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Preface 

Scientific models - simplified descriptions, frequently mathematical - are central 
to studying natural or human phenomena. Advances in computing over the last 
quarter-century have vastly increased the scope of models in statistics. Models 
can be applied to datasets that, in the past, were too large even to analyze, and 
whole classes of models have arisen usil)g intensive, iterative calculations that would 
previously have been out of the question. Modern computing can make an even more 
important contribution by providing a flexible, natural way to express models and 
to compute with them. Conceptually simple, "standard" operations in fitting and 
analyzing models should be simple to state. Creating nonstandard computations for 
special applications or for research should require a modest effort based on natural 
extensions of the standard software. 

This book presents software extending the S language to fit and analyze a variety 
of statistical models: linear models, analysis of variance, generalized linear models, 
additive models, local regression, tree-based models, and nonlinear models. Models 
of all types are organized around a few key concepts: 

• data frame objects to hold the data; 

• formula objects to represent the structure of models. 

The unity such concepts p~ovide over the whole range of models lets us reuse ideas 
and much of the software. 

Fitted models are objects, created by expressions such as: 

mymodel <- tree(Reliability "' . , cars) 

In this expression, cars is a dataset containing the variable Reliability and other 
variables. Calling the function tree() says to fit a tree-based model and the formula 

Reliability "' . 

says to fit Reliability to all the other variables. The resulting object mymodel has 
all the information about the fit. Giving it to functions such as plot() or summary() 

produces descriptions, including various diagnostics. Giving it to update 0, along 

v 
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with changes to the formula, data, or anythi11g else about the lit produces a new 
fitted model. The goal is to let the data anqJyst think about the content of the 
model, not about the details of the computat.ilm. 

Many users will want to go on to develop iclc~as of their own, by using and mod
ifying the underlying software. Making such c•xtensions easy was one of the main 
goals of our software design and of the book's organization. The functions provided 
should be a base on which to build to suit your own interests. The material cov
ered here is far from the whole story. We hope to see many new ideas worked out: 
improvements in efficiency and generality of the existing functions; specialization of 
the software to applications areas; extensions to new statistical techniques; and dif
ferent user interfaces building on this software. In writing the book and distributing 
the software, we hope many of you will become involved in these exciting projects. 

Reading the Book 

The book is designed to accommodate different interests and needs. Each chapter 
covers a topic from beginning to a fair degree of depth. If your interests center on 
one topic, you can read right through that chapter, referring back to other chapters 
occasionally if you need to. If your interests are more general, you will be better off 

_ reading the beginning of several chapters (the first section to get the general ideas, 
or the first two if you want to do some computing). Skip the later sections of the 
chapters at first; they are likely to seem a bit heavy. 

The book begins with three chapters of general and introductory material, in
cluding a first chapter that informally shows off the style by presenting a sizable 
example. However you plan to read the rest of the book, we strongly recommend 
reading this chapter first, to make later motivation dear. If you aren't sure whether 
the book is for you or not, the first chapter should help there also. The heart of the 
book, Chapters 4 through 10, deals with the statistical models, from linear models 
to tree-based models. Finally, the material in the appendices gives computational 
details related to all the previous techniques. In particular, Appendix A presents the 
computational core of our approach, a new system of object-oriented programming 
inS. 

The chapters on specific kinds of models are organized into four sections, treating 
the topic of the chapter in successively greater detail. The first section introduces 
the statistical concepts, the terminology, and the range of techniques we intend to 
cover in the chapter. The intent is to let readers acquainted with the statistical 
topic match their understanding to the terminology and context we will be treating 
in later sections. Reading just the first section of each such chapter will give an 
overview of the contents of the book. The second section of each chapter introduces 
the basic S software with examples. Reading the first two sections of a chapter 
should allow you to start applying the ideas to your own data. 

The third and fourth sections of thP chapters introduce more advanced use of 
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the software and explain some of the computational and statistical ideas behind the 
software. One or both of these sections will be recommended if you plan to extend 
the software or to use it in nonstandard ways, but you should probably wait to read 
them until you are familiar with the basic ideas. 

As ideas from previous chapters come up, some back-referencing may be needed. 
However, once you have a grasp of the basic ideas about models and data, the 
individual chapters should be largely self-contained. 

For purposes of learning the statistical methods-for example, in a course-this 
book should be combined with one or more texts treating the kinds of model being 
discussed. Bibliographic notes at the end of each chapter suggest some possibilities. 
For purposes of learning about statistical computing, the later sections of the chap
ters introduce numerical and other computational techniques, again with references 
for further reading. 

The Plots 

Although graphics is not an explicit topic of this book, good plotting is essential 
to our approach. We believe that examining the data and the models graphically 
contributes more than any single technique to using the models well. Skimming 
through the book anywhere between Chapter 5 and Chapter 9 should suggest the 
importance of the plots. We emphasize simple graphics expressions; for example, 

plot(object) 

should produce something helpful, for all sorts of objects. The plots in the book 
can all be done in S; we show them in PostScript output, but the software is device·· 
independent. Several of the chapters feature new graphical techniques, such as a 
conditioning plot to show gradual changes in patterns. There are also plots with 
mouse-based interactive control, including a flexible plotting toolbox for additive 
models and interactive plotting for tree-based models. 

The New Software 

The software for statistical models to be described in this book is part of the 1991 
version of the S language. The 1991 version is a major revision that incorporates, 
in addition to the statistical models software itself: 

• A mechanism'ior object-oriented programming, using classes and methods. 
This new programming style pervades all the modeling software. It makes 
possible a simpler approach for ordinary computation, with a few generic 
functions applicable to all the kinds of model. Extensions of the software 
are easier and cleaner through the use of classes and methods. Appendix A 
describes the use of classes and methods in S. 
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• Extensions to the treatment of S objects in databases. There are a number 
of these extensions. the most important for the modeling software being the 
ability to attach S objects as databases. This capability allows formulas in 
models to be interpreted in terms of the variables in a single data object. The 
riatabase extensions are described in Section 3.3.2. 

• A new facility for interactive help. This you should find useful right away. The 
character "?" invokes interactive help about a particular object or expression: 

?lm would give you help about the lmO function; 

?myfit for some object myfit gives help concerning that class of objects; 

?plot (myfit) gives you information in advance about using the function plot() 

on myfit. 

Typing ? alone gives help on the on-line help facility itself. 

• A new set of debugging tools. These are chiefly new versions of the functions 
trace() and browser(). 

• A "split-screen" graphics system that allows flexible arrangements of multiple 
plots on a single frame. 

• A large number of extensions to numerical_methods, graphics, functions for 
statistical distributions, and other areas. 

Relevant new features will be described as they arise throughout the book. 
Some basic familiarity with simple use of S will be needed for this book, but you 

should be able to learn what you need either as you read the book or by spending 
a little while learning S beforehand. S is a large, interactive language for data 
analysis, graphics, and scientific computing. Other than the material in the present 
book, Sis described in The NewS Language, (Becker, Chambers, and Wilks, 1988). 
We will refer to this book by the symbol ~, usually followed by a page or section 
number. The first two chapters of ~ will be. enough to get you started. 

Detailed Documentation 

Appendix B contains detailed documentation for a selected subset of the functions, 
methods and classes of objects. Online documentation is available for these, and 
for all the other functions discussed in the book, by using the "?" operator. 

Obtaining the Software 

The S software is licensed by AT&T. Information on orderingS can be obtained by 
calling 1-800-462-8146. Sis available either in source form or in compiled (binary) 
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form. There is one version only of the source, while the binary comes compiled for a 
particular computer. For most use, we recommend a binary version, with support. 
Several independent companies provideS in this form; call the phone number above 
for more information. If you want S in source form, you can order it directly from 
AT&T. 

The software you get must be the 1991 version or later. The version date should 
be shown when you receive the software, or you can check it before running S, by 
typing 

S VERSION 

The response should be a date. If the command isn't there or t.he date is earlier 
than 1991, you won't be able to run the software in this book. Check with the 
supplier of the software about getting an updated version. 

The statistical modeling software is available as a library of S functions, plus 
some c and FORTRAN code. Depending on the local installation, you may get the 
statistics material automatically or may need to use a special command. In S, type 
the expression 

> library(help=statistics) 

to get the local documentation about the library. 
As you read through the book, we recommend pausing frequently to play with 

the software, either on your own data or on the examples in the text. The majority 
of the datasets used in the book have been collected in the S library data: 

> library (data) 

will make them available. The figures in the book were produced using a PostScript 
device driver in S; the same S commands will produce plots on your own graphics 
device, though device details may cause some of them to look different. 

Acknowledgements 

This book represents the results of research in both the computational and statistical 
aspects of modeling data. Ten authors have been involved in writing the book. All 
are in the statistics research departments at AT&T Bell Laboratories, with the 
exceptions of Douglas Bates of the University of Wisconsin, Madison, and Richard 
Heiberger of Temple University, Philadelphia. The project has been exciting and 
challenging. 

The authors have greatly benefited from the experience and suggestions of the 
users of preliminary versions of this material. All of our colleagues in the statistics 
research departments at AT&T Bell Laboratories have been helpful and remark
ably patient. The various beta test sites for S software, both inside and outside 



X PREFACE 

AT&T, have provided essential assistance in uncovering and fixing bugs, as well as 
in suggesting general improvements. 

Special thanks are due to llick Becker and Allan Wilks for their detailed review 
of both the text and the underlying S functions. Comments from many other 
readers and users have helped greatly: special mention should be made of Pat Burns, 
Bill Dunlap, Abbe Herzig, Diane Lambert, David Lubinsky, llitei Shibata, Terry 
Therneau, Rob Tibshirani, Scott Vander Wiel, and Alan Zaslavsky. In addition to 
the authors, several people made valuable contributions to the software: Marilyn 
Becker for the analysis of variance and the tree-based models; David James for 
the multifigure graphics; Mike lliley for the algorithms underlying the tree-based 
models; and Irma Terpening for the local regression models. Lorinda Cherry and 
llich Dreschler provided valuable software and advice in the production of the book. 

Thanks also to those who helped supply the data used in the examples. For the 
wave-soldering experiments, we are indebted to Don Rudy and his AT&T colleagues 
for the data, and to Anne Freeny and Diane Lambert for help in organizing the data 
and for the models used. Thanks to Consumers Union for permission to use the 
automobile data published in the April, 1990 issue of Consumer Reports. Thanks 
to James Watson of AT&T for providing the long-distance marketing data and to 
Colin Mallows for the table tennis data. 

It has been a pleasure to work with the editorial staff at Wadsworth/Brooks Cole 
on the preparation of the book; special thanks to Carol Dondrea, John Kimmel, 
and Kay Mikel for their efforts. 

JMC & TJH 



Contents 

1 An Appetizer 1 
John M. Chambers, Trevor J. Hastie 
1.1 A Manufacturing Experiment . . . . 1 
1.2 Models for the Experimental Results 4 
1.3 A Second Experiment 7 
1.4 Summary ... • • • 0 •••••••• 11 

2 Statistical Models 13 
John M. Chambers, Trevor J. Hastie 
2.1 Thinking about Models •• 0 ••• 15 

2.1.1 Models and Data . . . . . . 15 
2.1.2 Creating Statistical Models 16 

2.2 Model Formulas in S . . . . . . . . 18 
2.2.1 Data of Different Types in Formulas 20 
2.2.2 Interactions . . . . . . . . . . . 22 
2.2.3 Combining Data and Formula . 23 

2.3 More on Models •• 0 0 ••••••• 24 
2.3.1 Formulas in Detail ••• 0 •• 24 
2.3.2 Coding Factors by Contrasts 32 

2.4 Internal Organization of Models . . . 37 
2.4.1 R~ for C.lding Expanded Formulas 37 
2.4.2 Fo ulas and Terms . . . . . . . . . 4G 
2.4.3 Terms and the Model Matrix 42 

Bibliographic Notes .... ' ....... 44 

3 Data for Models 45 
John M. Chambers 
3.1 Examples of Data Frames • •• 0 0 •• 0 0 •• 0 • 45 

3.1.1 Example: Automobile Data . . . . . . . 4t: 
3.1.2 Example: A Manufacturing Experiment 41 

xi 



xii 

3.1.3 Example: A Marketing Study . . . 
3.2 Computations on Data Frames . . . . . . 

3.2.1 Variables in Data Frames; Factors 
3.2.2 Creating Data Frames . . . . . . . 
3.2.3 Using and Modifying Data Frames 
3.2.4 Summaries and Plots ... . 

