of iterations is 50. This limit is not often
reached since the algorithm convergences quickly or reaches a point where the it
erations cannot proceed. On rare occasions, the iterations may still appear to be
progressing toward an optimum slowly but steadily when the limit is reached. You
can try to restart the optimization with this limit increased. You can also decrease
this limit if you believe the estimates must be reached sooner, or if you just can't
afford 50 iterations. .

Convergence is declared when the convergence criterion becomes less than the
tolerance level. The default value is based on the relative precision of computations
and is about 0.001 on typical current machines. Smaller values will require more
iterations while larger values will result in convergence being declared earlier. The
form of the convergence criterion differs between the two fitting functions. The nls()
uses a relative offset criterion (Bates and Watts, 1988, Section 2.2) that measures
the numerical imprecision in the parameter estimates compared to the statistical
variability. The ms () algorithm will exit when any of several measures of progress in
the optimization drop below chosen values. The tolerance value is u8ed to set each
of these to comparable values. You can also set the tolerances individually-see
the detailed documentation for ms. control 0. It would be advisable to leave these
tolerances at their default settings until you see some undesirable behavior.

One more control variable, minscale, is common to both ms() and nls(). As
described in Section 10.4, both a step size and a step direction are determined
at each iteration. Since the approximation used to determine this step may not be
valid over the entire extent of the step, a minimum step size is incorporated. Having
determined a direction in which to look for an optimum, the algorithms try to make
some improvement by taking a step in that direction. If the initial step does not
produce a reduction in the fitting criterion, the algorithm reduces the scale of the
step and tries again.

If the scale of the step becomes very small without the objective function de
creasing, the model is probably incorrectly defined or poorly behaved. Typically,
either the derivatives are not correct, with the result that the computed direction
is not really pointing downhill, or there are some discontinuities in the function or
its derivatives in this region. The algorithms will stop if the mmimum scale factor
is reached, and will indicate an error condition. The default value of the minimum

146 CHAPTER 10. NONLINEAR MODELS

;cale factor is 0.001.

L0.3.2 Examining the Model

:1:very chapter of this book has emphasized the importance of looking at the data
md at the fitted model. The advice applies with special emphasis for nonlinear
.nodels. In earlier chapters, we supplied the data portion of the model, but the
~xplicit combination of data with parameters was handled by the fitting software.
We could reasonably hope that the evaluation of the model would produce correct
·:esults.

Now, however, the scope of models is much greater. The formula we supply
:s explicitly the computation to be used to combine parameters and data. Some
;areful examination of that formula often prevents frustrating problems during the
:1tting. Both empirical examination, often using plots, and mathematical thinking
may be needed. Some questions to ask are:

• Can the model be expressed in terms of some intermediate functions that will
make its behavior clearer?

• What will happen to the computations as particular elements take on extreme
values (e.g., tending to ±oo)?

• Should the computations be reexpressed to avoid numerical problems or to
speed up the computations?

In thinking about these questions, the origin of the model often helps. For example,
many general nonlinear models arise when we need to generalize a model that could
be handled by simpler methods (e.g., a linear model). The quantities arising in the
simpler model are often important in understanding the generalized one.

Our first example was so simple that we might not expect any problems to arise.
No such luck: the naive expression for the model can easily cause problems. We can
begin by noting again that the likelihood only depends on the parameters through
a linear predictor, via a function that we define on page 431:

lprob <- function(lp)log(1 + exp(lp)) - lp

where lp was D • alpha in our example. The computations depend on the trivial
looking univariate function whose graph is shown in Figure 10.4. Some of its math
ematical properties are:

f(x) log(l+e"')

x + f(-x)

-> XasX->00

-> 0 as x -> -oo

10.3. SOME DETAILS 447

I{)

"<t

~ (') a.
)(
G)

+

~
C\1

0

-4 -2 0 2 4

Figure 10.4: Behavior of the function log(l + e"), which determines the log-likelihood in
ov.r table tennis example.

This apparently mild-mannered function can easily cause problems if we compute
it directly from its definition. With finite precision arithmetic, e"' will overflow while
f(x) is still moderate for positive x. The alternative form, x + j(-x), allow us to
restrict the exponential computations to the range x < 0. A second problem arises
when x becomes large and negative: finite-precision computation of 1 + e"' will be
exactly 1 when e"' is less than the relative precision of computations. The computed
value for f(x) will be zero before it should. Notice that the limit as x -> -oo is
more precisely stated as

f(x)fe"' -> 1

so that f(x) should behave like e"' for large negative x.
What is needed to avoid these problems is an explicit function to compute

log(I+ e"') accurately, by mapping all positive arguments onto negative ones, and
by using an asymptotic computation in terms of e"' for large negative x. First, here
is an S function to compute log(1 + exp(x)) for x < 0:

logexp.neg <- function(x) {
y <- exp(x)
small <- y < 4 * .Machine$double.eps

448 CHAPTER 10. NONLINEAR MODELS

y[small] <- y[small] • (1 - 0.5 • y[small])
y[!small] <- log(1 + y[!small])
y

Where exp(x) is at or near the relative precision of the machine, we used two terms
from an expansion of log(l +y) for small y. Using logexp.neg(), we can now handle
any arguments:

logexp <- function(x)
y <- X

pos <- x > 0
y[pos] <- x[pos] + logexp.neg(-x[pos])
y[!pos] <- logexp.neg(x[!pos])
y

We have not tried to be particularly efficient about this calculation; in practice, one
might implement this as an algorithm in c or FORTRAN. The model on page 431
can now use the function

lprob <- function(x)logexp(x) - x

for safer computations.
When derivatives of models involving logexp are required, they typically enter in

terms of the linear predictor; that is, the argument to logexp(x) comes from matrix
multiplication of, say, X by a vector of parameters, beta. If X is supplied as an
argument, the corresponding matrix of gradients can be returned. The derivative
of log(1 + exp(x)) is

e:r /(1 + e:r) = 1/(1 + e-:r)

with the left expression preferable for negative x and the right for positive x. This
can be turned into an S function for the linear predictor:

glogexp <- function(x, X) {
neg <- x < 0; pos <- !neg
x <- exp(ifelse(neg, x, -x)
x[neg] <- x[neg]/(1+x[neg])
x[pos] <- 1/(1 + x[pos])
x•X

Notice that we arranged that the argumentto expO would always be negative, to
avoid possible overflow. Now we can provide gradients for our table tennis example:

lprob <- function(lp, X){
value <- logexp(lp) - lp

10.3. SOME DETAILS

}

attr(value, "gradient") <- glogexp(lp,X) - X
value

449

The analogous changes to computing second derivatives we leave as an exercise.
To see similar reasoning in a more realistically complicated situation, we return

to the model (10.3) on page 425 for the soldering experiment. The contribution to
the negative log-likelihood for observations with y; = 0 included a term

S S·
log(e-r ' + e-e ')

This can be rewritten as

With this substitution, equation (10.3) can be rewritten in a computationally more
convenient form:

f. ({3) -l (S) { es, -logexp(es, - rS;) if y; = 0
; , T - ogexp -r ; + ~ S· 'f > 0 y;o;- e • 1 Yi

using the logexp function defined above. The second use of this function particularly
needs numerical care, since the argument to our favorite function now itself contains
an exponentiation. We can rewrite the above as an S function:

zip <- function(y, X, beta, tau) {
S <- X y,,.y, beta
tS <- tau "' S
eS <- exp(S)
zero <- y < 0.5; pos <- !zero
lkh <- logexp(-tS)
lkh[pos] <- lkh[pos] + y[pos] • S[pos] -es[pos]
lkh[zero] <- lkh[zero] + es[zero] - logexp(es[zero] - tS[zero])
lkh

In terms of this function, the model formula given to ms 0 is

~ zip(defects, X, beta, tau)

assuming that the appropriate matrix of predictor variables is in X and that defects
is the vector of defect counts.

Next, consider calculating derivatives as well. With a little bit of effort, you can
verify that the derivatives of f.; with respect to the elements of {3 satisfy

450 CHAPTER 10. NONLINEAR MODELS

where g stands for the derivative of the logexp function. The derivatives with
respect to T can be written:

if y; = 0
if Yi > 0

Remember that, as always, the gradient computation should return a matrix with n
rows and one column for each parameter. A function to compute both the likelihood
and the gradient starts off just like zip above, and then implements the gradient
calculations. Here is one implementation:

zip2 <- function(y, X, beta, tau) {
S <- X Y.•Y. beta
tS <- tau • S
eS <- exp(S)
zero <- y < 0.5; pes <- !zero
lkh <- logexp(-tS)
lkh[pos] <- lkh[pos] + y[pos] * S[pos] -es[pos]
lkh[zero] <- lkh[zero] + es[zero] - logexp(es[zero] - tS[zero])

now the gradients. First the derivatives for beta
g <- X #make g the right size
g[pos,] <- y[pos] - es[pos]
gO <- glogexp(es[zero] - tS[zero])
g [zero',] <- es [zero] - gO
g <- (g + tau * glogexp(-tS)) * X

now derivatives for tau
gtau <- - S * glogexp(tS)
gtau[zero] <- gtau[zero] + S[zero] * gO

bind them together, as an attribute to lkh
attr(lkh, "gradient") <- cbind(g,gtau)
lkh

Similar work will produce expressions for the second derivatives.

10.3.3 Weighted Nonlinear Regression

As in linear regression, the sum-of-squares criterion in nonlinear regression can
include weights. In linear regression, an optional argument supplies the weights.
There is no need for a separate argument for nonlinear weighted regression because
t.he form of the model is sufficiently general to include the weights. This generality
is necessary if, as often occurs, the weights depend on the values of the parameters
••r the value of the predictor.

To use weights, the model is written without a response and with the "predictor"
l•cing the square root of the contribution to the weighted sum-of-squares. Suppose

10.3. SOME DETAILS 451

we wanted estimates for the Michaelis-Menten model applied to the treated enzyme
data, with weights inversely proportional to the prediction. We could construct a
function weighted.MM and use it as

> weighted.HM
function(resp, cone, Vm, K)
{

pred <- (Vm • conc)/(K + cone)
(resp - pred)/sqrt(pred)

> Pur.wt <- nls(~ weighted.MM(vel, cone, Vm, K), Treated,
+ list(Vm = 200, K = 0.05))
> Pur .lit
Residual sum-of-squares : 14.5969
parameters:

Vm K
206.8338 0.05461018

formula: ~ weighted.MM(vel, cone, Vm, K)
12 observations

We have used numerical derivatives here. Obtaining analytic derivatives would be
delicate, even for this simple example.

As described in Carroll and Ruppert (1988}, a weighted nonlinear regression
with the weights given by a power of the predictor is very similar to taking a power
transformation of both the predictor and the response. This "transform both sides"
approach uses the Box-Cox form of power transformations

(A) _ { (yA - 1)/ A if A# 0
Y - log y if >. = 0

and is implemented in the function TBS. For example, to fit the logarithm of the
velocity to the logarithm of the predictor for the treated enzyme data we would use

> Pur.TBS <- nls(~ TBS(vel, Vm•conc/(K+conc), 0), Treated,
+ list(Vm=200, Kc0.05))
> Pur. TBS
Residual sum-of-squares : 0.1676924
parameters:

Vm K
203.5726 0.05284299

formula: ~ TBS(vel, (Vm • conc)/(K +cone), 0)
12 observations

As can be seen, this produces results very similar to those from the weighted re
gression.

452 CHAPTER 10. NONLINEAR MODELS

One advantage of the "transform both sides" approach is that the log-likelihood
for the transformation parameter >. can be evaluated and used to choose the trans.
formation. See Carroll and Ruppert (1988) for details.

10.4 Programming Details

Numerical methods for general optimization and for nonlinear least-squares have
been the subject of much research. As we have been saying throughout the chapter,
the problems are harder and more likely to produce numerical difficulties than
those in any other chapter of the book. The numerical algorithms used here are,
we believe, representative of the current state of the art. In this section, we give
some information that may help users to get the most from the methods. As is the
general philosophy in the book, informed users are encouraged to go beyond what
we provide, to extend or replace the methods by others that may be more suited to
their particular needs. In the case of nonlinear models, a warning label needs to be
shown, however. These are indeed difficult numerical problems, and fiddling with
the underlying algorithms is not recommended if you are not sure of what you are
doing. If other numerical algorithms are to be used, they need to produce objects
containing the information used by the summary and printing methods.

10.4.1 Optimization Algorithm

Like most methods for general optimization, the algorithm used here is based on a
quadratic approximation to the objective function. When the model formula pro
vides both first and second derivatives, this approximation is a local one using these
derivatives (i.e., the algorithm is a version of Newton's method). When no deriva
tives or only first derivatives are supplied, the algorithm approximates the second
derivative information, but in a method designed specifically for minimization, since
the quadratic approxirpation is not a goal in itself. There are many such methods,
the one used here being taken from the PORT subroutine library, and evolved from
the published algorithm by Gay (1983).

Two distinctive numerical features of the algorithm are the particular method
used to develop a quadratic approximation when second derivatives are absent and
a "trust region," a running estimate of the size of the region around the current
estimate in which a quadratic approximation to the objective function is likely to
be trustworthy. These are discussed in the reference above and in the PORT library
documentation, but are unlikely to affect S users.

The algorithm is capable of working with user models that return 0, 1, or 2
orders of derivatives. As discussed in Section 10.2.3, improvements in numerical
accuracy and in efficiency often come when users supply analytical derivatives.

10.4. PROGRAMMING DETAILS 453

10.4.2 Nonlinear Least-Squares Algorithm

There are many algorithms for the problem of nonlinear least squares, even though
it is clearly more specialized than general optimization. The nls 0 function uses
a relatively simple approach-the Gauss-Newton algorithm with a step factor to
ensure that the sum of squares decreases at each iteration. In this algorithm the
residuals and the gradient are calculated at the current parameter values then a
linear least-squares fit of the residual on the gradient gives the parameter increment.
If applying the full parameter increment increases the sum-of-squares rather than
decreasing it, the length of the increment is halved. The step factor is retained
between iterations and started at twice the value that was successful on the last
iteration except that it is not allowed to become greater than unity. In other words,
if the last iteration required the increment to be reduced to one quarter of its original
length before the sum of squares decreased, the next iteration starts at one half of
the calculated increment.

If the gradient is not returned with the value of the formula, it is calculated
using finite differences with forward differencing.

For partially linear models, the increment is calculated using the Golub-Pereyra
method (Golub and Pereyra, 1973) as implemented by Bates and Lindstrom {1986).

The convergence criterion for both algorithms is the relative offset criterion
described in Section 10.3.1.

Bibliographic Notes

The books by Bates and Watts {1988) and by Seber and Wild {1989) discuss non
linear regression, including nonlinear least squares but also with some general treat
ment of likelihood and Bayesian inference. Both books give a discussion of com
puting algorithms; the method described in Bates and Watts {1988) is the basis for
that used by nls ().

For statistical theory for general nonlinear modeling, we are unaware of any
single comprehensive treatment. What is needed is a set of general results relating
the statistical model, based on likelihood function, Bayesian inference, or other
models, to the data-based results that can be computed by an algorithm such as
that used by ms 0. The basic statistical results, due to Fisher and others, are
classical, but applying them in practice and with due regard for issues of curvature,
small-sample behavior, and many other questions, is decidedly difficult. With the
much greater accessibility of computational methods, a good general statistical
treatment would be a major contribution to the community. Meanwhile, books on
general statistical inference provide some basic results; for example, Chapters 9-11
of Kalbfleisch {1979) or various results in Cox and Hinkley {1974), Lehmann {1986),
or various other classic references. Unfortunately, these discussions are not usually

454 CHAPTER 10. NONLINEAR MODELS

from the viewpoint of actually fitting a model to data. The books on nonlinear
regression, and even McCullagh and Nelder (1989) on generalized linear models,
will have some relevant results, if the reader can make the necessary generalizations
from the special cases discussed.

Computational issues for nonlinear models are discussed from a statistical view
point in Chapter 6 of Chambers (1977). More detail regarding optimization is given
by a number of authors; for example, see Dennis and Schnabel (1983).

Appendix A

Classes and Methods:
Object-oriented
Programming in S

John M. Chambers

The version of S used in this book extends that described in [SJ in several ways,
the most important being the use of methods. Throughout this book a phrase such
as "the summary method for objects of class "lm"" means that, if fuel.fit is an
object of this class, typing

> summary(fuel.fit)

invokes a function specially designed to carry out the computations of summary() on
1m objects. You didn't call that function explicitly or give summary() an argument
to tell it that fuel. fit was an 1m object. Instead, a mechanism in the S evaluator
figured out which method for summary() should be applied to fuel. fit, and arranged
to call that method. This mechanism causes S evaluation to be data driven (another
way of describing object-oriented programming).

From the view of the user who is taking the functions as they stand, the method
mechanism should be invisible. Functions, operators, and assignments should adapt
to the classes of objects introduced in this book, without explicit user action. If you
don't expect to do much programming to specialize the functions we provide, then
you don't need to read any further in this appendix. However, if you want tore
design some of the methods or to design new classes of objects for new applications,

455

456 APPENDIX A. CLASSES AND METHODS

you will need to know something about the mechanism. This appendix will describe
how methods are organized, how classes of objects and their associated methods
can be designed, and how the S evaluator arranges for data-driven computations to
work. The description is far from the whole story but is intended to give enough
information so that you can use classes and methods effectively in extending the
modeling software.

A.l Motivation

The scope of a programming language can be viewed at a fundamental level in
terms of the computations that can be performed and the kinds of data on which
they can act-in S terminology, the functions available and the classes of objects
to which the functions can be applied. A language that hopes to grow and adapt to
new applications faces the fundamental challenge of helping the designer to create
the· new software while preserving a simple view of the language for the user. The
class/method mechanism is the core of our response to that challenge in S.

The challenge can be seen more clearly if we begin with the "primitive" view
of the language, in terms of the functions and data classes that map directly onto
the underlying implementation. For example, primitive objects in S are essentially
atomic vectors of a few prescribed modes (numeric, logical, complex, and character
string), plus recursive (list-like) objects made up from other objects used as elements
and attributes. Most of the functions in IS are defined for such objects. The
concern addressed by the classjmethod mechanism is to allow the language to deal
with new classes of objects (and new functions as well) while preserving a simple
and natural view of the language for ordinary users.

Even as simple a data structure as the category (IS, page 136) illustrates the
challenge. Conceptually, categories represent repeated values, each of which comes
from a finite set of levels-for example, "Male" and "Female", or "Lov", "Medium", and
"High". While the values could be represented as character strings, it is essential
that there is some known set of possible levels, so representing the category as a
character vector would be misleading. Categories in S code the values as integers,
and retain the levels as an attribute. This implementation does not correspond to
the concept as well as it should. Numeric operations are meaningless conceptually
for categories, but numeric expressions involving categories in S will produce a
result. Sometimes, as in the second example, we would like to include the notion
that the levels are ordered, but not explicitly numeric, while continuing to inherit
the other properties of categories. Working with just the primitive objects, there is
no simple way to add the concept of ordered categories to the software.

In this book we talk about factor objects, rather than categories. Factors are
a class of objects that implement the same notion as categories, only often in a
better way, because of the classjmethod mechanism. Section 3.2.1 discusses factors

A.2. BACKGROUND 457

and outlines their properties. We will use factors as an example throughout this
appendix.

Our goal is to incorporate new classes of objects into the language in a seamless
way, with functions such as printing, plotting, and subsetting behaving "correctly"
on the new objects, without any explicit action on the user's part. At the same
time, the job of the applications programmer should be made as simple as possible
when designing new classes of objects and providing software to use them. Object
oriented programming systems pursue this goal by allowing programmers to define
methods that replace generic functions when the argument to the function belongs
to a particular class of objects. This is the kind of mechanism presented here:
designers of new classes of objects will implement methods for some of the generic
functions in S to handle the new class. Users will continue to see only the generic
functions, so their view of the language will not be made more complicated. At the
same time, the designer does not need to rewrite the generic functions or to worry
about ensuring that the new methods will be invoked. In addition, the notion of
inheritance-that new classes can automatically inherit methods written for existing
classes-further reduces the amount of programming for the designer.

A.2 Background

This section is addressed to those interested in programming languages in general or
to those familiar with S who would like to see a general defense of adding methods
and classes to the language. Others can skip ahead to Section A.3.

The mechanism for classes and methods in S has much in common with other
object-oriented languages, but differs in a number ofrespects related to the nature of
S. The S language follows, in an informal way, three main programming paradigms:

1. object-oriented programming;

2. functional languages;

3. interfaces.

The first of these paradigms is the topic of this appendix, but a few words about
the other two will clarify the context.

FUnctional programming languages use a model in which the central activity is
the evaluation of a function call (to use S terminology-"expansion" rather than
evaluation is the common term). The language operates by reading the user's
function calls and evaluating them. The result of the evaluation is to present the
user with some computations (printed, or often in the case of S, plotted). Languages
based on this paradigm aim for a simplicity and clarity that makes programming in
them more straightforward and less error-prone than with "conventional" languages
such as FORTRAN or C.

458 APPENDIX A. CLASSES AND METHODS

The paradigm of interfaces appears less frequently and less explicitly in computer
science, but it is key to S and is also part of the background philosophy of many
approaches to modern computing systems. A language like S wants to make use
of a wide variety of computational techniques {numerical methods, text processing,
symbolic computations, etc.). Good implementations of all of these within the
language itself would be prohibitively difficult. Instead, we try wherever possible to
define an interface to some other language or system in order to incorporate some
of that system's abilities into S. An interface, as used in S, is a communication
model that defines some simplified version of what the other system can do and a
mapping from S expressions and objects into that model. For example, most text
manipulation in S is handled by an interface to the UNIX shell. The model and the
mapping in this case are based on the model that UNIX commands only read and
write streams of bytes, possibly broken up into lines by newline characters.

These two paradigms influence the class/method mechanism in S. The func
tional language paradigm focuses our attention on generic functions and on the
evaluation process as the center of the mechanism. The use of interfaces provided
a strong incentive to adopt the class/method mechanism and continues to test out
the strength of the mechanism.

Object-oriented programming replaces the idea of executing a program, in the
traditional sense of a single set of machine instructions, with actions that take
place as the result of passing messages between objects. The messages c~ be
thought of as requests to the object-for example, that the object print itself. The
action occurring in response to the message typically depends on the class to which
an object belongs. The definition of the class determines for which messages the
ohjt_'Ct has a method. A method implements, in some programming language, the
ddinition of what should happen in response to the message. S shares an emphasis
Oil p;eneral objects, and allows users to define classes of objects. Classes as discussed
in Is), Chapter 8, are informal. A convention on the essential data structure for
tlu, elMs (in terms of what components or attributes are expected) is shared among
a ''"llection of functions written to create and use objects from the class.

While this informal approach was adequate for many applications, it has some
diH~tdvantages. The user had to be conscious of the class structure in order to call
tlu• 11pecific functions for that class. For example, to print a summary of an object
of dui!K "lsfit" one called a function for that class, ls.summary(). For a different
cllum, there would be a different function. The only alternative was to write a single
furwl.ion that understood all the relevant classes of objects. This happened to some
ext. .. ul. with the function print(), but no general summary() function existed.

lu t.he class/method paradigm, there is a generic summary() function, which
will 1,., •:ailed by the user regardless of what class of object is to be summarized.
The Jl;ltfleric function, however, does hardly anything itself. Instead, it invokes a
mechnuiHrn that:

A.2. BACKGROUND 459

• finds the class, if any, of the relevant argument to summary();

• finds a special summary method for that class, if one exists;

• evaluates the method in place of the call to the generic.

The user need only remember how the generic function is called. Applying the
function to different classes of objects will produce the results designed for those
objects, automatically.

This is the mechanism provided now in S. Some of the features are:

• Users of generic functions can expect the functions to adapt to new classes of
objects without any action on the user's part.

• Designers of new classes of objects can redefine generic functions by writing
a method: a new function with the same arguments as the generic function.

• Classes and methods can use a general form of inheritance, the ability of
one class of objects to inherit methods from one or more other classes. The
designer of a new class supplies only methods that need to be different from
those inherited.

• Methods can invoke inherited methods in a simple, general way, simplifying
the modification of methods to new classes.

• Groups of genericS functions (e.g., operators like arithmetic) often map into
an interface to one c routine. If all these functions adapt in essentially the
same way to a new class of objects, a single group method can be written for
all of them.

• Methods for operators are invoked when either or both of the operands un
ambiguously identify a method.

• Methods can be written for some key operations in the language that are not
precisely functions (e.g., replacement and permanent assignment).

• Methods in S are functions that can be called explicitly. In particular, a user
can override the standard method for an object and force it to be treated as
an object from another class.

The use of methods allows programming in S to have much more of the style of
object-oriented programming systems. However, methods inS differ from such sys
tems in some interesting ways, partly from the influence of the other two paradigms.
The last feature above is an example. Because all functions in S are objects and
because function calls are the central, essentially the only, activity in an S session,
methods are not restricted to automatic invocation, but can be used like any other
function.

460 APPENDIX A. CLASSES AND METHODS

A.3 The Mechanism

Two conventions define the mechanism for methods in S. First, objects in S can
have a special attribute, "class". The class of an object can be extracted or set by
the function class():

> class(myobject) <- "factor"
> class(myobject)

[1] "factor"

For the moment, we think of the class as either a single character string or NULL;
this will be extended when we talk about classes that inherit methods from other
classes.

Second, a mechanism in the S evaluator will automatically find an appropriate
method and evaluate a call to it. The special function UseMethod() invokes this
mechanism:

UseMethod("print", x)

with the following effect. The evaluator looks for an S function object to act as a
method for the generic function print 0 for the object x. If x has class "factor",

a function named print. factor will be used as the method. The function call
currently being evaluated is replaced by the corresponding call to print.factor().

The second argument to UseMethodO is normally omitted, in which case it is taken
to be the first argument in the definition of the current function. More detail of
how this mechanism works is covered in Section A.6.

The class/method mechanism in S is uniform and general, but not obligatory.
Functions that look for methods are called generic, in the sense that they define only
generically what their effect should be, leaving further specifications to be done by
methods. Generic functions perform some standard computation, which we expect
to be adapted to different classes of objects by other functions, the methods. The
body of a standard generic function typically consists of a call to UseHethod 0:

print<- function(x, ...)
UseMethod("print")

The first argument to print() is the object that determines the method. The" ... "
argument is there so that methods may have additional arguments, specific to the
particular method. Generics are perfectly free to have other arguments as well. It
might make sense to do so if we asserted that any method for this generic must deal
with the argument. In practice, nearly all generic functions look like the above.

In the case of basic S functions, for which we want to make the default com
putations particularly efficient, the interface to the method mechanism will be in
voked directly from c code, and the body of the generic function will be a call to
the .Internal() interface. Although these functions do not call UseHethodO, they

A.4. AN EXAMPLE OF DESIGNING A CLASS 461

mostly make use of the same mechanism. The main exceptions are the operators
(arithmetic, comparison, or logical), which allow either or both operands to define
the method, provided they do so consistently (see Section A.7).

There is a second special function, NextMethod(), which uses the method mech
anism to simplify handling inherited methods. Section A.5 describes inheritance.
We will discuss some important special cases, such as operators, subsets, and a.~
signments, in Sections A.7 and A.8. Section A.lO lists those internal functions that
take methods.

All objects implicitly inherit from class "default". Corresponding to the generic:
function print() will be a default method, print.default(). Objects without a
specific class or with a class inheriting no other print method will be printed us
ing print.default(). For generic functions invoking methods via the .Internal()

interface, the default method is also contained in the internal code.

A.4 An Example of Designing a Class

The essential programming exercise involving the method mechanism is to design or
refine the behavior of a class of objects. How should users think about the objects
in the class? How should generic functions behave for them?

As an example, we will consider the implementation of the class "factor". The
class/method mechanism allows a more consistent and natural implementation of
such objects. What would otherwise be a very substantial job of reprogramming
many S functions can be done quite simply by writing some appropriate methods
so factors behave sensibly when used with common generic functions.

Designers of a class of objects need to consider the internal or private structure
for the objects that will best implement the conceptual or public view. In the case
of factors, we give the object an attribute, levels, that represents the set of possible
values. The object itself then consists of a vector of integer values between 1 and
length(levels(x)). We also allow elements of the object to be missing (NA). This
implementation defines the private view of factors. As designers of the class, and
implementers of the most basic methods for them, we work with this view. General
users, however, should see only the public view-the view of factors as repeated
values from the set of levels. Even designers of new methods later on may be able
to work entirely or largely with the public view. In any case, methods must be
written with a clear understanding of which view is being used. We will illustrate
the important practical consequences of the public/private distinction later on.

Besides methods, a generator function must exist to generate objects from the
new class. The function factor() will do this:

factor<- function(x, levels= sort(unique(x)),
labels = as.character(levels)) {

y <- match(x, levels)

462

}

names(y) <- names(x)
levels(y) <- labels
class(y) <- "factor"
y

APPENDIX A. CLASSES AND METHODS

In ~,Section 8.1, a convention was set out that each class should also have func
tions to test membership in the class and to coerce to that class. For factors, these
functions would be is.factorO and as.factorO. Such functions are still useful,
but the method mechanism makes them less important. Methods are designed to
produce suitable results without explicitly coercing objects to a particular class, and
the inheritance mechanism to be described later generalizes the notion of testing
membership. The function inherits() replaces the testing functions for all classes
in most applications.

inherits(x, "factor")

returns TRUE if the class of x includes "factor".
For our first method, let's arrange to print the objeet. The method will be a

function object named print. factor. Its first argument will be the object to be
printed.

What should a printing method for factors do? We want users to think of the
data as values from •the levels set, and a natural way to do that is to print the
vector computed as

levels(x)[x]

This is a vector whose elements are the levels of the corresponding elements of x. It
is a character vector, but to emphasize the levels as a set, we will print it without
quotes, using the quote=F argument to print 0. One more detail: We allow NA in
the data, so before printing we should turn any NA's into an additional level. Adding
some code to achieve this, we get our method:

print.factor <- function(x, ...) {
class(x) <- NULL
1 <- levels(x)
if(any(is.na(x))) {

1 <- c(l, "NA")
x[is.na(x)] <- length(l)

x <- l[x]
print(x, quote z F)
invisible(x)

A.5. INHERITANCE 463

The class of the object was set to NULL at the beginning of the method because this
is a private method. The print.factor() definition depends on the implementation
of factors. When it applies functions such as levels 0 and " [" 0 to x, these are
intended to be the default methods, regardless of whether the object x might have
inherited some method for those functions. In contrast, public code in a method
expects most of the computations to be done by another method, with just a little
pre- or post-processing. The other method may be for the same class or for an
inherited class, but the public method does not take explicit control of which method
is used.

We'll improve print. factor() a little in later discussion, but the above is quite
respectable. As an example of its use,

> sex<- factor(sample(c("Male","Female"), 25, T))
> sex

[1] Male Female Female Male Female Female Female Female Male
[10] Male Female Male Female Male Female Male Female Male
[19] Female Male Male Female Female Female Male

In later sections, we will show methods for other generic functions, but first we look
at a new class, ordered factors, as an example of inheritance.

A.5 Inheritance

A powerful tool in object-oriented programming is the ability of objects to inherit
methods from one or more other classes. This greatly simplifies defining new classes
that are adapted from existing classes. Only methods related to the new features
need be written. In S, inheritance is easily incorporated. The class attribute of an
object can be of any length. When it is of length greater than 1, the object can
inherit methods from any of the classes included. For example,

> class(x)
[1) "ordered" "factor"

says that methods for either class "ordered" or class "factor" can be used for object
x. The search for methods will proceed sequentially through all the elements of the
class attribute. In this sense, "ordered" can be thought of as the principal class of
x, and often we will speak of such an object as belonging to class "ordered" even
though it inherits from other classes as well. All classes implicitly inherit from the
class "default", which need not appear in the class attribute.

Let's define the class of ordered factors to be just like factors, except that the
levels are now assumed to be ordered increasingly as given. A function to generate
objects from this class could be as follows:

464 APPENDIX A. CLASSES AND METHODS

ordered<- function(x, levels • sort(unique(x)),
labels z as.character(levels)){
x <- factor(x, levels, labels)
class(x) <- c("ordered", class(x))
X

Generic functions applied to ordered factors will look first for methods for class
"ordered", then for class "factor", and finally for "default".

As an example, consider a character vector, say rating. text, containing charac
ter strings "Lov", "Medium", and "High", which we will convert to an ordered factor:

> rating.text
[1) "Medium" "High" "Lov" "High" "Medium" "Medium" "High" "Lov"
[9] "Lov" "High" "Medium" "High" "High" "High" ''Medium" 11Lov11

[17] "High" "Lov" "High" "Lov"
>ratings<- ordered(rating.text, levels= c("Lov","Medium","High"))
> ratings

[1] Medium High Lov High Medium Medium High Lov
[11] Medium High High High Medium Lov High Lov

Lov
High

High
Lov

The levels argument is needed in the call to ordered() to establish the correct
ordering. Because of inheritance, print(ratings) uses the method print.factor()
if the method print. ordered() is not found.