3.3 Advanced Computations on Data .... . 
3.3.1 Methods for Data Frames .... . 
3.3.2 Data Frames as Databases or Evaluation Frames 
3.3.3 Model Frames and Model Matrices 
3.3.4 Parametrized Data Frames . . . . . . . . . . . . 

CONTENTS 

49 
51 
52 
54 
64 
G9 
85 
85 
87 
90 
93 

4 Linear Models 95 
John M. Chambers 
4.1 Linear Models in Statistics 96 
4.2 S Functiolll:l and Objects . 99 

4.2.1 Fitting the Model 100 
4.2.2 Basic Summaries . 104 
4.2.3 Prediction . . . . . 106 
4.2.4 Options in Fitting 109 
4.2.5 Updating Models . 116 

4.3 Specializing and Extending the Computations . 117 
4.3.1 Repeated Fitting of Similar Models. 118 
4.3.2 Adding and Dropping Terms . . . . 124 
4.3.3 Influence of Individual Observations 129 

4.4 Numerical and Statistical Methods . . . . . 131 
4.4.1 Mathematical and Statistical Results . 132 
4.4.2 Numerical Methods . . . . . . . . . . 135 
4.4.3 Overdetermined and Ill-determined Models 138 

) Analysis of Variance; Designed Experiments 145 
John M. Chambers, Anne E. Freeny, Richard M. Heiberger 
5.1 Models for Experiments: The Analysis of Variance 146 
5.2 S Functions and Objects . . . . . . . . . . . 150 

5.2.1 Analysis of Variance Models . . . . . 150 
5.2.2 Graphical Methods and Diagnostics 163 
5.2.3 Generating Designs. . . . . 169 

5.3 The S Functions: Advanced Use . 176 
5.3.1 Parametrization; Contrasts 176 
5.3.2 More on Aliasing 178 
5.3.3 Anova Models as Projections 181 

5.4 Computational Techniques . . . . . . 184 



CONTENTS 

5.4.1 
5.4.2 
5.4.3 
5.4.4 

Basic Computational Theory 
Aliasing; Rank-deficiency . . 
Error Terms . . . . . . . . . . 
Computations for Projection 

6 Generalized Linear Models 
Trevor J. Hastie, Daryl Pregibon 
6.1 Statistical Methods . . . . 
6.2 S Functions and Objects . . . . . 

6.2.1 Fitting the Model .... 
6.2.2 Specifying the Link and Variance Functions 
).2.3 Updating Models . . . . . . . 
6.2.4 Analysis of Deviance Tables . 
6.2.5 Chi-squared Analyses . . . . 
6.2.6 Plotting ........... . 

6.3 Specializing and Extending the Computations . 
6.3.1 Other Arguments to glm() 
6.3.2 Coding Factors for GLMs . 
6.3.3 More on Families . . . . . 
6.3.4 Diagnostics . . . . . . . . 
6.3.5 Stepwise Model Selection 
6.3.6 Prediction ........ . 

6.4 Statistical and Numerical Methods 
6 .4.1 Likelihood Inference . . . . 
6.4.2 Quadratic Approximations 
6.4.3 Algorithms 
6.4.4 Initial Values ..... 

7 Generalized Additive Models 
Trevor J. Hastie 
7.1 Statistical Methods . . . . . . . . . . . . . . 

7 .1.1 Data Analysis and Additive Models 
7.1.2 Fitting Generalized Additive Models 

7.2 S Functions and Objects ..... . 
7.2.1 Fitting the Models .... . 
7.2.2 Plotting the Fitted Models 
7.2.3 Further Details on gam() 
7.2.4 Parametric Additive Models: bs () and ns () 
7.2.5 An Example in Detail ......... . 

7.3 Specializing and Extending the Computations . 
7.3.1 Stepwise Model Selection 
7.3.2 Missing Data .............. . 

xiii 

185 
187 
188 
190 

195 

196 
199 
199 
206 
209 
210 
213 
216 
221 
221 
223 
225 
230 
233 
238 
241 
242 
244 
245 
246 

249 

250 
251 
252 
253 
253 
264 
268 
270 
273 
280 
280 
286 



xiv 

7.3.3 Prediction ..... . 
7 .3.4 Smoothers in gam 0 
7.3.5 More on Plotting .. 

7.4 Numerical and Computational Details 
7.4.1 Scatterplot Smoothing ..... 
7.4.2 Fitting Simple Additive Models . 
7.4.3 Fitting Generalized Additive Models 
7.4.4 Standard Errors and Degrees of Freedom 
7.4.5 Implementation Details ......... . 

8 Local Regression Models 
William S. Cleveland, Eric Grosse, William M. Shyu 
8.1 Statistical Models and Fitting ......... . 

8.1.1 Definition of Local Regression Models . 
8.1.2 Loess: Fitting Local Regression Models 

8.2 S Functions and Objects . 
8.2.1 Gas Data .. 
8.2.2 Ethanol Data ... 
8.2.3 Air Data . . . . . 
8.2.4 Galaxy Velocities . 
8.2.5 Fuel Comparison Data . 

8.3 Specializing and Extending the Computations . 
8.3.1 Computation 
8.3.2 Inference . . . . . . . . . . . .. 
8.3.3 Graphics . . . . . . . . . . . . . 

8.4 Statistical and Computational Methods 
8.4.1 Statistical Inference ... 
8.4.2 Computational Methods . 

9 Tree-Based Models 
Linda A. Clark, Daryl Pregibon 
9.1 Tree-Based Models in Statistics . . . . . . . . . . . . . . . 

9.1.1 Numeric Response and a Single Numeric Predictor 
9.1.2 Factor Response and Numeric Predictors .... 
9.1.3 Factor Response and Mixed Predictor Variables. 

9.2 S Functions and Objects . . .. 
9.2.1 Growing a Tree ..... 
9.2.2 FUnctions for Diagnosis 
9.2.3 Examining Subtrees 
9.2.4 Examining Nodes . 
9.2.5 Examining Splits . 
9.2.6 Examining Leaves 

CONTENTS 

288 
293 
295 
298 
298 
300 
302 
303 
304 

309 

312 
312 
314 
316 
322 
331 
348 
352 
359 
366 
366 
367 
368 
368 
368 
373 

377 

377 
378 
380 
382 
382 
382 
395 
396 
398 
402 
405 



CONTENTS 

9.3 Specializing the Computations 
9.4 Numerical and Statistical Methods 

9.4.1 Handling Missing Values .. 
9.4.2 Some Computational Issues 
9.4.3 Extending the Computations 

XV 

406 
412 
415 
417 
417 

10 Nonlinear Models 421 
Douglas M. Bates, John M. Chambers 
10.1 Statistical Methods . . . . 422 
10.2 S Functions . . . . . . . . 427 

10.2.1 Fitting the Models 428 
10.2.2 Summaries . . . . 432 
10.2.3 Derivatives . . . . 433 
10.2.4 Profiling the Objective Function 438 
10.2.5 Partially Linear Models 440 

10.3 Some Details . . . . . . . . . . 444 
10.3.1 Controlling the Fitting . 444 
10.3.2 Examining the Model . 446 
10.3.3 Weighted Nonlinear Regression 450 

10.4 Programming Details . . . . . . . . . . 452 
10.4.1 Optimization Algorithm . . . . 452 
10.4.2 Nonlinear Least-Squares Algorithm . 453 

A Classes and Methodst Object-oriented Programming in S 455 
John M. Chambers 
A.1 Motivation . . . 456 
A.2 Background . . . 457 
A.3 The Mechanism . 460 
A.4 An Example of Designing a Class . 461 
A.5 Inheritance . . . . . . . . . . . . . 463 
A.6 The Frames for Methods . . . . . . 467 
A.7 i:koup Methods; Methods for Operators 471 
A.8 Replacement Methods 475 
A.9 Assignment Methods . 477 
A.10 Generic Functions 478 
A.ll Comment . . . . . . . 479 

B S Functions and Classes 481 

References 589 

Index 595 





Chapter 1 

An Appetizer 

John M. Chambers 
Trevor J. Hastie 

This book is about data and statistical models that try to explain data. It is an 
enormous topic, and we will discuss many aspects of it. Before getting down to 
details, however, we present an appetizer to give the flavor of the large meal to 
come. The rest of this chapter presents an example of models used in the analysis 
of some data. The data are "real," the analysis provided insight, and the results 
were relevant to the application. We think the story is interesting. Besides that, it 
should give you a feeling for the style of the book, for our approach to statistical 
models, and for how you can use the software we are presenting. Don't be concerned 
if details are not explained here; all should become clear later on. · 

1.1 A Manufacturing Experiment 

In 1988 an experiment was designed and implemented at one of AT&T's factories to 
investigate alternatives in the "wave-soldering" procedure for mounting electronic 
components on printed circuit boards. The experiment varied a number of factors 
relevant to the engineering of wave-soldering. The response, measured by eye, is 
a count of the number of visible solder skips for a board soldered under a par
ticular choice of levels for the experimental factors. The S object containing the 
design, solder. balance, consists of 720 measurements of the response skips in a 
balanced subset of all the experimental runs, with the corresponding value~ for five 
experimental factors. Here is a sample of 10 runs from the total of 720. 

1 
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> sample.runs <- sample(seq(720),10) 
> solder.balance[sample.runs,] 

Opening Solder Mask PadType Panel skips 
162 s Thin A1.5 06 3 6 
75 s Thick A1.5 L6 3 1 

653 L Thin B3 L8 2 4 
117 L Thin A1.5 W9 3 0 
40 M Thick A1.5 06 1 0 

569 L Thick B3 L9 2 0 
229 M Thick A3 L7 1 0 
788 s Thick 86 L4 2 30 
655 L Thin 83 W9 1 0 
129 M Thin A1.5 L4 3 1 

We can also summarize each of the factors and the response: 

> summary(solder.balance) 
Opening Solder Mask 
S:240 Thin :360 A1.5:180 
M:240 Thick:360 A3 :180 
L:240 83 :180 

86 :180 

PadType 
L9 72 
W9 72 
L8 72 
L7 72 
07 72 
L6 72 
(Other):288 

Panel 
1:240 
2:240 
3:240 

skips 
Min. 0.000 
1st Qu.: 0.000 
Median : 2.000 
Mean 4.965 
3rd Qu.: 6.000 
Max. :48.000 

The physical and statistical background to these experiments is fascinating, but a 
bit beyond our scope. The paper by Comizzoii, Landwehr, and Sinclair {1990) gives 
a readable, general discussion. Here is a brief description of the factors: 

Opening: amount of clearance around the mounting pad; 

Solder: amount of solder; 

Mask: type and thickness of the material used for the solder mask; 

PadType: the geometry and size of the mounting pad; and 

Panel: each board was divided into three panels, with three runs on a board. 

Much useful information about the experiment can be seen without any formal 
modeling, particularly using plots. Figure 1.1, produced by the expression 

plot(solder.balance) 

is a graphical summary of the relationship between the response and the factors, 
showing the mean value of the response at each level of each factor. It is immediately 
obvious that the factor Opening has a very strong effect on the response: for levels 
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Figure 1.1: A plot of the mean of skip~ at each of the levels of the factors in the sold 
experiment. The plot is produced by the expression plot (solder. balance). 

M and L, only about two skips were seen on average, while level s produced abo 
six times as many. If you guessed that the levels stand for small, medium, a: 
large openings, you were right, and the obvious conclusion that the chosen sm 
opening was too small (produced too many skips) was an important result oft 
experiment. 

A more detailed preliminary plot can be obtained by attaching the solder. bala 

data and plotting skips against the factors, using boxplots: 

plot (skips "' Opening + Mask) 

We have selected two of the factors for this plot, shown in Figure 1.2, and they b< 
exhibit the same behavior: the variance of the response increases with the me 
The response values are counts, and therefore are likely to exhibit such behav! 
since counts are often well described by a Poisson distribution. 

3 
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Figure 1.2: A factor plot gives a separate boxp/ot of skips at each of the levels of the factors 
in the solder experiment. The left panel shows how the distribution of skips varies with 
the levels of Opening, and the right shows similarly how it varies with levels of mask. 

1.2 Models for the Experimental Results 

Now let's start the process of modeling the data. We can, and will, represent the 
Poisson behavior mentioned above. To begin, however, we will use as_ a response 
sqrt (skips), since square roots often produce a good approximation to an additive 
model with normal errors when applied to counts. Since the data form a balanced 
design, the classical analysis of variance model is attractive. As a first attempt, we 
fit all the fa.~:tors, main effects only. This model is described by the formula 

sqrt (skips) ~ . 

where the "." saves us writing out all the factor names. We read "~" as "is modeled 
as"; it separates the response from the predictors. The fit is computed by 

> fitl <- aov(sqrt(skips) ~ . , data= solder.balance) 

The object fitl represents the fitted model. As with any S object, typing its name 
invokes a method for printing it: 

> fitl 
Call: 

aov(formula ~ sqrt(skips) ~ Opening + Solder + Mask + PadType + 
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Panel, data = solder.balance) 

Terms: 

Sum of Squares 
Deg. of Freedom 

Opening Solder Mask PadType 
593.97 233.31 359.63 113.44 

2 1 3 9 

Residual standard error: 0.83806 
Estimated effects are balanced 
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Figure 1.3: The left panel shows the observed values for the square root of skips, plotted 
against the fitted values from ihe main-effects model. The dotted line represents a perfect 
fit. The fit seems poor in the upper range. The right panel is the same plot for the model 
having main effects and all second-order interactions. The fit appears acceptable. 

Once again, plots give more information. The expression 

plot(fitted(fit1), sqrt(skips)) 

shown on the left in Figure 1.3, plots the observed skips against the fitted values, 
both on the square-root scale. The square-root transformation has apparently done 
a fair job of stabilizing the variance. However, the main-effects model consistently 
underestimates the large values of skips. With 702 degrees of freedom for residuals, 
we can afford to try a more extensive modeL The formula 

sqrt(skips) ~ ."2 · 
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deH!:rih!:H 11 ,,,,d!:l t.hat includes all main effects and all second-order interactions. 
W•: fit. t.laiH m•,fld next: 

tit2 <- ~·•v(aqrt(skips) ...., ."2, solder.balance) 

lu~t,!:ad of Jlllut.ing the fitted object, we produce a statistical summary of the model 
liHaug Ht.audiLid Ht.atistical assumptions, in this case an analysis of variance table as 
Hhowu iu 'lhlol•· 1.1, with mean squares and F-statistic values. 

> summary ( t l t, 2) 
Df Sum of Sq Mean Sq F Value Pr(F) 

Opoualr1R 2 594 297 766 0.00 
Sol<ltor 1 233 233 602 0.00 

Hn.k 3 360 120 309 0.00 
Pad Type 9 113 13 33 0.00 

Plllltol 2 15 7 19 0.00 
Dpening:Solder 2 42 21 54 0.00 

Opening:M~tak 6 89 15 38 0.00 
Opening:PadType 18 34 2 5 0.00 

Opening:Panol 4 1 0 1 0.66 
Solder: Mlllak 3 20 7 17 0.00 

Solder:PadType 9 20 2 6 0.00 
Solder:P~tntol 2 7 4 9 0.00 
Hask:PadType 27 28 1 3 0.00 

Haak:PIInel 6 9 1 4 0.00 
PadType:Panel 18 10 1 1 0.14 

Residunla 607 235 0 

Table 1.1: Au rmtilysis of variance table for the model f1t2, including all main effects and 
·'e.cond-ordf'.1' i11l.t·ractions. The columns give degrees of freedom, sums of squares, mean 
squares, P ·''""·•l.ics, and their tail probabilities, nearly all zero here because of the very 
lmyc numbf'.,. of observations. 

The funl't.iou summary() is generic, in that it automatically behaves differently, 
according to the class of its argument. In this case fit2 has class "aov" and so a 
particular mo•t.hod for summarizing aov objects is automatically used. The earlier 
use of summary () produced a result appropriate for data. frame objects. The modeling 
software abounds with generic functions; besides summary(), others include plot(), 
predict(), print(), and update(). 

The fitted values are plotted in the right panel of Figure 1.3, and the improve
~lent is clear. Of course, we really expect an improvement; including all the pairwise 
Interactions ('O .. 'lts us 95 degrees of freedom! We can see from the table that the F 
statistic column varies greatly for the second-order terms in the model. The three 
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largest values, interestingly, are the interactions of three of the factors, Opening, 
Solder, and Mask. So an interesting intermediate model could be formed from just 
these interactions: 

sqrt(skips) ~ . + (Opening + Solder + Mask)A2 

This time we gave three factors, explicitly, for which we wanted interactions: 

> fit3 
Call: 

aov(formula = sqrt(skips) ~ Opening + Solder + Mask + PadType 
+ Panel + (Opening + Solder + Mask)A2, data • solder.balance) 

Terms: 

Sum of Squares 
Deg. of Freedom 

Sum of Squares 
Deg. of Freedom 

Opening Solder Mask PadType Panel Opening:Solder 
593.97 233.31 359.63 113.44 14.56 41.62 

2 1 3 9 2 2 

Opening:Mask Solder:Mask Residuals 
88.66 19.86 342.90 

6 3 691 

Residual standard error: 0.70445 
Estimated effects are balanced 

The left panel of Figure 1.4 shows the observed/fitted values for this second-orde 
submodel, which is comparable to the right plot of Figure 1.3. It uses far fewer d€ 
grees of freedom, achieves almost as good a fit, and also accounts for the departure 
missed by the main-effects model. 

1.3 A Second Experiment 

The results from the first experiment were valuable in the application, and subs• 
quently a similar experiment was run at another AT&T factory. The results a; 
recorded in the design object solder2. In part, the intention was to apply some· 
the lessons learned in the first experiment. The design was nearly the same as · 
the first experiment, and we can use summary() and plot() as before: 
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~igure 1.4: The left panel is a plot of the square root of skips from the first AT&T solder 
:xperiment against the fitted values for the second-order submodel. The right panel is the 
;arne plot using the data from the second solder experiment. 

> summary(solder2) 
Opening Solder Mask Pad Type Panel skips 
S:300 Thin :450 A1.5:180 L9 90 1:300 Min. 0.0 
M:300 Thick:450 A3 :270 W9 90 2:300 1st Qu.: 0.0 
L:300 A6 : 90 L8 90 3:300 Median : o.o 

B3 :180 L7 90 Mean 1.2 
B6 :180 07 90 3rd Qu.: 0.0 

L6 90 Max. :32.0 
(Other):360 NA's· :150 

L'he summaries show some striking differences, especially that there are far fewer 
kips overall in this experiment. Only 17% of the runs from the second experiment 
tad skips, compared to 66% from the first. Figure 1.5 shows a plot of the design, 
-reated by the expression plot (solder2). The plot suggests that in this case, factor 
:ask appears to have the largest. effect. At first it may appear that the two experi
ilents are almost unrelated-a little discouraging for the statistician, although the 
·ngineer is likely to be happy that the overall performance is substantially improved. 
\s for modeling, if we start with the last model considered for the first experiment, 

> fit3.2 <- update(fit3, data = solder2, na = na.omit) 

nd plot its fit in the right panel of Figure 1.4, the model does not appear to fit 
hese data well at all. Notice the use of the na.action'" argument in the call to 
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Figure 1.5: A plot of the mean of skips at each of the levels of the factors in the second 
wave-soldering experiment. Compare with Figure 1.1. 

update 0; in any model-fitting computation, this causes the 150 cases with skips 
missing to be omitted. Since we can't handle these missing values in any of our 
models, we have assigned solder2 as na. omit (solder2) in the remaining examples. 

Interestingly, more careful analysis shows that the two experiments are not as 
unrelated as they initially appear to be. We must keep in mind that we can no 
longer use the square-root transformation with so many zero responses. More fun
damentally, the statistical model should reflect more closely the way engineers would 
likely view the process. When (as one would certainly prefer) solder skips are a rare 
event, it is natural to imagine that the solder process has two states: a "perfect" 
state where no skips will be observed, and an "imperfect" state in which skips may 
or may not occur. From the view of the application, one is particularly interested 
in factors that relate to keeping the process in the perfect state. 
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When this more complicated but more plausible model is worked out in detail, 
it shows patterns in the second experiment that are largely consistent with those in 
the first. To see these results in detail, you will have to read on in the book. Some 
of the ideas, however, we can sketch here as a final appetizer. 

Suppose we are only concerned with whether there are any skips, as measured 
by the logical variable 

skips > 0 

Although this variable is very different from the quantitative variable sqrt(skips) 
that we have studied so far, models for it can be handled in a very similar style. 
Specifically, a generalized linear model ( GLM) using the binomial distribution is a 
natural way to treat such TRUE, FALSE or equivalently 1, 0 variables: 

fit3.binary <- glm( skips > 0 ~ . + (Opening + Solder + Mask)A2, 
data = solder2, family = binomial) 

What has changed here? The function glmO has replaced aovO to do the fitting, 
the response is now a logical expression, and a new argument 

family a binomial 

has been added. As you can imagine, glmO fits generalized linear models, and the 
new argument tells it that the fit should use the binomial family within the GLM 

models. Otherwise, the specification of model and data remain the same. Also, the 
object returned can be treated similarly to those we computed before using aovO, 
applyfng the various generic functions to summarize the model and study how well 
it works. 

Another idea, somewhat complementary to using a binomial model, is to treat 
the response directly as counts, rather than using the square-root transformation. 
As we said early on in our discussion, the Poisson distribution is a natural model for 
counts, and usually works better than the transformation when the typical number 
of counts is small. The same generalized linear models allow us to model the mean 
of a Poisson distribution by the structural formula we used earlier. Let's apply this 
to the data from both experiments to compare the results: 

> expl.pois <- glm(skips ~ . + (Opening +Solder+ Mask)A2, 
aata = solder.balance, family = poisson ) 

> exp2.pois <- update(expl.pois, data= solder2 ) 

We display the fits in Figure 1.6, using the square-root scale as before to compare 
these fits with those in Figure 1.4. The Poisson model appears to be an improvement 
over those in Figure 1.4, especially for the second experiment; the systematic bias 
for large counts is gone. 