The function NextMethod(), which exploits inheritance, is a key tool in writing
methods. The call

NextMethod("print")

looks for an inherited method for the generic function "print"; that is, it searches for
a function whose name is "print. " concatenated with one of the classes following the
current class, "ordered", in the class attribute of the object. It calls this function
and returns the value as the value of NextMethod(). All classes implicitly inherit
from the class "default", so that NextMethod() invokes the default method if no
other inherited method is found. Section A.6 gives a more precise definition of the
inheritance mechanism.

Suppose we decided to show the ordering of the levels after printing the data for
our new class. The essential printing is done by the inherited method, after which
print.ordered() adds a line at the end to show the levels:

print.ordered<- function(x, ...) {
NextMethod("print")
cat("\n", paste(levels(x) ,collapse=" < "), "\n")
invisible(x)

A.5. INHERITANCE

Our previous example now prints as follows:

> ratings
[1) Medium High

[11] Medium High
Low
High

Low < Medium < High

High
High

Medium Medium High
Medium Low High

Low
Low

Low
High

465

High
Low

The function NextMethod() is useful even in cases not involving inheritance, as
a way of invoking the default method for the generic function. For example, we
should write a method for extracting subsets from factor objects, to ensure that
the extracted object continues to belong to class "factor". The generic function
named "[" extracts subsets. Its definition is

"[" <- function(x, ... , drop = T)
.Internal(x[... , drop"' drop]. "S_extract", T, 1)

If there were no method " [.factor" 0, the behavior would be as follows:

> sex[1:5]
[1) 2 1 1 2 1
attr(, "levels"):
[1) "Female" "Hale"

The internal calculations remove the class of the object. Clearly we need a method,
although only a simple one:

"[.factor" <- function(x, i){
y <- NextHethod("[")
class(y) <- class(x)
y

}

Now subsets of factors retain their class nature:

> sex[1:5]
[1] Male Female Female Hale Female

The style of " [.factor"() is a common way of writing methods: use the inherited
method and then set some attributes of the result {here just the class), before
returning it. The use of NextHethod () is crucial. Recursive use of the generic function
directly can cause an infinite loop-the object in question is still a factor, so the
generic function will invoke the method once again, and so on, until S complains
when the maximum level of nesting of expressions is reached. In more complicated
computations, the method may need to construct a new object, rather than counting
on the inherited method for the current object (the method Ops.factor() on page
473 is an example).

466 APPENDIX A. CLASSES AND METHODS

The definition of " [.factor" 0 illustrates one other point: the argument lists
for methods. When UseMethod() has found a method, it re-matches the actual call
to the generic with the definition of the method. Similarly, NextHethodO matches
arguments with the same order and names as the call to the generic. Methods
do not need to have the same arguments as the generic. In most examples, the
method should allow optional, named arguments to be passed down, if it plans to
call NextHethod 0. This means that most such methods should have " ... " as an
argument. In the case of "[.factor"(), however, we took the opposite approach.
We decided that only one subscript argument made sense for factors, although
other objects might meaningfully have more arguments. The definition here then
produces a clean error message if an extra argument is included:

> sex[1,5]
Error in call to [.factor(): Argument number 3 in call not matched

whereas, if the second argument were " ... " rather than "i", the message is:

> sex[1,5]
Error in x[.. l, .. 2]: No dim attribute for array subset

which is less helpful. This is a tradeoff between allowing m9re general use of the
method and providing informative error messages; the relative importance of each
should be examined case-by-case.

The object determining the choice of method is not modified when the methods
are invoked, either directly or through inheritance. When print. factor() is called
in printing ratings, for example, the class of x will be c("ordered", "factor"). This
is why "[.factor" 0 sets the class by

class(y) <- class(x)

rather than just setting it to "factor". The distinction is essential if other classes
are to inherit the method " [.factor" 0 and retain their own class attribute. Special
objects introduced into the frame provide full information on the actual methods
and classes used-see Section A.6.

A related point applies to the design of classes. Asserting that one class inherits
from another asserts that an inherited method will work; for example, the objects of
class "ordered" must have all the information used to print objects of class "factor"
if the NextHethodO call is to work in the definition of print. ordered(). So while S
does not enforce any rules about which classes can inherit from which other classes,
the designer needs to ensure that inheriting classes really do make sense when viewed
by the inherited methods as objects of another class.

The distinction between public and private views of Classes applies to these ex
amples: print. factor() was a private method, depending on the levels attribute;
print. ordered() was a public method, just invoking the inherited method and mod
ifying its value. Similarly, " [.factor" 0 is a public method: its only assertion is

A.6. THE FRAMES FOR METHODS 467

that a subset of the factor object should still be considered a factor. Public methods
have the advantage of being less dependent on implementation details, and are usu
ally simpler to understand. Private methods tend to be more efficient, if carefully
designed; in any case, some private methods will be necessary. Private methods
should set the class of the object to NULL, as we did in print.factor(), to prevent
accidental infinite loops and, more generally, to ensure that computations are done
by the default methods.

The distinction is sometimes subtle and not always clear-cut. For example,
another possible implementation of "[.factor" 0 would be:

"[.factor" <- function(x, i){
oldclass <- class(x)
class(x) <- NULL

}

y <- x(i]
class(y) <- oldclass
y

This is somewhere between a public and private view. It does not use any explicit
attributes of the factor object, but notice that, since it sets the class to NULL, the
default method will always be used for x [i]. Therefore, this implementation would
prevent anyone from defining a class from which factor inherits, with a method for
"[" 0. Generally, the previous implementation is. more flexible, although for factors
the distinction makes little practical difference. ·

A.6 The Frames for Methods

Methods invoked through UseMethodO or through a .Internal() interface behave
as if the call to the generic had, instead, been a call to the method. When an
inherited method is invoked by a call to NextMethodO, it behaves as if called from
the previous method, with that method's arguments. The specific way this works
will be described below. The evaluator also arranges for some special objects to be
inserted in the frame of the method; these define precisely the class, method, etc.,
being used. See page 470.

Arguments to Methods

When UseM!lthodO is called, the frame in the evaluator for the call to the generic
function becomes the frame for the call to the method:

• The arguments in the call to the generic are re-matched to the formal argu
ments of the method, using the standard S rules for argument matching (IJ,
page 354). The method will see argument matches as it would if the user's
call had been directly to the method.

468 APPENDIX A. CLASSES AND METHODS

• Any other objects in the frame remain the same. In particular, the first
argument, which defined the choice of method, will have been evaluated.

• The special objects defined on page 470 will be in the frame.

Most generic functions will have only two arguments, the object itself and " ... ",
as illustrated on page 460. Methods can have other arguments to control aspects
of the computation peculiar to them. As an example, consider the print method
for data frames. Basically, the method just turns the data frame into a matrix and
prints the result. Here is a slightly simplified version:

print.data.frame <- function(x, ... , quote z F, right= T)
{

}

print(as.matrix(x), ... , quote= quote, right= right)
invisible(x)

The method has arguments quote= and right= not found in the generic. These
control whether quotes should be put around strings and whether character columns
should be right-justified. They are also arguments to the print.defaultO method,
which will eventually do the actual printing of the matrix. Having the arguments
in this method allows their default values to be set differently from the defaults in
other print methods, while still allowing the user to set the arguments explicitly:

> print(catalyst, quote=T)
Temp Cone Cat Yield

1 "160" "20" "A" 116011

2 "180" "20" ''A" 1172"
3 "160" "40" "A" 11 54"
4 "180" "40" "A" "68"
5 "160" "20" "B'' "52"
6 "180" "20" "B" 11 83"
7 "160" "40" "B" "45"
8 "180" "40" "B" "80"

The existence of " ... " in the generic and in the methods means that other ar
guments can be passed down that may be meaningful to later, inherited methods.
For example, the argument digits= is meaningful to print.defaultO and other
methods, but not to print.data.frame(). Constructing the methods as above will
allow users to pass this argument down to the methods that understand it. The
extra arguments to the method above came after the " ... ", forcing the arguments
to be named in the call. This is a reasonable strategy; the natural order of such
arguments is unclear, given that the user may combine optional arguments from
more than one method.

Turning now to methods invoked as a result of a call to NextMethodO, these
behave as if they had been called from the previous method with a special call. The

A.6. THE FRAMES FOR METHODS 469

arguments in the call to the inherited method are the same in number, order, and
actual argument names as those in the call to the current method (and, therefore, in
the call to the generic). The expressions for the arguments, however, are the names
of the corresponding formal arguments of the current method. Suppose, for example,
that the expression print (ratings} has invoked the method print . ordered (). When
this method invokes NextMethodO, this is equivalent to a call to print. factor(} of
the form

print.factor(x)

where x is here the x in the frame of print. ordered 0. If several arguments match the
formal argument " ... ", those arguments are represented in the call to the inherited
method by special names " .. 1", " .. 2", etc. The evaluator recognizes these names
and treats them appropriately (see page 476 for an example).

This rather subtle definition exists to ensure that the semantics of function calls
inS carry over as cleanly as possible to the use of methods (compare lj, page 354).
In particular:

• Arguments are passed down from the current method to the inherited method
with their current values at the time NextMethod() is called.

• Lazy evaluation continues in effect; unevaluated arguments stay unevaluated.

• Missing arguments remain missing in the inherited method.

• Arguments passed through the " ... " formal argument arrive with the correct
argument name.

• Objects in the frame that do not correspond to actual arguments in the call
will not be passed to the inherited method.

The inheritance process is essentially transparent so far as the arguments go.
If the object driving the choice of method, x in the case of print(}, has been

modified, the modified version is the one seen by inherited methods. However,
modifying this object does not alter the choice of which method is invoked next.
The object .Class always determines the choice of method. If the method wants
to change x and use the class of the new version to control inheritance, it should
invoke the generic function, just as print. data. frame 0 did in the above example.
It is possible to make changes to .Class instead, but this is not recommended unless
you understand the inheritance mechanism thoroughly.

The rules above describe how NextMethodO constructs the new call, by default.
If the current method wants to alter this call, the changes are provided as additional
arguments to NextMethod (}. Consider print . factor(} again. It called print(} rather
than NextMethodO in order to change the default value of the quote"' argument.
Another approach would be to insert the argument into a call to NextMethod():

470 APPENDIX A. CLASSES AND METHODS

NextMethod("print", quote= quote)

replacing the call to print 0. In this case there is no particular difference, but if
x still retained its original class, the call to print() would have caused an infinite
loop. Any arguments can be given in this way, including the object itself. Named
arguments override any correspondingly named arguments in the inherited call, and
unnamed arguments are inserted at the beginning of the call. Generally, unnamed
arguments should be used only to replace the object itself, but remember that doing
so does not affect the choice of the next method.

Special Objects in the Frame

The method mechanism adds to the evaluation frame a complete picture of the
current situation, in four special objects:

.Class: The class attribute corresponding to the current method. NextMethod()
adds the current . Class to the inheriting . Class as the attribute previous.
See the example below .

. Generic: The name of the generic function .

. Method: The name of the method being used, as a character vector. This object
has a special form when methods are defined for operators: see the discussion
in Section A.7 below. '

.Group: The name of the group, in the case that the interface to methods comes
through one of the internal interfaces in Table A. I on page 472.

These objects are maintained and used by the S evaluator, but they can be used
also in writing methods. To illustrate, suppose we trace print.factorO with the
browser:

> trace(print.factor,brovser)
> sex
browser: print.factor(sex)
b> ?
1: .Class
2: .Method
3: .Generic
4: .Group
5: X

b> .Class
(1] "factor"
b> .Method
[1] "print.factor"
b> .Generic

A. 7. GROUP METHODS; METHODS FOR OPERATORS

[1] "print"
b> .Group
[1] ""

Similarly, suppose we also trace print.ordered(), and then print ratings:

> trace(print.ordered,browser)
> ratings
browser: print.ordered(ratings)
b> .Class
[1] "ordered" "factor"
b> .Method
[1] "print.ordered"
b> 0
browser: print.factor(x)
b> .Class
(1] "factor"
attr(, "previous"):
[1] "ordered" "factor"

471

Typing 0 returns from the browser() trace in print. ordered(). NextMethod() is then
called. It constructs a call to print. factor(), which we are also tracing. We print
Class again. The class is "factor", as when we were printing sex, but now with an

attribute "previous", containing the same object that was in .Class in the previous
method, print. ordered().

Each time NextMethod() moves down through the inheritance pattern, it shifts
the .Class along to the inherited class, and attaches the previous value as the
"previous" attribute of the new one. This extra information in .Class provides a
mechanism for working back through the entire network of methods involved in the
current computation, should we want to do so.

A.7 Group Methods; Methods for Operators

Functions using the . Internal 0 interface generate calls to c routines; for example,

> exp
function(x)
. Internal(exp(x), "do_math", T, 108)

calls the c routine do..math. Usually one routine handles a number of related S
functions; for example, there is one internal interface for all the usual operators
(arithmetic, comparison, logical), either in binary or unary form, and one for all
the "mathematical" functions that transform objects element by element, including
functions such as exp 0, as well as less obviously mathematical functions, such as
round(). Table A.l shows the functions in this group and in various other groups

472

Group Functions
Hath atan(x, y); cumsum(x); abs(x); acos(x);

acosh(x); asin(x); asinh(x); atanh(x);
ceiling(x); cos(x); cosh(x); exp(x);
floor(x); log(x); loglO(x);
round(x, digits); signif(x, digits);
sin(x); sinh(x); tan(x); tanh(x);
gamma(x); lgamma(x); trunc(x)

Summary all(x); any(x); max(x); min(x); prod(x);
range(x); sum(x)

Ops el+e2; e1-e2; el•e2; elI e2; el" e2;
el < e2; el > e2; el <=e2; el>=e2; el != e2;
el ==e2; el %%e2; el%/%e2; eU:e2;
ell e2; -e1; !x

Table A.l: The groups of functions for which methods can be written

of functions. Methods often will be identical, or nearly so, for all the functions in
a group. One can take advantage of this by writing one group method, rather than
a separate method for each function in the group. All the functions in the group
will obey the method for objects from the new class, with only one piece of code to
be written, saving substantially on work and clutter when implementing a method
for all the 26 functions in the Hath group, for example. The catch, of course, is
that the new method must work correctly for all the functions in the group. The
NextHethod() function and the .Generic object are the key tools in writing such
methods.

Group methods are functions whose name consists of the group name, not the
name of the individual function, followed by ". ", followed by the name of the class.
The function Math.factor(), then, provides the method for all the functions in the
Math group applied to factors. Since we want to discourage the user from thinking
of the levels as numbers, the definition of this method is simple:

Math.factor <- function(x, ...)
stop("A factor is not a numeric object")

Trivial? Yes, but it prevents returning a meaningless (indeed, wrong) answer that
would have resulted if the generic definition had been used. ·

It is possible to have methods for individual functions included in the group as
well. The individual method is always chosen in preference to the group method.
Group methods that can treat all the included generic functions the same way are
the most. convenient, but the method is free to do something special depending on
the particular function. The value of the special object ".Generic" gives the name

A.l. <.:iltuUl-' METHODS; METHODS FOR OPERATORS 473

of the generic function. This could be an argument to the switch() function to
enumerate special cases.

Methods for the Math group and the Summary group tend to be simple, if they
are needed at all. The generic functions are meaningful only for numeric or, oc
casionally, logical data. If a method is needed at all, it will typically just produce
an error message or do some simple conversion of the object to the appropriate
mode. Writing methods for the Ops group tends to be more challenging. This group
includes all the arithmetic, comparison, and logical operators. One is fairly likely
to want a method for this group, so that operators will work when the operands are
one object from a special class and one plain object, or when the two operands are
compatible objects from the same special class.

Notice that S already supplies methods, implicitly, for arrays and time-series. A
matrix and a vector can be operands to an operator, with the result being a matrix.
Two matrices can be operands if their dimensions match. Similar but more liberal
definitions apply to time series (1§1, page 296). New classes of objects ought to
have similar methods where they make sense.

An interesting feature here is that the traditional object-oriented view is rather
clumsy, because the two operands ought to be treated equally in deciding what
should happen. Taken literally this suggests having to define a new class of ob
jects for each pair of original classes. Then a method would be defined for the
various operator "messages" for each class pair, either explicitly or by inheritance.
Implementing such a scheme, however, would be very clumsy and in practice a sym
metric, pure approach seems never to be taken. The focus in S on the function as
the primary arbiter of what method to be used seems in this situation to be natural.

For the Ops group of functions in Table A.l, the internal interface invokes a
special method if the two operands, taken together, suggest a single method
specifically, if one operand corresponds to a method that dominates that of the
other operand, or if they both correspond to the same method. Otherwise, the
default definition of the operator is used. Either a group definition or an individual
definition of a method dominates if the other operand has no corresponding method,
and an individual definition dominates a group definition.

With the factor class of objects, if a group method, Ops. factor() has been
defined (we will define one below), then any operation involving two factors will be
handed over to this method. So will any operation in which either the left ·or the
right operand is a factor, and the other operand either has no class attribute or else
is a class for which no special method is defined. Notice that the special method
is responsible for doing some further analysis to determine which operand is the
factor and to check that two factor operands are compatible:

Ops.factor ~- function(el, e2) {
ok <- svitch(.Generic, "="'"=, "!=" = T, F)
if (! ok) stop(paste (1 " 1 ,. Generic,

474

}

APPENDIX A. CLASSES AND METHODS

'" not meaningful for factors', sep=""))
nas <- is.na(el) I is.na(e2)
if(nchar(.Method[l])) {

11 <- levels(el)
el <- ll[el]

}
if(nchar(.Method[2))) {

12 <- levels(e2)
e2 <- 12[e2)

}
if(all(nchar(.Method)) tt (length(ll) != length(l2) II

!all(sort(l2) == sort(ll))))
stop("Level sets of factors are different")

value <- NextMethod(.Generic)
value[nas] <- NA
value

This method works by converting each factor operand to the corresponding char
acter vector, as defined by the levels. The call to switch() at the beginning of
the method checks that the operator is meaningful, by examining .Generic. Only
equality comparisons are allowed. If this check was omitted, arithmetic operators
would be caught automatically, but comparisons, such as>, would be interprf"t.eQ on
the levels as character strings. This does not make sense-the levels set is exphc1dy
unordered-so we catch it here.

The Method object (page 470) shows which operands are factors. The first and
second elements of . Method will be non-empty strings if the corresponding operand
inherited from class "factor". In the case that both operands inherited, we im
plement a check that the two objects are compatible, in the sense that they use
the same level set. The particular test there ignores, as it should, the order of
appearance of the levels in the level set. When Ops.factor() is called on one factor
operand and one character vector, the factor operand is converted to a character
vector. Comparisons will be in this form:

> ratings•s"Low"
[1) F F T F F F F T T F F F F F F T F T F T

Without the special method, this would have ended up comparing the numbers used
to code the levels with the string "Low".

Note the use of .Generic in the call to NextMethodO to avoid explicit mention of
the individual function. If it was necessary to invoke the generic function directly,
the simplest approach would be:

get(.Generic, mode = "function")(el, e2)

A.B. REPLACEMENT METHODS 475

An example of this is the method Ops. ordered 0. It does not want to invoke the
next method, which would be Ops.factorO, since that method is incompatible.
Instead, it constructs some objects without any class and explicitly invokes the
generic function on those.

Factors, unlike character vectors, can contain missing values, so the definition
of Ops.factor() allows for them according to the standardS rule that an element
of the result is NA wherever either operand is NA. The missing values are computed
at the beginning of the function by the expression

nas <- is.na(e1) I is.na(e2)

and inserted into the result at the end by

value[nas] <- NA

Print Ops. ordered, the corresponding method for ordered factors, to see a similar
general style, using the numeric code, however, rather than the levels. This method
implements operations that are meaningful for ordered, but non-numeric, values.

A.8 Replacement Methods

Many S functions can appear on the left side .of an assignment arrow, indicating
replacement of some subset or attribute of the object that is the first argument of
the function. These too are good candidates for special methods. S already provides
a mechanism by which users can write their own replacement functions (~~ page
217). Replacements of the form

f(x) <- value

are evaluated by S as the expression

x <- "f<-"(x, value)

so that the user need only define the function "f<-" (). This mechanism combined
with our mechanism for methods allows methods to be generated for replacement
operations. To create a replacement method for function f 0 for objects inheriting,
say, from class "factor", we write a method function "f<-.factor"O. Parentheti
cally, the S evaluator actually intercepts replacements using "[" 0, " [[" 0, "$" 0,
dimO, dimnamesO, levels(), and tsp() without calling a function. Nevertheless,
replacement methods can be written for these, just as if a replacement function
were being called, and definitions for " [<-" 0, etc. are provided for reference.

To show an example of replacement methods, and a somewhat more ambitious
example of methods, we consider a method for replacements using [] for data
frames. We can write a replacement method for data frames, by defining a function
"[<-.data. frame" 0. The goal is to replace data as if the object were a matrix:

476 APPENDIX A. CLASSES AND METHODS

mydata(6, 1:2] <- 0

sets the first two variables of the sixth observation to o. Here is a simplified version,
ignoring NA's, matrix-like variables, character subscripts, and various possible errors.
It illustrates some useful points, nevertheless:

" (<-.data. frame"<
function(x, ... ,value)
{

}

cl <- class(x); class(x) <-NULL
rovs <- attr(x, "rov.names")
has.t <- !missing(.. 1); has.2 <- !missing(.. 2)
if(!has.l) {

}

nrovs <- length(rovs)
if(length(value) < nrows)

value<- value(rep(l:length(value), length a nrovs)]
if(has.2)

x[.. 2] <- list(value)
else x[] <- list(value)
class(x) <- cl
return(x)

iseq <- seq(along a rovs)[.. t]
if(has.2) jseq <- seq(along m x)[.. 2]
else jseq <- seq(along = x)
n <- length(iseq); p <- length(jseq)
m <- length(value)
if(m < p) value <- value[rep(l:m, length = p)]
for(j in l:p) {

jj <- jseq(j]
x[[jj]] [iseq] <- value[[j]]

}
class(x) <- cl
X

The first if 0 disposes of the special case that only columns are being replaced,
since this reduces to an ordinary replacement in a list. The remainder of the code
goes through all the columns selected, replacing the appropriate elements or rows.
The for loop applies the replacement to each variable in turn. Finally, the class
attribute is replaced and the entire data frame returned as the value of the function
call. Any replacement method, like any user-defined replacement function, should
return the new value for the entire object.

A.9. ASSIGNMENT METHODS 477

A.9 Assignment Methods

One other piece of S evaluation, in addition to function calls, may be relevant in
designing new classes of data. The process of assignment associates a name with an
S object, either in one of the frames active during the S session or as a permanent
S object. Currently, methods are accepted for permanent assignment, by writing a
method for the generic function "«-" 0. Methods for temporary assignments could
have been allowed as well, but our feeling is that the overhead would be excessive.

To redefine permanent assignment, create a function "«-. ", followed by the
name of the class. This method will be called just before a permanent assignment
is committed (1§1, page 121}. The arguments to the method are x (the name)
and value (the S object to be assigned that name). As an example, we consider
briefly a class of objects designed to support large amounts of data. Suppose we had
defined a class "extern" to allow S to refer indirectly to objects, perhaps stored in
a different format. The public view of external objects hides this indirect reference.
Methods allow access to the data and other operations on it without reading the
entire object into memory, as would happen for ordinary S objects. The private
view of the object is defined by two attributes: the class attribute, with value
"extern", and the where attribute, whose value is a character string identifying the
external data, say as a file name.

We will not try to describe how external objects would be handled in detail,
but will use them to illustrate assignment methods. This class needs a method
for assignment because the appropriate permanent file must be created when the
assignment of an external object is to be committed. The other methods defined for
extern objects will create new objects as the result of functions such as arithmetic
operators. These objects will have special where names, referring to files that will
be removed automatically at the end of the expression. Suppose permanent files
for extern objects reside in the .Ext subdirectory of the working directory, in which
they have the same name as the extern object that refers to them. The method for
permanent assignment sets up the appropriate file and returns an extern object for
assignment with the correct where attribute:

"«-.extern" <- function(x, value) {

}

perm. file <- paste(search() [1), ".Ext", x, sep•"/")
cur.file <- attr(value, "vhere")
if(is.pe:rm(cur.file)) {

if(cur.file !• pe:rm.file)
unix(paste("cp", cur.file, perm. file))

} else unix(paste("mv", cur.file, pe:rm.file)
attr(value, "where") <- pe:rm.file
NextMethod()

The method essentially does two things: it puts the vhere file in the right place,

47o APPENDIX A. CLASSES AND METHODS

by using either the mv or cp command; and it sets the where attribute in the object
to the correct file name. Calling NextMethod () completes the standard assignment
with the modified object.

External objects are related to a number of interesting applications of the
classes/methods mechanism, including interfaces between Sand database manage
ment software and the definition of classes of S databases. These applications are
outside the scope of the present book, however, and we will not pursue them any
further here.

A.lO Generic Functions

Generic functions that call UseMetho!fO are easy to recognize, of course, and new
generic functions can be written in this form at any time. A new generic function,
say precis(), usually looks like this:

precis <- function(x, ...)
UseMethod("precis")

The inclusion of the name of the generic in the call to UseMethodO ensures that
the generic function will be self-defining, so that the function object can be used
anywhere in S without losing the identity of the related class.

For most generic functions, a default method will also be written:

precis.default <- function(x, ...) {
if(is.null(class(x))) cat("Mode:", mode(x),

"Length:", length(x), "\n")
else cat("Class:", class(x),"\n")

It is not obligatory that the body of the generic consist only of the call to UseMethod 0,
although the keep-it-simple motto encourages it. The effect of UseMethodO is to
replace the body of the generic function with the body of the method, after re
matching the arguments. See page 460.

The inclusion of " ... " in the generic is recommended so methods can include
optional arguments not meaningful to the generic. When UseMethodO invokes the
method, the actual arguments to the generic are re-matched to the arguments of
the method.

Generic functions working through the . Internal interface can't be recognized
by looking at the definition of the generic. Table A.2 lists all the functions using
the . Internal 0 interface for which methods can be written. There must not be a
default method for these functions. The default is provided by the internal code.
The list in Table A.2 is larger than that in Table A.l because group methods are
not allowed in all cases. The decision, somewhat arbitrary. was that some internal

A.ll. COMMENT 479

x[. .. , drop] x([... , drop)] x$name e1 XY. e2
e1 Y./Y. e2 e1 • e2 e1 + e2 e1 - e2
e1 I e2 e1 "e2 e1 < e2 e1 <• e2
el •= e2 el > e2 el >= e2 el .a: e2
e1 1:1: e2 e1 I e2 e1 II e2 -el !•e2
-e1 !x
abs(x) acos(x) acosh(x) all(x)
any(x) as. anything(x) as.vector(x, mode) asin(x)
asinh(x) atan(x,y) atanh(x) attr(x, vhich)
attributes(x) ceiling(x) cos(x) cosh(x)
cumsum(x) dim(x) dimnames (x) exp(x)
floor(x) gamma(x) lgamma(x) length(x)
levels(x) log(x) match(x) max(x)
min(x) mode(x) names(x) prod(x)
range(x) round(x, digits) signif (x, digits) sin(x)
sinh(x) storage.mode(x) sum(x) tan(x)
tanh(x) trunc(x) tsp(x)

Table A.2: Functions in S for which internal code will detect special methods.

interface routines handled a group of functions too diverse or too unlikely to be
candidates for methods to justify the extra overhead in checking each time for a
group method.

A.ll Comment

Methods provide a powerful tool for extending S to handle novel classes of objects.
We have concentrated here on illustrating the technique and have kept the methods
as simple as possible. In practical applications, designing the methods should be the
most carefully thought-out part of the project. The best strategy to make methods
correspond to the meaning of a class of objects in serious applications can be chal
lenging and not entirely unambiguous. These strategic questions, although requiring
care and sometimes introducing subtle issues, are not disadvantages. Rather, they
illustrate the substantive needs that can be addressed directly with a rich software
environment.

Having now persevered to the end, you may be interested to look back at some
of the methods that have arisen throughout the book. They should illustrate the
concepts behind the design of the various classes of objects, and in particular how
those classes are interconnected to form our overall approach to statistical models.

480 APPENDIX A. CLASSES AND METHODS

Bibliographic Notes

There is an enormous literature on programming languages, and a very large one
even on the subtopic of object-oriented programming. None of it is directly needed
to use the facilities described here, since the approach in S is not directly derived
from any one other approach. The styles of Lisp-based object-oriented programming
and that of C++ represent two divergent approaches, described respectively in the
books by Keene (1989) and Stroustrup (1986). Our approach is closer in some
respects to the former, although, as noted, the other properties of S tend to produce
a different use of methods and classes. A statistical system built directly on Lisp and
having its own approach to object-oriented programming is LISP-STAT, described in
Tierney (1990).

Functional programming is also widely discussed. A thorough treatment is given
by Reade (1989). The book by Gelernter and Jagannathan (1990) discusses a wide
range of programming languages, including both object-oriented and functional,
attempting to model them all in a consistent way.

Appendix B

S Functions and Classes

This appendix contains detailed documentation for a selected subset of the func
tions, methods and classes of objects used in the book. Online documentation is
available for these, and for all the other functions discussed in the book, by using
the "?" operator. Wbere a generic function implies most of the information needed
(e.g., deviance), documentation for the methods is omitted here. Conversely, if one
method'dominates the use in all models (e.g., addl.lm, alias.lm), only that method
is included here. Finally, several methods are included if they are important and
substantially different (e.g, plot.factor, plot.gam, and others for plot). If you
want online documentation, you should not have to worry about such distinctions.
Typing

?plot(myfit)

for example, shows you the methods for plot() applicable to the object myfit. To
see all the platO methods for any object whatever, do

?methods(plot)

The online documentation will be up to date with your version of S; therefore, it
may reflect changes since this book was published.

481

482 ? APPENDIXB

... · On•line Information on FUnctions, Objects, and Calls

?
?name
?object
?name(object, ...)
?methods(name)

ARGUMENTS

name: a name or a character string giving the name of a function or operator. If
omitted, documentation on? is given (this documentation).

object: the name of an S object. Documentation will be offered on all the classes
of objects from which the object inherits.

name(object, ...) : a proposed call, typically to a generic function, with the first
argument being some (existing) S object. Documentation will be offered
on the function name itself and on all methods for name that might be used
when the call is actually evaluated. However, the call is not evaluated:
this use of? is usually to decide what would happen if some proposed
computation were done.

methods(name): all possible methods for function name will be presented, based on
the functions available on the current search list.

In the cases where documentation is offered on all classes or methods,
the options are presented to the user via the menu() function. All the
possibilities (as a character vector) are returned (invisibly) as the value of
?. Not all the proposed documentation need exist: ? does not check for
the existence of the documentation when it constructs the menu.

SEE ALSO
help, menu

EXAMPLE

?plot # help on plot function
?myfit # documentation for all the classes of object myfit
?"+" # addition (and other arithmetic) Note the need for quotes
?plot(myfit) # tell me about the plot methods for myfit
?">"(obj, 0) # tell me about the ">" methods for obj

S FUNCTIONS AND CLASSES addl.lm 483

· .. ··•·· _ .. c~~pute··~····~ove.O~J~~~~r~d~g-~\i'~t;;·?r:·~~:~
0;"

addl.lm(object, scope, scale, keep, x)

ARGUMENTS

object: an lm object, or any object that inherits from class lm. In particular, a
glm object is also appropriate for a chi-squared analysis based on the
score-test.

scope: a formula object describing the terms to be added. This argument is
required, and is parsed to produce a set of terms that may be added
to the model on their own without breaking the hierarchy rules. The
scope can also be a character vector of term labels. Any "." in scope is
interpreted relative to the formula implied by the object argument.

scale: the multiplier of the df term in the Cp statistic. If not supplied, scale is
estimated by the residual variance of object, or else in the case of a glm
object the dispersion parameter.

keep: a character vector of names of components that should be saved for each
augmented modeL Only names from the set coefficients, fitted. values,
residuals, x.residuals, effects, Rare allowed. keep=T implies the com
plete set. x.residuals for a given term is the X matrix corresponding to
that term, adjusted for all the terms in the model object. The other com
ponents are as in object. The default behavior is not to keep anything.

x: a model matrix that includes all the terms in object as well as all those to
be added. This is an optional argument, used, for example, by step.glmO,
and saves recomputing the model matrix every time.

VALUE
Using the "R" component of object, as well as the corresponding qr ob
ject, each of the superset models corresponding to object plus a term as
specified in scope are fitted. An anova object is constructed, consisting of
the term labels, the degrees of freedom, the residual sum of squares, and
the Cp statistic for each superset model. If keep is missing, this is what is
returned. If keep is present, a list with components "anova" and "keep" is
returned. In this case, the "keep" component is a matrix of mode "list",
with a column for each superset model, and a row for each component
kept.