This is still not the end of the story. There are more zero values in the data 
from the second experiment than the Poisson model predicts. The binomial model 
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Figure 1.6: The second-order model of Figure 1..4, treating the response skips as Poisson 
and using a log-linear link. The data are plotted on the square-root scale for comparison 
with Figure 1..4. The plot on the left corresponds to the first experiment, the right the 
second. 

handles this aspect, but we clearly can't just apply both binomial and Poisson 
models since they imply two incompatible explanations. An answer is to use a 
mixture of the two models, as the idea of perfect and imperfect states for the process 
suggests. Some runs are in the perfect state, and the binomial model lets us treat 
the probability of this; others are in the imperfect state, and for those the Poisson 
model can be applied. This model, called the Zero-Inflated Poisson, cannot be 
described as a single linear or generalized linear model. A full statistical discussion 
by the inventor of the technique is in the reference Lambert (1991). One version is 
described in Section 10.3, as an example of a general nonlinear model. 

1.4 Summary 

This has been a large plate of appetizers, and we will finish here. All the same, 
we have touched on only a few of the kinds of models that appear in the book, 
mainly the analysis of variance and generalized linear models. The book discusses 
models that fit smooth curves and surfaces, generalized additive models, models 
that fit tree structures by successive splitting, and models fit by arbitrary nonlinear 
regression or optimization. We also showed only a small sample of the diagnostic 
summaries and plots appearing in the rest of the book. 
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However, the general style to be followed throughout has been illustrated by the 
examples: 

• The structural form of models is defined by simple, general formulas. 

• Many kinds of data for use in model-fitting can be organized by data frames 
and related classes of objects. 

• Different kinds of models can be fitted by similar calls, typically specifying 
the formula and data. 

• The objects containing the fits can then be used by generic functions for print
ing, summaries, plotting, and other computations, including fitting updated 
models. 

• The computations are designed to be very flexible, and users are encouraged 
to adapt our software to their own needs and interests. 

In presenting our appetizer, we did not emphasize the last point heavily, but it 
is central to the philosophy behind this book. Even though a large number of 
functions and methods are presented, we intend these to be a starting point for the 
computations you want, rather than some rigid prescription of how to use statistical 
models. 



Chapter 2 

Statistical Models 

John M. Chambers 
Trevor J. Hastie 

This is a book about statistical models - how to think about them, specify them, 
fit them, and analyze them. Statistical models are simplified descriptions of data, 
usually,constructed from some mathematically or numerically defined relationships. 
Modern data analysis provides an extremely rich choice of modeling techniques; 
later chapters will introduce many of these, along with S functions and classes of 
S objects to implement them. All these techniques benefit from some general ideas 
about data and models that allow us to express what data should be used in the 
model and what relationships the model postulates among the data. You should 
read this chapter (at least the first two sections) for a general notion of how models 
are represented. You can do this either before you start to work with specific 
kinds of models or after you have experimented a little. Getting some hands-on 
experience first is probably a good idea-for example, by looking at the first two 
sections of Chapter 4 on linear models, or by experimenting with whatever kind of 
model interests you most. 

The first two sections of this chapter introduce our way of representing models, 
and are likely to be all you need for direct use of the software in later chapters. 
When and if you come to modify our software to suit your own ideas, as we hope 
many users will do, then you should eventually read further into Sections 2.3 and 
2.4. 

Throughout the book, we will be expressing statistical models in three parts: 

• a formula that defines the structural part of the model-that is, what data 
are being modeled and by what other data, in what form; 

13 
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• data to which the modeling should be applied; 

• the stochastic part of the model-that is, how to regard the discrepancy or 
residuals between the data and the fit. 

This chapter and the next concentrate on the first two of these. They discuss how 
formulas are represented, what objects hold the data, and how the two are brought 
together. The rest of the book then brings together the three parts in the context 
of different kinds of models. 

Formulas are S expressions that state the structural form of a model in terms of 
the variables involved. For example, the formula 

Fuel ~ Pover + Weight 

reads "Fuel is modeled as Pover plus Weight." More precise\y, it tells us that the 
response, Fuel, is to be represented by an additive model in the two predictors, 
Pover and Weight. There is no information about what method should be used to 
fit the model. Formulas of this general style are capable of representing a very wide 
range of structural model information; for example, 

100/Mileage ~ poly(Weight, 3) + sqrt(Pover) 

says to fit the derived variable 100/Mileage to a third-order polynomial in Weight 

plus the square-root of the Pover variable. Transformations are used directly in 
the formula, and the basis for the polynomial regression in Weight is generated 
automatically from the formula. Here is a formula to fit separate B-spline regression 
curves within the two levels of Pover obtained by cutting Pover at its midrange: 

Fuel ~ cut(Pover, 2) I bs(Weight,df=5) 

In the next example, nonparametric smooth curves will be used to model the trans
formed Fuel additively in Weight and Pover, using 5 degrees of freedom for each 
term: 

sqrt(Fuel-min(Fuel)) ~ s(Weight, df=5) + s(Pover, dfs5) 

The details of these formulas will be explained later in the chapter. 
The models above imply the presence of some data on Fuel, Pover and Weight; 

in fact, reasonable models are inspired by data, since models without data are hard 
to think about. These data actually do exist, and form part of a large collection 
of data on automobiles described in Chapter 3 and used throughout the book; the 
present model relates fuel consumption to two vehicle characteristics. Part of the 
model-building process is collecting and organizing the relevant dataset, and looking 
at it in many different ways. Some of the useful views are simple, such as summaries 
and plots. The next chapter is about tools for organizing data into objects that are 
convenient both for studying the data directly and as input for more sophisticated 
procedures. For the moment we assume that such data organization has already 
taken place, and that all the variables referred to in formulas are available. 
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2.1 Thinking about Models 

Models are objects that imitate the properties of other, "real" ol.)o>(:ts, hut. In a 
simpler or more convenient form. We make inferences from the mo. I Pis and ILJIJIIY 
them to the real objects, for which the same inferences would be irnpooHihll• or 
inconvenient. The differences between model and reality, the resid.,,ls, oft."u 1lrr. 
the key to reaching for a deeper understanding and perhaps a better model. 

2.1.1 Models and Data 

A road map models part of the earth's surface, attempting to imitate the rdative 
position of towns, roads, and other features. We use the map to make inferences 
about where real features are and how to get to them. Architects use both paper 
drawings and small-scale physical models to imitate the properties of a building. 
The appearance and some of the practical characteristics of the actual building can 
be inferred from the models. Chemists use "wire frame" models of molecules (by 
either constructing them or displaying them through computer graphics) to imitate 
theoretical properties of the molecules that, in turn, can be used to predict the 
behavior of the real objects. 

A good model reproduces as accurately as possible the relevant properties of 
the real object, while being convenient to use. Good road maps draw roads in the 
correct geographical position, in a representation that suggests to the driver the 
important curves and intersections. Good road maps must also be easy to read. 
Any good model must facilitate both aceurate and convenient inferences. A large 
diorama or physical model of a town could provide more information than a road 
map, and more accurate information, but since it can be used only by traveling to 
the site of the model, its practical value is limited. The cost of creating or using the 
model also limits us in some cases, as this example illustrates: building dioramas 
corresponding to every desirable road map is unlikely to be practical. Finally, a 
model may be attractive because of aesthetic features - because it is in some sense 
beautiful to its users. Aesthetic appeal may make a model attractive beyond its 
accuracy and convenience (although these often go along with aesthetic appeal). 

Statistical models allow inferences to be made about an object, or activity. 
or process, by modeling some associated observable data. A model that represents 
gasoline mileage as a linear function of the weight and engine displacement of various 
automobiles, 

Mileage ~ Weight + Disp. 

is directly modeling some observed data on these three variables. Indirectly, though. 
it represents our attempt to understand better the physical process of fuel consump
tion. The accuracy of the model will be measured in terms of its ability to imitate 
the data, but the relevant accuracy is actually that of inferences made about the 
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real object or process. In most applications the goal is also to use the model to 
understand or predict beyond the context of the current data. {For these reasons, 
useful statistical modeling cannot be separated from questions of the design of the 
experiment, survey, or other data-collection activity that produces the data.) The 
test data we. have on fuel consumption do not cover all the automobiles of interest; 
perhaps we can use the model to predict mileage for other automobiles. 

The convenience of statistical models depends, of course, on the application and 
on the kinds of inference the users need to make. Generally applied criteria include 
simplicity; for example, a model is simpler if it requires fewer parameters or ex
planatory variables. A model that used many variables in addition to weight and 
displacement would have to pay us back with substantially more accurate predic
tions, especially if the additional variables were harder to measure. 

Less quantifiable but extremely important is that the model should correspond as 
well as possible to concepts or theories that the user has about the real object, such 
as physical theories that the user may expect to be applicable to some observed 
process. Instead of modeling mileage, we could model its inverse, say the fuel 
consumption in gallons per 100 miles driven: 

·tOO/Mileage "' Weight + Disp. 

This may or may not be a better fit to the data, but most people who have studied 
physics are likely to feel that fuel consumption is more natural than mileage as a 
variable to relate linearly to weight. ' 

2.1.2 Creating Statistical Models 

Statistical modeling is a multistage process that involves (often repeated use of) 
the following steps: 

• obtaining data suitable for representing the process to be modeled; 

• choosing a candidate model that, for the moment, will be used to describe 
some relation in the data; 

• fitting the model, usually by estimating some parameters; 

• summarizing the model to see what it says about the data; 

• using diagnostics to see in what relevant ways the model fails to fit as well as 
it should. 

The summaries and diagnostics can involve tables, verbal descriptions, and graph
ical displays. These may suggest that the model fails to predict all the relevant 
properties of the data, or we may want to consider a simpler model that may be 
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nearly as good a fit. In either case, the model will be modified, and the fitting and 
analysis carried out again. 

If we started out with a model for mileage as a linear function of weight and 
displacement, we would then want to look at some d.iagnostics to examine how well 
the model worked. The left panel of Figure 2.1 shows Mileage plotted against the 
values predicted by the model. The model is not doing very well for cars with high 
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Figure 2.1: Mileage for 60 automobiles plotted against the values predicted by a linear model 
in weight and displacement {the left panel) or weight, displacement and type of automobile 
(the right panel}. 

mileage: they all fall above the line. The change to 100/Mileage helps some (there 
is a plot on page 104). If we add in a coefficient for each type of car (compact, 
large, sporty, van, etc.) the fit improves further. In practice, we would continue to 
study diagnostics and try alternative models, seeking a better understanding of the 
underlying process. This model is our most commonly used simple example, and 
will recur many times, to introduce various techniques. 

Research in statistics has led to a wide range of possible models. Later chapters 
in this book deal with specific classes of models: traditional models such as lin
ear regression; recent innovations, such as models involving nonparametric smooth 
curves or tree structures; important specializations such as models for designed ex
periments, and general computational techniques such as minimization, which can 
be used to fit models not belonging to any of the standard classes. This rich choice 
of possible models is of real benefit in analyzing data. Whenever we can specify 
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a model that is close to our intuitive understanding or is able to respond to some 
observed failure of a standard model, chances are we will more easily discover what 
is really going on. A limited computational or statistical framework that requires 
us to distort or approximate the model we would like to fit makes such discovery 
more difficult. It can also hide from us some important information about the data. 
The methods presented in this book and the functions that implement the methods 
are designed to give the widest possible scope in creating and examining statistical 
models. 

Of course, all this rich variety will only be helpful if we can use it easily enough. 
We must be able to carry out the steps in specifying the models without too much 
effort on our part. The fitting must be accurate and efficient enough to be used in 
practical problems. There must be appropriate summaries and diagnostics so that 
we can assess the adequacy of the models. In later chapters, each of these questions 
will be considered for the various classes of models. 

Fortunately, many different classes of models share a substantial common struc
ture. The steps we listed above apply to many models, and important summaries 
and diagnostics can be shared directly or, at worst, adapted straightforwardly from 
one class of models to another. The organization of the S computations for the 
various classes of models is designed to take advantage of this common structure. 

This chapter describes a way to express the structural formula for the model. 
What about the data? For the moment we can assume the data are around in 
our global environment, and simply refer to variables by name. In Chapter 3 we 
describe data frames, a more systematic way of organizing and providing the data 
for a model. Depending on the class of models, formulas and data frames may 
be all we need to specify; for example, if we are using linear least-squares fitting, 
there is not much more to say in step 3. Other kinds of models may require some 
further specifications; generalized linear models, for example, require choosing link 
and variance functions. The choice of the kind of model and the provision of these 
additional specifications fix the stochastic ·part of the model to be fit. 

2.2 Model Formulas inS 

The modeling formula defines the structural form of the model, and is used by the 
model-fitting functions to carry out the actual fitting. Most readers will already be 
familiar with conventional modeling formulas, such as those used in textbooks or 
research papers to describe statistical models, as in (2.1) below. The formulas used 
in this book have evolved from mathematical formulas as a simpler and in some 
ways more flexible approach to be used when computing with models. 

A formula in S is a symbolic expression. For example, 

Fuel ~ Weight + Disp. 



2.2. MODEL FORMULAS INS 19 

just stands for the structural part of a model. If you evaluate the formula, you 
will just get the formula. In particular, use of a formula such as the one above 
does not ~epend on the values of the named variables; indeed, the variables need 
not even exist! The expression to the left of the ""'" is the response, sometimes 
called the dependent variable. In this case the response is simply the name Fuel. 
The right side is the expression used to fit the response, made up in an additive 
model of terms separated by "+". The variables appearing in the terms are called 
the predictors. Experienced S users are by now probably very curious, so this 
comment is for their benefit: ""'" 0 is an S function that does nothing but save the 
formula as an unevaluated S expression, a formula object. 

The formula above expresses most of the ingredients of a statistical model of the 
form 

Fuel = a + W eight{31 + Disp./32 + e {2.1) 

For most of the models in this book, the formula does not specifically refer to the 
parameters !3i in the linear model. These can be inferred and so we save typing 
them. In a sense, we also avoid mental clutter, in that the names of the parameters 
are not relevant to the model itself. When we come to general nonlinear models in 
Chapter 10, however, the formula will have to be completely explicit, since it is no 
longer additive. 

The formula makes no reference to the errors e either. These, of course, are the 
stochastic part of the model specification. When formulas are used in a call, say to 
the linear regression model-fitting function 

lm(Fuel "' Weight + Disp.) 

we complete the rest of the modeling specification; lmO assumes the mean of Fuel 
is being modeled by the linear predictor, and uses least squares to compute the fit. 
Expressions such as the one above were encountered in Chapter 1; in fact all the 
model-fitting functions take a formula as their first argument, and in most cases 
the same formula can be used interchangeably among them (hopefully with different 
consequences!). 

The formula above is equivalent to 

Fuel "' 1 + Weight + Disp. 

where the 1 indicates that an intercept a is present in the model. Since we usually 
want an intercept, it is included by default; on the other hand, we can explicitly 
exclude an intercept by using -1 in the formula 

Fuel "' -1 + Weight + Disp. 

In using formulas it is important to keep in mind that we are writing a shorthand 
for the complete model expression. In particular, there is no operation going on 
that adds Weight and Disp·.; the operator "+" is being used in a special sense, to 
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separate items in a list of terms to be included in the model. The formula expression 
is, in fact, used to generate such a list, from which the terms and the order in which 
they appear in the model will be inferred. This inference poses no problem for most 
models, but with complicated formulas, some care may be needed to understand 
the model implied. The remainder of this section gives enough information for most 
uses of model formulas; Section 2.3.1 provides a complete description. 

2.2.1 Data of Different Types in Formulas 

The terms in a formula are not restricted to names: they can be any S expression 
that, when evaluated, can be interpreted as a variable. For example, if we wanted 
to model the logarithm of Fuel rather than Fuel itself, we could simply use that 
transformation in the formula 

log(Fuel) "' Weight + Disp. 

A variable may be a factor, rather than numeric. A factor is an object that 
represents values from some specified set of possible levels. For example, a factor 
Sex· might represent one of two values, "Male" or "Female". Readers familiar with S 
might wonder what happened to the category, which is also an object with levels. 
Factors have all the features of categories, with some added class distinctions; in 
particular there is a distinction between factors and ordered factors. Factors can be 
created in a number of ways, as will be discussed in Section 3.2. For the moment 
the distinction between factors and categories is not important, and we will simply 
refer to them as factors. 

Factors enter the formula in the same way as numeric variables, but the inter
pretation of the corresponding term in the model is different. In a linear model, 
one fits a set of coefficients corresponding to a factor. Consider the model 

Salary ~ Age + Sex 

where Salary and Age are numeric vectors and Sex is a two-level factor. This is now 
shorthand for a model of the form 

{ 
aM if Sex; is Male 

Salary; = J..l. + Age;(3 + "f S . F 1 + e; 
aF 1 ex; IS ema e (2.2) 

where aF and aM are two parameters representing the two levels of Sex. The 
coding of factors proceeds from observing that this model is equivalent to one in 
which the factor is replaced by one "dummy" variable for each level-namely, a 
numeric variable taking value 1 wherever the factor takes on that level, and ·o for 
all other observations. In this case, for example, suppose XMale is a dummy variable 
set to 1 for all Male observations and XFemale is set to 1 for all Female observations. 
The original model is then equivalent to 
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Salary ~ Age + XMale +XFemale 

Often in models such as this not all of the coefficients can be determined numerically; 
for example, in {2.2) we could ~eplace J.L by J.L+6, and then compensate by replacing 
Oi.F and Oi.M by Oi.F - 6 and Oi.M - 6. Numerically such indeterminacies can be 
detected by collinearities in the variables used to represent the terms (Xmale and 
Xfemale add to a vector of ones, which is also used to represent the constant J.L), 
and will be handled automatically during the model-fitting. Occasionally, you may 
want to control the parametrization of a term explicitly; Section 2.3.2 will show 
how. 

Other non-numeric variables enter into the models by being interpreted as fac
tors. A logical variable is a factor with levels "TRUE" and "FALSE". A character 
vector is interpreted as a factor with levels equal to the set of distinct character 
strings. A category object inS will be treated ·as a factor in the modeling software. 
Section 3.2.1 deals with these issues in more detail. 

A term in a formula can also refer to a matrix. Each of the variables repre
sented by the columns of the matrix will appear linearly in the model with its own 
coefficient. However, the entire matrix is interpreted as a single term. 

To sum up so far, the followingS data types can appear as a term in a formula: 

1. a numeric vector, implying a single coefficient; 

2. a factor or ordered factor, implying one coefficient for each level; 

3. a matrix, implying a coefficient for each column. 

Transformations increase the flexibility greatly, since the final element in this list is 

4. any S expression that evaluates to a variable corresponding to one of the three 
types above. 

To appreciate this last item, consider these examples of valid expressions that 
can appear as terms within a formula: 

• (Age > 40), which evaluates to a logical variable; 

• cut(Age,3), which evaluates to a three-level category; 

• poly(Age,3), which evaluates to a three-column matrix of orthogonal polyno-
mials in Age. 

The classical computational model for regression is an X matrix and a coefficient 
vector {3. The rich syntax of our modeling language allows us instead to think of 
each of the terms as an entity, even though they eventually will be expanded into 
one or more columns of a model matrix X in most of the models discussed. But 
the formulas and the modeling language put no restrictions on the form of a term 
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or on the interpretation given to the term by a particular model-fitting function. 
The cOntribution of a term to the fit can often be thought of as a function of the 
underlying predictor; factors produce step functions, and terms based on functions 
like poly() produce smooth functions. See Sectiori 2.3.1 and Cl}apter 6. For other 
models, like local regression and tree-based models, the contribution of the terms 
is interpreted differently. In particular, the contribution of a term to a tree-based 
model is invariant under monotone transformations of the variable. 

2.2.2 Interactions 

Terms representing the interaction of two or more variables lead to further shorthand 
in formulas. We may suspect that the effect of a variable in a model will be different 
depending on the level of some factor variable. . In this case we need to fit an 
additional term in the model. · 

As an example, we consider some factors that describe the solder experiment in 
Chapter 1(these data are described in more detail in Chapter 3 and used throughout 
the book). Opening and M<!Bk are two factors in the experiment, having three and 
five levels respectively. To allow for interactions, we will fit a term for each of the 
individual factors and in addition a coefficient for each level of the interaction
that is, for each combination of levels for the two factors. This is expressed in the 
formula language as 

Opening + Mask + Opening:Mask 

which implies fitting coefficients for the 3 levels of Opening, the 5 levels of Mask, and 
the 15 levels of their combination. The idea behind this separation into main effects 
and interaction effects is that for simplicity, we would prefer the interactions to be 
absent; by fitting them separately, we can examine the additional contribution of 
the interaction terms. (Once again, not all these cpefficients can be determined 
independently.) 

Rather than writing out the three terms, we allow a special use of the "•" 
operator in formulas to imply the inclusion of the two terms that are operands of 
the "•" and of their interaction. Thus 

Opening • Mask 

is equivalent to the previous expression. 
When one of the variables is numeric, the interaction notation is still recognized, 

but it reduces to fitting coefficients for the factor variable and separate coefficients 
for the numeric variable within each level of the factor (see Section 2.3.1 for details). 

Interactions may be defined between more than two variables; for example, 

Opening • Mask • Samt 
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is interpreted to produce terms for each of the individual variables, for each of the 
two-way combinations, and for the three-way combination (that is, a coefficient for 
each of the 3 x 5 x 2 levels of the factor defined jointly by all three variables). 
Another form of interaction is known as nesting, which we discuss in Section 2.3.1. 

The full repertoire of special operators in formulas is discussed in Section 2.3.1. 
The same section discusses how formulas are interpreted, which may be relevant if 
your application is very specialized. Try, however, to build up formulas in as simple 
and unambiguous a way as possible. 

2.2.3 Combining Data and Formula 

The data and the formula for a model come together when we actually fit a par
ticular model-e.g., when we estimate coefficients. The model-fitting functions will 
generate an appropriate internal form for the data in preparation for the fitting. 
For linear models and most of their extensions, this form is the model matrix or 
X matrix, in which one or more columns correspond to each of the terms in the 
model. Experienced modelers may have imagined the construction of this model 
matrix while reading the previous section, a tedious task traditionally regarded as 
part of the "art" of regression. The function model.matrix() does just this; in its 
simplest form it takes a single formula argument (with or without a response) and 
produces a matrix. Try it on a simple formula and see what happens! While it 
might be comforting for you to read Section 2.3-4 to see how we construct the in
gredients of this matrix, such detailed knowledge is not necessary for standard use 
of the techniques we present in later chapters. 

Nonstandard situations that may make model matrices of more interest include 
the handling of very large problems, where the size of the model matrix may force the 
use of special techniques, and various kinds of updating, subsampling, and iterative 
computations using wme of the observations in the data. In these computations, 
practical considerations may require working directly with the model matrix. 