484 alias.lm APPENDIX B

addl 0 handles weighted lm objects, in particular glm objects. The weighted
residual sum of squares is a Pearson chi-square statistic based on the
weights of the model object, and a one-step iteration towards the super
set model. This results in a score test for the inclusion of each term. The
function addl() is used as a primitive in step.glmO.

This function is a method for the generic function add1 0 for class "1m". It
can be invoked by calling add1 (x) for an object x of the appropriate class,
or directly by calling add1.lm0, regardless of the class of the object.

SEE ALSO
dropl, anova, step, step.glm, step.gam

EXAMPLE

addl(lm.object, - ."2)
I consider all interactions of terms in lm.object for inclusion

addl(glm.ob, - . -Age + poly(Age,2) + log(Age) + sqrt(Age))
I try some candidate transformations for Age.

alias.lm(object, complete=T, partial=T, pattern=T, ...)

ARGUMENTS

object: a fitted model, inheriting from 1m.

complete:

partial: flags indicating whether information for complete and partial aliasing
should be included in the result.

pattern: should the resulting alias matrices be simplified by calling the pattern()
function.

VALUE
a list potentially containing components for complete aliasing and for par
tial aliasing; each is included only if both requested and found to exist in
the model. The component for complete aliasing is a matrix with columns
corresponding to effects that are linearly dependent on the rows (i.e., ef
fects that are completely aliased with the estimable effects). Partial alias
ing is essentially the correlation of the estimable effects, with the diagonal
elements set to zero.

S FUNCTIONS AND CLASSES anova 485

This function is a method for the generic function alias(} for class "1m".
It can be invoked by calling alias(x) for an object x of the appropriate
class, or directly by calling alias .lmO, regardless of the class of the object.

anova(object,
anova(object)

test • "none")

ARGUMENTS

object: a model object, such as those produced by lm(), glmO, aov(), loess(),
etc.

optional additional model objects; anovaO will behave differently if addi
tional models are provided.

test: the type of test statistic to be included in the table. The default is "none",
and other choices depend on the method. Typical choices are "F", "Chi",

VALUE

or "Cp".

an anova object. This class of objects inherits from the class "data frame",
and consequently suitable methods exist for printing, subsetting, etc. An
additional "heading" attribute is a character vector that is printed at the
top of the table.

If called with a single object as an argument, anova produces a table with
rows corresponding to each of the terms in the object, plus an additional
row for the residuals. The method for aov objects is similar to summary().

When two or more objects are used in the call, a similar table is pro
duced showing the effects of the pairwise differences between the models,
considered sequentially from first to last.

SEE ALSO
anova.lm, anova.glm, anova.gam, anova.aov, anova.loess

EXAMPLE

> anova(glm.object)
Analysis of Deviance Table
Binomial model
Response: Kypho-sis
Terms added sequentially (first to last)

486 aov APPENDIX B

Df Deviance Resid. Df Resid. Dev
NULL 80 83. 23

bs(Start, 5) 5
Number 1

23.49
1. 73

anova(gas.null, gas.alternative)

75
74

59.75
58.02

Hodel 1: loess(formula c NOx - E, span = 1)

Hodel 2: loess(formula = NOx - E, span = 2/3)
Analysis of Variance Table
Hodel Enp RSS Test
1 3.5 0.5197 1 vs. 2
2 5.5 0.3404

F Value
10.14

Pr(F)
0.0009

Fit ~ Analysis ofVanance Model· ..

aov(formula, data, projections= F, ...)

ARGUMENTS

formula: the formula for the model.

data: if supplied, a data frame in which the variables named in the formula are
to be found. If d~ta is omitted, the current search list is used; for example,
a data frame may have been attached or variables may be objects in the
working database.

projections: if TRUE, the fitted model will include a matrix of the projections onto
the terms in the model. This matrix will be the component "projections"
of the returned fit, or of the fits for the error strata in the case of multiple
error strata. See proj 0 for the description of the projections. This adds
substantially to the size of the returned object (the matrix has as many
rows as observations and as many columns as terms), but if you plan to
use the projections, it is more efficient to compute them during the fit
rather than by calling pro j 0 later.

VALUE

other arguments can be supplied that are meaningful to lm(). In particu
lar, weights, subsetting of the data frame and treatment; of missing values
can be supplied. See lm.

an object describing the fit. There are two cases: if there is no Error term
in the model, the object is of class "aov". This class inherits from the class
of linear models (class "lm"). See aov. object and lm. object. The formula
may optionally specify special blocking or error structure if it includes a
term that calls the special function Error(). For example,

S FUNCTIONS AND CLASSES aov .genyates 487

aov(response "' time • concentration + Error(blocks)

specifies that factor blocks defines an error stratum. The resulting model
will include two error strata, blocks and Within. In the case of multiple
error strata, aov fits a separate model for each stratum. Specifically, the
response is projected onto each term in the error model, and these pro
jections are then used to fit separate models. The object returned by aov
has class aovlist and is a list of aov objects of the form above, one for
each stratum. In addition, the "aov.list" object has an attribute "call"
containing the call.

EXAMPLE

gunaov <- aov(Rounds "' Method + Physique/Team, gun)

· aov.genyates I
aov.genyates(formula, data, onedf=F)

ARGUMENTS

formula: the formula for the model. The formula must not include an Error term.

data: if supplied, a data frame in which the objects named in the formula are
to be found. If data is omitted, the current search list is used; frequently,
a data frame will have been attached.

onedf: logical expression of length 1. When onedf==T, the function returns single
degree of freedom projections in component proj. When onedf==F (the
default), the function collapses the single degree of freedom projections
into multi-degree of freedom projections. Each column of the collapsed
result represents one term of the analysis of variance table. The sum of
squares of each column is the sum of squares for the corresponding term
in the model.

VALUE
an object describing the fit. It will be of class aov. In addition, the fit
contains the projection matrix:

proj: an orthogonal matrix, identical to the result of the proj .1m function ap
plied to the aov structure. Thus the two expressions:

proj.lm(aov(formula, data, qr•T, onedf~F))
aov.genyates(formula, data, onedf=F)$proj

488 as.factor APPENDIXB

yield the same result.

SEE ALSO
proj, proj.lm, aov

EXAMPLE

> aov.genyates(Yield ~ Temp • Cone • Cat, catalyst)

An~ysis of Variance (aov)l)I>Ject aov~obJect

This class of objects is returned from aov() and other functions to rep
resent an analysis of variance. Class aov inherits from class lm. With a
matrix response, the object inherits from c("maov", "aov") so that meth
ods can use the matrix nature of the response, fitted values, etc. Ob
jects of this class have methods for the functions print(), summary(), and
predict 0 functions, among others. In addition, any function that can be
used on an lm object can be used on an aov object. The components of a
legitimate aov object are those of an 1m object. See 1m. object for the list.
The residuals, fitted values, coefficients, and effects should be extracted by
the generic functions of the same name, rather than by the "$" operator.

For a multivariate response, the coefficients, effects, fitted values and resid
uals are all matrices whose columns correspond to the response variables.

If the model formula contained an Error specification for fitting in strata,
the object is of class aovlist, and each component of the list is an aov
object. The first component of the list is for the degenerate "intercept"
stratum. The object in this case also has attributes describing the overall
model; in particular, the call and the terms object correspond to the
components of the same name in an lm object.

' . , See facto~ · · <·: ··. ' · ..• ,_-.··.·· ..• •.· ...•. :.•·.•.·.·····.··· .. :·.·.·.·.· .. ~ .•..• ·····:··.·.·.·.-_·:_ •. ··.:.·.:.•·.ra_ ...•• ·.··.:·;··.~.··.·.·.·.·.·.·.~.·.·.o.· .• ·····.·.r.· .. ·l ··.,:.:··(~'.:' . ·'····· · ;·:. :.~·::· .. ·:·~\1:';·/~·-.i_'j}) ,·.-.:·~.~.\:· . . .

S FUNCTIONS AND CLASSES binomial 489

1 btnoOllal ·. see r11111y· ·

I browser Browae Interactively On Objects browilerl

brovser(object, ...)

ARGUMENTS

object: Some S object.

VALUE
typically the value in a return() expression typed to the browser.

The methods for this function are used for the interaction provided in
looking at S objects. Nearly always, the objects will be list-like or in some
sense composed of components that are themselves useful to be examined.
The various methods amount, generally, to constructing a suitable list
object which then becomes the argument to brovser.default().

This is a generic function. Functions with names beginning in "brovser."
will be methods for this function.

SEE ALSO
trace, restart, debugger, traceback

EXAMPLE

brovser(treeobject) #examine a tree-based fitted model
brovser() • examine the current evaluation frame

490 browser.default APPENDIX B

. .

broW&el"•d~fault. ~rowse In~ractively.jn, $ ~tioP,'tJ Frame bro~.d~fault
' . ' - ., -~~- . - . - : '' . ·' :-_ -. -· .. . - - ~. ·- .;. : . . . : . . .

browser.default(frame=, catch=TRUE, parent•, message=,
prompt="b> ", readonly .. F)

ARGUMENTS

frame: either a list or a number, the latter meaning the corresponding frame in the
evaluator. This is particularly useful when using the browser interactively:
traceback() returns the active frame numbers, and one of these can be
given to browser to examine data in another frame. By default the frame
of the function calling browser is used. Therefore in its usual use, adding
the expression browser() to a function allows you to see what the function
has done so far. If frame is a list, 'new.frame() is called to make an
evaluation-frame copy of it.

catch: logical; should errors and interrupts be caught in the browser? If TRUE,
then the browser will be restarted after such errors, but see the quit signal
comment below. If FALSE, any errors will return to the S prompt level.

parent: optional frame to be used as the parent frame of frame. Defaults to
sys.parent(2) if frame is missing and to sys.parent(l) if frame is specified.

message: optional text to be printed instead of the standard browser message.

prompt: character string to be printed to prompt for input. This allows changing
the prompt to distinguish between several versions of browser that may
be in effect at the same time. If frame is specified numerically, the default
prompt includes the frame number, e.g. "b(5)> ".

readonly: optional flag. If FALSE, and if frame is missing or numeric, assignments
will cause changes in the corresponding evaluation frame that persist after
the return from browser().

VALUE
the value returned in a return expression typed by the user; if you return
by giving a response o to the prompt, the value is NULL.

When the browser is invoked, you will be prompted for input. The input
can be any expression; this will be evaluated in the frame. Three kinds
of expressions are special. The response ? will get you a list of menu
selectable items (the elements of the frame). A numeric response is taken
to be such a selection. A rettirn expression returns from the browser

S FUNCTIONS AND CLASSES bs 491

with this value. The expression substitute(x) is useful to see the actual
argument that was given, corresponding to the formal argument x.

The quit signal (usually the character control-backslash) will exit from
the browser, and from the whole expression that generated the call to
the browser, returning to the S prompt level. (Don't type two control
backslash characters, or one if catchsFALSE; either action will terminate
your session with S!)

This function is a method for the generic function browser() for class
"default". It can be invoked by calling browser(x) for an object x of the
appropriate class, or directly by calling browser. default 0 , regardless of
the class of the object.

SEE ALSO
trace, restart, debugger, traceback

EXAMPLE

trace(foo, browser) #call browser on entering foo()
options(interrupt=browser) #invoke browser upon interrupts
myfun <- function(x, y) {

lots of computing
browser() #now check things just before the moment of truth
.C("myroutine", x, y, w)

bs(x, df, knots, degreea3, intercept=FALSE)

ARGUMENTS

x: the predictor variable.

df: degrees of freedom; one can specify df rather than knots; bs() then chooses
df-degree-1 knots at suitable quantiles of x.

knots: the internal breakpoints that define the spline; the range of the data
provide the boundary knots. The default is NULL, which results in a basis
for ordinary polynomial regression. Typical values are the mean or median
for one knot, quantiles for more knots.

degree: degree of the piecewise polynomial-default is 3 for cubic splines.

intercept: if TRUE, an intercept is included in the basis; default is FALSE.

492 burl.tree APPENDIX B

VALUE
a matrix of dimension length(x) • df, where either df was supplied or if
knots were supplied, df "' length(knots} + 3 + intercept.

bs() is based on the function spline.desO written by Douglas Bates. It
generates a basis matrix for representing the family of piecewise polyno
mials with the specified interior knots and degree, evaluated at the values
of x. A primary use is in modeling formulas to directly specify a piecewise
polynomial term in a model.

SEE ALSO
ns, poly, lo, s, smooth.spline

EXAMPLE

lm(y -v bs(age, 4) + bs(income, 4)) # an additive model

JJiu-i.t~ .. , · ... ,-'":View all SplitHo;.N6d~ of a:~ Object
'< •: • .-:.~;!~)'.'t~~5./·::~· '~ <v~::......,: ·~ ~· ,l ~.:.:"':._.'}e"j; :, ,;~ ', ~· '• ' ~ <;

burl.tree(tree, nodes, ...)

ARGUMENTS

tree: fitted model object of class tree. This is assumed to be the result of some
function that produces an object with the same named components as
that returned by the tree() function.

nodes: an integer vector containing indices {node numbers) of all nodes to be
examined. If missing, users select nodes as described below.

VALUE
the primary purpose of bur 1. tree 0 is its graphical side effect: for each
node selected or specified, a plot of the change in deviance at each pos
sible split, on each available predictor. For continuous predictors, a high
density plot displays the change in deviance for each cut-point. For factor
predictors, a scatterplot displays the change in deviance against an encod
ing of the subset split; the plotting symbol is the left-hand split. For the
last node specified or selected, burl. tree 0 returns a named {by predictor
variable) list containing the following details of the competition for the
best split at that node.

ARGUMENTS

x: vector of cutpoints or sequence numbers (subset splits).

S FUNCTIONS AND CLASSES burl. tree 49::J

y: vector of deviance change if node is split at x.

cut left: character vector of left-hand splits.

cut right: character vector of right-hand splits.

numl: the number of observations in the left-hand split at each x.

GRAPHICAL INTERACTION
This function checks that the user is in split-screen mode. A dendrogram of
tree is expected to be visible on the current screen, and a graphics input
device (e.g., a mouse) is required. Clicking (the selection button) on a
node results in the additional screens being filled with the information
described above. This process may be repeated any number of times.
Warnings result from selecting leaf nodes. Clicking the exit button will
stop the hurling process and return the list described above for the last
node selected. See .Device and split.screen for specific details on graphic
input and split-screen mode.

Graphical parameters (see par()) may also be supplied as arguments to
this function. In addition, the high-level graphics control arguments de
scribed under plot.defaultO and the arguments to title() may be sup
plied to this function.

EXAMPLE

z <- tree(Hileage~Weight + Type)
tree. screens()
plot(z)
burl.tree(z)

494 c APPENDIX B

lc . __ .. -__ ,·. Factor with Chosen Contrasts

C(object, contr, hov.many)

ARGUMENTS

object: a factor or ordered factor.

contr: what contrasts to use. May be one of four standard names (helmert, poly,
treatment, or sum), a function, or a matrix with as many rows as there are
levels to the factor.

hov.many: optionally, the number of contrasts to be assigned to the factor, if fewer
than k-1, where k is the number of levels. Note that setting this in a
model formula is an assertion that the coefficients for the remaining factors
are either known to be negligible or else should be aliased with other
coefficients.

VALUE
a factor, with the contrasts attribute set as above. May be used inline in
a model formula or to create a new factor.

EXAMPLE

use treatment contrasts for factor Cat
aov(Yield ~ Cont• C(Cat, treatment), catalyst)
only fit linear and quadratic effects
aov(Defects ~ C(Reliability, poly, 2) • Type • Plant)

S FUNCTIONS AND CLASSES coefficients 495

:···.·,

coefficients(object)
residuals(object)
fitted.values(object)

ARGUMENTS

object: any object representing a fitted model, or, by default any object with a
component named by the name of the extractor function.

VALUE

NOTE

the coefficients, residuals, or fitted values defined by the model in object.
While for some models this will be identical to the component of the object
with the same name, you are encouraged to use the extractor functions,
since these will call the appropriate method for this class of object. For
example, residuals from generalized linear models come in four flavors,
and the typically most useful one is not the component.

As a special inducement to use the extractor function rather than the
component, three abbreviated versions of these functions exist; namely,
coef(), resid(), and fitted().

SEE ALSO
predict, effects

EXAMPLE

residuals(kyph.fit)

496 coplot APPENDIX B

The Contrast MatrixJor a Factor < ..

contrasts(x)

ARGUMENTS

x: a factor or ordered factor.

VALUE
a matrix, with as many rows as there are levels for x, say k, and at most
k-1 columns. When xis used in a model, such as through lm() or aovO,
the portion of the model matrix assigned to x will be the result of matrix
multiplying the dummy matrix for the levels of x by contrasts (x). If x
has an attribute "contrasts", this is the value of contrasts(x); otherwise,
the standard contrasts are computed and returned. These are given by
calling one of two functions, as named by options("contrast"). The first
function is the default for factor objects and the second the default for
ordered factor objects.

EXAMPLE

contrasts(£) <- contrasts(f)[,1:3] #only the first 3 contrasts

coplot(formula, data, given.values, panel = points, rows, columns,
show.given • TRUE, add= FALSE, xlab, ylab, xlim, ylim, ...)

ARGUMENTS

formula: formula defining the response and the predictors involved in the plotting.
This is an S expression of the form:

y ~X I g1

or

y ~X I g1 • g2

where y is the response, xis the predictor against which y is plotted on the
dependence panels, and g1 and g2 are given predictors. These variables
may specify numeric vectors or factors. The formula may be given literally,
or it may be an expression that evaluates to a formula.

S FUNCTIONS AND CLASSES coplot 497

data: data frame in which the formula will be evaluatfltl. If missing, evaluation
will take place as if the formula were evaluated in I. he frame of the function
calling coplot.

given.values: a numeric vector, character vector, or two-ctr(umn matrix that spec
ifies· the given values when there is one given pr~>dictor, or a list of two
such objects when there are two. If missing, reastrnable things happen.

panel: a user-supplied function of x and y that determineH t.he method of plotting
on the dependence panels.

rows: for the case of one given predictor, the number of rows of the matrix of
dependence panels. If missing, the following is the default: let k be the
number of given values; if columns is missing, then

rows <- ceiling(sqrt(k))

else

rows <- ceiling(k/columns)

This argument is not used if there are two given predictors.

columns: for the case of one given predictor, the number of columns of the matrix
of dependence panels. If missing, the following is the default: let k be the
number of given values; if rows is missing,

columns <- ceiling(k/ceiling(sqrt(k)))

else

columns <- ceiling(k/rows)

This argument is not used if there are two given predictors.

show. given: if FALSE, given panels are not included.

add: if TRUE, add to the current plot.

Graphical parameters (see par()) may also be supplied as arguments to
this function. Graphical parameters (see par) may also be supplied as
arguments to this function. The arguments xlab and ylab are as for other
graphics functions, except that the former is a character vector of labels for
predictors. If the elements have names, they are matched to the names in
formula; if not, the elements are assigned, in order, according to the order
in which they appear in formula. If missing, the names of the predictors
in formula are used. The arguments xlim and ylim are axis limits as in
other graphics functions.

For an example of the output of coplot 0, see Figure 3.8 on page 78.

498 data.frame APPENDIX B

SEE ALSO
co. intervals, panel.smooth

EXAMPLE

the following makes a coplot of NOx against C given E
with smoothings of the scatterplots on the dependence panels:
E.intervals <- co.intervals(ethanol$E, 16, 0.25)
coplot(NOx- C I E, given.values = E.intervals, data= ethanol,

panel • function(x, y) panel.smooth(x, y, span = 1,
degree = 1))

data.frame(... , row.names, check.rows = F, check.names = T)
as.data.frame(object)

ARGUMENTS

objects to be included in the data frame. These can be vectors (numeric,
character, or logical), factors, numeric matrices, lists, or other data frames.
Matrices, lists, and data frames provide as many variables to the new data
frame as they have columns, elements, or variables, respectively. Numeric
vectors and factors are included as is, and non-numeric vectors are coerced
to be factors, whose levels are the unique values appearing in the vector.
Making any ofthe above the argument in a call to the function I 0 prevents
the expansion or conversion.

row. names: optional argument to provide the row. names attribute. If included, can
either provide an explicit set of row names or indicate that one of the vari
ables should be used as the row names. In the latter case, row. names can
either be a numeric index for the variable or the name that the variable
would have in the data frame. The indicated variable will be dropped as
a variable and used for the row names. By default, data.frame tries to
construct the row names from the dimnames attribute of a matrix argu
ment, from the row . names argument of a previous data frame, or, if none
of these produces row names, by using the row numbers. However the
row names are constructed, they are required to be unique. Note that
arguments row.names, check.rows, and check.names, if supplied, must be
given by name.

check. rows: flag; if TRUE, the rows are checked for consistency. If several arguments
imply row names, the function will check that these names are consistent.

S FUNCTIONS AND CLASSES data.frame.object 499

Generally only useful in computations thr.t claim to have selected the same
rows from several parallel sources of data.

check.names: flag; if TRUE, the variable names will be made into legal S object
names, by replacing illegal characters, like blanks, parentheses, or commas
by "." (type ?make. name for details).

object: an object to be coerced to be a data frame. If not a data frame already,
this object is likely to be a matrix or a list.

VALUE
a data frame, consisting of all the variables supplied in the arguments. The
variables are required to have the same number of observations. All the
variables should have names; in the case of list arguments this is required,
and in other cases data. frame will construct default names but issue a
warning. The elements of the data frame are the variables. In addition,
the data frame will always have an attribute "row.names" containing the
row names.

EXAMPLE

two lists, taking one component as row names
data.frame(car.specs, car.report[-1], row.names ="Model")

Data frames are objects that combine the behavior of data, in the sense
that they can be addressed by rows (meaning observations) and columns
(meaning variables), with the behavior of lists or frames inS, in the sense
that the variables can be used like individual objects-for example, by
attaching the object to the search list, by setting it up as a frame in the
evaluator or the browser, or by passing it to a model-fitting function along
with a formula using the variable names in the data frame.

Many matrix-like computations are defined as methods for data frames,
notably, subsets and the dim and dimnames attributes. However, data
frames are not matrices; most importantly, any object can become a vari
able in the data frame, so long as it is addressable by the observations. In
practice, this means that the variables should be one of vectors, matrices,
or some other class of objects that can itself be treated as either a vector
or matrix (in particular, can be subset like a vector or matrix). If the
variable is vector-like, it should have length equal to the number of rows;
if matrix-like, it should have the same number of rows as the data frame.

500 data.matrix APPENDIXB

The definition of the dimension and the dimnames of a data frame is done
differently from that of a matrix. Every data frame is required to have an
attribute "row.names" whose length is, by definition, the number of rows
of the data frame. The number of columns is by definition the number of
variables; that is, the length of the data frame as a list. The dimnames
list is equivalent to

list{rov.names(x), names(x))

Both the row names and the names are required to be there and to have
no duplicate values.

ATTRIBUTES
The following attributes must be included and behave as follows.

rov.names: a vector of length equal to the number of observations {and therefore
equal to either the length or the number of rows of every variable). There
must be no duplicate values. Where no explicit row names are supplied
in creating the data frame, 1: nrovs (x) will be used.

names: the names must exist, be of full length, and be unique.

SEE ALSO
data.frame, design, design.object, pframe.object

data.matrix(frame)

ARGUMENTS

frame: a data frame, or else a frame that inherits from class "data. frame" (design
or model frame).

VALUE
a numeric matrix containing the numeric information in frame. The matrix
has a column for each numeric vector, a set of columns for each matrix,
and a column for each factor in frame. Factors are first transformed to
numeric values using codes(). If factors are present in frame, the matrix
returned has an attribute called "column.levels", a list with an element
for each column of the matrix. The elements of this list are either NULL or
else contain the levels of the factors prior to conversion by codes 0.

SEE ALSO
codes, as.matrix, model.matrix

S FUNCTIONS AND CLASSES deriv 501

lde~v. Symbolic Partial Derivatives of.Elcpressions deriv\

deriv(expr, namevec, function.arg, tag=".expr")

ARGUMENTS

expr: expression to be differentiated, typically a formula, in which case the
expression returned computes the right side of the "' and its derivatives.

namevec: character vector of names of parameters.

function.arg: optional argument vector or prototype for a function. If present,
the returned value is in the form of a function instead of a multiple state
ment expression. When function. arg is given as a function prototype, the
function arguments can have defaults.

tag: base of the names to be given to intermediate results. Default ".expr".

VALUE
a multiple-statement expression or a function definition. When evaluated,
these statements return the value of the original expression along with an
attribute called "gradient". This is the gradient matrix of the expression
value with respect to the named parameters.

If function. arg is a character vector, the result is a function with the
arguments named in function. arg. If function. arg is a function, the
result is a function with the same arguments and default values.

While generating this sequence of expressions, the function attempts to
eliminate repeated calculation of common subexpressions. Sometimes user
assistance is needed, as in the example below. To improve readability, ex
pressions that are used only once are folded back into the expression where
they are used. Since parentheses are always added when such expressions
are folded in, there may be redundant parentheses in the final expressions.

The symbolic differentiation and the simplification of the result are highly
recursive. Even for relatively simple expressions, S can reach its limit on
the number of nested expressions and give an error message. The remedy
is to increase the value of the option expressions when th~s happens.

502 deriv

EXAMPLE

value and gradient of the Michaelis-Menten model
> deriv(~ Vm•conc/(K+conc) ,c("Vm" ,"K"))
expression({

.exprl <- Vm • cone

.expr2 <- K + cone

.value <- .expr1/.expr2

.grad<- array(O, c(length(.value), 2),
list(NULL, c("Vm", "K")))

. grad [, "Vm"] <- cone/. expr2

.grad[, "K"] <- - (.expr1/{.expr2"2))
attr(. value, "gradient") <- .grad
.value

to obtain a function as the result
> deriv(~ Vm•conc/(K+conc) ,c("Vm","K"),
+ function(Vm, K, cone = 1:10) NULL)
function(Vm, K, cone = 1:10)
{

}

.expr1 <- vm • cone

.expr2 <- K + cone

.value<- .expr1/.expr2

.grad<- array(O, c{length{.value), 2),
list(NULL, c("Vm", "K")))

.grad[, "Vm"] <- cone/ .expr2

.grad[, "K"] <- - (.expr1/(.expr2"2))
attr(.value, "gradient") <- .grad
.value

APPENDIXB

S FUNCTIONS AND CLASSES design 503

design(... , factor.names)

ARGUMENTS

objects that can be interpreted as factors in a design: vectors, data frames,
matrices, or factors themselves. Each object Qr column of a data frame or
matrix will be considered as a template for a factor. Numeric vectors and
matrices will be converted to factors, with the unique values of the vector
or the column of the matrix defining the levels.

factor.names: optional vector of names for the factors. If omitted, names will be
constructed. In the case that the argument(s) are matrices with dimnames
for the columns, these dimnames will be used. Otherwise, the standard
factor names are used.

VALUE
an object of class design, inheriting from the class data. frame. This func
tion should be compared and contrasted with data.,frameO, which does
not force all variables to be factors, and with data.matrixO, which in a
sense performs the inverse operation to design(), by converting factors to
numeric variables.

SEE ALSO
fac.design, oa.design

EXAMPLE

dmat is a numeric matrix vith appropriate levels in the
rovs; myfac is a factor defined on the same observations.
mydesign <- design(dmat, myfac)

504 design.table APPENDIXB

. ':~,~~j~.\ '
•,. ,·. · .. ; .,. ·.:.-:-'·'·: .. _,_, •... ·. ·:~-~··::··. -. •;., ...

,. ·;·. ·-
.·.::..

Designs inherit from data frames. By virtue of having class "design",
they are treated differently by some generic functions, notably plot o.
The assumption is that a design object starts life as a data frame, all of
whose variables are factors. Then, one or more quantitative variables are
added. Unless told otherwise, methods for designs tend to assume that
the first quantitative variable found in the design should be the response.

ATTRIBUTES
Designs need have no attributes other than those for data frames. They
may have special information indicating that they were produced as frac
tional factorial designs or as orthogonal array designs (see fac.design()
or oa.designO). The important function factor.names() returns or sets
the names for the factors and for their levels. It does not use an explicit
attribute of this name, however. Instead, it uses the names of the design
object and the levels of each factor variable.

SEE ALSO
data.frame.object, data. frame, design, fac.design, oa.design

·-·.·'·:_;~_. _., ... ·,-·_,,_/-;i·'. ,,-~::· ~.--::.~·-·) -:'' ... -:'':'-:

/ ,A#~·ltesp,9~'as: a:·M\llti~y &r,a.y· :· ·. ·d~~a.,table

design.table(design, response)

ARGUMENTS

design: a data frame representing a design, perhaps with a response included.

response: a response variable. If omitted, the first non-factor included in the design
is used.

VALUE
a multiway array, whose elements are formed from the response. Suppose
d is a numeric vector whose elements are the number of levels in each of
the factors in the design. Then the dimension attribute of the array is d if
there are no replicated values in the design, or c(nrep, d) otherwise, where
nrep is the maximum number of replications. The dimnames attribute of
the array is the factor names of design, with an initial element of 1 :nrep
if there are replications.

S FUNCTIONS AND CLASSES deviance 505

Note that rearranging the response as a multi way array makes more sense
for complete designs. The function will work fine for fractional designs,
but the resulting array will be mostly HAs, and hard to look at. Such
designs are usually easier to look at just by printing them, but if you
have some functions that work on multiway arrays with NAs, the value of
design. table can be used whether the design is complete or not .

. . .. ExtraCt the Deviance from a Fitted Model Object deviance

deviance(object)

ARGUMENTS

object: a fitted model object, typically of class glm or gam, although others are
possible.

VALUE
the deviance of the fitted model is returned. For glm, gam, and tree models,
the "deviance" is a component of object, in which case deviance() is
a simple extractor function. For other models, the gaussian family is
assumed and the weighted residual sum of squares is returned.

dropl(object, scope, scale, keep)

ARGUMENTS

object: an lm object, or any object that inherits from class 1m. In particular, a glm
object is also appropriate for a chi-squared analysis based on the score
test.

scope: an optional formula object describing the terms to be dropped. Typically
this argument is omitted, in which case all possible terms are dropped
(without breaking hierarchy rules). The scope can also be a character
vector of term labels. If the argument is supplied as a formula, any "." is
interpreted relative to the formula implied by the object argument.

scale: the multiplier of the df term in the Cp statistic. If not supplied, scale is
estimated by the residual variance of object, or else in the case of a glm
object the dispersion parameter.

506 dropl.lm APPENDIX B

keep: a character vector of names of components that should be saved for each
subset model. Only names from the set coefficients, fitted.values,
residuals, x.residuals, effects, Rare allowed. keep=T implies the com
plete set. x. residuals for a given term is the X matrix corresponding to
that term, adjusted for all the other terms in the model object. The
other components are as in object. The default behavior is not to keep
anything.

VALUE
using the "R" component of object, each of the subset models correspond
ing to the terms specified in scope is computed. An anova object is con
structed, consisting of the term labels, the degrees of freedom, the residual
sum of squares, and the Cp statistic for each subset model. If keep is miss
ing, this is what is returned. If keep is present, a list with components
"anova" and "keep" is returned. In this case, the "keep" component is a
matrix of mode "list", with a column for each subset model, and a row
for each component kept.

droplO handles weighted lm objects, including glm objects. The weighted
residual sum of squares is a Pearson chi-square statistic based on the
weights of the full model, and a one-step iteration towards the subset
model. This results in a score test for the removal of each term. The
function droplO is used as a primitive in step.glm().

This function is a method for the generic function dropl() for class "lm".
It can be invoked by calling dropl (x) for an object x of the appropriate
class, or directly by calling dropl.lmO, regardless of the class of the object.

SEE ALSO
addl, step, step.glm, step.gam

EXAMPLE

dropl(lm.ob)
dropl(lm.ob, ~ . - Age) # drop all terms except Age
dropl(lm.ob, keep=T)

S FUNCTIONS AND CLASSES fac.design 507

fac.design(levels, factor.names, replications 1,
rov.names, fraction)

ARGUMENTS

levels: vector of the number of levels for each factor in the design.

factor.names: optional factor names attribute. This may be a character vector,
giving the names of the factors, or a list. If it is a list, the names
attribute of the list is the names of the factors, and the elements of
the list (which need not be of mode character) give the levels of the
corresponding factor. If factor names are not given, they default to
std.factor.names(length(levels)); namely, "A", "B", etc. If a factor's
levels are not named, the levels are set to the factor name (possibly ab
breviated) followed by level numbers.

replications: the number of times the complete design should be replicated.

ro~.names: optional names to use for the rows of the design. Defaults to l:nrovs.

fraction: optional definition for the fraction desired in a fractional factorial design.

VALUE

This may either be a numerical fraction (e.g, 1/4 for a quarter replicate),
or a model formula giving one or more defining contrasts, as in the example
below. See fractionate() for details. Fractional factorials are provided
only for two-level factors.

a design corresponding to the factors specified. The design object is a data
frame, with variables in the frame corresponding to each of the factors
requested in the design.

SEE ALSO
design, oa. design, fractionate.

EXAMPLE

a 1/4 replicate of a 2A5 design,
> fac.design(rep(2,5), names a fnames,
+ fraction= "' A:C:D + A:B:E)

react acidcon acidamt reactim reactem
1 4mod dil 2mol 2 lov
2 Smol dil 2.5mol 2 lov

508 factor

3 5mol con 2mol
4 4mod COD 2.5mol
5 5mol COD 2mol
6 4mod COD 2.5mol
7 4mod dil 2mol
8 5mol dil 2.5mol
Fraction: y. "' A:B:C + B:D:E

factor(x, levels, labels)
is.factor(x)
as.factor(x)

APPENDIX B

4 lov
4 lov
2 high
2 high
4 high
4 high

facto~

ARGUMENTS

x: data, to be thought of as taking values on a finite set (the levels). Missing
values (NAs) are allowed.

levels: optional vector of levels for the factor. Any data value that does not
match a value in levels will be NA in the factor.

labels : optional vector 'lf values to use as labels for the levels of the factor, in
place of the levels set.

VALUE
object of class "factor", representing values taken from the finite set given
by levels(). It is important that this object is not numeric; in partic
ular, comparisons and other operations behave as if they operated on
values from the levels set, which is always of mode character. NA can ap
pear, indicating that the corresponding value is undefined. The expression
na. include(f) returns a factor like f, but with NAs made into a level.

is. factor returns TRUE if x is a factor object, FALSE otherwise.

as.factor returns x, if xis a factor, factor(x) otherwise.

SEE ALSO
ordered, na. include.

S FUNCTIONS AND CLASSES factor.names 509

EXAMPLE

factor(occupation) #"doctor", "lawyer", etc.
make readable labels
occ <- factor(occupation,level•c("d","l"),

label=c("Doctor","Lavyer"))
turn factor into character vector
as.vector(factor)
colors<- factor(color,c("red","green","blue"))
table(colors) #table counting occurrences of colors

factor.names(design)
factor.names(design) <- values

ARGUMENTS

design: a design, typically to be used with the analysis of variance and/or other
functions for designed experiments.

values: either a list, similar to the returned value of factor.names(), or a vector,
to be used as the names of the factors. In the second case, the factor levels
will default as below.

VALUE
factor.names() returns a list, whose names attribute contains the names
of the factors in the design, and whose elements are the levels for the
corresponding factors. Defaults will be produced wherever necessary: the
factor names default to "A", "'B", etc., and the levels to abbreviated factor
names, with "1", etc. pasted on.

When used Oil the left side of an assignment, factor. names takes values
and coerces them to the form just described, using the default rules.

EXAMPLE

> factor.names(design.1)
$Temperature:
[1] 160 180
$Concentration:
[1] 20 40
$Catalyst:
[1] "cat A" "c.at B
> factor.names(design2) <- c("Glass","Phosphor")

510 family

> factor.names(design2)
$Glass:
[1] "G1" "G2" "G3"
$Phosphor:
[1) "Pl" "P2"

family(object)
binomial(link = logit)
gaussian()
Gamma(link = inverse)
inverse.gaussian()
poisson(link = log)
quasi(link = identity, variance constant)

ARGUMENTS

APPENDIX B

link: the choices of link functions are logit, probit, cloglog, identity, inverse,
log, "1/mu"2", and sqrt. Not all links are suitable for all families. The
following table summarizes the suitable pairings:

logit
probit

cloglog
identity
inverse

log
1/mu"2

sqrt

binomial gaussian Gamma inverse.gaussian poisson quasi

• •
• •
• •

• • • •
• •
• • •

• •
• •

The function poverO can also be used to generate a power link function
object for use with quasi(); poverO takes an argument lambda.

variance: the choices of variance functions are constant, mu(1-mu), mu, mu"2, and
mu"3. This argument may be used only with quasi(); each of the other
families implies a variance function.

object: any object from which a family object can be extracted. Typically a fitted
model object, with a default of gaussian.

S FUNCTIONS AND CLASSES family 511

VALUE

a family object, which is a list of functions and expressions used by glm()
and gam() in their iteratively reweighted least-squares algorithms. Each
of the names, except for quasi and the family extractor function family(),
are associated with a member of the exponential family of distributions.
As such, they have a fixed variance function. There is typically a choice
of link functions, with the default corresponding to the canonical link for
that family. The quasi name represents Quasi-likelihood and need not
correspond to any particular distribution; rather quasi 0 can be used to
combine any available link and variance function.

Users can construct their own families, as long as they have compatible
components having the same names as those, for example, of binomial ().
The easiest way is to use quasi() with home-made link and variance
objects; otherwise ma.k.e.familyO can be used, or else direct construction
of the family object. When passed as an argument to glmO or gam() with
the default link, the empty parentheses 0 can be omitted. There is a
print method for the class "family".

SEE ALSO
family. object, glm, gam, robust, power

EXAMPLE

binomial(link = probit) # generate binomial family with probit link
glm(formula, family = binomial)
robust(gaussian} # create a robust version of the binomial family
gam(formula, family • robust(quasi(link = power(2}}}) # the works!

512 family.object

I famUy.obj~ , .. ::

·. :~:.-:·, .

APPENDIXB

This class of objects is returned by one of the family functions. See
family for the choices. It is a list of functions and expressions that define
the IRLS iterations for fitting glm and gam models. These family objects
allow a great deal of flexibility in the use of glm() and gam(). In particular,
they allow construction of robust fitting algorithms and composite link
functions. There is a print() method for family objects, that produces a
simple summary without any details; use unclass(family.object) to see
the contents.

COMPONENTS
The following components, with a corresponding functionality, are re
quired for a family object.

family: a character vector giving the family name, and the names of the link and
variance functions.

link: a function with argument mu that transforms from the scale of the mean
to the scale of the linear or additive predictor eta.

inverse: a function with argument eta, the inverse of the link.

deriv: a function with argument mu, the derivative of the link function.

initialize: an expression to initialize the values of the fitted values mu in the
body of glm() or gam(). Other values can also be initialized, such as the
prior weights w, or the maximum number of iterations ma:xit, to name
two. Modifying these expressions should be done with some care, and is
only recommended for experienced users. Other variables local to glmO or
gam() can be initialized as well; see binomial0$initialize for an example.
The initialize expression can also be used to transform a response variable
having specialized structure into the required vector response y. Once
again the binomial serves as an example.

variance: a function with argument mu, the variance function.

deviance: the deviance function has four argup1ents:

deviance(mu, y, w, residuals = F)

and returns the deviance, a quantity similar to the residual sum of squares
for a Gaussian least squares model. If residuals•T, deviance() returns a

S FUNCTIONS AND CLASSES fitted.values 513

vector of deviance residuals, whose weighted sum of squares is the de
viance.

veight: an expression for updating the iterative weights. For the binomial family,
this expression is v•mu•<t - mu), for the gaussian it is v, where v are the
prior weights.

h:_A_;_._·_-.~~.-.:.-_:_?,-_-_•~--)w--_ .. :··.··_-.-~'_:._~_:·.·•~.-~_:_·~·-::_:::,:.~:_s_:; __ · .. > :···· ,.., , · .. :. ,;~:~o~11iciats · ·.-
t~-: ' ····.· ~-: .·~. . ·. '-. ·:·· ,:::·~---\<'.'•: , ,: '"'"• ,· ·'·,--"',< ·:·· .. .- .. _,_,· ..

formula(object)

ARGUMENTS

object: either a formula expression (a call to the "' operator), or an object that
defines such an expression, such as a fitted model or a terms object.

VALUE
an object of class "formula", essentially just the call to"'·

This is a generic function. Functions with names beginning in "formula."
will be methods for this function.

SEE ALSO
formula.object

EXAMPLE

sqrt(skips) "' . #or, equivalently
formula(sqrt(skips) "' .)
formula(fuel.fit) # find the formula

514 fractionate APPENDIXB

.. ', .. ·'

This class of objects represents the structural models in all model-fitting
functions, and is used also in a number of other functions, particularly for
plots. Formulas are their own value; that is, they represent an expression
calling the operator "'• but evaluating this expression just returns the ex
pression itself. The purpose of formula objects is to supply the essential
information to fit models, produce plots, etc., in a readable form that can
be passed around, stored in other objects, and manipulated to determine
the terms and response of a model. Names in the formula will eventually
be interpreted as objects, often as variables in a data frame. This inter
pretation, however, only takes place when the related subexpressions have
been removed from the formula object.

Useful generic functions for formulas include: terms(), update(), and
plot().

fractionate(design, fraction)

ARGUMENTS

design: a design object; that is, a data frame containing factors.

fraction: the fraction desired. This is either a numeric fraction (e.g., 1/2, 1/4), or a
formula containing the terms to be used as defining contrasts. If numeric,
fractionate () will choose a fraction according to a set of defining contrasts
representing an attempt to allow estimation of as many low-order effects
as possible. (The fractions are in the object dimdc .list if you want to
look at them.) If a formula is supplied, its terms should generally be
simple high-order interactions-that is, factor names linked by ":". Each
such term defines one interaction (combination of factors). The design
will be divided in half according to whether the corresponding contrast
variable has value +1 or -1. The term can appear in the formula with
sign either "+" or "-", and the positive or negative half will be chosen
accordingly. Notice that negative and positive terms do not cancel in this
use of formulas.

S FUNCTIONS AND CLASSES gam 515

VALUE

a new design object, containing the rows of the original design specified
by fraction. The function only works for 211k designs. Defining fractions
for factors with three or more levels is more complicated, and we have not
attempted to do so. The design has an attribute "fraction" containing
the defining contrast(s).

EXAMPLE

a 1/4 replicate from the full 211 5 design in full.design
specifying the -1 fraction for the first contrast
> davies.design <- fractionate(full.design,
+ fraction = "' -A:C:D + A:B:E)

gam(formula, family = gaussian, data, veights, subset, na.action,
start, control, trace=F, model=F; x=F, y=T, ...)

ARGUMENTS

formula: a formula expression as for other regression models, of the form response
"' predictors. See the documentation of lm() and formula for details.
Non parametric smoothing terms are indicated by s () for smoothing splines
or lo() for loess smooth terms. See the documentation for sand lo for
their arguments. Additional smoothers can be added by creating the ap
propriate interface. Interactions with nonparametric smooth terms are
not fully supported, but will not produce errors; they will simply produce
the usual parametric interaction.

family: a family object-a list of functions and expressions for defining the link
and variance functions, initialization, and iterative weights. Families
supported are gaussian, binomial, poisson, Gamma, inverse.gaussian and
quasi. Functions such as binomial() produce a family object, but can be
given without the parentheses. Family functions can take arguments, as
in binomial(link=probit).

data: an optional data frame in which to interpret the variables occurring in the
formula.

veights, subset, na.action: the optional weights for the fitting criterion, subset
of the observations to be used in the fit, and function to be used to handle
any NAs in the data. These are interpreted as in the lmO function.

516 gam APPENDIX B

start: an optional vector of initial values on the scale of. the additive predictor.

control: a list of iteration and algorithmic constants. See gam. control 0 for their
names and default values. These can also be set as arguments to gam()
itself.

VALUE

all the optional arguments to lmO can be given to gam(), including veights,
subset and na. action.

an object of class gam is returned, which inherits from both glm and lm. Can
be examined by print 0, summary(), plot(), and anova 0. Components can
be extracted using extractor functions predict(), fitted(), residuals{),
deviance(), formula(), and family(). Can be modified using update(). It
has all the components of a glm object, with a few more. Other generic
functions that have methods for gam objects are step() and preplot{).
Use gam.'object for more details.

The model is fit using the local scoring algorithm, which iteratively fits
weighted additive models by backfitting. The backfitting algorithm is a
Gauss-Seidel method for fitting additive models, by iteratively smooth
ing partial residuals. The algorithm separates the parametric from the
nonparametric part of the fit, and fits the parametric part using weighted
linear least squares within the backfitting algorithm. Although nonpara
metric smooth terms loO and sO can be mixed in a formula, it is more
efficient computationally to use a single smoothing method for all the
smooth terms in an additive model. In this case the entire local scoring
algorithm is performed in FORTRAN.

SEE ALSO
gam.object, glm, family

EXAMPLE

gam(kyphosis ~ s(age,4} + Number, family = binomial}
gam(ozoneA(l/3) ~ lo(rad) + lo(vind, temp))
gam(kyphosis ~ poly(Age,2} + s(Start), data=kyph.data,

subset = Number>lO)

S FUNCTIONS AND CLASSES gam.object 517

la-rD~ob~··.·. G~ .A<ic1ltiveModel Object gam.object I
This class of objects is returned by the gam() function to represent a fitted
generalized additive model. Class gam inherits from class glm, since the
parametric part a gam. object is fit by weighted least-squares; the object
returned has all the components of a glm. Objects of this class have
methods for the functions print(), plot(), summary(), anova(), predict(),
fitted(), and step(), among others.

COMPONENTS
The following components must be included in a legitimate gam object.
The residuals, fitted values, coefficients and effects should be extracted by
the generic functions of the same name, rather than by the "$" operator.
The family() function returns the entire family object used in the fitting,
and deviance() can be used to extract the deviance of the fit.

coefficients: the coefficients of the parametric part of the additive.predictors,
which multiply the columns of the model matrix. The names of the coef
ficients are the names of the single-degree-of-freedom effects (the columns
of the model matrix). If the model is overdetermined there will be missing
values in the coefficients corresponding to inestimable coefficients.

additive.predictors: the additive fit, given by the product of the model matrix
and the coefficients, plus the columns of the "smooth" component.

fitted.values: the fitted mean values, obtained by transforming the component
additive.predictors using the inverse link function.

smooth, nl. df, nl. chisq, var: these four characterize the non parametric aspect of
the fit. smooth is a matrix of smooth terms, with a column corresponding
to each smooth term in the model; if no smooth terms are in the gam
model, all these components will be missing. Each column corresponds to
the strictly nonparametric part of the term, while the parametric part is
obtained from the model matrix. nl. df is a vector giving the approximate
degrees of freedom for each column of smooth. For smoothing splines
specified by s(Jt}, the approximate df will be the trace of the implicit
smoother matrix minus 2. nl. chisq is a vector containing a type of score
test for the removal of each of the columns of smooth. var is a matrix like
smooth, containing the approximate pointwise variances for the columns
of smooth.

518 glm APPENDIX B

residuals: the residuals from the final weighted additive fit; also known as working
residuals, these are typically not interpretable without rescaling by the
weights.

deviance: up to a constant, minus twice the maximized log-likelihood. Similar to
the residual sum of squares.

null. deviance: the deviance corresponding to the model with no predictors.

iter: the number of local scoring iterations used to compute the estimates.

family: a three-element character vector giving the name of the family, the link,
and the variance function; mainly for printing purposes.

veights: the iterative weights from the final IRLS fit

The object will also have the components of an 1m object: coefficients,
residuals, fitted. values, call, terms and some others involving the nu
merical fit. See 1m. object.

glm(formula, family = gaussian, data, weights, subset, na.action,
start, control, trace=F, model=F, xsF, y=T, ...)

ARGUMENTS

formula: a formula expression as for other regression models, of the form response
"' predictors. See the documentation of lm() and formula for details.

family: a family object-a list of functions and expressions for defining the link
and variance functions, initialization, and iterative weights. Families
supported are gaussian, binomial, poisson, Gamma, inverse. gaussian, and
quasi. Functions such as binomial() produce a family object, but can be
given without the parentheses. Family functions can take arguments, as
in binomial(link-probit). See family.

S FUNCTIONS AND CLASSES glm 519

data: an optional data frame in which to interpret the variables occurring in the
formula.

weights, subset, na. action: the optional weights for the fitting criterion, subset
of the observations to be used in the fit, and function to be used to handle
any NAs in the data. These are interpreted as in the lmO function.

start: a vector of initial values on the scale of the linear predictor.

control: a list of iteration and algorithmic constants. See glm. control() for their
names and default values. These can also be set as arguments to glmO
itself.

trace: if TRUE, details of the iterations are printed. Can also be set in the control
argument.

model: if TRUE, the model. frame is returned. If this argument is itself a model. frame,
then the formula and data arguments are ignored, and model is used to
define the model.

x: if TRUE, the model. matrix is returned.

y: if TRUE, the response variable is returned (default is TRUE).

qr: if TRUE, the QR decomposition of the model.matrix is returned.

VALUE

all the optional arguments to lmO can be provided to glmO, including
weights, subset, and na.action. Note that weights refers to original prior
weights, not the iterative weights used in fitting. See 1m for documentation
of these arguments.

an object of class glm is returned, which inherits from lm. Can be ex
amined by printO, summary{), plot(), and anova{). Components can be
extracted using predict(), fitted(), residuals(), deviance(), formula(),
and family(). Can be modified using update(). It has all the compo
nents of an 1m object, with a few more. Other generic functions that have
methods for glm objects are droplO, addl(), step(), and preplot(). See
glm.object for further details.

The model is fit using iterative reweighted least squares (IRLS). The
working response and iterative weights are computed using the functions
contained in the family object. glm models can also be fit using the
function gamO. The workhorse of glm() -is the function gl.Di.fitO, which
expects an x and y argument rather than a formula.

SEE ALSO
glm.object, gam, family, glm.fit

520 glm.object

EXAMPLE

glm(Count ,.... . , data • solder, family "' poisson)
glm(Kyphosis ,.... poly(Age, 2) + (number > lO)•Start,

family = binomial)

APPENDIX B

glm(ozoneA(l/3) ~ bs(rad, 5) + poly(vind, temp, degree • 2))

This class of objects is returned by the glm() function to represent a
fitted generalized linear model. Class glm inherits from class 1m, since it
is fit by iterative reweighted least squares; the object returned has all the
components of a weighted least squares object. The class of gam objects, on
the other hand, inherit from class glm. Objects of class glm have methods
for the functions print(), plot(), summary(), anovaO, predict(), fitted(),
dropl 0, add1 0, and step(), among others.

COMPONENTS
The following components must be included in a legitimate glm object.
The residuals, fitted values, coefficients and effects should be extracted by
the generic functions of the same name, rather than by the "$" operator.
The family() function returns the entire family object used in the fitting,
and deviance() can be used to extract the deviance of the fit.

coefficients: the coefficients of the linear .predictors, which multiply the columns
of the model matrix. The names of the coefficients are the names of the
single-degree-of-freedom effects (the columns of the model matrix). If the
model is overdetermined, there will be missing values in the coefficients
corresponding to inestimable coefficients.

linear.predictors: the linear fit, given by the product of the model matrix and the
coefficients; also the fitted. values from the final weighted least-squares
fit.

fitted. values: the fitted mean values, obtaine4 by transforming linear. predictors
using the inverse link function.

residuals: the residuals from the final weighted least-squares fit; also known as
working residuals, these are typically not interpretable without rescaling
by the weights.

deviance: up to a constant, minus twice the maximized log-likelihood. Similar to
the residual sum of squares.

S FUNCTIONS AND CLASSES Inherits 521

null.deviance: the deviance corresponding to the model with no predictors.

iter: the number of IRLS iterations used to compute the estim1~tes.

family: a three-element character vector giving the name of the fumily, the link,
and the variance function; mainly for printing purposes.

veights: the iterative weights from the final IRLS fit.

The object will also have the components of an lm object: coefficients,
residuals, fitted. values, call, terms, and some others involving the nu
merical fit. See 1m. object.

inherits(x, vhat, vhich=F)

ARGUMENTS

x: any object, possibly but not necessarily having a class attribute.

vhat : a character vector of possible classes.

vhfch: option; if TRUE, the returned value specifies which classes matched the
object; otherwise, the value is a single logical, suitable for use in an if

expression test.

VALUE
TRUE if any of the classes in the class attribute of x match (exactly) any of
the strings in vhat.

EXAMPLE

the definition of as.factor()
function(x) if(inherits(x,"factor")) x else factor(x)

522 interaction APPENDIXB

interaction(design, drop a F)
interaction(... , drop a F)

ARGUMENTS

design:

the arguments to interaction can be either a data frame containing all
the factors to be used or all the individual factors. It will not understand
a combination of factors and designs as arguments; you have to pick one
form or the other.

drop: if TRUE the levels of the new factor not represented in the data are dropped.

VALUE
a new factor, whose levels are all possible combinations of the factors
supplied as ·arguments. If drop " T, only the levels represented in the new
factor are retained.

EXAMPLE

> attach(catalyst)
> Temp
[1] 160 180 160 180 160 180 160 180
> Cone
[1] 20 20 40 40 20 20 40 40
> interaction(Temp, Cone)
[1] 160.20 180.20 160.40 180.40 160.20 180.20 160.40 180.40

S FUNCTIONS AND CLASSES interaction.plot 523

interaction.plot(x.factor, trace.factor, response, •.. , fun • mean,
trace.label • deparse(substitute(trace.factor)))

ARGUMENTS

x.factor: factor to be plotted on the :z;.axis It may be a factor in a design object.

trace. factor: factor whose levels will be separate traces. It may be a factor in a
design object.

response: vector containing the response. It may be contained in a data frame.

optional specification of graphical parameters, including parameters for
matplot, to be applied before doing the plot (and reset after the plot is
finished).

fun: a function or the name of a function. It should be a summary function
returning one number on each call.

trace .label : heading given to factor plotted as traces.

VALUE
a plot will be created showing the requested function of responses for each
level of the x.factor at each level of the trace.factor. By default, lines
for each value of the trace. factor are drawn in different styles so· that
they may be more easily distinguished. Note: Ignore warning messages:
missing values generated coercing to double.

For an example of the output of interaction.plotO, see Figure 5.5 on
page 168.

EXAMPLE

> attach(catalyst)
> interaction.plot(x.factor ~ Cone, trace.factor • Cat, Yield)
> detach()

524 lm APPENDIXB

lm(formula, data, weights, subset,
na.action, method="qr", model•F, x•F, y•F, ...)

ARGUMENTS

formula: a formula object, with the response on the left of a"' operator, and the
terms, separated by "+" operators, on the right. This argument is passed
around unevaluated; that is, the variables mentioned in the formula will
be defined when the model frame is computed, not when lm() is initially
called. In particular, if data is given, all these names should generally be
defined as variables in that data frame.

data: an optional data. frame in which to interpret the variables named in the
formula, or in the subset and the weights argument.

weights: optional weights; if supplied, the algorithm fits to minimize the sum of
the weights multiplied into the squared residuals. The weights must be
nonnegative and it is strongly recommended that they be strictly positive,
since zero weights are ambiguous, compared to use of the subset argument.

subset: optional expression saying that only a subset of the rows of the data should
be used in the fit. This argument, like the terms in formula, is evaluated
in the context of the data frame, if present. The specific action of the
argument is as follows: the model frame, including weights and subset, is
computed on all the rows, and then the appropriate subset is extracted.
A variety of special cases make such an interpretation desirable (e.g., the
use of lag() or other functions that may need more than the data used in
the fit to be fully defined). On the other hand, if you meant the subset
to avoid computing undefined values or to escape warning messages, you
may be surprised. For example,

lm(y"' log(x), mydata, subset= x > 0)

will still generate warnings from logO. If this is a problem, do the sub
setting on the data frame directly:

lm(y "' log(x), mydata[,mydata$x > O])

na.action: a missing-data filter function, applied to the model.frame, after any
subset argument has been used.

S FUNCTIONS AND CLASSES lm 525

method: the least-squares fitting method to be used; the default is "qr". The
method "modal. frame" simply returns the model frame.

model, x, y, qr: flags to control what is returned. If these are TRUE, then the model
frame, the model matrix, the response, and/or the QR decomposition will
be returned as components of the fitted model, with the same names as
the flag arguments.

VALUE

additional arguments for the fitting routines. The most likely one is
singular. okcT, which instructs the fitting to continue in the presence of
over-determined models (the default method recognizes this, but if new
fitting methods are written, they don't have to do so).

an object representing the fit. Generic functions such as print 0 and
summary() have methods to show the results of the fit. See 1m. object for
the components of the fit, but the functions residuals(), coefficients(),
and effects() should be used rather than extracting the components di
rectly, since these functions take correct account of special circumstances,
such as overdetermined models. The response may be a single numeric
variable or a matrix. In the latter case, coefficients, residuals, and effects
will also be matrices, with columns corresponding to the response vari
ables. In either case, the object inherits from class "1m". For multivariate
response, the first element of the class is "mlm".

EXAMPLE

lm(Fuel "' . , fuel. frame)

526 lm.object APPENDIXB

This class of objects is returned from the lm() function to represent a
fitted linear model. Class lm is also inherited by other fitted models,
when the fitting computation is based eventually on linear least-squares.
Examples include aov, glm, and gam objects. If the response variable is a
matrix, the class of the object is c("mlm", "lm") so that methods can use
the matrix nature of the response, fitted values, etc. Objects of this class
have methods for the functions print(), plot(), summary(), and predict(),
among others. In addition, the function kappa() can be used to estimate
how ill-determined the model was, and the function qqnormO applied to
the residuals is a good test of the distributional assumptions.

COMPONENTS
The following components must be included in a legitimate 1m object. The
residuals, fitted values, coefficients, and effects should be extracted by the
generic functions of the same name, rather than by the "$" operator. For
pure 1m objects this is less critical than for some of the inheritor classes.

coefficients: the coefficients of the least-squares fit of the response to the columns
of the model matrix. The names of the coefficients are the names of the
single-degree-of-freedom effects (the columns of the model matrix). If the
model was overdetermined and singular. ok was true, there will be missing
values in the coefficients corresponding to inestimable coefficients.

residuals, fitted. values: the residuals and fitted values from the fit.

effects: orthogonal, single-degree-of-freedom effects. Using the "qr" method, there
will be as many of these as observations. The first rank of them correspond
to degrees of freedom in the model and are named accordingly.

R: the triangular factor of the decomposition. For method•qr, this is deter
mined by the orthogonal decomposition of the model matrix. For other
methods, it may be computed by other calculations, but note that sum
mary methods for lm objects assume the existence of this component. If
it is not computed, the methods will fail.

rank: the computed rank (number of linearly independent columns in the model
matrix). If the rank is less than the dimension of R, columns of R will have
been pivoted, and missing values inserted in the coefficients. The upper
left rank rows and columns of Rare the nonsingular part of the fit, and

S FUNCTIONS AND CLASSES lm.object 527

the remaining columns of the first rank rows give the aliasing information
(see alias()).

assign: the list of assignments of coefficients (and effects) to the terms in the
model. The names of this list are the names of the terms. The ith
element of the list is the vector saying which coefficients correspond to
the ith term. It may be of length 0 if there were no estimable effects for
the term.

terms: an object of mode expression and class term summarizing the formula.
Used by various methods, but typically not of direct relevance to users.

call: an image of the call that produced the object, but with the arguments all
named and with the actual formula included as the formula argument.

df. residual: the number of degrees of freedom for residuals.

qr: optionally, the qr decomposition object. See qr for its structure. Depends
on using method "qr".

model: optionally the model frame, if model=T.

x: optionally the model matrix, if x=T.

y: optionally the response, if y=T.

For a multivariate response, the object returned has class "mlm", and the
coefficients, effects, fitted values, and residuals are all matrices whose
columns correspond to the response variables.

528 lo APPENDIXB

lo(•.. , span•0.5, degree•1)

ARGUMENTS

the unspecified . . . can be a comma-separated list of numeric vectors,
numeric matrix, or expressions that evaluate to either of these. If it is a
list of vectors, they must all have the same length.

span: the number of observations in a neighborhood. This is the smoothing
parameter for a loess fit.

degree: the degree of local polynomial to be fit; can be 1 or 2.

VALUE
a numeric matrix is returned. The simplest case is when there is a single
argument to loO and degree~1; a one-column matrix is returned, con
sisting of a normalized version of the vector. H degree•2 in this case,
a two-column matrix is returned, consisting of a 2d-degree orthogonal
polynomial basis. Similarly, if there are two arguments, or the single ar
gument is a two-column matrix, either a two-column matrix is returned if
degreezl, or a five-column matrix consisting of powers and products up to
degree 2. Any dimensional argument is allowed, but typically one or two
vectors are used in practice. The matrix is endowed with a number of at
tributes; the matrix itself is used in the construction of the model matrix,
while the attributes are needed for the backfitting algorithms all. vamO
or lo. vamO (weighted ·additive model).· Local-linear curve or surface fits
reproduce linear responses, while local-quadratic fits reproduce quadratic
curves or surfaces. These parts of the loess() fit are computed exactly
together with the other parametric linear parts of the model.

Note that loO itself does no smoothing; it simply sets things up for gam().

SEE ALSO
s, bs, ns, poly, loess

EXAMPLE

y ~ Age + lo(Start, span=.5)
t fit Start using a loess smooth vith a span of 0.5.

y ~ lo(Age) + lo(Start, Number)
y ~ lo(Age, 0.5) t the argument name for span is not needed.

S FUNCTIONS AND CLASSES loess 529

· : F'i~ a LOCal ~on Model
. . ' ' . ' . :· . ~ .. ' ' · · · ', >: •····.1oerni I

loess(formula, data, subset, na.action, model ~ FALSE, veights,
family • c("gaussian", "symmetric"), norm11lize • TRUE,

ARGUMENTS

span = 3/4, enp.target, degree = 2, drop.11quare, parametric,
control= loess.control(), ...)

formula: a formula object, with the response on the left of n ~operator, and the
terms, separated by "•" operators, on the right. ThiH argument is passed
around unevaluated, that is, the variai'>1 o~ mentioned in the formula will be
defined when the model frame is,. .• put, l, not when loess() is initially
called. In particular, if data is given, all these names should generally be
defined as variables in that data frame, and in no case should you expect
that names of local variables in the function calling loess 0 can appear
in the formula and be matched to those local variables.

data: an optional data.frame in which to interpret the variables named in the
formula, the subset and the veights argument.

subset: optional expression saying that only a subset of the rows of the data should
be used in the fit. This argument, like the terms in formula, is evaluated in
the context of the data frame, and should typically only involve variabies
in that frame. The specific action of the argument is as follows: the model
frame, including weights and subset, is computed on all the rows, and
then the appropriate subset is extracted. There are a variety of special
cases that make such an interpretation desirable (e.g, the use of lag()

or other functions that may need more than the data used in the fit to
be fully defined). On the other hand, if you meant the subset to avoid
computing undefined values or to escape warning messages, you may be
surprised. For example,

loess(y ~ log(x), mydata, subset = x > 0)

will still generate warnings from logO. If this is a problem, do the sub
setting on the data frame directly:

loess (y ~ log (x) • mydata [,mydata$x > 0))

na.action: a missing-data filter function, applied to the model.frame, after any
subset argument has been used.

model: if TRUE, the model frame is returned.

530 loess APPENDIX B

weights: optional expression for weights to be given to individual observations in
the sum of squared residuals that forms the local fitting criterion. By ·
default, an unweighted fit is carried out. If supplied, weights is treated
as an expression to be evaluated in the same data frame as the model
formula. It should evaluate to a non-negative numeric vector. If the
different observations have nonequal variances, weights should be inversely
proportional to the variances.

family: the assumed distribution of the errors. The values are "gaussian" or
"symmetric". The first value is the default. If the second value is specified,
a robust fitting procedure is used.

normalize: logical that determines if numeric predictors should be normalized. If
TRUE, the standard normalization is used. If FALSE, no normalization is
carried out.

span: smoothing parameter.

enp. target: another way to specify the amount of smoothing. An approximation is
used to compute a value of span that will yield approximately enp.target
equivalent number of parameters.

degree: overall degree of locally-fitted polynomial. 1 is local-linear fitting and 2 is
local-quadratic fitting.

drop. square: for cases with degree equal to 2 and with two or more numeric pre
dictors, this argument specifies those numeric predictors whose squares
should be dropped from the set of fitting variables. The argument can be
a character vector of the predictor names given in formula, or a numeric
vector of indices that gives positions as determined by the order of spec
ification of the predictor names in formula, or a logical vector of length
equal to the number of predictor names in formula.

parametric: for two or more numeric predictors, this argument specifies those vari
ables that should be conditionally parametric. The method of specification
is the same as for drop. square.

control: a list that controls the methods of computation in the loess fitting. The
list can be created by the function loess. control(), whose documentation
describes the computational options.

arguments of the function loess. control 0 can also be specified directly
in the call to loess without using the argument control.

S FUNCTIONS AND CLASSES loess.object 531

VALUE

an object of class "loess" representing the fitted model. See the docu
mentation for loess. object for more information on the components.

SEE ALSO
specs. loess, pointvise, loess. control.