The columns of model matrices contain coded versions of the factors and inter
actions in the model. The particular choice of coding will be of concern only if you 
want to interpret particular coefficients; Section 2.3.2 discusses how to control the 
coding. Section 2.4.3 contains further discussion of model matrix objects. That sec
tion is intended for those who need or want to know how the computations actually 
take place. In particular, to develop a new approach to fitting models, not covered 
by any of the chapters of the book, you would need to understand something about 
the steps that go into creating a model matrix. 
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2.3 More on Models 

The third section of each chapter in this book expands on the S functions and 
objects provided in the chapter. Here we discuss the options and extended versions 
available that add new capabilities to the basic ideas. The material in section 3 
should usually be looked at after you have tried out the essentials presented in 
section 2 on a few examples. Experience shows that, after trying out the ideas for a 
while, you will have a better feeling for how to make use of the functions, and will 
begin to think "This would be a bit better if only .... " Section 3 is intended to 
handle most of the "if-only." When the extra feature needed is not here, and there 
is no obvious way to create it by writing some function yourself, the next step is to 
look at section 4, which reveals how it all works. There you can learn what would 
be involved in modifying the basics. However, you should not take that step before 
thoroughly understanding what can be done more directly. 

2.3.1 Formulas in Detail 

In Section 2.2 we introduced model formulas and gave some examples of typical S 
expressions that can be used to give a compact description of the structural form of a 
model. Simple model-fitting situations can often be handled by the simple formulas 
shown there, but the full scope of model formulas allows much more detailed control. 
In this section, we give the full syntax available and explain how it is interpreted to 
generate the terms in the resulting model. Unless otherwise stated, we will always 
be talking about linear or additive models, in which the coefficients to be fitted 
do not have to appear explicitly in the formula. Formulas as discussed here follow 
generally the style introduced by Wilkinson and Rogers (1973), and subsequently 
adopted in many statistical programs such as GLIM and GENSTAT. While originally 
introduced in the context of the analysis of variance, the notation is in fact just a 
shorthand for expressing the set of terms defined separately and jointly by a number 
of variables. typically factors. Its application is therefore much more general; for 
example, it works for tree-based models (Chapter 9), where there is no direct link 
to linear models. Two additional extensions appear in our use of formulas: 

• a "variable" can in fact be an arbitrary S expression, and 

• the response in the model is included in the formula. 

Of course the "any expression" in the first item had better evaluate to one of the 
permissible data types: numeric vector, factor (including categories and logicals), 
or matrices. The discussion here focuses on special operators for the predictors, and 
so, in the examples below, we will omit the response expressions. 

A model formula defines a list of terms to appear in a model. Each term identifies 
some S expression involving the data. This expression, in a linear model, generates 
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one or more columns in a model matrix. These columns, each multiplied by the 
appropriate coefficient, are the contribution of this term to the fit. For other types 
of models, the contribution of the term may be computed in a slightly different way, 
but in any case the expanded definition of the model corresponds to this list of terms. 
A corresponding expanded formula:· has one expression for each term, separated by 
+ operators. You will hardly ever write fully expanded formulas, but any formula 
you do write will first be expanded (and simplified) before being evaluated. In this 
section we proceed by first discussing the meaning of expanded formulas. Then we 
give the complete rules by which arbitrary formulas are expanded. 

Interaction and Nesting 

Expanding a formula reverses the process shown in Section 2.2 of choosing a short
hand for a formula. For example, the formula. 

Opening • Mask 

says that we want a model which fits coefficients for Opening, for Mask, and for the 
interaction of the two. When Opening and Mask are factors, this means a coefficient 
for each level of the factor; if either is a numeric variable or a numeric matrix, there 
will instead be one coefficient for the variable or for each column of the matrix. 
(We will discuss the meaning of interaction in this case later in this section.) In the 
more customary textbook notation, 

• a factor: factor interaction represents a term of the form /ij, which is a set 
of I J constants for each cell in the two-way table obtained by crossing the 
two factors (assuming the factors have I and J levels, respectively); 

• a factor:numeric interaction represents a term of the form /3jx, or a varying 
slope model, in which the coefficient of the numeric variable x is different for 
each of the J levels of the factor; 

• a numeric :numeric interaction represents a term /3xz, where xz is simply the 
pointwise product of the variable x with the variable z. This is probably the 
least meaningful form of interaction, but of course the syntax allows far more 
meaningful terms to be created in cases such as this. For example, poly(x,z,2) 
will specify a bivariate quadratic surface in the two numeric variables x and 
z. 

The formula Opening • Mask in expanded form is then 

1 + Opening + Mask + Opening:Mask 

The formula above brings in factors in a crossed model; that is, the model says that 
the individual factors should be included and, in addition, that the contribution of 
one factor to the fit may change depending on the level of the other factors. 
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Nested terms in a model, on the other hand, arise when the levels of one factor 
are only meaningful within a particular level for some other factor or combination of 
factors. For example, suppose we have some geographic data in which the variable 
state defines the state for each location and the factor county indexes counties 
within each state. Clearly, county was generated by coding whatever county names 
appeared for each state, so that level 1 of county means something different in 
different states. In this context, a main effect for county is meaningless, and a 
typical model will fit a main effect for state and then look at the coefficients for 
county within each level of state. In expanded form this could be written 

1 + state + county:state 

However, to emphasize that the last term is thought of as a nested term, not an 
interaction, we allow (and encourage) writing the model as 

1 + state + county 7.in7. state 

The formula written above in expanded form has the shorthand notation 

state I county 

meaning "state and then county within state." Notice that while factors joined 
by • can be permuted without changing the meaning (except for the order of the 
expanded terms}, factors joined by I can never be meaningfully permuted: if county 
is nested in state, then state cannot be nested in county. 

While the model implies a coefficient for each level of each term, in practice 
the coefficients have built-in dependencies. When a model matrix is created that 
represents a particular model, columns coding each term are included for all the 
coefficients that can be estimated; this is the condition for a valid coding of the 
model. One would like the individual coefficients to be meaningful in terms of 
the overall model and to avoid too many redundant coefficients that will have to be 
removed in the fitting. In Section 2.4.1, the general rules for coding will be outlined, 
but for practical purposes you need not worry about the coding unless you want to 
understand or control the specific choice of coefficients. 

The coding of factors depends on the overall model. In the two-factor crossed 
model, main effects are included for both of the factors in the interaction term. All 
the possible coefficients for the interliction term can be estimated by representing 
each factor by contrasts among the levels of the individual factors. The contrasts will 
be chosen by default in a standard way, but the coding can be controlled, as shown 
in the next section. Unordered factors are coded as successive differences using the 
Helmert contrasts (Section 2.3.2}, and ordered factors are coded to give a polynomial 
fit to a hypothetical underlying numeric variable. In the nested model, there is no 
main effect for county, so that the coding of county 7.in7. state proceeds differently: 
state is coded by dummy variables and county by contrasts. This produces the 
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computational equivalent of "county within state" and also guarantees that the 
model will fit as many coefficients as can be meaningfully defined. The details of 
coding affect only the meaning of the individual coefficients estimated. Any valid 
representation will give the same contribution to the overall tit in the model for each 
of the terms. If you don't care about the individual coefficients, leave the default 
coding in place; if you do care, look at page 32 to see how to change it. 

When one of the variables in an interaction is numeric, the term will be computed 
formally the same way, but some extra remarks are needed on how crossed and 
nested interactions are interpreted. A numeric factor is always "coded" as itself. In 
interactions, the numeric factor will be multiplied by either the dummy variables 
or the contrasts for a factor. Consider a simple example using the automobile data: 
suppose Weight is numeric and Foreign is a logical variable, which will be turned 
into a factor with two levels corresponding to FALSE and TRUE. Both the crossed 
formula 

Foreign • Weight 

and the nested one 

Foreign I Weight 

make sense, but they mean something different. Consider the nested version. As 
before, this expands into the main effects for Foreign followed by Weight within each 
level of Foreign. In terms of the actual coefficients, one coefficient will be fitted for 
Weight using only data from level 1 of Foreign and one using data for level 2. There 
will only be one coefficient for Foreign, estimating the contrast between the two 
levels. This is equivalent to fitting a model to observations for which Foreign is 
TRUE as 

p, + Otp + f3l X Weight 

and another model to observations for which Foreign is FALSE as 

p,- Otp + /32 X Weight 

There are four coefficients: the intercept p,, the contrast Otp for Foreign, and coeffi
cients {3; for Weight within each level of Foreign. This formula therefore corresponds 
to the concept of fitting "separate slopes" to the different levels of the factor. 

The crossed formula fits main effects for both Foreign and Weight, and then fits 
the product of Weight with the coded contrasts of levels for the factor. In terms of 
specific coefficients this is 

p, + Otp + {3 X Weight + "'( X Weight 

when Foreign is TRUE and 

J.L- Otp + {3 X Weight - "'( X Weight 
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when Foreign is FALSE. Again there are four coefficients, but this time there is an 
overall slope {3 for Weight and a contrast 1 estimating the interaction of Foreign 
and Weight. This is an appropriate way to code the model if we want to look at an 
overall fit to Weight and then to examine whether something substantial would be 
added to the model by allowing the regression to depend on the level of the factor. 
The distinction between the crossed and nested versions is not so strong here as 
when both predictors are factors, because a numeric factor is always just itself, but 
the treatment is entirely analogous. (Section 2.4.1, where we discuss how the coding 
works, will show why the computations can be the same.) 

When both factors in an interaction are numeric, the formula expands as usual; 
now the pure interaction x:z amounts to fitting an ordinary product. In this case, 
however, you may really have wanted to use • or I in its ordinary S sense, in which 
case you ought to have protected the expression with the identity function I 0, as 
we will show when we go into details about general formulas next. 

Syntax of Formulas 

We now give the full rules for writing model formulas. A model formula is created 
by separating a response term from the predictor terms by the operator "'; the 
response can be absent. Expressions appearing in a model formula are interpreted 
as ordinary S expressions, except for the following operators: 

+ * I %in% 1\ 

The operator - is used to delete terms; for example, 

Padtype • Opening * Mask - Padtype:Opening:Mask 

deletes the third-order interaction term that was implied by the expansion of the • 
operator, so that the formula expands to 

Padtype + Opening + Mask + Padtype:Opening + Padtype:Mask + Opening:Mask 

As in this example, the - operator is useful for compactly dropping a few inter
actions, when we are prepared to assume these particular terms are negligible. A 
simple use of - is to exclude the intercept from a model: 

Yield "' Mass - 1 

In Chapter 1 we describe the update 0 function for changing fitted models, typ
ically by altering the formula. The "-" operator plays a special role there as well 
(illustrated again in the first example in the list below). 

The use of ":" to denote interaction is a break from the traditional Wilkinson 
and Rogers syntax, where "." is used instead. A "." is a valid part of a name in 
S, as in vind.speed, so it could not serve as an interaction operator. A single"." 
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does have a special meaning though; it serves as the default left or right side of a 
formula wherever that makes sense. We made use of "." in some of the examples 
in Chapter 1. Other examples are 

• update(lmob, . ~ . - Age) is used to update the fitted linear-model object 
lmob by modifying its formula and then refittipg it. The "." on the left of ~ 
implies that the response is the same as in lmob, while the "." on the right of 
~ gets replaced by whatever was on the right in the formula used to fit lmob. 

• lm(Mileage ~ . , data = car. test. frame); here the "." is interpreted relative 
to the data frame- car. test. frame, which is a dataset to be used in fitting 
the linear model. Data frames are described in Chapter 3. The "." here 
means that all the variables in car. test. frame, except Mileage, are to be used 
additively, which is equivalent to the explicit formula 

Mileage ~ Price + Country + Reliability + Type + Weight + Disp. + HP 

• lm(skips ~ ."2, data= solder.balance); similar to the previous item, ex
cept all the main effects and second-order interactions of the variables in 
solder. balance are to be used. 