EXAMPLE

> attach(ethanol)
> loess(NOx ~ C * E, span= 1/2, degree= 2, parametric "C",
+ drop.square = "C")
Call:
loess(formula = NOx ~ C * E, span = 1/2, degree 2,

parametric = "C", drop.square = "C")

Number of Observations: 88
Equivalent Number of Parameters: 9.2
Residual Standard Error: 0.1842
Multiple R-squared: 0.98
Residuals:

min 1st Q median 3rd Q max
-0.5236 -0.0973 0.01386 0.07345 0.5584

This class of objects is returned from the loess 0 function to represent a
fitted local regression model. Objects of this class have methods for the
functions print(), plot(), preplotO, predict(), and anovaO functions,
among others.

COMPONENTS

fitted. values: surface evaluated at the observed values of the predictors.

residuals: response minus fitted values.

terms: an object of mode expression and class term summarizing the formula.
Used by various methods, but typically not of direct relevance to users.

call: an image of the call that produced the object, but with the arguments all
named and with the actual formula included as the formula argument.

532 model.frame APPENDIX B

model: the model frame, which is present only if the argument model is TRUE.
The model frame contains the data-after transformation, subsetting, and
treating missing values-to which the local regression model is fitted.

The remaining components of the loess object are lists: surface, errors,
control, inference, and predictors. The first two contain all of the infor
mation about the specification of the local regression model, apart from
the selection of the data used in the fit. The third contains the computa
tional options. The contents of these three components can be inspected
by using specs .loess. The component inference contains information
that is used by other local regression functions to carry out inferences.
The component predictors contains information about the predictors.

SEE ALSO
loess, predict .loess, plot .loess, pointwise, anova .loess, specs .loess,
preplot.loess, loess.control

.. _.: ~- ' milov.object I
. · mlm.object I

'·.·.·.: :l' ·;; ----,:--;--:.).; • .. ·.'. ·:~-;

.. Q6Dlitrilc::t a~:M6del Fraine · ·
.. - .. -.. :~ ._:.

model.frame I
model.frame(formula, data, ...)

ARGUMENTS

formula: the formula or other object defining what terms should be included in the
model frame. Besides being a formula object, this can be a fitted model of
various kinds, in which case the formula used in fitting the model defines
the terms.

data: optional data frame from which the model frame is to be constructed.

other arguments to the model fitting functions, such as weights"', subset"',
na.action"' are passed on to 'model.frame().

Typically, model. frame 0 is called less often by users than by functions
that are either fitting a model or summarizing one. The default method
for model. frame 0 constructs the model frame from the terms (usually

S FUNCTIONS AND CLASSES model.frame 533

VALUE

NOTE

inferred from the formula), the data if any, and any special expressions
such as subsets, weights, or whatever l.lte particular fitting method needs.

a data frame representing all the termH in the model (precisely, all those
terms of order 1; i.e., main effects), pluH t.he response if any, and any spe
cial extra variables (such as weight arguments to fitting functions). One
such argument is handled specially-namely, subset•. If t.hiH argument is
present, it is used to compute a subset of the rows of the dat.a. It is this
subset that is returned. The returned data frame has an at.t.rihute terms
containing the terms object defined by the formula. The response and
any extra variables other than subset are stored in the data frame. They
should be retrieved from the frame by using

model.extract(fr, response) t for response
model.extract(fr, weights) t for weights=

and so on for whatever names were used in the arguments to model. frame ().
Other than subset, the names of such extras are arbitrary; they only need
to evaluate to a legitimate variable for the data frame (e.g., a numeric vec
tor, matrix, or factor). The names of such variables are specially coded
in the model frame so as not to conflict with variable names occurring
in the terms. You should always use model. extract(), which shares the
knowledge of the coded names with model. frame(), rather than assuming
a specific coding.

Model frames are more typically produced as a side-effect of fitting a model
rather than directly by calling model. frame(). Functions like lmO take an
option model=T, that produces the model frame as a component of the fit.

EXAMPLE

model.frame(fuel.fit)
model.frame(sqrt(skips) ~ . , solder)

534 ms APPENDIXB

ms(formula, data, start, control, trace)

ARGUMENTS

formula: the nonlinear model formula. There will be no left side to the ~ expres
sion. Unlike formulas for linear models, nonlinear formulas include the
parameters to be estimated. The right side of the formula is essentially
an arbitrary S expression. When evaluated, it should return values to be
minimized.

data: a data frame in which to do the computations. In addition to the usual
data variables, the data frame may contain parameters (set, typically, by
using the paramO assignment for objects of class "pframe") that establjsh
initial values for the fit, or are used for any other purpose.

start: optional starting values for the iteration. If start is omitted, the model
fitting will look for starting values as ordinary objects with the names of
the parameters. Note that whenever the names of the parameters are not
supplied explicitly, the assumption is that any names occurring in formula
that are not variables in the data frame are parameters.

If start is supplied, it can be either a list or a numeric vector. The list
is the most general and is recommended for unambiguous specification
of the parameters. In either case, names(start) gives the names of the
parameters. Notice that the list form allows the individual parameter
names to refer to subsets of the parameters of arbitrary length. If a
numeric starting vector is supplied the named parameters must each be
of length 1.

control: optional list of control values to be used in the iteration. Seems. control 0
for the possible control parameters and their default settings.

trace: should a trace function be called after each step of the iteration? Default
FALSE. Otherwise, trace can be either TRUE or the name of a function to use
as a tracer. The standard tracer function is trace. ms 0. Also available,
by trace="brovser.ms", is an invocation of the interactive browser, in a
frame containing all the fitting information. See the definition of these
functions for the calling sequence to any do-it-yourself tracer function.
The use of special trace functions with msO should be distinguished from
the standard S tracing. The latter is simpler and usually the best way to

S FUNCTIONS AND CLASSES ms.object 535

VALUE

track the modeling. Tracing through ms () allows access in S to the internal
flags of the FORTRAN minimization algorithm. If you don't need to look
at that information, you can usually trace a function you have written to
compute the model information. Often tracing on exit, for example,

trace(mymodel, exit = browser)

is a good way to look at your function mymodel() just before it returns the
next model values.

an object of class "ms" with the the final parameters, function and deriva
tive values, and some internal information !!-bout the fit .. See ms. object.

SEE ALSO
ms. control, nls

EXAMPLE

fit.alpha <- ms(~ lprob(D • alpha), pingpong)

This object is returned by the function msO to represent the result of
fitting a nonlinear model by general minimization.

COMPONENTS
The object contains the final parameter values, corresponding function
and gradient values, and final values for the flags generated internally
in the minimization algorithm. If the model was defined in terms of n
contributions from n observations, as in the case of minimizing the negative
log-likelihood, the function value and derivatives will also be returned on
a per-observation form for use in plots, etc.

parameters: the final values of the parameters in the estimation.

formula: the formula used for the estimation.

call: an image of the call toms(), but with all the arguments explicitly named,
so that the data component of the call will always give the data argument,
and so on.

536 nls APPENDIX B

pieces, slopes, curves: these are the contributions of the N observations to, re
spectively, the value, the gradients and the hessian of the objective func
tion. The first is a vector of length N, the other two are matrices with N
rows. The slopes component is only returned if derivatives are computed
and the curves component only if second derivatives are computed.

scale: the scaling vector used by the optimization algorithm.

opt. parameters, flags: these are the floating point and integer parameters used
and generated by the underlying FORTRAN algorithm. You hope you don't
need to know about them, but if you do, see the documentation for the
algorithm dmnf in the Port library.

SEE ALSO
nls.object

lois Nonlbiear Least Squares ..

nls(formula, data, start, control, algorithm)

ARGUMENTS

formula: the nonlinear regression model as a formula.

data: a data frame in which to do the computations. In addition to the usual
data variables, the data frame may contain parameters (set, typically, by
using the paramO assignment for objects of class "pframe") that establish
initial values for the fit, or are used for any other purpose.

start: optional starting values for the iteration. If start is omitted, the model
fitting will look for starting values as ordinary objects with the names of
the parameters. Note that whenever the names of the parameters are not
supplied explicitly, the assumption is that any names occurring in formula
that are not variables in the data frame are parameters. On the whole,
setting up the parameters in the data frame is often simpler, particularly
if you want to experiment interactively with different starting values.

If start is supplied, it can be either a list or a numeric vector. The list
is the most general and is recommended for unambiguous specification
of the parameters. In either case, names(start) gives the names of the
parameters. Notice that the list form allows the individual parameter
names to refer to subsets of the parameters of arbitrary length. If a
numeric starting vector is supplied the named parameters must each be
of length 1.

S FUNCTIONS AND CLASSES nls 537

control: optional list of control values to be used in the iteration, including the
maximum number of iterations, tolerance for convergence, possible trac
ing, and scaling factors. For the complete list of the available control
options and their default settings, see the documentation for nls. control.

algorithm: which algorithm to use. The default algorithm is a Gauss-Newton algo
rithm. If algorithm is "plinear" the Golub-Pereyra algorithm for partially
linear least-squares models is used.

VALUE

For the default algorithm the left side of formula is the response to be
fitted. The right side should evaluate to a numeric vector of the same
length as the response. If the value of the right side has an attribute
called "gradient" this should be a matrix with the number of rows equal
to the length of the response and one column for each of the parameters.
The skelton of functions to provide this can be formed using nl.deriv.
When there are linear parameters in the model as well as nonlinear pa
rameters, the "plinear" algorithm can be used. The right side of the
formula should evaluate to the derivative matrix for the linear parame
ters, conditional on the nonlinear parameters. This matrix can be given
instead as a vector whose length is a multiple of the length of the left side.
If the "gradient" attribute is included, it should be an array of dimension
the number of observations by number of linear parameters by number of
nonlinear parameters.

an object inheriting from class "nls", containing the parameters, residuals,
fitted values, and derivatives of the model at the end of the iteration.

EXAMPLE

fitting Michaelis and Menten's original data
> cone <- c(0.3330, 0.1670, 0.0833, 0.0416,
+ 0.0208, 0.0104, 0.0052)
> vel <- c(3.636, 3.636, 3.236, 2.666, 2.114, 1.466, 0.866)
> Micmen <- data.frame(conc=conc, vel=vel)
> param(Micmen,"K") <- 0.02; param(Micmen,"Vm") <- 3.7
>fit<- nls(vel~Vm•conc/(K+conc),Micmen)

538 ns APPENDIXB

This is an object inheriting from class "nls" with the following compo
nents:

parameters: the final value of the parameters in the estimation.

formula: the formula used for the estimation.

call: an image of the call to nls 0, but with all the arguments explicitly named,
so that the data component of the call will always give the data argument,
and so on.

pnames: parameter names

residuals: the final value of the residuals.

fitted.values: the final value of the right side of formula.

data: a copy of the data argument with the final value of the parameters.

R: the upper-triangular R matrix from a QR decomposition of the gradient
matrix at the final value of the parameters.

ns(x, df, knots, intercept~F)

ARGUMENTS

x: the predictor variable.

df: degrees of freedom. One can supply df rather than knots; ns 0 then
chooses df-1-intercept knots at suitably chosen quantiles of x.

knots: breakpoints that define the spline. The default is no knots; together with
the natural boundary conditions this results in a basis for linear regression
on x. Typical values are the mean or median for one knot, quantiles for
more knots.

intercept: if TRUE, an intercept is included in the basis; default is FALSE.

S FUNCTIONS AND CLASSES oa.design 539

VALUE

a matrix of dimension length(x) * df where either df was supplied or if
knots were supplied, df = length(lmots) + 1 + intercept.

bs() is based on the function spline.desO written by Douglas Bates. It
generates a basis matrix for representing the family of piecewise-cubic
splines with the specified sequence of interior knots, and the natural
boundary conditions. These enforce the constraint that the function is
linear beyond the boundary knots, which are taken to be at the extremes
of the data. A primary use is in modeling formula to directly specify a
natural spline term in a model.

SEE ALSO
bs, poly, lo, s

EXAMPLE

lsfit(ns(x,5),y)
lm(y ~ ns(age, 4) + ns(income, 4)) # an additive model

oa.design(levels, factor.names, min.resid.df=O)

ARGUMENTS

levels: vector of the number of levels for each factor in the desired design. Cur
rently only two or three levels are allowed.

factor.names: optional factor names attribute. This may be a character vector,
giving the names of the factors, or a list. If it is a list, the names
attribute of the list is the names of the factors, and the elements of
the list (which need not be of mode character) give the levels of the
corresponding factor. If factor names are not given, they default to
std.factor.names(length(levels))-namely, "A", "8", etc. If a factor's
levels are not named, the levels are set to the factor name (possibly ab
breviated) followed by level numbers.

min.resid.df: minimum residual degrees of freedom requested for a main-effects
only model.

VALUE
a design for the factors specified, generated by selecting some of the
columns from one of a stored catalog of orthogonal array designs. The

540 ordered APPENDIX B

design object is a data frame, with variables in the frame corresponding
to each of the factors requested in the design. Three additional attributes
are special to orthogonal array designs: "generating. oa" gives the name of
the object that contains the complete orthogonal array design from which
the result was generated; "selected.columns" says which columns of this
object were used to produce the result; "residual.df" gives the number
of residual degrees of freedom in the design, when only the main effects
are fitted (you may want to check this value to see how many more resid
ual degrees of freedom than are needed in your application are available).
oa. design may not be able to find a design as requested. If so, an error
stop is made.

SEE ALSO
fac.design, design, fractionate.

EXAMPLE

oa <- oa.design(c(2,3,3,3,3,3))
tproduces an 18 run design with 6 degrees of freedom
#for error assuming only main effects are fit.

ordered(x, levels, labels)
ordered(x) <- levels

ARGUMENTS

x: data to be made into an ordered factor.

levels: optional vector of levels for the factor. Any data value that does not
match a value in levels is coded in the output vector as NA. The levels
will be assumed ordered (low to high) in the order given. If omitted, the
sorted unique values of x will be used.

labels: optional vector of values to use as labels for the levels of the factor.

VALUE
an ordered factor, i.e., an object of class c("ordered", "factor").

When ordered() is used on the left of an assignment, the levels of x will
. be taken to be ordered according to the argument on the right side of the
assignment. Typically, levels in this case will consist of some permutation

S FUNCTIONS AND CLASSES pairs 541

of the current levels of x. If values in levels(x) arc missing from levels,
any corresponding data values in z will become NA.

The assignment can also be applied to a data frame, in which case th"
right side is taken to apply to each of the variables iu the data frame. Tht'
right side should be either a logical vector of length equal to the number
of variables, or else a list of the same length. In the case of a list, eacl1
element acts like the right side of an assignment of the ordered attribut1:
of the corresponding variable.

SEE ALSO
factor, design, data.frame

EXAMPLE

ratings<- ordered(ratings.tezt, c("Lov","Med","High")
reverse the ordering
ordered(ratings) <- c("High", "Med", "Low")

pairs(x, labels e names(x), panel= points, ...)

ARGUMENTS

x: matrix-like object; pairs of columns will be plotted.

labels : optional character vector for labeling the variables in the plots. The
strings labels [1], labels (2], etc. are the labels for the 1st, 2nd, etc.,
panel in the diagonal panels. If supplied, the label vector must have
length equal to ncol(x).

panel: a user-supplied function of x and y that determines the method of plotting
on the panels.

Graphical parameters (see par()) may also be supplied as arguments to
this function.

This is a generic function. Functions with names beginning in "pairs."
will be methods for this function.

For an example of the output of pairs(), see Figure 3.7 on page 77.

EXAMPLE

pairs(ethanol)

542 panel.smooth APPENDIX B

panel.smooth(x, y, span~ 2/3, degree= 1, family= c("symmetric",
"gaussian"}, zero.line =FALSE, evaluation= 50, ...)

ARGUMENTS

x: refers to abscissas of points on a panel.

y : refers to ordinates of points on a panel.

span: smoothing parameter.

degree: overall degree of locally fitted polynomial. 1 is locally linear fitting and 2
is locally quadratic fitting.

family: the values are "gaussian" or "symmetric". In the first case, local fitting
methods are used. In the second case, the default, local fitting is used
together with a robustness feature that guards against distortion by out
liers.

zero .line: if TRUE, the line y .. 0 is drawn on the panel.

evaluation: number of values at which the loess curve is evaluated.

This function adds smooth curves to the scatterplots on multipanel dis
plays made by graphical functions such as pairs() and coplot 0. The
smoothing method used is loess(). The fit is evaluated at evaluation
equally spaced points from min(x) to max(x) and then graphed by con
necting the successive plotting locations by line segments.

Graphical parameters (see par()) may also be supplied as arguments to
this function.

SEE ALSO
coplot, loess

EXAMPLE

E.intervals <- co.intervals(E, 16, 0.25)
coplot(NOx ~ C I E, given = E.intervals, data = ethanol,

panel = function(x, y) panel.smooth(x, y, span = 1, degree 1))

S FUNCTIONS AND CLASSES paranaeters 543

.~~~!t!·;if ·i :f~~~is~in_·::e.·P:~aifi~n~t-D~t~ ~.,:
:",.· ' ··.·.· :· ' :_-;.~_,., ... '.> ··?.

parameters(x)
parameters(x) <- value
param(x, vhat)
param(x, vhat) <- value

ARGUMENTS

x: a data frame, specifically one inheriting from class "pframe".

vhat: character string, the name of the parameter. Parameters must be ad
dressed by name, like attributes, which they very much resemble.

value: the value for the assignment. If assigning all the parameters, this should
be a list.

VALUE
parameters 0 returns or sets all the parameters. par am() returns or sets the
specific parameter named in vhat. The parameters are arbitrary named
quantities. When a pframe object is attached or is the data argument to a
model-fitting function, the parameters become available for computations
just like the variables (i.e., the components) of the data frame. However,
they are otherwise unrestricted; in particular, they do not need to corre
spond to the set of observations (the rows) of the data frame. The names
of the parameters must be unique and must not conflict with the names
of the variables in the data frame.

EXAMPLE

param(myframe, "lambda") <- 1.5

544 pframe.object APPENDIXB

partition.tree(tree, label, add = F)

ARGUMENTS

tree: fitted model object of class tree. This is assumed to be the result of some
function that produces an object with the same named components as
that returned by the tree() function.

label: a column name of tree$frame that defines how each partition will be la
beled.

add: logical; if TRUE, the partition or step function is added to the current plot.

VALUE
this function is used for its graphical side effect, a plot of the relationship y
= f(x) (one-variable tree) or y = J(xl, x2) (two-variable tree). The function
stops if tree consists of more than two predictors or if the predictors
are factors. For a single predictor, y=f(x) is a step function. For two
predictors, the prediction space is carved into partitions, displaying the
fitted values in each.

Parametrized frames ("pframe" objects) inherit from data frames. Their
essential difference is that they contain special parameters , which are
just a list of arbitrary named objects, kept separate from the variables in
the data frame specifically so they will not be subject to the constraints
that all variables apply to the same set of observations. When a pframe is
attached to the search list, the constraint is dropped and the parameters
become accessible by name, just as the variables are.

ATTRIBUTES
In addition to the attributes of data frames:

parameters: the parameter objects as a list. The list must be named, and the
names must be unique.

SEE ALSO
data. frame .object, data. frame.

S FUNCTIONS AND CLASSES plot 545

I plot Plot an Object plot l
plot(x, ...)
plot(x, y, ...)

ARGUMENTS

x: an S object. The plot will either display the data defined by x alone, or
will plot data supplied in x (usually on the horizontal axis) versus data
supplied by a second argument, y {usually on the vertical axis).

Graphical parameters (see par()) may also be supplied as arguments to
this function. In addition, the high-level graphics control arguments de-.
scribed under plot.defaultO and the arguments to title() may be sup
plied to this function.

This is a generic function. Functions with names beginning in "plot. "
will be methods for this function.

plot.data.frame(object, labels= dimnames(data)[[2)], ...)

ARGUMENTS

object: data frame to be plotted.

labels: character vector of labels for the variables. If the elements have names,
they are matched to the names of the variables of the data frame; if not,
the elements are assumed to be in the same order as the columns of the
data frame.

This function makes plots of the sample distributions of the variables of
a data frame. The observations of numeric predictors are graphed by a
quantile plot; that is, if xis a numeric variable, sort(x) is graphed against
ppoints (x). For a factor, counts of occurrences of levels are graphed.

Graphical parameters (see par()) may also be supplied as arguments to
this function.

This function is a method for the generic function plot() for objects of
class "data. frame". It can be invoked by calling plot(x) for an object x of

546 plot.design APPENDIXB

the appropriate class, or directly by calling plot.data.frame(), regardless
of the class of the object.

For an example of the output ofplot.data.frame(), see Figure 3.6 on page
76.

EXAMPLE

plot(ethanol) # ethanol is a data frame
x <- data.frame(weight = rawdata[, 1], sex= rawdata[, 2])
plot(x, labels= c("Weights of Mongooses", "Sex of Mongooses"))

·-: .. ' . -.. ~.-.
plot.design . Plot a Ftinctionof:&ch Lev~lof:F~i-s or Tenn$'

plot.design(x, y, fun= mean, ...)

ARGUMENTS

x: either a data frame containing the design factors and, optionally, the re
sponse, or a formula.

y: the response, if not given in x.

This function is a method for the generic function plotO for class "design".
It can be invoked by calling plot(x) for an object x of the appropriate
class, or directly by calling plot.designO, regardless of the class of the
object. There are two basic styles for calling this method. If xis a design
or data frame, then y can select a response variable from the design or, if
y is a formula, it can define both terms and response, relative to the given
design. Conversely, if x is not a design, it is assumed to be a formula or
terms object, or something else from which a model frame can be com
puted. Then the design factors and response are determined from that
model frame.

fun: a function or the name of a function. It should be a summary function
returning one number on each call. The plot shows this function of the
response for each level of each factor.

The supplied function will be called once for each level of each factor in the
design. A plot will show these summary values. The levels for a particular
factor are shown along a vertical line, and the overall value of fun() for
the response is drawn as a horizontal line.

Graphical parameters (see par()) may also be supplied as arguments to
this function.

S FUNCTIONS AND CLASSES plot.factor 547

This function is a method for the generic function plot() for class "design".

It can be invoked by calling plot (x) for an object x of the appropriate class,
or directly by calling plot. design(), regardless of the class of the object.

For an example of the output of plot.designO, see Figure 5.2 on page
164.

EXAMPLE

drav trimmed means
plot.design(catalyst, fun= function(x) mean(x, trim= .05),

col = 2)
#choose vhich factors to include in the plot
plot. design(Yield "' Cone + Cat, data = catalyst}

I plot.factor · .. • .

plot.factor(x, y, style="box", rotate, boxmeans, character)

ARGUMENTS

x, y: the first argument gives either factor(s) or a formula. In the former case
x can be a single factor or a design, and y is expected to be the response.
In the latter case, both the response and the factors are determined by x;
if y is given, it is a data frame in which to evaluate the formula.

style: character string indicating style of plot. Possible values are "box" (de
fault), "fraction nonO", "shaded bar", and "character". The names can
be abbreviated (one character is enough). The four styles produce: box
plots; bar-plots of the fraction of observations not equal to 0; shaded bars
with each shaded area representing the number of observations having
a particular value; characters plotted at the values of y, the characters
given by argument character=. Supplying argument character= implies
the style.

rotate: if TRUE, :zraxis labels will be rotated.

boxmeans: TRUE if you want the mean of the boxplots to be indicated. Applicable
for style="box" only.

character: name of factor whose levels will be used as plotting characters.

Produces a set of plots, one for each factor. Levels of the factor are
arranged along the :zraxis. Depending on the value of style, a box, bar,
shaded bar, or characters will be plotted at each level.

548 plot.gam APPENDIX B

Graphical parameters (see par()) may also be supplied as arguments to
this function.

This function is a method for the generic function plot() for class "factor".
It can be invoked by calling plot (x) for an object x of the appropriate class,
or directly by calling plot.factorO, regardless of the class of the object.

For an example of the output of plot.factorO, see Figure 5.3 on page
166.

EXAMPLE

do box plots of all factors.
> plot.factor(Yield ~ . , catalyst, character = catalyst$Temp,

main = "Yield, points identified by levels of Temp")
do character plot of interaction
> attach("solder.balance")
> Boards <- interaction(Solder, Mask, Opening)
> plot.factor(Boards, skips, character= Panel, rotate = T)
> detach()

I plot.gal11

plot.gam(x, residuals, rug, se, scale, ask = F)

ARGUMENTS

x: a gam object, or a preplot .gam object. The first thing plot. gam() does is
check if x has a component called preplot; if not, it computes one using
preplot.gam(). Either way, it is this preplot.gam object that is required
for plotting a gam object.

residuals: if TRUE, partial deviance residuals are plotted along with the fitted
terms-default is FALSE. If residuals is a vector with the same length
as each fitted term in x, then these are taken to be the overall residuals
to be used for constructing the partial residuals.

rug: if TRUE (the default), a univariate histogram or rugplot is displayed along
the base of each plot, showing the occurrence of each z.value; ties are
broken by jittering.

se: if TRUE, upper and lower pointwise twice-standard-error curves are included
for each plot. The default is FALSE.

S FUNCTIONS AND CLASSES plot.gam 549

scale: a lower limit for the number of units covered by the limits on the y-axis for
each plot. The default is acale=O, in which case each plot uses the range of
the functions being plotted to create their ylim. By setting scale to be the
maximum value of diff Cylim) for all the plots, then all subsequent plots
will produced in the same vertical units. This is essential for comparing
the importance of fitted terms in additive models.

ask: if TRUE, plot. gam() operates in interactive mode.

VALUE
a plot is produced for each of the terms in the object x. The function
currently knows how to plot all main-effect functions of one or two pre
dictors. So in particular, interactions are not plotted. An appropriate
x-y plot is produced to display each of the terms, adorned with residuals,
standard-error curves, and a rugplot, depending on the choice of options.
The form of the plot is different, depending on whether the z-value for
each plot is numeric, a factor, or a matrix.

When ask=T, rather than produce each plot sequentially, plot.gam() dis
plays a menu listing all the terms that can be plotted, as well as switches
for all the options. An additional switch called browser allows users to
temporarily regain control, and is useful for setting par() options, or for
adding additional information to the current plot.

A preplot. gam object is a list of precomputed terms. Each such term
{also a preplot.gam object) is a list with components x, y and others-the
basic ingredients needed for each term plot. These are in turn handed to
the specialized plotting function gplot 0, which has methods for different
classes of the leading x argument. In particular, a different plot is produced
if x is numeric, a category or factor, a matrix, or a list. Experienced users
can extend this range by creating more gplot 0 methods for other classes.

Graphical parameters (see par()) may also be supplied as arguments to
this function.

This function is a method for the generic function plot() for class "gam". It
can be invoked by calling plot(x) for an object x of the appropriate class,
or directly by calling plot.gamO, regardless of the class of the object.

For an example of the output of plot.gamO, see Figure 7.7 on page 263.

SEE ALSO
preplot, predict.gam, gplot

550 plot.loess

EXAMPLE

plot(gamob, ask=T) # interactive version
plot(gamob, residuals=T, se=T, rug=F)
gamob$preplot <- preplot(gamob)
plot(gamob)

APPENDIX B

plot.loess(object, given = 6, evaluation = 50, confidence = 0,
coverage = 0.99, ranges = NULL, vhich.plots = NULL, xlab,
ylab, rovs, columns, shov.given =TRUE, ...)

plot.preplot.loess(object, xlab = object$xlab, ylab = object$ylab,
vhich.plots = object$vhich.plots, rovs, columns,
shov.given =TRUE, ...)

ARGUMENTS

object: a loess object or a preplot .loess object. The latter is created by the
function preplot .loess 0 when the user wishes to save the evaluations of
the surface that are carried out to ma.ke the coplot.

given: number of conditioning values for a numeric given variable.

evaluation: number of points at which the curve on each dependence panel is
computed.

confidence: number of points at which the confidence intervals on each dependence
panel are displayed.

coverage: the level of the confidence intervals expressed as a fraction.

ranges: the ranges of evaluations of numeric variables. If there are k numeric
predictors, ranges should either be a list of minimum and maximum pairs
of length k, or a 2 by k matrix. Matching is done the same way as for xlab.
If missing, the range for a numeric predictor is the range of the predictor
observations.

vhich. plots: a character vector of names of predictors that determines the coplots
that are made. If missing, all coplots are made.

xlab: character vector of labels for predictors. If the elements have names, they
are matched to the names in formula; if not, the elements are assigned, in
order, according to the order in which the predictors appear in formula.
If missing, names are taken from terms.

S FUNCTIONS AND CLASSES plot.loess 551

ylab: a label for the response. If missing, the name is taken from terms.

rows: for the case of one given predictor, the number of rows of the matrix of
dependence panels. If missing, the following is the default: let k be the
number of given values; if columns is missing, then

rows <- ceiling(sqrt(k))

else

rovs <- ceiling(k/columns)

This argument is not used if there are two given predictors.

columns: for the case of one given predictor, the number of columns of the matrix
of dependence panels. If missing, the following is the default: let k be the
number of given values; if rows is missing,

columns <- ceiling(k/ceiling(sqrt(k)))

else

columns <- ceiling(k/rows)

This argument is not used if there are two given predictors.

show.given: if FALSE, given panels are not included.

Graphical parameters (see parO) may also be supplied as arguments to
this function.

These functions graph the fitted surface of a local regression model for
one, two or three predictors. For one predictor, a curve is graphed against
the predictor. For two or three predictors, a cop lot is made against each
predictor, conditional on the others. Each dependence panel of a coplot
shows a curve that is a slice through the surface and is based on an evalu
ation for evaluaton equally spaced values of the predictor ranging between
values specified by ranges; in addition, confidence intervals at confidence
equally spaced values over the same range are shown. Normally, the user
will want to make all coplots, but coplots against just certain predictors
can be made by using the argument vhich.plots.

Graphical parameters (see par()) may also be supplied as arguments to
this function.

This function is a method for the generic function plot 0 for class "loess".
It can be invoked by calling plot (x) for an object x of the appropriate class,
or directly by calling plot .loess 0, regardless of the class of the object.

For an example of the output of plot.loessO, see Figure 8.18 on page
345.

552 plot.tree APPENDIXB

SEE ALSO
loess,predict.loess,pointvise,anova.loess,specs.loess,preplot.loess,
loess. control.

EXAMPLE
ethanol.model <- loess(NOI ~ C • E, data • ethanol, span = 1/2,

drop.square = "C", parametric= "C")
plot(ethanol.model, confidence = 7, which.plots = "C",

coverage = .95)

plot.tree(I, type = '"', ..•)

ARGUMENTS

x: fitted model object of class tree. This is assumed to be the result of some
function that produces an object with the same named components as
that returned by the tree() function.

type: if "u", uniform spacing of nodes is used; default is nonuniform spacing
based on change of deviance of parent and children nodes. The mkh graph
ical parameter is changed so that functions that require node coordinates,
such as text() and identify(), can query it.

VALUE
this function is used for its graphical side effect, an unlabeled dendrogram
of the tree object I. If assigned, the coordinates of the nodes in I are
returned as a list with components I and y.

Graphical parameters (see par()) may also be supplied as arguments to
this function.

This function is a method for the generic function plot 0 for class "tree".
It can be invoked by calling plot(x) for an object I of the appropriate
class, or directly by calling plot. tree 0, regardless of the class of the
object.

For an example of the output of plot. tree 0, see Figure 9.13 on page 400.

EXAMPLE

zauto <- tree(Mileage ~ Weight + Displacement)
plot(zauto)
teit(zauto) # put some labels on the plot
identify(zauto) # find out what car is where

S FUNCTIONS AND CLASSES poisson 553

I ·.··· .. ·.· .. .,dif · ··· .. · .. · ~ate a Basis for Polynomial ~on '

poly(x, 3)
poly(x, y, 2)
poly(. .•)

ARGUMENTS

VALUE

the arguments to poly can be a comma-separated list of numeric vectors
or matrices. If the final argument is atomic, positive, and integer-valued,
it is taken to be the degree of the polynomiaL

a matrix of orthonormal polynomials is returned.

For a single vector argument and a trailing degree argument (first case
above), a matrix of orthonormal polynomials of given degree is returned
(the constant column is excluded). The orthogonality is with respect to
the data.

For several arguments (vector, matrix, or both), each of the column vec
tors is used to generate orthogonal polynomials of the required degree.
The columns will be a subset of the tensor product of the the orthogo
nal polynomials of given degree of each of the individual variables. The
matrix has an attribute degree that is a vector giving the degree of each
column. ·

SEE ALSO
bs, ns, formula

EXAMPLE

glm(Kyphosis ~ poly(Age, 3) + Start, family z binomial)
lm(NOx ~ poly(C, E, 4)

554 post.tree APPENDIX B

. ·. . "

\O'':~m~
post.tree(tree, pretty~ 0, file, ...)

ARGUMENTS

tree: fitted model object of class tree. This is assumed to be the result of some
function that produces an object with the same named components as
that returned by the tree() function.

pretty: an integer denoting the extent to which factor levels in split labels will be
abbreviated. The default (0) signifies no abbreviation. A NULL signifies
using elements of letters to represent the different factor levels.

file: ASCII file {tree.ps by default) to contain the output.

VALUE

additional graphical arguments to control title and pointsize.

this function is used for its graphical side effect, a plot of tree in the
PostScript page description language. The plot is different from the den
drogram produced by plot 0 and is intended for presentation. The edges
connecting uniformly spaced nodes are labeled by left and right splits.
Nodes are represented by ellipses (interior nodes) and rectangles (leaves)
and labeled by yval. Under each node, either the within-node deviance is
printed (regression trees) or the misclassification error rate (classification
trees). The function is independent of the current graphics device. It
creates a file which can be sent directly to a PostScript printer.

S FUNCTIONS AND CLASSES predict 555

predict(object, nevdata, type, se.fit = F)

ARGUMENTS

object: a fitted model object, such as those produced by lmO, glmO, loess(), etc.

nevdata: a data frame containing the values at which predictions are required. This
argument can be missing, in which case predictions are made at the same
values used to compute the object. Only those predictors, referred to in
the right side of the formula in object, need be present by name in nevdata.
Some methods allow additional flexibility in the nevdata argument; all
allow a list rather than a data frame, and some, such as predict.lm(),
allow an appropriate model.matrix.

type: type of predictions. The defaults differ for different methods, and for some
only one type is sensible: predictions of the response. For objects with
distinct terms, such as lm, glm, and gam objects, type = "terms" produces
a matrix of predictions with a column for eacb. term. For "glm" and "gam"
models, the d~fault is type = "link", in whid. case predictions are on the
scale of the linear or additive predictor, respectively.

se. fit: if TRUE, pointwise standard errors are computed along with the predictions.

VALUE
a vector or array of predictions, or a list consisting of the predictions
and their standard errors if se.fit = T. A standard use of predict() is
to simply extract the fitted values from a fit object, or in the case of
generalized models, to extract the linear or additive predictor.

When standard errors are requested, the output of predict 0 is a list
that includes components "fit", "se.fit", "residual.scale", and "df".
The "se.fit" component consists of pointwise standard errors, and con
sequently has the same shape as the "fit" component. Although the com
putations of these standard errors differ for the different classes of models,
they all have a similar flavor. The fitted values are linear either in the
response or in some derived pseudo-response; the row standard errors
are the norm of these linear weights. The "residual. scale" component is
the scale estimate used by predict() to scale the raw standard errors in
computing the "se.fit" component; "df" is the degrees of freedom of this
scale estimate. This allows rescaling of the "se.fit" component by other
scale factors.

556 predict.gam APPENDIX B

This is a generic function. Functions with names beginning in "predict."
will be methods for this function.

WARNING
predict() can produce incorrect predictions when the nevdata argument
is used if the formula in object involves data-dependent transforma
tions, such as poly(Age, 3) or sqrt (Age - min(Age)). The predict. gam()
method overcomes this for the gam, glm, and lm classes. In other cases, this
can be overcome by explicitly supplying the derived matrix for predictions,
rather than a data frame.

SEE ALSO
fitted, expand.grid

EXAMPLE

#extract the fitted linear predictor from a glm object
predict(glmob)
predict(gamob, nevdata, type="terms")

predict.gam(object, nevdata, type, se.fit = F, terms)

ARGUMENTS

object: a fitted gam object, or one of its inheritants, such as a glm or lm object.

nevdata: a data frame containing the values at which predictions are required. This
argument can be missing, in which case predictions are made at the same
values used to compute the object. Only those predictors, referred to in
the right side of the formula in object need be present by name in nevdata.

type: type of predictions, with choices "link" (the default), "response", or
"terms". The default produces predictions on the scale of the additive

· predictors, and with nevdata missing, predict 0 is simply an extractor
function for this component of a gam object. If "response" is selected,
the predictions are on the scale of the response, and are monotone trans
formations of the additive predictors, using the inverse link function. If
type .. "terms" is selected, a matrix of predictions is produced, one column
for each term in the model.

se. fit: if TRUE, pointwise standard errors are computed along with the predictions.

S FUNCTIONS AND CLASSES Jll~>flict.gam 557

terms: if type="terms", the terms= argument can be used to Hlll•dfy which terms
should be included; the default is labels(object).

VALUE
a vector or matrix of predictions, or a list consisting 11! t.he predictions
and their standard errors if se. fit = T. If type="terms", 11 matrix of fitted
terms is produced, with one column for each term in tht• lnodel (or subset
of these if the terms= argument is used). There is no ~~olumn for the
intercept, if present in the model, and each of the teruaH is centered so
that their average over the original data is zero. Tlw matrix of fitted
terms has a "constant" attribute which, when added to t.lu: sum of these
centered terms, gives the additive predictor. See the doc~umentation of
predict() for more details on the components returned.

This is a safe method of prediction for the classes gam, glm, and lm. Naive
use of the generic predict() can produce incorrect predictions when the
newdata argument is used, if the formula in object involves data-dependent
transformations, such as poly(Age, 3) or sqrt(Age - min(Age)). These
problems are overcome by predict.gam() by taking the following steps. A
combined data frame is constructed containing the predictors in object,
using both the data used in fitting object, as well as newdata. From this,
a combined model frame and model matrix is constructed, and object is
refitted using the top portion of both of these (belonging to the fitting
set). The GAM iterations are not repeated; rather one final IRLS step is
performed, using the working weights and reSponse from the final iteration
in the creation of the original object. In this way, it is guaranteed that
any coefficients that are estimated can be applied to both the fitting or
prediction portions of the model matrix.

This function is a method for the generic function predict 0 for class
"gam". It can be invoked by calling predict(x) for an object x of the
appropriate class, or directly by calling predict.gamO, regardless of the
class of the object.

SEE ALSO
fitted, expand.grid

EXAMPLE

predict(gamob) # extract the additive predictors
predict(gamob, nevdata, type•"terms")
predict.gam(lmobjet, newdata) # safe prediction for lm object

558 predict.Ioess APPENDIX B

C,·· ~~1l~tid~,~~~~"~#·S.~'j i~~·~··~
... , .. , ..

predict.loess(object, newdata, se.fit = FALSE)

ARGUMENTS

object: a loess object.

nevdata: a data frame specifying the values of the predictors at which the evaluation
is to be carried out. The default is to predict at the data used to fit object.

se. fit: if TRUE, estimates of the standard errors of the surface values and other
statistical information are returned along with the surface values.

VALUE
if se.fit=FALSE, a vector or array of surface values evaluated at newdata.
The evaluation is on the scale of the expression given on the left side
of formula; for example, if the expression is log(temperature), then the
evaluation is on the log scale. If se. fi tsTRUE, then a list is returned, with
the following compQnents.

fit: the evaluated loess surface at nevdata.

se. fit: estimates of the standard. errors of the surface values.

residual. scale: estimate of the scale of the residuals.

df: the degrees of freedom of the t-distribution used to compute pointwise
confidence intervals for the evaluated surface. The function pointviseO
can be used to compute such intervals.

For one predictor, newdata can be a vector rather than a data frame. For
two or more predictors, the names of newdata must include the names of
predictors used in formula as they appear on the database from which
they come. For example, if the right side of formula is log(E)•C, then
there must be names C and E in newdata. Note that the specification of E
in this example is not on the transformed but rather on the original scale.

For two or more predictors, there are two data structures that can be given
to nevdata. The first is a plain old data frame; the result is a vector whose
length is equal to the number of rows of nevdata, and the element of the
vector in position i is the evaluation of the surface at row i of newdata.
A second data structure can be used when the evaluation points form a
grid. In this case, nevdata is the result of the function expand. grid().

S FUNCTIONS AND CLASSES predict.loess 559

If se. fi t=FALSE, the result of predict .loess() is a numeric array whose
dimension is equal to the number of predictors; if se.fit=TRUE, then the
components fit and se.fit are both such arrays.

The computations of predict .loess 0 that produce the component se. fit
are much more costly than those that produce fit, so the number of
points at which standard errors are computed should be modest com
pared to those at which we do evaluations. Often this means calling
predict.loess() twice, once at a large number of points with se.fit equal
to FALSE to get a thorough description of the surface, and once at a small
number of points to get standard-error information.

Suppose the computation method for loess surfaces is interpolate, the
default for the argument surface. Then the evaluation values of a numeric

. predictor must lie within the range of the values of the predictor used in
the fit. The evaluation values for a predictor that is a factor must be
one of the levels of the factor. For any evaluation point for which these
conditions are not m'et, an NA is returned.

This function is a method for the generic function predict() for class
"loess". It can be invoked by calling predict(x) for an object x of the
appropriate class, or directly by calling predict .loess 0, regardless of the
class of the object.

SEE ALSO
loess, plot.loess, pointvise, anova.loess, specs.loess, preplot.loess,
loess. control.

EXAMPLE

Example 1 - evaluation at the 5 values of C and E in nevdata
> ethanol.cp$call
loess(formula = NOx ~ C • E, span = 1/2, degree = 2,

parametric= "C", drop.square = "C")
> predict(ethanol.cp, nevdata)
(1] 0.2815825 2.5971411 3.0667178 3.2555778 1.0637788
Example 2 - evaluation at 9 grid points
> C.marginal <- seq(min(C), max(C), length= 3)
> E.marginal <- seq(min(E), max(E), length~ 3)
> CE.grid <- expand.grid(list(C = C.marginal, E = E.marginal))
> predict(ethanol.cp, CE.grid)

E=0.5350 E=0.8835 E=1.2320
C= 7.50 -0.1039991 3.399360 0.6823181
C=12.75 0.2057837 3.850801 0.6481270
C•1S.oo o.5155665 4.302243 0.6139359
Example 3 - evaluate and compute estimates of standard errors
> gas.m$call

560 predict.tree APPENDIX B

loess(formula = NOx ~ E, span • 2/3, degree = 2)
> predict(gas.m, nevdata • seq(min(E), max(E),length • 5),
+ se.fit = T)$se.fit
[1] 0.2694392 0.1536510 0.1489403 0.1665470 0.3237732

predict. tree I
predict.tree(object, nevdata, type= c("vector", "tree"))

ARGUMENTS

object: fitted model object of class tree. This is assumed to be the result of some
function that produces an object with the same named components as
that returned by the tree() function.

nevdata: data frame containing the values at which predictions are required. The
predictors referred to in the right side of formula(object) must be present
by name in nevdata. If missing, fitted values are returned.

type: character string denoting whether the predictions are returned as a vector
(default) or as a tree object. If "tree", a tree object is returned with new
values for frame$n and frame$yval/yprob.

VALUE
vector of predicted responses obtained by dropping nevdata down tree.
For factor predictors,-if an observation contains a level not used to grow
the tree, it is left at the deepest possible node and frame$yval at that
node is the prediction.

This function is a method for the generic function predict() for class
"tree". It can be invoked by calling predict(x) for an object x of the
appropriate class, or directly by calling predict.treeO, regardless of the
class of the object.

S FUNCTIONS AND CLASSES preplot 561

. ' ..

. ·, ._. -. <--- .. · PrtmmpUte·aJ,lQtting .. Object

preplot(object, newdata)

ARGUMENTS

object: a fitted model object, such as those produced by gam() and loess().

newdata: a data frame containing the values at which evaluations are required. This
is often missing, in which case evaluations are made at the same values
used to compute the object. Only those predictors referred to in the right
side of the formula in object need be present by name in newdata.

VALUE
an object set up for plotting to describe the fit, optionally at the location
specified in newdata. The purpose of calling preplot () is to precompute
information to be used in the plot, without necessarily doing the plot at
the same time. The object returned differs depending on the kind of fit
(that is, on which method is being used), but in all cases can be given
directly to the plot() function. This implies that a suitable plot method
has been written for whatever class of object preplotO returns.

This is a generic function. Functions with names beginning in "preplot."
will be methods for this function.

SEE ALSO
predict

EXAMPLE

preob <- preplot(gam.object, newdata)
plot(preob, resid=T, se=T)

562 proj APPENDIXB

,, '
~- .·.,.: ~

proj(object, onedf=T)

ARGUMENTS

object: any object of class 1m or any object that inherits from class lm. It will run
faster if the object contains either a qr component or a proj component.

onedf: logical flag. When TRUE (the default for objects of class lm), the function
returns a matrix of single-degree-of-freedom projections of the response
variable onto the columns of the predictor matrix. The default method
does not use this argument. When FALSE, an option available in proj .1m
and the default for objects of class aov, the function collapses the single
degree of freedom projections into multi-degree-of-freedom projections.
Each column of the collapsed result represents one term of the analysis of
variance table. The sum of squares of each column is the sum of squares
for the corresponding term in the model formula, with degrees of freedom
given by the df attribute of the result. The formula itself is returned in
the formula attribute.

'VALUE
matrix of orthogonal columns, one column for each column in an orthog
onalized model matrix. In the default method, each column in the result
is the projection of the response variable onto a column in the Q matrix
from the QR decomposition of the model matrix. The sum across the
columns gives the column of predicted values. The sum of the squared
values in each column is the single-degree-of-freedom sum of squares for
the corresponding column of the model matrix. The onedf attribute re
turns the value of the onedf argument. The method for lm objects appends
a column of residuals. The method for aovlist objects returns a list of
projection matrices, one for each stratum in the design.

This is a generic function. Functions with names beginning in "proj."
will be methods for this function.

EXAMPLE

> lm.object <- lm(cost ~ age +type + car.age, claims)
> tmp <- proj(lm.object)
> gunaov.qr <- aov(Rounds ~ Method + Physique/Team, gun, qr a T)
> gunaov.proj <- proj(gunaov.qr)

S FUNCTIONS AND CLASSES prune.tree 563

prune.tree(tree, k, newdata)

ARGUMENTS

tree: fitted model object of class tree. This is assumed to be the result of some
function that produces an object with the same named components as
that returned by the tree() function.

k: cost-complexity parameter defining either a specific subtree of tree (k a
scalar) or the sequence of subtrees minimizing the cost-complexity mea
sure (k a vector). If missing, k is determined algorithmically.

newdata: a data frame containing the values at which predictions are required.

VALUE

The sequence of cost-complexity subtrees is evaluated on these data. If
missing, the data used to grow the tree are used. The response as well as
the predictors referred to in the right side of the formula in tree must be
present by name in newdata. These data are dropped down each tree in
the cost-complexity sequence and deviances calculated by comparing the
supplied response to the prediction.

if k is supplied and is a scalar, a tree object is returned that minimizes
the cost-complexity measure for that k. Otherwise, an object of class
tree. sequence is returned. A plot 0 method exists for objects of this
class. It displays the value of the deviance for each subtree in the cost
complexity sequence. An additional axis displays the values of the cost
complexity parameter at each subtree. The object contains the following
components:

size: number of terminal nodes in each tree in the cost-complexity pruning
sequence.

deviance: total deviance of each tree in the cost-complexity pruning sequence.

k: the value of the cost-complexity pruning parameter of each tree in the
sequence.

nodes: vector indicating the pruning order of the nodes that define the subtrees
in the sequence. The first element of nodes is 0, indicating the full tree;
the next element is the number of the node that is the root of the next
subtree to be pruned, etc.

564 qqnorm.aov APPENDIXB

qqline(x)

ARGUMENTS

x: typically a residual vector

This function fits and plots a line through the first and third quartile of the
data, and the corresponding quantiles of the standard normal distribution.

EXAMPLE

to check Gaussian distribution of the errors
qqnorm(galaxy.m$residuals)
qqline(galaxy.m$residuals)

qqnorm(x, fullaF, label, omit=NULL, .•.)

ARGUMENTS

x: the result of fitting an analysis .of variance model, including the cases of
multivariate response and multiple-error strata.

full: TRUE for a full normal probability plot of the effects, FALSE for a half-normal
plot of the absolute values of the effects.

label: should some of the points be labeled? Can be set to TRUE, in which case
the user will be prompted to identify the points to label, or to a single
number, n, in which case the n largest effects (in absolute value) will be
labeled.

omit: those effects that should be omitted from the plot. By default, the first
effect (assumed to be the intercept) is omitted. Either numeric or char
acter data can be given. Character data are matched against the effect
labels. The intercept is always omitted: if you really want to see it, set
its name explicitly to anything other than "(Intercept) "--e.g.,

names(x$effects)[1] <- "•H"

Graphical parameters (see par()) may also be supplied as arguments to
this function.

S FUNCTIONS AND CLASSES quasi 565

VALUE

the points plotted, suitable to use as an argwnent to identify() to label
interesting points after the fact. In the case of multiple responses or error
strata, the points from the last plot are returned.

A quantile-quantile plot is produced, either of the effects component from
the fit or of its absolute value, plotted against the appropriate quantiles
of the normal distribution. In the case of multiple response or multiple
strata, one plot will be produced for each separate set of effects. Subtitle
labels will be composed in this case identifying the response and/or the
stratum.

This function is a method for the generic function qqnormO for class "aov".
It can be invoked by calling qqnorm{x) for an object x of the appropriate
class, or directly by calling qqnorm.aovO, regardless of the class of the
object.

For an example of the output of qqnorm.aovO, see Figure 5.6 on page 170.

randomize{design, restrict)

ARGUMENTS

design: a design; that is, a data frame representing factors for an experimental
design.

restrict: an optional vector specifying some factors (either numerically or by
name) in the design matrix. If restrict is supplied, randomization will
occur only within levels of the combination of the restricted factors. The
runs (rows) of the design will be ordered by the restricted factors, and
then randomly within this order.

VALUE
a permutation of the. rows of the design, randomized in the sense above.

566 •·aov APPENDIX B

EXAMPLE

a 3A2 factorial, randomized within levels of the first factor
> mydesign <- fac.design(rep(3,2))
>perm<- randomize(mydesign,"A")
>perm

[1] 7 4 1 2 8 5 9 6 3

raovl
raov(formula, data, ...)

ARGUMENTS

formula: formula and optional data frame for analysis of variance model, or a previ
ously computed analysis of variance fit. These arguments are interpreted
in the standard form for analysis of variance. The usual optional argu
ments for aovO and lm() can be supplied to raov() also.

VALUE
a fitted anova model, similar to that returned by aovO, and containing
in addition two components used for computing the estimated random
effects. The difference from standard anova models appears when the
summary method is called: this method will compute and print the esti
mated variances for the random-effects model. Specifically, the ordinary
mean-squares and the component ems. coef from the fitted anova model
are used to estimate the variances for the usual random effects model for
each relevant main factor or interaction in the modeL

The analysis produced by raov() is valid only for the fully random model
on a balanced design, with one error stratum. The function will check for
balance, by calling replications().

EXAMPLE

in the design pigment, Batch and Sample have
attribute "random" set to TRUE
> ptaov <- raov(Moisture ~ Batch/Sample, pigment)
> summary(praov)

Df Sum of Sq Mean Sq
Batch 14 1210.9 86.495

Sample 'l.in'l. Batch 15
Residuals 30

869.8 57.983
27.5 0.917

Random Effects -- estimated variances:
Batch Sample Y.inY. Batch Residuals
7.128 28.533 0.917

S FUNCTIONS AND CLASSES read.table 567

read.table(file, header=F, sep, row.names, col.names)

ARGUMENTS

file: the name of the text file for the data. The file should contain one line per
row of the table, with fields separated by the character in sep.

header: should the first line of the file be used as a header, specifying the names
of the variables in the data frame?

sep: the field separator. If missing, any amount of white space can separate
items.

row. names: optional specification of the row names for the data frame. If provided,
it can give the actual row names, as a vector of length equal to the number
of rows, or it can be a single number or character string. In the latter
case, the argument indicates which variable in the data frame to use as row
names (the variable will then be dropped from the frame). If row.names is
missing, the function will use the first nonnumeric field with no duplicates
as the row names. If no such field exists, the row names are t:nrow(x).

Row names, wherever they come from, must be Wlique.

col. names: optional names for the variables. If missing, the header information,
if any, is used; if all else fails, "V" and the field number are be pasted
together. Variable names, wherever they come from, must be unique.
Variable names will be converted to syntactic names before assignment,
but not if they came from an explicit col. names argument.

as.is: control over conversions to factor objects. By default, non-numeric fields
are turned into factors, except if they are used as row names. If some or all
fields should be left as is (typically producing character variables), set the
corresponding element of as. is to TRUE. The argument will be replicated
as needed to be of length equal to the number of fields; thus, as. issTRUE
leaves all fields unconverted.

VALUE
a data frame with as many rows as the file has lines (or one less if
header .. mT) and as many variables as the file has fields (or one less if one
variable was used for row names). Fields are initially read in as character
data. If all the items in a field are numeric, the corresponding variable is
numeric. Otherwise, it is a factor (unordered), except as controlled by the

568 replications APPENDIX B

as. is argument. All lines must have the same number of fields (except
the header, which can have one less if the first field is to be used for row
names).

This function should be compared to scan(); read.table() tries much
harder to interpret the input data automatically, figuring out the number
of variables and whether fields are numeric. It also produces a more
structured object as output. The price for this, aside from read. table()

being somewhat slower, is that the input data must themselves be more
regular and that read. table() decides what to do with each field, except
for the use of the as.is argument. With scan(), input lines do not need to
correspond to one complete set of fields, and the user decides what mode
each field should have. Overall, read. table 0 will usually be the easy way
to construct data frames from tables. If it doesn't do what you want,
consider the functions scan(), make.fields(), or count.fields(), as well
as text-editing tools and languages outside S.

replications(formula, data)

ARGUMENTS

formula: a formula, terms object, or design. If a design, then data need not be
given, and the formula ""' . " is implied.

data: a design or data frame.

VALUE
if the design is balanced-that is, for each term in the formula all levels
are replicated the same number of times-then replications returns a
vector of length equal to the number of terms, containing the number
of replications for each term. Otherwise, the object returned is a list,
with one element for each term. If the individual term is balanced, the
corresponding element of the list will be a single number, the number of
replications. Otherwise, the element will give the pattern of replications
for the levels of the corresponding term. If the term is a main effect, the
element will be a vector of length equal to the number of levels. If the term
is a two-way interaction, the element will be a two-way array, and so on.
The names or dimnames of the elements will identify the corresponding
levels of the factor(s) in the term. See the example below. The value of
replications() provides an easy test for overall balance or for balance of
individual terms:

S FUNCTIONS AND CLASSES

is.numeric(replications(formula, data)
sapply(replications(formula, data),

function(x)length(x)~~1)

residuals 569

respectively test for complete or term-by-term balance. Tlw second test
is sensible only if the first one fails.

EXAMPLE

>reps<- replications(Yield ~ .A2, catalyst[-1,])
> reps$"Conc:Cat"

A B
20 1 2
40 2 2

robust(family = gaussian, scale=O, k=1.345, maxit=10)

ARGUMENTS

family: a family object, as produced by gaussian(), binomial(), poiss~nO, etc.

scale: a scale parameter can be supplied. If omitted, a robust scale is estimated
based on a scale of 1 and the fit of the first glmO or gam() iteration.

k: a threshold used in the computation of the robustness weights.

maxit: the maximum number of iterations.

VALUE
a new family object, with its component functions suitably modified to
perform a robust version of the glmO or gam() fit.

SEE ALSO
glm, gam, family, quasi, family.object.

EXAMPLE

Fit a linear model robustly
glm(formula, family=robust)
Fit a generalized additive model robustly
gam(formula, family=robust(binomial))

570 s APPENDIX B

8

s(x, df=4, spar=O)

ARGUMENTS

x: the univariate predictor, or expression, that evaluates to a numeric vector.

df: the target equivalent degrees of freedom, used as a smoothing parameter.
The real smoothing parameter (spar below) is found such that df=tr(S)-1,
where s is the implicit smoother matrix. Values for df should be greater
than 1, with 1 implying a linear fit.

spar: can be used as smoothing parameter, with values larger than 0.

VALUE
the vector x is returned, endowed with a number of attributes. The vector
itself is used in the construction of the model matrix, while the attributes
are needed for the backfitting algorithms all.wam() or s.wam() (weighted
additive model). Since smoothing splines reproduces linear fits, the linear
part will be efficiently computed with the other parametric linear parts of
the model.

Note that sO itself does no smoothing; it simply sets things up for gam().

SEI•; ALSO
lo, smooth. spline, bs, ns, poly

EXAMPLE

#fit Start using a smoothing spline with 4 df.
y ~ Age + s(Start, 4)
#fit log(Start) using a smoothing spline with 5 df.
y ~Age+ s(log(Start), df=5)

S FUNCTIONS AND CLASSES scatter.smooth 571

scatter.smooth(x, y. span= 2/3, degree 1, family= c("symmetric",
"gaussian"), evaluation= 50, ...)

ARGUMENTS

x: abscissas of points on scatterplot.

y: ordinates of points on scatterplot.

span: smoothing parameter.

degree: overall degree of locally-fitted polynomial. 1 is locally-linear fitting and 2
is locally-quadratic fitting.

family: the values are "gaussian" or "symmetric". In the first case, local-fitting
methods are used. · In the second case, the default, local fitting is used
together with a robustness feature that guards against distortion by out
liers.

evaluation: number of values at which the loess curve is evaluated.

This function makes a scatterplot and adds a smooth curve using the loess
fitting method. The fit is evaluated at evaluation equally spaced points
from min(x) to max(x) and then graphed by connecting the successive
plotting locations by line segments. This function replaces the use of the
function lowessO for scatterplot smoothing.

Graphical parameters (see par()) may also be supplied as arguments to
this function.

For an example of the output of scatter. smooth(), see Figure 8.5 on page
326.

SEE ALSO
loess, panel.smooth

EXAMPLE

scatter.smooth(x, y, span= 1, degree = 1, xlab = "predictor")

572 select.tree APPENDIX B

select.tree(tree, nodes, drop = T)

ARGUMENTS

tree: fitted model object of class tree. This is assumed to be the result of some
function that produces an object with the same named components as
that returned by the tree() function.

nodes: an integer vector containing indices (node numbers) of all subtrees to be
selected. If missing, user selects nodes as described below.

drop: if TRUE, and only one subtree was specified or selected, returns a tree
object, not a list.

VALUE
returns a list (sometimes called a stand) of subtrees rooted at nodes.
For noninteractive use, select. tree (obj, nodes) is longhand for the left
square-bracket method for trees obj [nodes].

GRAPHICAL INTERACTION
A dendrogram of tree is expected to be visible on the graphics device, and
a graphics input device (e.g., a mouse) is required. Clicking (the selection
button) on a node selects the subtree rooted at that node. This process
may be repeated any number of times. Warnings result from selecting the
root or leaf nodes. Clicking the exit button will stop the selection process
and return the resulting stand of tree objects.

See the documentation for the specific graphics device for details on graph
ical input techniques.

For an example of the output of select.tree(), see Figure 9.12 on page
398.

S FUNCTIONS AND CLASSES shrink.tree 573

shrink.tree(tree, k, nevdata)

ARGUMENTS

tree: fitted model object of class tree. This is assumed to be the result of some
function that produces an object with the same named components as
that returned by the tree() function.

k: shrinkage parameter (O<k< 1) defining either a specific shrunken version of
tree or, if length(k) >i, the sequence of shrunken trees obtained by optimal
shrinking for each value of k. By default the sequence (1:10)/(20:11)

(roughly .05 to .91) is used.

nevdata: a data frame containing the values at which predictions are required. The
sequence of optimally shrunken trees is evaluated on nevdata. If missing,
the data used to grow the tree are used. If supplied, the sequence is
evaluated on newdata, The response as well as the predictors referred to in
the right side of the formula in tree must be present by name in nevdata.
These data are dropped down each shrunken tree in the sequence and
deviances calculated by comparing the supplied response to the prediction.

VALUE
ifk is supplied and is a scalar, a tree object is returned that has the same
topology as the supplied tree but new values for the yval/yprob, dev, and
n. components of tree$frame. Otherwise, an object of class tree. sequence
is returned. A plot() method exists for objects of this class. It displays
the value of the deviance for each shrunken tree in the sequence. An
additional axis displays the values of the shrinkage parameter for each
tree. The object contains the following components:

size: number of (effective) terminal nodes in each tree in the optimal shrinkage
sequence.

deviance : total deviance of each tree in the optimal shrinkage sequence.

k: the value of the shrinkage parameter of each tree in the sequence.

For an example of the output of shrink. tree(), see Figure 9.12 on page
398.

574 smooth.spline APPENDIX B

smooth.spline(x, y, w, df, spar, cv, all.knots, df.offset, penalty)

ARGUMENTS

x: values of the predictor variable. There should be at least ten distinct x
values.

y: response variable, of the same length as x.

x and y can be supplied in a variety of different forms, along the lines of
the function plot(); e.g., a list with components x andy, a two-column
matrix, or simply a single vector, taken to be a time series.

w: optional vector of weights for weighted smoothing, of the same length as
x and y. If measurements at different values of x have different variances,
v should be inversely proportional to the variances.

d£: one can supply the degrees of freedom = trace{S) rather than a smoothing
parameter. HereS is the implicit smoother matrix. If both df and spar
are supplied, spar is used unless it is 0, in which case df is used.

spar: the usual smoothing parameter for smoothing splines, which is the coeffi
cient of the integrated second squared derivative penalty function. If spar
is 0 or missing and df is missing, cross-validation is used to automatically
select spar. If a value of spar greater than zero is supplied, it is used as
the smoothing parameter.

cv: the ordinary or generalized cross validation score (cv or Gcv) is computed
according to whether cv is TRUE or FALSE. Default is FALSE.

all. knots: if FALSE, a suitable fine grid of knots is chosen, usually less in number
than the number of unique values of x. If TRUE, the unique values of x are
used as knots.

df . off set : allows an offset to be added to the df term used in the calculation of
the GCV criterion: df=tr(S) + df .offset. Default is 0.

penalty: allows the df quantity used in GCV to be charged a cost = penalty per
degree of freedom.

The last two arguments are experimental and typically will not be used.
If used, the GCV criterion is RSS/(n - (penalty*(trace(S)-1) + df .offset
+1)).

S FUNCTIONS AND CLASSES smooth.spline 575

VALUE
an object of class smooth. spline is returned, consisting of the fitted smooth
ing spline evaluated at the supplied data, some fitting criteria and con
stants, and a structure that contains the essential information for com
puting the spline and its derivatives for any values of x.

x: ordered distinct x values

y: smoothing spline fits corresponding to x

w: weights used in the fit. This has the same length as x, and in the case of
ties, will consist of the accumulated weights at each unique value of x.

yin: y-values used at the unique x values (weighted averages of input y)

lev: leverage values, which are the diagonal elements of the smoother matrix
s.

cv.crit: cross validation score (either GCV or cv)

pen. cri t : penalized criterion

df: degrees of freedom of the fit estimated by the sum of lev. If df was
supplied as the smoothing parameter, then the prescribed and resultant
values of df should match within 0.1 percent of the supplied df

spar: smoothing parameter used in the fit (useful if df was used to specify the
amount of smoothing)

fit: list containing details of the fits (knot locations, coefficients, etc.) to be
used by predict . smooth. spline 0.

call: the call that produced the fit

SEE ALSO
predict.smooth.spline, print.smooth.spline

COMMENTS
A cubic B-spline is fit with care taken to insure that the algorithm runs
linear in the number of data points. For small data vectors (n<50), a
knot is placed at every distinct data point, and the regression is fit by
penalized least squares. For larger data sets the number of knots is cho
sen judiciously in order to keep the computation time manageable (if
all.knots=F). The penalty spar can be chosen automatically by cross
validation (if spar~o), can be supplied explicitly, or supplied implicitly via
the more intuitive df number.

576 snip.tree APPENDIX B

The FORTRAN code supporting smooth. spline() was supplied by Finbarr
O'Sullivan, whose original function bartO is known to some S users.
Subsequent modifications allowing for user supplied df and other small
changes were made by Thevor Hastie.

EXAMPLE

smoothing spline fit and approximate 951.
fit <- smooth.spline(x, y)
res <- (y - fit$y)/(1-fit$lev)
sigma <- sqrt(var(res))

upper <- fit$y + 2.0•sigma•sqrt(fit$lev)
lower <- fit$y - 2.0•sigma•sqrt(fit$lev)
matplot(fit$x, cbind(upper, fit$y, lower),

snip.tree(tree, nodes)

"confidence" intervals
smooth.spline fit
jackknife residuals
estimated sd

#upper 951. conf. band
lower 951. conf. band
type="plp", pch=".")

ARGUMENTS

tree: fitted model object of class tree. This is assumed to be the result of some
function that produces an object with the same named components as
that returned by the tree() function.

nodes: an integer vector containing indices (node numbers) of all subtrees to be
snipped off. If missing, user selects branches to snip off as described below.

VALUE
a tree object containing the nodes that remain after specified or selected
subtrees have been snipped off. For noninteractive use, snip. tree (obj,
nodes) is longhand for the left-square-bracket method for trees obj [
nodes].