The following table summarizes the special meanings of the operators in formu
las: 

Expression Meaning 
TrvF T is modeled as F 
Fa.+ Fb Include both Fa. and Fb 
Fa.- Fb Include all Fa. except what is in Fb 
Fa.* Fb Fa. + Fb + Fa. : Fb 
Fa. I Fb Fa. + Fb Y.inY. (Fa) 
Fa.: Fb or The factor jointly indexed by Fa. and 
Fb Y.inY. Fa Fb 
pAm All the terms in F crossed to order m 

The expression T is a term (with no special operators included), but F, Fa., and 
Fb can be arbitrary formulas, not just single terms. The operators in the table 
are special in their semantics (that is, in the way that S interprets them) but they 
otherwise act as they would in ordinary expressions, with the same precedence and 
association they would normally have (see lj, Section 3.2.6). Parentheses can be 
used to change the grouping implied by precedence rules-for example, to force a 
combination of terms to act like one term. The formula 

Panel I (Opening * Mask) 

says to fit all the terms in Opening * Mask, within each level of Panel. 

Slightly more subtle is 
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(Panel + Mask)/ Opening 

which expands to 

1 + Panel + Mask + Opening %in% (Panel + Mask) 

The parentheses around Panel + Mask here do not get expanded further, and the 
last term is equivalent to 

Opening:Panel:Mask 

The last item in the table is a shorthand for creating interactions. For example 

(Opening + Mask + Panel)A2 

expands to the same formula constructed from using "-": 

Padtype + Opening + Mask + Padtype:Opening + Padtype:Mask + Opening:Mask 

Composite Terms in Formulas 

The special meaning of the operators applies only at the top level in the formula 
expressions, and only on the right of the "~". If the operators appear as the 
arguments to other functions, they behave as they always do in S. As the user 
certainly intended, the term 

atan( Length I Width ) 

fits a single coefficient to the ordinary value of the S expression, and does not treat 
I as a nesting operator. Similarly, 

sqrt (x - min(x)) 

does not treat - specially. It is also possible to force the operators to be treated 
in an ordinary way, by using the identity function, I 0. This function returns its 
argument and exists only to protect special operators. For example, to fit as a single 
term the product of Length and Width, use 

I( Length * Width ) 

to prevent the operator * from getting its special interpretation. 
As emphasized before, any variables in the formula (either the response or the 

factors in the terms) can be arbitrary S expressions, so long as they evaluate to 
objects having a valid data type, namely: numeric variables or matrices, factors 
including ordered factors, and non-numeric variables which will be converted into 
factors. 

Matrices that appear in the formula are treated as a single factor. This is 
how special curves can most easily be generated, and functions are provided that 
generate suitable matrices for common kinds of curves. The following are some 
examples: 
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• The expression poly(x, degree) returns a matrix whose columns are an or
thogonal basis for fitting a polynomial of degree degree in the numeric variable 
x. Similarly poly(x,y, degree) returns the matrix of bivariate polynomial 
terms of degree no more than degree, and so on. · 

• The expression bs(x, df) returns a matrix which is a B-spline basis for piece
wise-cubic regression on x. The parameter df is the degrees of freedom, which 
determines the number of interior knots. These knots are automatically placed 
by the function; otherwise, the knots argument can be used to place them 
explicitly. 

See Chapters 6 and 7 for a general discussion of composite terms such as these. 
Functions can be used that produce factors and categories as well; for example, 

ordered(x,breaks) will return an ordered factor cutting the numeric variable x at 
the breakpoints breaks. This is similar to the S function cutO, which produces a 
category. Expressions that produce factors or categories can be used in conjunction 
with the special operators, so that 

cut(Weight,5) * Country 

creates a five-level category from the numeric variable Weight and then uses it in a 
crossed model with the factor Country. Similarly 

( Age < 45 ) * Cholesterol 

creates different linear trends in Cholesterol for people under and over 45. The 
function codes() produces numbers to represent the levels in a factor or ordered 
factor; so if Opening is an ordered factor with levels Large, Medium, and Small, then 
the expression 

codes(Opening) 

implies a term linear in the numbers 1, 2, and 3, coding the three levels. 
As always in S, you can write any functions of your own to create other suitable 

variables. The expressions can be more complicated than function calls as well: 

group • (if(all(x)>O)log(x) else log(x-min(x)+.Ol)) 

Exotic expressions like this are perfectly legal but hard to read and not good pro
gramming style. A better approach is to define a function, say 

plus.log <- function(x) 
if(all(x)>O)log(x) else log(x-min(x)+.Ol) 

and then write the formula as group • plus .log(x). 
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2.3.2 Coding Factors by Contrasts 

On page 21 we noted that factors entering a model normally produce more coef
ficients than can be estimated. This is true regardless of the data being used; for 
example, the sum of all the dummy variables for any factor is a vector of all ones. 
This is identical to the variable used implicitly to fit an intercept term. This is 
functional overparametrization, as opposed to data-dependent overparametrization 
in which the number of observations is not large enough to estimate coefficients or in 
which some of the variables turn out to be linearly related. The functional problem 
is removed in most cases before any model-fitting occurs, by replacing the dummy 
variables by a set of functionally independent linear combination of those variables, 
which is arranged to be independent also of the sum of the dummy variables. For a 
factor with k levels, k- 1 such linear combinations are possible. We call a particular 
choice of these linear combinations a set of contrasts, using the terminology of the 
analysis of variance. Computationally, the contrasts are represented as a k by k- 1 
matrix. 

Any choice of contrasts for factors alters the specific individual coefficients in a 
model but does not change the overall contribution of the term to the fit. All the 
model-fitting functions choose contrasts automatically, but users can also specify 
the contrasts desired, either in the formula for the model or in the factor variable 
itself. By default, contrasts are chosen as follows: 

• unordered factors are coded by what are known as the Helmert contrasts, 
which effectively contrast the second level with the first, then the third with 
the average of the first and second, and so on; 

• ordered factors are coded so that individual coefficients represent orthogonal 
polynomials if the levels of the factor were actually equally spaced numeric 
values. 

If this choice of contrasts is adequate, no user action is needed. 
The simiJlest way to alter the choice of contrasts is to use the function co , 

with usage C(factor, contrast) in the formula. The first argument is a factor, the 
second a choice of contrast. It returns factor with the appropriate contrast matrix 
attached as an attribute. The choice can be made in three ways: 

• By giving the name of a built-in choice for contrasts: helmert, poly, sum, or 
treatment. For example, C(Opening, sum) uses the function contr. sum() to 
generate the appropriate sized contrast matrix. We will explain the meaning 
of these choices below. 

• By giving a function, which when called with either a factor or the number of 
levels of the factor as its argument, returns the k by k-1 matrix of constraints: 
C(Opening, myfun) calls myfun(Opening) to generate the contrast matrix (if 
myfun exists as a function). 
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• By giving the contrast matrix or some columns for the contrast matrix. 
C(Opening, mymat) uses the matrix mymat as the contrast matrix. 

The function CO tests for each of these cases to determine how it has been called. 
The four standard choices correspond to four functions to generate particu

lar flavors of contrasts. The polynomial contrasts are the result of the function 
contr.poly(): 

> contr.poly(4) 
L Q c 

[1,] -0.6708204 0.5 -0.2236068 
[2,] -0.2236068 -0.5 0.6708204 
[3,] 0.2236068 -0.5 -0.6708204 
[4,] 0.6708204 0.5 0.2236068 

The coefficients produced by this transformation of the dummy variables correspond 
· ·to linear, quadratic, and cubic terms in a hypothetical underlying numeric variable 

that takes on equally spaced values for the four levels of the factor. In general, 
contr. poly produces k - 1 orthogonal contrasts representing polynomials of degree 
1tok-1. 

Similarly, the function contr. helmert 0 returns the Helmert parametrization. 
The first linear combination is the difference between the second and first levels, 
the second is the difference between the third level and the average of the first and 
second, and the jth linear combination is the difference between the level j + 1 and 
the average of the first j-for example, 

> contr.helmert(4) 
[,1] [,2] [,3] 

1 -1 -1 -1 
2 1 -1 -1 
3 0 2 -1 
4 0 0 3 

These two are the default choices. 
The sum choice and the corresponding function contr.sumO produce contrasts 

between each of the first k - 1 levels and level k. 

> contr.sum(4) 
[,1] [,2] [,3] 

1 1 0 0 
2 0 1 0 
3 0 0 
4 -1 -1 -1 

This corresponds to a parametrization got by applying the constraint that the sum 
of the coefficients be zero. 
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The treatment form of coding is commonly used in models for which the first 
level of all the factors is considered to be the standard or control case, and in 
which one is interested in differences between any of the nonstandard or treatment 
situations. As constraints on the coefficients, this is usually expressed as saying that 
any coefficient in which any of the factors appears at its first level is set to 0. The 
equivalent coding uses the dummy variables for levels 2 through k. The function 
contr. treatment 0 gives this coding: 

> contr.treatment(4) 
2 3 4 

1 0 0 0 
2 1 0 0 
3 0 1 0 
4 0 0 1 

This is a legitimate coding, in that it captures all the coefficients. However, it is not 
a set of contrasts, in that the columns do not sum to zero and so are not orthogonal 
to the vector of ones. For applications to linear models in designed experiments, 
the coefficients will not be statistically independent for balanced experiments. This 
complicates the interpretation of techniques such as the analysis of variance, so that 
the control-treatment coding should generally not be used in this context. For some 
other models, such as the GLM models in Chapter 6, the lack of orthogonality is less 
obviously a defect, since the assumptions of the models do not produce statistical 
independence of the estimated coefficients anyway. Probably for this reason, the 
control-treatment coding is popular among'GLM modelers, since what it lacks in 
orthogonality it gains in simplicity. 

Any of these can be selected in a formula to override the default. You can also 
implement any function you like, perhaps by modifying one of the four standard 
functions, to produce a different set of contrasts. The matrix must be of the right 
dimension and the columns must be linearly independent of each other and of the 
vector of all ones. If this fails, model-fitting with complete data will produce singular 
models. An easy way to test this condition is to bind a column of 1 to the matrix 
and pass the result to the qr 0 function. The value of this function has a component 
rank that is the computed numerical rank of the matrix. For a set of contrasts on 
k levels, the rank should be k-for example 

> qr(cbind(1,contr.treatment(4)))$rank 
[1] 4 

A function to generate contrasts must also, by convention, take either the levels of 
the factor or the number of levels as its argument. See any of the four standard 
functions for code to copy. 

The third way to specify contrasts is directly by numeric data. You can start 
from the value of one of the functions, but a more typical situation in practice is that 
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you want to estimate one or more specific contrasts, but will take anything suitable 
for the remainder of the k- 1 columns. Suppose quality is a factor (unordered) 
with four levels: 

> levels(quality) 
[1] "tested-low" "low" "high" "tested-high" 

Suppose that we want the first contrast of quality to measure the difference between 
tested and nontested-that is, levels 1 and 4 versus levels 2 and 3-and we don't 
care about the other contrasts. Then we can give the factor in the formula as 

C(quality, c(1, -1, -1, 1)) 

Two additional contrasts will be chosen to be orthogonal to the specified contrast. 
If we had wanted the second contrast to be between the two low and the two high 
levels, we would have supplied CO with the matrix 

[.1] [.2] 
[1 ,] 1 1 
[2,] -1 1 
[3,] -1 -1 
[4,] 1 -1 

and one further column would be supplied. 
One additional detail is sometimes needed. Sometimes the user is willing to 

assert that only some specified contrasts in the levels of a factor can be important; 
the others should be regarded as known to be zero and omitted from the model. 
This is risky, of course, but is done in some experiments where the number of runs 
is limited and the user has considerable prior knowledge about the response. The 
specification can be done by giving co a third argument, the number of contrasts to 
fit. For example, suppose we are fitting polynomial contrasts to an ordered factor, 
Reliability, and assert that no more than quadratic effects are important. The 
corresponding expression in the model would be 

C(Reliability, poly, 2) 

Since the ith contrast generated by contr .poly() corresponds to an orthogonal 
polynomial of degree i, this term retains only linell.r and quadratic effects. 

The function cO combines a factor and a specification for the contrasts wanted, 
and returns a factor with those contrasts explicitly assigned as an attribute. The 
companion function contrasts() extracts the contrasts from a factor, and returns 
them as a matrix. The contrasts may have been explicitly assigned as an attribute 
or may be the appropriate default, according to whether the factor is ordered or 
not. If you want to set the contrasts for a particular factor whenever it appears, 
the function contrasts 0 on the left of an assignment does this. In the example of 
one specific contrast, 
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> contrasts(quality) <- c(1, -1, -1, 1) 
> contrasts(quality) 

[. 1] [, 2] [, 3] 

tested-lov 1 -0.1 -0.7 
lov -1 -0.7 0.1 

high -1 0.7 -0.1 
tested-high 1 0.1 0.7 

two additional linear combinations have been added to give a full contrast specifi
cation. Now, quality will have this parametrization by default in any formula, with 
the opportunity still available to use the CO function to override. As with cO, the 
function contrasts 0 on the left of an assignment takes an optional additional ar
gument, hov.many, that says to assign fewer than the maximum number of contrasts 
to the factor. 

You can also change the default choice of contrasts for all factors using the 
options() command inS, once you know a little more about how coding is done. 

> options()$contrasts 
factor ordered 

"contr.helmert" "contr.poly" 

shows us what the defaults are. These options are the names of functions that 
provide contrasts for unordered and ordered contrasts, respectively. To reset the 
defaults, use: 

options(contrasts=c("contr.treatment","contr.poly")) 

Redefining one or both of the elements changes the default choice of contrasts. The 
effect of using options() to change the default contrast functions lasts as long as the 
S session; each time S is started up, the permanent default is assumed. If you really 
want to have your own private default coding every time you run S, you can invoke 
options() automatically via the .First() function ( lj, Section 3.4.9). Notice that 
explicit choices for individual factors can still be used to override the new default 
coding by assigning the contrasts as before. 

Strictly speaking, the term contrast implies that all the linear combinations are 
contrasts of levels. In this case, the sum of the numbers in any column of the 
matrix should be zero. Orthogonal contrasts have the additional property that the 
inner products of any two column11 of the contrast matrix is also zero. The Helmert 
and polynomial contrasts have bot.h these properties. The contrast and orthog
onal contrast properties are particularly important for linear models in designed 
experiments. Otherwise, the choice~ of contrasts can introduce artificial correlations 
between coefficient estimates, even if the design is balanced. Additional details on 
the implications of contrasts for fittc~d models appear in Section 5.3.1 in the context 
of analysis of variance, and in Section 6.3.2 in the context of GLMs. 
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2.4 Internal Organization of Models 

In this section, as in the fourth section of later chapters, we will reveal how things 
work: the internal structure of the objects that have appeared earlier in the chapter 
and the computational techniques used in the functions. This section is not required 
reading if you only want to use the functions described so far. It will be useful, 
however, for those who want to extend the capabilities and/or to specialize them 
in a serious way for particular applications. Extensions and modification of the 
software we provide is not only allowed but is one of the goals of our approach to 
statistical software in this book. Rather than trying to provide a complete approach 
to the topics we cover (probably an impossible task anyway), we present functions 
and objects that form a kernel containing the essential computations. The functions 
include what we see as the natural approach to common, general use of the statistical 
methods. The classes of objects organize the key information involved, with the goal 
of making subsequent use of the information as easy and general as possible. 

Users with special needs, and researchers who want to extend the statistical 
techniques themselves, will want to go beyond what we provide. Understanding the 
material in this section will likely help. 

2.4.1 Rules for Coding Expanded Formulas 

This section gives the'rules underlying the coding of factors in the expanded for
mulas of Section 2.3.1. To produce a model matrix for use in linear models, factors 
and their interactions are represented by columns of numeric data, either dummy 
variables or contrasts. To be valid, the representation must estimate the full linear 
model. Since such models are generally overparametrized, there will be many dif
ferent valid representations in this sense. The goal of a particular representation is 
to be meaningful and reasonably parsimonious. The actual coefficients estimated 
should mean something in the application of the model. For example, a coefficient 
value significantly different from zero should say something useful about the data. 
A parsimonious parametrization is desirable numerically, since the size of the model 
matrix can in some cases be much larger than necessary. The mathematical discus
sion that follows provides the basis for understanding how the representation can 
be chosen for various models. 

Each term in an expanded formula can be written using only one special oper
ator, ":". Suppose we have an expanded formula with p factors: 

Ft,F2,···,F, 

and m terms: 
Tt +T2 +··· +Tm 

The F; need not be simple variables, but can be essentially arbitrary S expressions. 
The expanded term Ti can always be written as an interaction of 0, 1, or more of 
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F;, : F;2 : • • • : F;., 

where 1 :::; i; :::; p. The value of o; is the order of 1i-that is, the number of factors. 
We will assume that the expanded formula is sorted by the order of the terms, so 
that all terms of order 1 appear first, then all terms of order 2, and so on.1 The 
intercept term is the only term of order 0, and is written as 1. If it is present, it 
comes first. 

As discussed in Section 2.2, a factor corresponding to Fi can be represented 
in the model by a matrix whose columns are the dummy variables corresponding 
to each level of F;. The interaction of Fil and Fh is represented by the matrix 
containing all possible products of pairs of columns from the matrices representing 
the main effects. A three-way interaction is represented by all products of columns 
of this matrix and columns of the matrix representing F;., and so on. For details, 
see the function column. prods 0, which carries out just this computation. 

If all factors were represented by dummy variables, there would be nothing more 
to the inte\"pretation of expanded formulas. However, both numerical and statistical 
arguments require more careful coding of factors. Usually, coefficients cannot be 
estimated for all the levels of the factor. For example, the sum of all the dummy 
variables for any main effect is the constant 1, and so is functionally equivalent 
to the intercept. Coding all levels by dummy variables would produce a model 
matrix with more columns than necessary (in some cases many more), and the 
model matrix would nearly always be singular, so that numerical solutions would 
not produce estimates for all the requested coefficients. These are the numerical 
reasons for choosing a good coding for the terms, but the statistical reason is more 
important-namely, to allow a meaningful choice of coefficients for the particular 
model. The functional dependencies among the dummy variables in the terms imply 
that only certain linear combinations of the coefficients for the dummy variables are 
estimable. The goal is to represent those linear combinations so that the individual 
computed coefficients are useful for the particular model. Section 2.3.2 showed how 
this coding could be controlled. 

The following rule specifies which factors should be coded by dummy variables 
and which should be coded by contrasts in producing the columns of the model 
matrix: 

Suppose F; is any factor included in term T;. Let T;(il denote the maryin 
ofT; for factor F;-that is, the term obtained by dropping F; from T;. 
We say that T;(j) has appeared in the formula if there is some term T;• 
for i' < i such that T;t contains all the factors appearing in Ti(j)· The 
usual case is that T;w itself is one of the preceding terms. Then F; is 

1The only ordering that we actually need is. that any term T; appear in the formula after its 
margins. It does not make sense for a factor to appear in the formula after some interaction 
including that same factor. 
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coded by contrasts if T;(;) has appeared in the formula and by dummy 
variables if it has not. 

In interpreting this rule, the empty term is taken to be the intercept. 
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The application of this rule corresponds to generating a matrix-the model 
matrix-with n rows and some number of columns, to represent the whole model. 
This matrix comes from binding together the columns of the matrices produced by 
the rule for each term. We can compare this matrix with the overspecified but valid 
coding we would get if we used dummy variables for all the factors. Our rule is 
valid if the dummy variables, say x•, introduced for term T; in this overspecified 
coding, can be represented as a linear combination of columns from the matrices 
produced by our rule for terms up to and including T;, for all i. 

Here is an informal proof that the rule is valid. Start with an inductive as
sumption: suppose that the rule is valid for terms of order less than the order of 
T;; specifically, for any such term, assume that its dummy matrix can be written 
as a linear combination of the matrices given by our rule for that term and those 
of its margins that are in the formula. Suppose F; is one of the factors for which 
the rule says we can use contrasts. Let X; be the n by k; - 1 matrix of contrast 
variables for F;, and Xj the corresponding n by k; matrix of dummy variables. We 
will need to refer to the lth columns of these matrices; let's call them x;,1 and xj,1• 

Any column of x• can be written as the product of one column from each of the 
dummy matrices, Xj, for factors J in T;, so in particular it can be written as: 

Note that this is ordinary multiplication of the n-vectors, not matrix product. Now 
look at the two parts of the above expression ~arately, the left part in parentheses 
and the single vector on the right. 

1. By the inductive assumption, the left part is a linear combination of our 
matrices for T;(;) and its margins. 

2. From the definition of a valid coding of the individual factors, the right part 
is a linear combination of 1 and the x;:r 

If we were to expand these two linear combinations, the result would be a linear 
combination of column products from our coding for T; and for its various margins. 
Therefore, the inductive assumption holds forT; as well. By looking directly at the 
cases of the empty term and terms of order 1, the inductive assumption holds for 
these cases, and so is believable in general. This is not quite precise; in particular, 
extra arguing needs to be added for the (somewhat strange) case that T;w is not in 
the model, but is contained in some other preceding term of order equal that of T;. 
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The argument above should nevertheless be sufficiently convincing for our purposes 
1ere. 

The rule does not always produce a minimal coding; that is, in some cases there 
·nay be functional dependencies between columns of the matrix representing T; and 
·.hose representing earlier T;· . In particular, this will be the case again when there 
.s no Ti' that is exactly equal to T;(i)· However, models of that form are usually 
1uestionable; for most sensible model formulas, the rule above produces a minimal 
md meaningful coding of the terms. 

Numeric variables appear in the computations as themselves, uncoded. There
'ore, the rule does not do anything special for them, and it remains valid, in a trivial 
;ense, whenever any of the F; is numeric rather than categorical. 

~.4.2 Formulas and Terms 

<'ormula objects pass through an intermediate stage before being combined with 
he data. This stage produces objects of class "terms", which contain the formula 
tfter it is processed to have, in a convenient form, all the information needed to 
:reate the model. Users of model-fitting functions will not see this intermediate 
;tage, but those of you who want to modify model-fitting techniques or to create a 
1ew class of models may find it helpful to know what information the terms objects 
:ontain. A terms object is an object of mode "expression" with extra attributes. 
fhe elements of the expression are the individual terms in the expanded right side 
>f the formula: 

> forml <- skips ~ Panel * Opening 
> termsl <- terms(forml) 
> as.vector(termsl) 
expression(skips, Panel, Opening, Panel:Opening) 

-low let's consider the attributes: 

> names(attributes(termsl)) 
(1] "formula" "factors" "order" 
[5] "term.labels" "intercept" "response" 

<'he meaning of the attributes is as follows: 

"variables" 
"class" 

·formula": the actual formula used to construct terms, in this case the contents of 
forml: 

> attr(termsl,"formula") 
skips ~