GRAPHICAL INTERACTION
A dendrogram of tree is expected to be visible on the graphics device, and
a graphics input device (e.g., a mouse) is required. Clicking (the selection
button) on a node displays the total tree deviance and what the total
tree deviance would be if the subtree rooted at the node were removed.
Clicking a second time on the same node snips that subtree off and visually
erases the subtree. This process may be repeated any number of times.
Warnings result from selecting the -root or leaf nodes. Clicking the exit
button will st:op the snipping process and return the resulting tree object.

S FUNCTIONS AND CLASSES split.screen 577

See the documentation for the specific graphics device for details on graph
ical input techniques.

For an example of the output of snip. tree(), see Figure 9.11 on page 397.

spllt.screen Split the Graphics Display into Multiple Screens split.screen

split.screen(figs, screen, erase T)
screen(n, new = T)
erase.screen(n, eject = F)

close.screen(n, all = F)

prompt.screen(delta = 1/8, draw = T)

ARGUMENTS

figs: a multiple-figure vector like mfrow or mfcol~.g, c(n,m)-or an N by 4
matrix where N is the number of screens and each row specifies the position
of a screen on the display. The first two columns specify the left and right
coordinates (in the 0, 1, 0, 1 plane) for the screens, and the third and
fourth columns the bottom and top coordinates. Use prompt.screen() to
create this matrix interactively.

screen: screen to split up. By default it carves up the current screen, which
initially is the entire display (denoted as screen 0).

erase: should the screen being split be cleared? Default is TRUE.

n: screen to activate for screen(), screen to erase for erase.screen(), or the
vector of screens to close for close. screen() (the active screen cannot
be closed). For screen() and erase.screen() the default is the currently
active screen.

ne11: should screen be cleared? Default is TRUE.

eject: should current page be ejected? On noninteractive devices like PostScript
printers, this will advance to a new page. On exit, the first valid screen is
left active.

all: should all screens be closed? Set all = TRUE to exit the split-screen mode.

delta: spacing, in inches, used to snap or line up adjacent screens; if corners of a
newly created screen are less than delta inches from a neighboring screen,
screen borders are made to coincide.

draw: should display be cleared and screen borders be drawn? Default is TRUE.

578 split.screen APPENDIX B

VALUE
these functions provide a means of dividing up the graphics display into
multiple screens or figures of various sizes. The split-screen mode is an
alternative to the usual multiple-figure mode obtained by par(mfrow), and
it is useful for interacting with individual figures and for producing non~
matrix arrangements; however, the two modes are not compatible-i.e.,
you cannot mix calls to split. screen() and par(mfrow).

Graphics input and output is directed to and from screens by calling
screen(). As part of the initialization, split. screen(figs) activates the
first screen in figs.

SIDE EFFECTS
If any screen in figs is smaller than half of the horizontal or vertical
dimensions of the graphics display, the character expansion parameter
cex is set to 0.5 in all screens in figs. Outer margins are not defined in
split-screen mode, thus the graphical parameters oma and omi should not
be used.

For an example of the output of split.screenO, see Figure 9.14 on page
403.

EXAMPLE

split.screen(c(2,1)) # split display into to screens
(1] 1 2
split.screen(c(1,3), screen= 2) #now split the bottom half into 3
[1] 3 4 5
screen(3) # prepare screen 3 for output
plot(x, y)
close.screen(all = T) # exit split-screen mode

S FUNCTIONS AND CLASSES step 579

I step Build a. 1-{od,el in a Stepwise Fashion step\

step(object, scope, scale, direction, trace = T, keep, steps)

ARGUMENTS

object: a glm or gam object, or an object that inherits from either of these. This
is used as the initial model in the stepwise search.

scope: defines the range of models examined in the stepwise search. This argu
ment has a different form for step.gamO and step.glmO; see their detailed
documentation.

scale: an optional argument used in the definition of the AIC statistic for se
l~cting the models. By default, the scaled chi-squared statistic for the
initial model is used, but if forward selection is to be performed, this is
not necessarily a sound choice.

direction: the mode of stepwise search, can be one of "both", "backward", or
"forvard", with a default of "both". If the scope= argument is missing,
the default for direction is "backward".

trace: if TRUE, information is printed during the running of step(). This is a
good choice in general, since step() can take some time for large models.

keep: a filter function whose input is a fitted glm or gam object and the associated
AIC statistic, and whose output is arbitrary. Typically keep() will select
a subset of the components of the object and return them. The default is
not to keep anything.

steps: the maximum number of steps to be considered. The default is 1000
(essentially as many as required). It is typically used to stop the process
early.

VALUE
the stepwise-selected model- is returned, with up to two additional compo
nents. There is an "anova" component corresponding to the steps taken
in the search, as well as a "keep" component if the keep= argument was
supplied in the call.

A series of models is generated sequentially, where each model differs
from its neighbors by a single term. The step() methods differ in the way
they construct this sequence: both in the way the set of candidates are
generated for each step, and in the way the candidates are evaluated for
selection.

580 summary APPENDIX B

SEE ALSO
step.glm, step.gam,glm, gam, drop!, add1

EXAMPLE

step(glm.object)
step(glm.object, list(upper = ~.A2, lower=~ Age)
step(gam.object, scope=list(

"Age" = ~ 1 + Age + log(Age),
"BP" = ~ 1 + BP + poly(BP, 2) + s(BP),
"Chol" = ~ s(Chol, df = 4) + s(Chol, df 7)

lsu~ .Summarize an Objeet .. summary I
summary(object, ...)

ARGUMENTS

object: any object, including a fitted model object of various kinds, a data frame,
or a factor.

VALUE
a summary object is returned-usually a list-like object whose elements
describe the contents of the argument to summary(). For example, the
method for 1m objects produces an object of class "summary .1m" with com
ponents "residuals", "correlation", "cov.unscaled", "r.squared", and
more. There is a print() method corresponding to each "summary." class,
so typing summary(object) will not save the summary, but rather produce
a nicely formatted table of a selection of the components in the summary
object. Simpler summary methods may get away without a special class;
e.g., the summary for factors is the value of a call to table().

This is a generic function. Functions with names beginning in "summary."
will be methods for this function.

EXAMPLE

> summary(stackfit)
Call: lm(formula = stack.loss
Residuals:

stack.x)

Min 1Q Median 3Q Ma:x
-7.237713 -1.763111 -0.455093 2.430138 5.697774

Coefficients:
Value Std. Error t value

S FUNCTIONS AND CLASSES

(Int.) -39.9197
Air Flov 0.7156

Water Temp 1.2953
Acid Cone. -0.1521

11.8960 -3.3bl"o'/
0.1349 5.30tln
0. 3680 3. 519tl
0.1563 -0.9733

terms.object ::i8l

Residual standard error: 3.243364 on 1'1 degrees of freedom
Multiple R-Squared: 0.8346228
Correlation of Coefficients:

(Int.) Air Flov Water Temp
Air Flov 0.1793

Water Temp -0.1489 -0.7356
Acid Cone. -0.9016 -0.3389 0.0002

Class of Objects for Terms in a Model terms.object

An object representing the information about a structural model, as spec:
ified by a formula. This object drives all the model-fitting and is returnc!cl
as a component of the fitted object by the fitting functions lmO, etc. Tlu!
object itself is of mode "expression", with one element for each of tlw
terms, after expansion and possible simplification, and not including the
intercept. The object also has a number of attributes:

formula: the formula, with abbreviations expanded.

variables: a vector of mode "expression", whose elements include those in the
terms.object itself, as well as the response variable.

factors: a matrix of variables by terms, showing which variables occur in which
terms. The entries are 0 if the variable does not occur, 1 if it appears and
should be coded by contrasts, and 2 if it appears and should be coded by
dummy variables for all levels.

order: the order of the terms (1 for main effects, 2 for two-way interactions, etc.)

term.labels: a character version of the terms expression, just to save converting
later on.

intercept: 1 if there is an intercept, 0 otherwise.

response: the variable number corresponding to the response (the expression on
the left side of the formula).

specials: if any of the specials actually appeared in the formula, this is a list
with one component for each of the specials found. The value of this
component says which of the terms was one of the specials. (See the
"Error" component in the example below.)

582 trace

EXAMPLE

> terms(Y""T*Co+Error(blocks), specials="Error")
expression(T, Co, Error(blocks), T:Co)
attr(, "formula"):
Y "" T * Co + Error(blocks)
attr(, "factors"):

T Co Error(blocks) T:Co
y 0 0 0 0
T 1 0 0 1

Co 0
Error(blocks) 0 0
attr(, "order"):
[1] 1 1 1 2
attr(, "variables"):

0
1

expression(Y, T, Co, Error(blocks))
attr(, "term. labels"):

1

0

APPENDIX B

[1] "T" "Co" "Error(blocks)" "T:Co"
attr(, "intercept"):
[1] 1
attr(, "response"):
[1) 1

attr(, "specials"):
attr(, "specials")$Error:
[1] 3

attr(, "class"):
[1] "terms"

trace(what, tracer=, exit=, at=)
untrace(what)

ARGUMENTS

what: either the name of a function, or a character vector giving the names of sev
eral functions: trace(what) adds tracing to the functions and untrace(what)
removes it. Called with no arguments, untraceO removes tracing from all
functions.

tracer: a function, the name of a function, or a logical value. tracer will be called
on entry to the function what. If TRUE, a standard tracing function is
used, which prints the call to the traced function. Omitting all arguments
except what is equivalent to tracer~TRUE.

S FUNCTIONS AND CLASSES trace 583

exit: trace the function on exit, either instead of or in addition to trace on
entry. If supplied, this can either be TRUE, in which case a standard tracer
is used, or it can be a function to use for tracing.

at: a number or character string describing a location inside the body of the
traced function at which the tracing is to be inserted. The function body
must consist of a braced expression; the call to the tracing function is
inserted just before the expression identified by at.

Tracing is accomplished by putting a revised version of the functions into
the session database; untrace removes those versions. There is no per
manent effect on the functions themselves. Each call to trace for a given
function replaces any previous tracing for that function.

WARNING
Because tracing inserts a modified version of the traced function in the
session database, it is dangerous to attempt to edit the traced function
while tracing is in effect. Use untrace before attempting to modify a
traced function.

SEE ALSO
trace.on, sys.trace, std. trace, std.xtrace, browser

SIDE EFFECTS
Two session datasets are created or updated: . Trace list is a character
vector giving the names of the functions currently being traced. . Traceon
is a logical value telling whether tracing is on or off.

EXAMPLE

trace(stem, exit=T) I display when stem exits
trace(eval) I display all explicit calls to eval
trace(lm, exit=browser) linsert interactive browser on exit
trace(c("sin","cos"),browser)

584 tree APPENDIX B

I tree Fit a Tree-Based Model

tree(formula, data, weights, subset, na.action,
control, model = F, x = F, y = F, ...)

ARGUMENTS

formula: a formula expression as for other regression models, of the form response
"' predictors. See lm and formula for details.

data: an optional data.frame in which to interpret the variables named in the
formula, subset, and weights arguments.

weights: optional prior observation weights; can have zeros, although the subset
argument is preferred for deleting observations.

subset: an expression to be used to subset the rows of the model. frame prior to
fitting.

na.action: a missing data filter function, which gets applied to the model.frame.

control: a list of iteration and algorithmic constants. See tree. control for their
names and default values. These can also be set as arguments to tree()
itself.

model: if TRUE, the model. frame is returned. If this argument is itself a model. frame,
then the formula and data arguments are ignored, and model is used to
define the model.

x: if TRUE, the model. matrix is returned.

y: if TRUE, the response variable is returned.

VALUE

additional arguments for the fitting routines such as tree.control(); typ
ically not used.

an object of class tree is returned. The model is fit using binary re
cursive partitioning, whereby the data are successively split along coordi
nate axes of the predictor variables so that at any node, the split which
maximally distinguishes the response variable in the left and the right
branches is selected. Splitting continues until nodes are pure or data
are too sparse; terminal nodes are called leaves, while the initial node
is called the mot. If the response variable is a factor, the tree is called

S FUNCTIONS AND CLASSES tree.object 585

a classification tree; otherwise, it is called a regression tree. Can be ex
amined by print 0, summary 0, and plot(). Contents can be extracted
using predict(}, residuals(), deviance(), and formula(). Can be modi
fied using update 0. Other generic functions that have methods for tree
objects are text(), identify(), inspect(), and [.tree(). Usc tree.object
for further details.

EXAMPLE

fit regression tree to all variables
z.solder <- tree(Count "' . , data = solder)
fit classification tree to data in kyphosis data frame
z.kyphosis <- tree(kyphosis)

I tree.object Tree-Based Mod~l Object tree.object I

This class of objects is returned from the tree() function to represent a
classification or regression tree. Objects of this class have methods for
the summary functions print(), summary(), and plot(); for the extractor
functions predict(), residuals 0, and deviance(); and for miscellaneous
diagnostic functions [. 0, inspect(), identify(), text(), and labels().

COMPONENTS
The following components must be included in a legitimate tree object.
Of these, only the vhere component has the same length as the data used
to fit the tree object.

frame: data frame with one row for each node in the tree. The rov. names of frame
contain the (unique) node numbers that follow a binary ordering indexed
by node depth. Elements of frame include var, the variable used in the
split at each node (leaf nodes are denoted by the string <leaf>); n, the
size of each node; dev, the deviance of each node; yval, the fitted value of
the response at eo.ch node; splits, a two-column matrix of left and right
split labels for each node. Classification trees have an additional element
yprob, the matrix containing the class probabilities for each node.

vhere: vector, the same length as the number of observations in the root node,
containing the row number of frame corresponding to the leaf node that
each observation falls into.

terms: an object of mode expression and class term summarizing the formula.
Used by various methods, but typically not of direct relevance to users.

586 update APPENDIX B

call: an image of the call that produced the object, but with the arguments all
named and with the actual formula included as the formula argument. To
reevaluate the call, say update(tree).

!update····

update(object, formula, ... , evaluate=T, class)

ARGUMENTS

object: any object·with a component named call, which is the expression used to
create itself.

formula: a modeling formula, such as y ~ a + b. A single dot "." on either side
of the ~ gets replaced by the left or right side of the formula in object.
The dot on the left can be omitted. By default, it refits object using the
same formula as in object.

any other arguments that are appropriate for the particular call. These
must all be named, and may be abbreviated, in the same manner they
could be as arguments to the fitting function itself. Arguments in the
previous fit; that is, in object$call, can be removed by putting nothing
on the right side of the =. For example, the argument X", in a call to
update() causes the x argument, if present in object$call, to be removed.

evaluate: if TRUE (the default), the new call is evaluated; otherwise, the call is
returned as an unevaluated expression.

class: the fitting class to be used for the new object; that is, the basic fitting
function, such as lmO, aovO, glmO, etc. This argument allows the model
to be switched from one kind to another, assuming the formula and other
arguments make sense for the new model. Although suggestive, class is a
slight misnomer since the object may already inherit from this new class.

VALUE
either a new updated object, or else an unevaluated expression for creating
such an object.

This is a generic function. Functions with names beginning in "update."
will be methods for this function.

S FUNCTIONS AND CLASSES

EXAMPLE

t refit, unchanged
update(glmob)
t refit, adding term
update (glmob, "' . + Age)
t transform response to log scale; drop intercept
update(lmob, log(.) "' . -1)
t use all the 2nd order interactions of previous fit
update(lmob,- . "2)
tremove the model argument, supply a subset
update(gamob, mod=, subset = Age>25)

update 587

589

References

Aitkin, M.A., Anderson, D.A., Francis, B.J., and Hinde, J.P. (1989) Statistical Mod
eling in GLIM. Oxford University Press, Oxford.

Akaike, H. (1973) Information Theory and an Extension of the Maximum Likelihood
Principle, in Second International Symposium on Information Theory (eds.
B.N. Petrov and F. Csaki). Akademia Kiad6, Budapest, 267-281.

Baker, R.J. and Neider, J.A. (1978) The GLIM System, Rdease 3, Generalized Linear
Interactive Modeling. Numerical Algorithms Group, Oxford.

Bates, D.M. and Lindstrom, M.J. (1986) Nonlinear Least-squares with Condition
ally Linear Parameters. Proceedings, Statistical Computing Section, American
Statistical Association.

Bates, D.M. and Watts, D.G. (1988) Nonlinear Regression Analysis and its Applica
tions. J. Wiley & Sons, New York.

Baxter, L.A., Coutts, S.M., and Ross, G.A.F. (1980) Applications of Linear Models in
Motor Insurance. Proceedings of the 21st International Congress of Actuaries,
Zurich, 11-29.

Becker, R.A., Chambers, J.M., and Wilks, A.R. (1988) The NewS Language. Wads
worth, Pacific Grove, California.

Belsley, D.A., Kuh, E., and Welsch, R.E. (1980) Regression Diagnostics. J. Wiley &
Sons, New York.

Bentley, J.L. (1975) Multidimensional Binary Search Trees Used for Associative
Searching. Comm. Assoc. Comp. Mach. 18, 509-517.

Box, G.E., Hunter, W.G., and Hunter, S. (1978) Statistics for Experimenters. J.
Wiley & Sons, New York.

Breiman, L. and Friedman, J.H. (1985) Estimating Optimal Transformations for
Multiple Regression and Correlation (with discussion). J. Am. Statist. Assoc.
80, 580-619.

Breiman, L., Friedman, J.H., Olshen, R., and Stone, C.J. (1984) Classification and
Regression Trees. Wadsworth International Group, Belmont, California.

Brinkman, N.D. (1981) Ethanol Fuel-A Single-cylinder Engine Study of Efficiency
and Exhaust Emissions. SAE Transactions 90, No. 810345, 141Q-1424.

Buja, A., Hastie, T., and Tibshirani, R. (1989) Linear Smoothers and Additive Mod
els (with discussion). Annals of Statist. 17, 453-555.

REFERENCES

!3uta, R. (1987} The Structure and Dynamics of Ringed Galaxies, III: Surface Pho
tometry and Kinematics of the Ringed Nonbarred Spiral NGC7531. The As
trophysical J. Supplement Ser. 64, 1-37.

Carroll, R.J. and Ruppert, D. (1988} Transformations and Weighting in Regression.
J. Wiley & Sons, New York.

Cavendish, J.C. (1975} Local Mesh Refinement Using Rectangular Blended Finite
Elements. J. Camp. Physics 19, 211-228.

Chambers, J.M. (1977} Computational Methods for Data Analysis. J. Wiley & Sons,
New York.

Chambers, J.M., Cleveland. W.S., Kleiner, B., and Tukey, P.A. (1983} Graphical
Methods for Data Analysis. Wadsworth, Pacific Grove, California.

Chou, P.A. (1988} Applications of Information Theory to Pattern Recognition and
the Design of Decision Trees and Trellises. Ph.D. Thesis, Computer Scie1;1ce
Department, Stanford University.

Chou, P.A., Lookabough, T., and Gray, R.M. (1989} Optimal Pruning with Appli
cations to Tree-structured Source Coding and Modeling. IEEE Trans. Inf.
Theory 35, 299-315.

Ciampi, A., Chang, C-H., Hogg, S., and McKinney, S. (1987} Recursive Partition
ing: a Versatile Method for Exploratory Data Analysis in Biostatistics, in
Biostatistics (eds. I.B. MacNeil and G.J. Umphrey). D. Reidel Publishing,
New York.

Cleveland, W.S. (1979} Robust Locally-weighted Regression and Smoothing Scatter
plots. J. Am. Statist. Assoc. 74, 829-836.

Cleveland, W.S. The Elements of Graphing Data, 2d edition (forthcoming). Wads
worth, Pacific Grove, California.

Cleveland, W.S. and Devlin, S.J. (1988} Locally-weighted Regression: An Approach
to Regression Analysis by Local Fitting. J. Am. Statist. Assoc. 83, 596-610.

Cleveland, W.S. and Gro:>~·P., E. (1991) Computational Methods for Local Regression.
Statistics and Computing, I.

Cleveland, W.S. and Grosse, E. (forthcoming) Fitting Curves and Surfaces to Data.
Wadsworth, Pacific Grove, California.

Collomb, G. {1981} Estimation Non-parametrique de Ia Regression: Revue Bibli
ographique. International Statistical Review 49, 75-93.

REFERENCES 591

Comizzoli, R. B., Landwehr, J. M., and Sinclair, J. D. (1990) Robust Materials and
Processes: Key to Reliability. AT&T Technical Journal69 (No. 6), 113-128.

Cook, R.D. and Weisberg, S. (1982) Residuals and Influence in Regression. Chapman
and Hall, New York.

Cox, D.R. and Hinkley, D.V. (1974) Theoretical Statistics. Chapman and Hall, Lon
don.

Dennis, J.E., Jr. and Schnabel, R.B. (1983) Numerical Methods for Unconstrained
Optimization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs, New
Jersey.

Dongarra, J.J., Bunch, J.R., Moler, C.B., and Stewart, G.W. (1979) LINPACK User's
Guide SIAM, Philadelphia.

Draper, N.D. and Smith, H. (1981) Applied Regression Analysis, 2d edition. J. Wiley
& Sons, New York.

Federer, W.T. (1955) Experimental Design Theory and Applications. The Macmillan
Company, New York.

Fisher, W.D. (1958) On Grouping for Maximum Homogeneity. J. Am. Statist.
Assoc. 53, 789-98.

Friedman, J.H. and Stuetzle, W. (1981) Projection Pursuit Regression. J. Am.
Statist. Assoc. 76, 817-823.

Gay, D.M. (1983) Algorithm 611: Subroutines for Unconstrained Minimization Using
a Model/Trust-Region Approach. ACM 17-ans. Math. Software 9, 503-524.

Gelernter, D. and Jagannathan, S. (1990) Programming Linguistics. The MIT Press,
Cambridge, Massachusetts.

Golub, G.H. and Pereyra, V. (1973) The Differentiation of Pseudo-inverses and Non
linear Least-squares Problems Whose Variables Separate. Journal of SIAM
10, 413-432.

Golub, G.H. and van Loan, C.F. (1989) Matrix Computations, 2d edition. Johns
Hopkins University Press, Baltimore.

Hastie, T. and Pregibon, D. (1990) Shrinking Trees. AT&T Bell Laboratories Tech.
Report.

Hastie, T. and Tibshirani, R. (1990) Generalized Additive Models. Chapman and
Hall, London.

592 REFERENCES

Healy, M.J.R. (19S8) GLIM: An Introduction. Clarendon Press, Oxford.

Heiberger, R.M. (1989) Computation for the Analysis of Designed Experiments. J.
Wiley & Sons, New York.

Hicks, C.R. (1973) FUndamental Concepts in the Design of Experiments. Holt, Rine
hart and Wilson, New York.

Kalbfleisch, J.G. {1979) Probability and Statistical Inference: Vol. 2: Statistical
Inference. Springer-Verlag, New York.

Kass, G.V. {1980), An Exploratory Technique for Investigating Large Quantities of
Categorical Data. Applied Statistics 29, 119-127.

Keene, S.E. (1989) Object-Oriented Programming in COMMON LISP: A Program
mer's Guide to CLOS. Addison-Wesley, Reading, Massachusetts.

Lambert, D. (1991) Zero Inflated Poisson Regression, with an Application to Defects
in Manufacturing. Technometrics (forthcoming).

Lawson, C.L. and Hansen, R.J. (1974) Solving Least-Squares Problems. Prentice
Hall, Englewood Cliffs, New Jersey.

Lehmann, E. L. {1986) Testing Statistical Hypotheses. J. Wiley & Sons, New York.

Macauley, F.R. {1931) T~e Smoothing of Time Series. New York: National Bureau
of Economic Research.

Mallows, C.L. (1973) Some Comments on Cp. Technometrics 15, 661-667.

McCullagh, P. and Neider, J.A. (1989) Generalized Linear Models, 2d edition. Chap
man and Hall, London.

McLain, D.H. {1974) Drawing Contours from Arbitrary Data Points. Computer J.
17, 318-324.

Morgan, J.N. and Messenger, R.C. {1973) THAID-A Sequential Analysis Program
for the Analysis of Nominal Scale Dependent Variables. Survey Research
Center, Institute for Social Research, University of Michigan.

Phadke, M.S., Kackar, R.N., Speeney, D.V., and Grieco, M.J. (1983) Off-line Quality
Control in Integrated Circuit Fabrication Using Experimental Design. Bell
System Technical Joumal62, 1273-309.

Pregibon, D. (1982) Resistant Fits for Some Commonly Used Logistic Models with
Medical Applications. Biometrics 38, 485-498.

REFERENCES 593

Reade, C. (1989) Elements of Functional Programminv. Addison Wesley, Woking
ham, England.

Searle, S.R. (1971) Linear Models. J. Wiley & Sons, New York.

Seber, G. A. F. and C. J. Wild (1989) Nonlinear Regression. John Wiley & Sons,
New York.

Sonquist, J.N. and Morgan, J.N. (1964) The Detection of Interaction Effects. Mono
graph 35, Survey Research Center, Institute for Social Research, University
of Michigan.

Stone, C.J. (1977) Consistent Nonparametric Regression. Ann. of Stat. 5, 595-620.

Stroustrup, B. (1986) The C++ Programming Language. Addison-Wesley, Reading,
Massachusetts.

Tierney, L. (1990) LISP-STAT: An Object-Oriented Environment for Statistical Com
puting and Dynamic Graphics. J. Wiley & Sons, New York.

Wahba, G. (1990) Spline Functions for Observational Data. CBMS-NSF Regional
Conference series. SIAM, Philadelphia.

Watson, G.S. (1964) Smooth Regression Analysis. Sankhya A 26, 359-372.

Weisberg, S. (1980) Applied Linear Regression. J. Wiley & Sons, New York.

Whittaker, E. (1923) On a New Method of Graduation. Proceedings of the Edinburgh
Mathematics Society 41, 63-75.

Wilkinson, G.N. and Rogers, C.E. (1973) Symbolic Description of Factorial Models
for Analysis of Variance. Applied Statistics 22, 392-399.

Index

The index is arranged acc;ording to topics as well as distinctive words and phrases.
Most chapters have at least two topic headings; e.g., Linear models and Linear
model functions. The former lists some key topics in the linear models chapter
and augments the table-of-contents information; the latter lists all those functions
commonly used in fitting and examining that class of models.

A complete list of individual functions referenced in the book can be found
under the index heading FUnctions. Page numbers in bold font refer to the detailed
documentation in Appendix B. Documentation for all functions can be obtained
online using ?; see the Documentation entry below.

Added variable plot, 127
Additive,

logistic model, 259
model, 146, 249
predictor, 250, 258, 288
surface, 274-276, 291

Air-pollution data, see Data objects
Aitkin, M.A., 247, 586
Akaike, H., 589
Aliasing, see Analysis of variance models
Analysis-of-deviance table, 210...213
Analysis-of-variance model functions,

alias(), 179, 181, 484
anova(), 210, 485, see also summary()

below
aov(), 150, 486
aov.genyates(), 192, 487
CO, see Coding factors
contrasts(), see Coding factors
contr. helm~.rt 0, see Coding factors
contr. poly(), see Coding factors
contr.sum(), see Coding factors
contr, treatment(), see Coding factors
effects(), 169,203
Error(), 157-159

595

fitted(), 203, 513
interaction(), 165, 522
interaction. plot(), see Design func-

tions
plot(), 169, 545
plot. design(), see Design functions
plot.factor(), see Design functions
print(), 150
proj(), 182,561
qqnorm.aov(), 168-169,564
raov(), 160, 566
residuals(),203,569
summary(), 151, 580

Analysis-of-variance models, 145-193,
aliasing in, 155, 163, 178
anova table, 151-154, 210
background, 146, 193
classes, 154-160, 488, 532
computational theory, 185-193
contrasts, 32-36, 176, 185
design, 150...152, 169-175
effects, 15o-160, 169
error model, 157-159, 188-191
examples, 1, 7, 146, 149
factors in, 20, 32, 147

596

fitting, aov(), 4, 150, 486
formulas in, 24, 150-154
interactions in, 22, 151
multiple error strata, see eiTor model
multiple responses, 154
nesting in, 151
object, 150,
plotting, 163-169
projections, 181
random effects, 159

Anderson, D.A., 247, 589
Anova table, see Analysis-of-variance models
Approximate F-test, 213, 215-216, 254, 273,

321, 331, 369-371
Approximate degrees of freedom, see Degrees

of freedom
Arguments, common,

control•,222,367
data~, 100, 201
family=,201, 206-209
formula=, 18, 100
method•, 135
na.action•, 113,286-287,415-416
subset•, 116, 221
weights=, Ill, 221

Assessing model adequacy, 5, 104-106, 219,
232, 292, 324

Asymptotic,
approximations, 245, 433
covariance matrix, 205-206, 213-215,

245
Attached data frames, see Data frames
Automobile data, see Data objects

8-spline basis functions, see Smoothing
Backfitting algorithm, 252, 300

convergence, 30o-302
specialized, 302

Baker, R.J., 247, 589
Balanced designs, see Factorial designs,
Bates, D.M., ix, 421, 440-441, 445, 453, 589
Baxter, L.A., Ill, 589
Becker, M.H., x
Becker, R.A., viii, x, 589
Belsley, D.A., 127, 131, 129, 589
Bentley, J.L., 372, 589
Binary response, 195-196, 226, 240, 242-243
Binary tree, see Tree-based models
Binomial,

family, 10, 201
family object, 206-207
model, 207

response, 202, 226
variance, 201, 225, 258

INDEX

Bisquare weight function, 316, see also Local
regression models

Bivariate smooth term, 276
Blending functions, 366, 423
Bootstrap sampling, 121
Boundary knots, 27o-273, see oLio Smooth-

ing
Box, G.E., 146, 160, 193, 451, 589
Breiman, L., 307, 418-419, 589
Brinkman, N.D., 72, 321, 589
Buja, A., 307, 589
Bunch, J.R., 144, 591
Buta, R., 349, 589

c routines, 137, 246, 417
Category, see Factor
Cavendish, J.C., 373, 590
Chambers, J.M., viii, 1, 13, 45, 95, 127, 145,

421, 454, 589-590
Chang, C-H., 419, 590
Cherry, L.R., x
Chi-squared statistic, 210-216, see also Pear

son
Choleski decomposition, 133, 135-136, 140,

143
Chou, P.A., 418--419, 590
Ciampi, A., 419, 590
Clark, L.A., 377
Class/method mechanism, 456-461
Classification tree, see Tree-based models
Cleveland, W.S., 75, 127, 307, 309, 376, 590
Coded variables, see Factors
Coding factors, 32-39

C(), 32, 176, 224, 494
contr.helmert(), 32-33, 223-225
contr.poly(), 32-33, 177, 223
contr.sum(), 32-33, 224-225
contr.treatment(),34, 224
contrasts(),35-36, 176,496
default, 36, 176-178, 224

Comizzoli, R.B., 2, 48, 590
Comparing models, see Model selection
Computational,

accuracy, 191
complexity, 255, 298
efficiency, 125, 117-118, 191, 240
methods, 135, 185, 245, 298, 373, 412,

452--453
Conditional dependence, 341, see also Local

regression models

INDEX

Conditionally parametric models, 341
Conditioning plot, coplot (), 78-85, 333, 496
Conditioning values, see Conditioning plot
Consumer Reports data, see Data objects
Continuous, see Numeric predictor
Contour plot, 291, 309, 355, 423
Contrast,

attribute, 34, 176-177
definitions, 33
matrix, 32-37
see also Coding factors

Cook, R.D., 127, 129, 131, 230-231, 233, 590
Coutts, S.M., 111, 589
Cox, D.R., 246, 451, 453, 591
Cross-validation, 393-394
Crossed,

models, 27
terms, 151
see also Nested

Cubic,
polynomial, poly(), 21, 553
(smoothing) spline, see Smoothing

Data entry, 54-59,
count.fields(), 58
fixed format, 57
read.table(),54-57, 567
scan(), 58

Data frame functions, 54-59
attach(), 67-68
coplot(), 75, 79-85, 495
data. frame(), 59-62, 498
data.matrix(), as.matrix(),65, 500
dim(), dimnames(), 64-65,86
expand.grid(), 62-63
formula(), 29, 202, 513
names(), 57
pairs(), 69, 72-73, 541
plot(), 71, 75, 545
print(), 61
row.names(),67, 173
summary 0, 70, 580

Data frames, 45-94,
adding variables, 67
adding observations, 85-87
as.matrixO, 65
attaching, 67-68
combining, 66-67
constructing, data. frame(), 54-59,498
data.matrix(),65, 500
default formulas, 29, 202
detaching, 68

editing, 67-68
factors in, 52-53
grids to define, 62
matrices in, 52, 60-62
matrices, relation to 64-67, 90
methods for, 85, 476

597

missing data in, 91-92, 113, 286-288
model frame, 9Q-93
na.actions, 91-92
numeric vectors in, 52
parametrized, pframe, 93-94, 429
plotting, 71-85
preliminary cleaning, 51
printing, 49
reading data, format, 54
row names, 60
subsetting, 61, 64, 109-110

Data objects,
air, New York ozone concentration, 81,

300, 348
car. all, Consumers Union, 67
car. test. frame, Consumers Union, 67,

109
catalyst, 147, 150-152
claims, 111-112
cu.dimensions, Consumers Union, 67
cu. specs, Consumers Union, 67
cu. summary, Consumers Union, 46-47,

67,399
ethanol, fuel experiment, 75, 272-280,

331
fuel. frame, automobile data, 70, 100
galaxy, 352
gas, 222
guayule, 157
gun, 152
kyphosis, spinal disease in children, 200,

380
market. survey, AT&T tele-marketing,

382
pigment, 160
pingpo~g,423
Puromycin, 425
solder. balance, AT&T solder experi-

ment, 1
solder2, AT&T solder experiment, 7
solder, AT&T solder experiment, 47
wafer, AT&T wafer experiment, 147

Default,
coding, contrasts, 36
link, 197
method, 461

598

na.action, 113
permanent, 36
smoothing parameter, 254
variance, 197

Defining contrast, 157, 173-174
Defining new classes, 461-463
Degrees of freedom,

approximate, effective, nonintegral, 303,
369

equivalent number of parameters, 317,
369

for generalized additive models, 251,
303

for linear models, 100
for loess models, 317, 369
for tree models, 390

Dennis, J.E., 454, 591
Dependent variable, see Response
Design functions,

design(), 174, 503
design. table(), 184, 504
fac.design(), 169, 507
fractionate(),514
interaction(), 165, 522
interaction.plot(), 167, 523
oa.designO, 171, 539
plot.design(), 164, 546
plot.factor(), 165, 547
randomize(), 175, 565
replications(), 161,568

Design, 48--49, 172,
class, 504
creating, design(), 169-175,503,507,

539
default formula, 153
fractionating, 156, 173, 514
object, 504
plotting, 163-169, 546-547, 523
randomization, 175
replicating, 161, 173

Designed experiment, 1, 47-49, 114, 145-149
Deviance residuals, see Residuals
Devlin, S.J., 307, 376, 590
Diagnostic,

checking, 69, 310, 324
displays, 163-168, 230, 337-339
procedures, 230
tests, 324-327

Direct computation, see Local regression
models

Dispersion parameter, 204, 206, 213, 215,
229, 234, 236, 242, 245

INDEX

Documentation,
online, ? , viii, 482

S functions, 481-582, also ~. 367-
661

Dongarra, J.J., 144, 591
Draper, N.D., 144, 591
Drechsler, R.L., x
Dropping squares, see loess 0
Dropping terms, see Model selection
Dummy variable, 20, 26-27, 33, 37-40, 42,

101, 185, 224

Editing data frames, 64-69
Effective degrees of freedom, see Degrees of

freedom
Equivalent coding, 32, see also Coding

factors
Equivalent degrees of freedom, see Degrees

of freedom
Equivalent number of parameters, see De

grees of freedom
Error model, 158, see also Analysis-of- Variance

models
Error strata, 157, see also Analysis-of- Variance

models
Estimating equations, 244, 300
Evaluated surface, 320
Expanded formula, see Model formulas
Expected Fishe~ information matrix, 213
Experimental design, see Design
Explanatory variables, see Predictors
Exploratory plots, 331, 335
Exponential family, 242, see also General

ized
Extractor functions, 100, 203, 495

coef(), 100, 495
class(), 270, 459
deviance(), 505
effects(), 203, 169
family(), 203, 510
fitted.values(), 100,495
formula(), 40, 103, 116, 513
model.frame(),90, 532
predict(), 203-204, 555
residuals(), 205, 495

Factor, 20
category, 21, 53
class, 461-467
extracting numeric, codes(), 53
creating, factor(), 463, 508
labels of, 411

INDEX

levels of, 462
methods for, 461-475
object, 563
ordered, ordered.factor(), 53, 540
plotting, 165-168, 523, 547
printing, 462

Factorial designs, 169, ~ee also Balanced
design8

Family, 197, 206-209, 225-229, 510
binomial(),206,510
construction, 227-229
Gamma(), 208, 510
gaussian(), 208, 510
generator, 206
inverse.gaussian(),208, 510
object, 207, 512
poisson(), 10, 214, 510
private, 227-229, 246
quasi(), quasi-likelihood, 97, 108, 227,

510
robust(), robustified, 229, 569

Federer, W.T., 157, 591
Final iteration, 205, 213, 229
Final iterative weights, 267
Final robust estimate, see Local regression

models
Fisher, R.A., 145, 453
Fisher, W.O., 419, 591
Fisher-scoring algorithm, 243, 252
Fitted,

additive predictor, 288
coefficients, 100
curve, functions, 100, 221, 239, 324
effects, 150
model, e.g., 100, 526
probabilities, 238-240
surface, 291, 347
terms, 151, 239
tree, 382-384
vaJues,5-7, 96-99,100,203

Fitting methods,
aov(), anova models, 150, 486
gam 0, generalized additive models, 253,

515
glm(), generalized linear models, 199,

518
lm(), linear models, 100, 524
loess(), local regresBion models, 316,

529
ms (), general minimization models, 428,

534
nls (), nonlinear least squares, 428, 536

599

tree 0, tree based models, 382, 584
Formula language, see Model formulas and

Model operotors
FORTRAN routines, 137, 246, 304-306, 375-

376
Fractional factorial designs, see Designs
Francis, B.J., 247, 589
Freeny, A.E., x, 145
Friedman, J.H., 307, 418-419, 589, 591
Functional programming, 457, 480
Functions, 481-582,

add. scope 0, 235
add10 (generic), 125, 211, 483
alias() (generic), 179-181, 156, 484
all.wam(),294, 305
anova() (generic), 151, 21o-211, 264,

321, 485
aov(), 150, 486
aov.genyates(), 192,487
as.data.frame(),63-64,488
as.matrixO, 65
attach.data.frame() (method),67-68
basis.tree(), 410
binomial(),201,206-207, 510
browser() (generic), viii, 399, 489
bs(), 27o-273,491
burl.tree(),402, 492
co, 32, 176, 494
class(), 270, 459
co.intervals(),333
codes(), 53

. coef(), coefficients() (generic,
extractor), 100, 151, 495

column.prods(),38
contr.helmert(),32-33
contr.poly(), 32-33
contr.sum(), 32-33
contr.treatment(), 34
contrasts(),35-36, 496
coplot(), 79-85,333,496
count.fields(),58
cv.tree(),39o-391,410
D(), 436
data. class(), 56
data.frame(),54-59,498
data.matrix(),65, 500
·database.attrO, 88
database.object(), 88
database.type(),88
derivO, 436, 501
design(), 174, 503
design.tab1e(), 184, 504

600

Functions (continued),
deviance() (generic, extractor), 505
drop. scope(), 235
drop10 (generic), 125, 505
effects() (generic), 169, 203
Error() , 158
ezpand.grid(),62-63, 290,319
fac.design(), 169-175, 507
factor(), 463, 508
factor.names(), 171-174,509
family() (generic, extractor), 203, 510
fitted(), fitted. values() (generic,

extractor), 100, 203, 288, 495
formula() (generic, extractor), 103, 116,

513
fractionate(),514
frame.attrO, 89
gam(), 254, 515
gam.control(),305
gam.lo(), 306
gam.nlchisq(),306
gam.random(),294-295
gam. s (), 293, 306
gam. scope(), 283
Gamma(), 208, 510
gaussian(), 208, 510
glm(), 199, 518
glm.control(),223
glm.fit(), 246
gplot () (generic), 296
hist. tree(), 404
I(), 30, 101
identify. tree() (method), 401
inherits(),462, 521
interaction(), 165, 522
interaction.plot(), 167,523
inverse.gaussian(),208, 510
jitter(), 353
kappa(), 115
labels() (generic), 41, 408
lmO, 100, 524
lm.fitO, 118
lm.fit.chol(), 135
lm.fit.qrO, 135
1m. influence(), 130, 233
lm.sensitivity(), 141
lm.vfitO, 120
lo(), 254, 528
lo. wam(), 294
loess(), 317, 529
loess.control(), 367
loess.matrix(),66

make.family(), 227
make.fields(),57
make.grid(), 63
make.names(), 60
meanvar.tree(),409

INDEX

model. frame() (generic, extractor), 90,
532

model.matriz(),43, 92,224
move.frame(), 89
msO, 428, 534
ms.control(),444
na.gam.replace(),286-288
na.omitO, 113
na.pattern(),416
na.tree.replace(), 416
new.frame(), 89
NextMethod(), 461
nls (), 428, 536
nls.control(), 444
ns(), 270-273, 538
oa.design(), 171, 539
offset(), 222
Ops.factor(), 465
ordered(), 53, 540
pairs(), 72, 541
panel.smooth(), 335, 542
param(), 431, 543
parameters(),429,543
partition.tree(),410-412,544
path. tree(), 401
pattern(), 180
plot 0 (generic), 71, 163, 217, 256, 328,

386, 545
pointwise(), 320
poisson(),208, 510
poly(), 31, 108, 219-220, 553
post.tree(), 410,554
power 0, 228
predict() (generic, extractor), 107,203,

238-241, 288-292, 320, 393, 555
preplot () (generic), 295, 368, 561
print 0 (generic), 100
profile(), 440
pro j (), 182, 562
prune.tree(),389, 563
qqline(), 326, 564
qqnorm() (generic), 168-169, 564
quasi(), 197,208,510
random(), 294-295
randomize(), 175, 565
raovO, 160, 566
read. table 0, 55, 567

INDEX

Functions (continued),
replications(), 161, 568
resid(), residuals() (generic, extrac-

tor), 203-205, 495
robust(),229, 569
row.names(), 67, 173
rug() (generic), 405
s(), 254,570
smooth.spline(),254, 299,574
s.wam(), 294
scatter.smooth(),324, 571
select.tree(), 398, 572
shrink.tree(), 390, 573
snip. tree(), 396,576
specs(), 318
split.screen(), 396, 577
stat.anovaO (method), 213
step() (generic), 234-237, 281, 579
summary() (generic, extractor), 70, 105,

204,262,322,388,432,580
terms(), 460
text.tree() (method), 386
tile. tree(), 405
trace() (generic), 405, 445, 470-471,

582
tree(), 382, 584
tree.control(),415.
tree.screens(), 396
unclass(), 85, 228
update() (generic), 102, 116-117, 209-

210, 317, 586
UseHethod(), 460
zoom. tree() (method), 412
. Internal 0, 461
"[" 0 (generic), 86, 385, 465

Galaxy velocity, see Data objects
GAM, see Generalized additive models
Gamma models, see Family,
Gas data, see Data objects
Gauss-Seidel iterative method, see Backfit·

ting
Gaussian error model, 196-198, 254, 312,

426
Gay, D.M., 452, 591
Gelernter, D., 480, 591
General likelihood models, see Nonlinear models
General minimization models, see Nonlinear

models
Generalized additive model functions,

all.wam(), 294, 305
anova(), 264, 485

deviance(), 505
gam(), 254,259,515
gam. control(), 305
gam. scope(), 283
lo(), 254, 273-276, 428, 528
lo.wam(), 294

601

plot(), 256-259, 295-298, 545, 548
predict(),288-292, 555
preplot(), 295-296, 561
print(), 256
residuals 0, 205, 495
sO, 254, 570
s.wamO, 294
step(),28Q-285, 579
summary(),262, 580
update(), 262, 586

Generalized additive models, 249-307,
algorithms for, 252, 300-303
backfitting algorithm, 30Q-302
background,25Q-251 '
class of, 270, 51-7:
comparing, 279-280
degrees of freedom for, 259, 303
displaying, 259
estimation of, 300-303
examples, 257, 259-264, 273-280
fitting, gam(), 254, 515
formulas in, 251, 259, 270
missing data, 286-288
model selection for, 276-285
parametric versions, 27Q-272
prediction, 288-292
scatterplot smoothers, 254-255, 298-

300
standard errors for, 263, 303-304

Generalized linear model functions,
add1(),211,234-238,483
anovaO, 211, 485
binomial(),206, 510
deviance(), 505
dropl(), 211, 234-238, 505
family(), 203, 510
fitted(),203, 495
Gamma(), 208, 510
gaussian(),208, 510
glm(), 199-202, 518
glm.control(), 223
inverse.gaussian(), 208, 510
plot(),216-218,22Q-221, 545
poisson(),208, 510
power(), 228
predict(),238-241,288-292,555-556

602

print(), :!01
quasi(). 208, 227, 510
residuals(), resid(), 205, 495
robust(), 229, 569
step(), 233-238,28Q-285, 579
summary(), 204, 580
update(), 209-210, 586

Generalized linear models, 195-247,
anova tables, 211, 233-238
background, 195-199
class of, 203, 520
coding factors for, 223-225
deviance, 242-243
diagnostics for, 23Q-233
examples, 10, 200, 214
families, 197, 206--209, 225, 510
fitting, glm(), 199, 242-243, 510
formulas in, 202
initialization, 222, 225-226, 246-247
likelihood inference, 242-243
link functions, 197
methods for, 203
model selection, 233-238
prediction, 238-241
prediction (safe), 288-292
quadratic approximation, 244-245
quasi-likelihood, 197
residuals for, 205
variance functions, 197
weighted least squares, 213-216, 245

Generic functions, 460, 478
add1(), 125, 211, 483
alias(), 179-181, 156, 484
anova(), 151, 21o-211, 264, 321, 485
browser(), viii, 399, 489 ·
coef(), coefficients() (extractor), 100,

151, 495
deviance() (extractor), 505
drop1 0, 125, 505
effects(), 169, 203
family() (extractor), 203, 510
fitted(), fitted. values() (extractor),

100, 288, 495
formula() (extractor), 103, 116, 513
llobels(), 41, 408
••ndel.frame() (extractor), 90, 532
lolotO, 71, 163, 217, 256, 328, 386,

545
1-t"edictO (extractor), 107, 203, 238-

241,288-292,320,393,555
~~ep1ot(), 295,368,561
l<rint(), 100

INDEX

qqnorm(), 168-169,564
resid(), residuals() (extractor), 203-

205,495
rug(), 405
step(), 234-237, 281, 579
summary() (extractor), 70, 105,204, 262,

322,388,432,580
trace(),405, 445, 47Q-471, 582
update(), 102, 116--117,209-210,317,

586
"[" 0' 86, 385

GLIM, 24, 44, 247
GLM, see Generalized linear models
Golub, G.H., 137-138, 140, 144, 453, 591
Goodness-of-split, 402, 414
Gradient matrix, 434, 443
Graphical,

diagnostics, 170, 231, 316, 321
interaction, 268, 398-406
summaries, 5o-51, 69-85

Gray, R.M., 418, 590
Grieco, M.J., 147, 592
Grosse, E., 309, 376, 590
Group method, 459, 471-475, 478

Half-normal plot, 168-169
Hanson, R.J.,
Hastie, T., 1, 13, 195, 247, 249, 307, 419,

589, 591
Healy, M.J.R., 247, 591
Heiberger, It.M., ix, 145, 193, 591
Herzig, A., x
Hicks, C.R., 152, 591
Hierarchical models, 149, 234-236
Hinde, J.P., 247, 589
Hinkley, D.V., 453, 591
Hogg, S., 419, 590
Householder decomposition, 133, 136
Hunter, S., 146, 160, 193, 589
Hunter, W.G., 146, 160, 193, 589

Identifying nonlinearities, 249
Identity function, I(), 30, 101
Ill-determined models, 138-144
Independence model, 198-199, 215
Inestimable contrast, 178-181
Information matrix, 223, 245, 303, 427
Inherited,

class, 462, 471
method, 459, 461
frame, 467

Initial estimate, values, 222, 225-229, 246-
247, 316, 429-430

INDEX

Interactions,
creating, 22-28
term, 25
two-factor, 22
higher-order, 22, 28-30
plots, 167-168

Intercept term, see Model formulas
Interior knots, 27Q-273, see also Smoothing
Inverse link function, 288, 291, 240
Inverse logit transformation, 204
Iterative algorithms, fitting, 243-244, 30Q-

303,316,452-453

Jagannathan, S., 480, 591
James, D., x, 49

Kackar, R.N., 147, 592
Kalbfleisch, J.G., 453, 592
Kass, G.V., 418, 592
Keene, S.E., 479, 592
Kernel smoothing, 293
Kleiner, B., 127, 590
Kuh, E., 127, 131, 129, 589

Lambert, D., x, 425, 592
Landwehr, J.M., 2, 48, 590
Lawson, C.L., 144, 592
Leaf nodes, see 1\-ee-based models,
Least-squares fitting, see Linear models
Legitimate coding, 34
Lehmann, E.L., 453, 592
Leverage, 130
Likelihood estimation, see Mozimum-likelihood

estimation
Likelihood function, 242, 423
Likelihood-ratio statistic, see Deviance
Lindstrom, M.J., 453, 589
Linear model functions,

addl(), 124-129,245,483
anova(), 126, 485
coefficients(), coef(), 100, 495
dropl(), 124-129,245,483
fitted(), 100, 495
kappa(), 115
lmO, 100, 524
lm.fitO, 118
lm.fit.chol(), 135
lm.fit.qrO, 135
lm.influence(), 130,233,245
lm.sensitivity(), 141
lm.wfit(), 120
plot(), 104, 545

predict(), 106-109, 555-556
residuals(),resid(), 100,495
summary(), 105, 580
update(), 116-117,586

Linear models, 95-144
background, 95-99
class of, 526
diagnostics for, 129-131
examples, 100, 103
fitting, lm(), 100, 524
formulas in, 18-31, 100
methods for, 100, 203
model selection, 124-129
numerical methods for, 135-138
options for, 109-117
predictions, 106-109, 238-241
predictions (safe), 288-292
updating, 116-117

Linear predictor, 195--197, 203, 205
Linear smoothers, 299
Link functions, 197

complementary log-log, 208
identity, jl, 256
log, log(l-'), 10, 214
logit, log(l-'/(1 - 11)), 207
power, 11"', 209, 228
probit, ~- 1 (1-'), 207

LINPACK subroutine library, 144
Local approximation, 312-314, see auo

Local regression models
Local regression model functions,

anova(), 321, 485
coplot(),333,496
co.intervals(),333
fitted(),324, 495
loess(), 317, 529
loess.control{),367
pane1.smooth(),333, 542
plot(), 328, 550
pointwise(), 320
predict(), 320, 555
preplot(),368, 561
print(), 317
residuals(),324, 495
scatter.smooth(),324, 571
specs(), 318
summary 0, see print()

Local regression models, 309-376
algorithm, 312-315

603

approximate computation, 373-375
background, 309-311
choices in fitting, 313-316

604

class of, 531
conditionally parametric, 341
confidence intervals, 347, 358
diagnostic checking, 324, 362, 364
direct computation, 366--367
displaying, 333, 341
equivalent numbers of parameters, 317,

37Q-37l
error models, 314-315
examples, 321, 331, 348, 352, 359
fitting, 1oasa(), 317, 529
inference, 327-331, 37Q-371
local linear fit, 312-313, 341
local quadratic fit, 312-313
robust estimation, 315-316, 355
scale normalization, 315, 318
tricube weight function, 314

Local scoring algorithm, 252
Loess, see Local regression models
Log likelihood, 242
Log link, see Link functions
Log-linear model, 195, 197-198
Logical variable, 10, 21, 27
Logit link, see Link functions
Long-tailed distribution, 315
Lookabough, T., 590
Lowess, see Local regression models
Lubinsky, D., x

Macauley, F.R., 376, 592
Main-effects model, 5-7, 29, 153, 198
Mallows, C.L., 423, 592
Marginal grid values, 319-320
Matrix of predictors, see Mode! matrix
Matrix variable, 46, 52, 65
Maximum likelihood,

estimation, 242-245, 302-303, 423-425
inference, 241-245, 438-440
models, 250, 422-427
score equations, 433.-438
see also Nonlinear models

McCullagh, P., 197, 247, 453, 592
McKinney, S., 419, 590
McLain, D.H., 376, 592
Mean/variance relationship, 196-197
Messenger, R.C., 418, 592
Methods,

arguments to, 467
assignment, 477
group, 471
invoking, 46Q-461
NextMathod(),464-466,469,471

objects to identify, 470
private vs public, 461
replacement, 475
writing, 461

INDEX

see also Object-oriented progmmming
Minimal cost complexity, 387-391
Minimum-deviance estimation, see Ma:eimum

likelihood estimation
Missing data, 8, 56, 91, 112-113

missing response, 286-288
na.action, 8, 91, 112-113
na.fail() (default), 112
na.gam.rap1aca(),286-288
na.omit(),91-92, 113,282
na.traa.rap1aca(), 416
strategies, 112-113, 286-288, 416

Model building, see Model selection
Model formulas, 13-44

1, intercept in, 19
-1, intercept out, 19, 37-40, 113
bs(), 27Q-273, 491
co, 32, 494
complicated, 28-31
creating, 18
dot, ".", 29
Error(), 158
expanded, 28
expressions, 3Q-31
I(), 30, 101
implicit, 29, 202
interactions, 25
language, 37-40
lo(), 254, 528

•
logical variables in, 21, 258
matrices, 21
methods for, 40, 103, 116-117
nesting, 25-28
ns(), 27Q-273, 538
numeric variables, 2Q-21
offset(), 222
operators, see Mode! operators
poly(). 31, 108, 219-220, 553
response, 18-21, 24, 29
s(), 254,570
terms, 40, 41
updating, 210, 116-117
see also Model opemtors

Model frame,
as data, 9Q-93
constructing, model.frama(), 901, 532
data.matrixO, 65, 500 ·
modal.matrix(),90

INDEX

terms of, 42
Model matrix, 21, 23-24,

assign list, 43-44, 7Q-92
attributes of, 43
coding in, 32-36
creating, modal. matrix 0, 43
factors in, 32
interactions in, 43
logical vectors in, 21
matrices in, 21
numeric vectors in, 21
subsetting, 121
see also Model fonnullU

Model operators and notation, 29
:' 28, 101
0, 30
/, 26, 30
", 30
- ' 19, 37-40, 113
+ '18, 29

"'' 22
~. 19
1, 19
-1, 19

Model selection,
adding/dropping terms, 124-129, 234-

238
AIC, 234-235, 282
Cp, 235
criteria, 234, 282
step-wise, 233-238, 28Q-285

Moler, C.B., 144, 591
Morgan, J.N., 418, 592-593
Multinomial distribution, 198
Multiple-error strata, see Analysis of vari-

ance models
Multiple-response model, 154, 169

Natural cubic spline, see Smoothing
Natural link, 242-243
Natural parameter, 242
Neighborhood weights, 314
Neider, J.A., 197, 247, 453, 589, 592
Nested,

models, 27
terms, 151
see also Crossed

Nesting operator, 25-27, 30
Newton-Rapbson algorithm, 243
Nonlinear least-squares, see Nonlinear models
Nonlinear model functions,

dariv(), 436, 501

ms (), 428, 534
ms.control(),444
nls(), 428, 536
nls.control(),444
param(), 431, 543
parameters(), 429, 543
print(), 432
summary(), 432, 580

Nonlinear models, 421-454
algorithms, 452-453
background, 421-427, 453
examples, 430--433, 440--444
fitting, ms(), 428, 431, 534
fitting, nls(), 428, 430, 536
formulas in, 428-429
gradient, 434-438
initial values, 430

605

maximum likelihood, 423, 434-438
nonlinear least-squares, 425, 428, 430,

438, 450
object, 535, 538
parametrized data frames, 429-431
partially-linear models, 440--444
profiling, 438
starting values, 430, 536, 538
summaries, 432-433
tracing, 445, 536
zero-inflated Poisson, 424-425

Nonlinear transformations, 219
Non parametric,

components, 289, 303-306
estimates, 252-254, 298-299
functions, 255, 290, 325
models, 250, 312-314
terms, 262, 270
transformations, 306

Normal equations, 133, 136-137, 243, 300
Normal probability plot, 106, 124, 358, 366
Normal quantile-quantile plot, 168
Null deviance, 204
Numeric variable, 21
Numerical accuracy, 137, 141, 434, 452
Numerical methods, 131-144, 184-193, 241-

247, 298-306, 373-376, 412-419,
452-453

Numerical rank, 114

Object-oriented programming, 455-480
classes, 460--463, 466
creating classes, 461-463
examples, 461-463, 468
generic functions, 478

inheritance, 463-467
in S, 455, 459
languages,456-459
methods, 467, 471
methods, assignment, 477
methods, group 471
methods, replacement, 475
see also Methods

Offset, see M~del formullls
Olshen, R., 418-419, 589
Online documentation, see Documentation
Operator matrix, 299, 303, 368-375
Ordered factor, see Factor
Orthogonal,

array design, see oa.design()
basis, model matrices, see poly()
contrasts, see Coding factors
decomposition, see QR decomposition

Over-determined models, see aliasing

Panel function, 335, see also coplot ()
Parameter attributes, 429
Parameter estimates, 100-101, 201, 203. see

also coefficients()
Parameterized data frame, 429
Parametric,

additive models, 270-273
component, 287, 301-306
r.ransformatim.s, 304

Partial confounding, see Analysis-of-variance
models

Partial residual plots, 218-219, 249
Partial residuals, see Residuals
Partially linear models, see Nonlinear models
Pearson,

residuals, 205, 216
chi-squared statistic, 205-206
~hi-squared statistic (scaled), 213-216

Penalized,
least squares, 300
likelihood, 302-303

Pereyra, V., 453, 591
Permanent assignment, 459, 476-477
Perspective plot, 276-277, 289-290
Phadke, M.S., 147, 592
Piece-wise polynomials, 270-273, 279
Plot methods, see modeling entries
Pointwise standard errors, 108, 220. 239-

241, 263-268, 297, 341
Poisson data, 10, 214-217
Poisson family, see Family
Poisson models, see Generalized lmear /additive

models

Polynomial,
contrasts, see Coding factors
functions, regression, see poly()
smoothing splines, see Smoothing
spline, 27D-273

Predict methods, see modeling entries
Predicted response, 106, 203, 238
Predictor-variables types, 21,

expression, 31
factor (and categorical), 32-35
logical, 31
matrix, 103
numeric, 100
see also Mode! formulas

Pregibon, D., 195, 247, 377, 419, 591-592
Print methods, see modeling entries
Printed summary, 70, 206, 580
Prior weights, 221, 242, 245
Private default, see Defaults
·Private method, see Methods
Probit link function, see Link functions
Pruning sequence, see Tree-based models
Pseudo-values, 371-372
Public/private distinction, 461

QR decomposition, 132-137, 245, 306
Quadratic approximation, 196,206, 244-245,

439-440,452
Quantile plots, 7i, 168
Quantitative, see Numeric predictor
Quasi-likelihood, 197, 227

R-squared statistic, 105
Random effects, 105, 159, 294-295
Reade, C., 20, 198-199, 251, 253, 307, 480,

592
Recursive partitioning, see '1"-e-based models
Recursive shrinking, 390
Repeated fitting, 118-124
Replacement method, 475-476
Residual,

degrees of freedom, 105, 202. 259
deviance, 201-202, 205, 242-243
plots, 104,128,216-208,326-328
standard error, variance, 100

Residuals, types, 205
Resistant fitting, see Robust fitting
Response, 18,216,428

expressions, 20, 24
residuals, 205
variable, 18, 41, 226

Ridge regression, 294

Riley, M., x
Robust fitting, 229, 315-316, 423
Robustness weights, see Robust fitting
Rogers, C.E., 24, 28, 44, 247, 593
Ross, G.A.F., 111, 589
Row naiDes, rov.names(), 57, 67, 173
Rudy, D., x

S evaluator, 67-68, 89, 455, 460, 470, 475
S, calling from FORTRAN or c, 305
Scaled Pearson chi-squared statistic, see

Pearson
Scatterplot matrix, pairs(), 69, 71-72, 82,

331-332, 541
Scatterplot smoothing, see Smoothing
Schnabel, R.B., 454, 591
Score equations, see M czimum likelihood
Score test, 216, 235, 245, 262
Searle, S.R., 144, 160, 193, 592
Seber, G.A.F., 453, 592
Sensitivity estimates, 14o-143
Shibata, R., x ·
Shrinking smoother, 293-294
Shyu, W.M., 309
Sinclair, J.D., 2, 48, 590
Single-square-bracket method, 385, 465
Singular gradient, 443
Singular models, 34, 114-115, 143
Singular-value decomposition, 14o-143
Smith, H., 144, 591
Smooth curve, 14, 72, 219, 25o-254, 317.
Smooth term, 250-252, .270, 293-294, 298-

302
Smoother operator .matrix, .299-300
Smoothing, ·

B-splines, bs(), 270-273, 491
lo() in GAM formulas, 254, 293, 528
local regression, loess 0, 317, 529
natural splines, nsO, 27o-273, 538
parameter, 251;,254, 293, 298-300, 314,

317 .
regression splines, 27o-273
s 0 in GAM formulas, 254, 293, 570
smoothing splines, smooth. spline(), 299,

574
Snipping nodes, see Tree-based models
Solder experiment, see Doto objects
Sonquist, J.N., 418, 593
Speeney, D.V., 147, 592
Split-screen mode, 396, 577
Splitting rules, see Tree-based models
Square-root transformation, 5, 9-10, 214

Standard errors, 105, 204, see also PointWise
stondord errors

Standardized residuals, see Residuals
Starting values, see Initial values
Step function, 21, 220, 265, 279
Step-wise models, see Model selection
Stewart, G.W., 144, 591
Stochastic part, 13-14, 18-19
Stone, C.J., 376, 418-419, 589, 593
Stroustrup, B., 479, 593
Structural part, 13-14, 18-19, 99
Stuetzle, W., 307, 591
Subset selection, see Model selection
Subsets ([operator), 385, 465
Summarizing objects, see sUIIIIIIary 0
Surrogate splits, see Tree-based models
Symmetric errors, 315, 353-355
Systematic component, see Structural port

Tensor product interaction, 269
Term, see Model formulos
Terminal nodes, see Tree-bosed models
Terpening, 1., x
Therneau, T., x
Tibshirani, R., x, 247, 307, 589, 591
Tierney, L., 479, 593
Tree functionals, 418
Tree-based model functions,

basis. tree(), 410
brovser(),399, 489
burl.tree(),402,492
cv.tree(),39o-391,410
hist.tree(), 404
labels 0, 408
na.pattern(),416
na.tree.replace(),416
partition.tree(),41o-412
path.tree(),401-402
plot(), 386
post.tree(),410, 554
predict(), 393, 560
print(), 385
prune.tree(),389,563
rug(), 405
select.tree(),398, 572
shrink. tree(), 390, 573
snip.tree(),396, 576
summary(),384, 388,580
text.tree(), 386
tile.tree(), 405
tree(),382,386, 584
tree.control(),415

608

tree.screens(),396
zoom. tree(), 412
"["() '385

Tree-based models, 377-419,
algorithms, 412-417
background, 377-378
class of, 585
cross-validation, 387-391
displaying, 383, 387, 389, 397, 400
examples, 382, 386
factor response, 380-382
fitting, tree(), 382, 584
generalized, 413-414, 417-418
missing data, 415-,1116
numeric response, 378
prediction, 391-393
pruning sequence, 390, 393, 402
size, 389-390
snipping, pruning, 387-391, 396-398
subsetting, 385
surrogate splits, 413
tenninal nodes, leaves, 405

Tricube weight function, 314
Thkey, P.A., 127, 590
Two-dimensional smooth surface, 276, 335
Two-factor interaction, see Interaction
Two-level factor, see Factor
Two-way interaction, see Interaction

Unbalanced,
designs, 161-163
incomplete designs, 157, 169-175

Unordered factors, see Factors
Unsealed covariance, 106, 135
Updating, update(), 102, 116-117,209-210,

317,586
Upper-triangular matrix, 132, 186-187

Valid coding, 39, 185-186
van Loan, C.F., 137-138, 140, 144, 591
Vander Wiel, S.A., x
Variable selection, see Model selection
Variance functions, 197

binomial, ~(1 - ~), 207
constant, 227
identity, IJ., 226

Vector geometry, 95

Wahba, G., 307, 593
Watson, G.S., 49, 376, 593
Watson, J.W., x
Watts, D.G., 440-441, 445, 453, 589

INDEX

Wave soldering data, see Data objects
Weighted least-squares, 198, 206, 233, 244-

247,303
Weisberg, S., 127, 131, 129, 144, 590, 593
Welsch, R.E., 127, 129, 589
Whittaker, E., 307, 593
Wild, C.J., 453, 593
Wilkinson, G.N., 24, 28, 44, 247, 593
Wilks, A.R., viii, x, 589
Working,

data, 68, 117, 431
residual, 205, 218, 267
response, 217, 243, 245, 252, 302-303,

306

X matrix, see Model matrix
X variables, see Predictor variables

Y variable, see Response

Zaslavsky, A., x
Zero-weighted observations, 111-112

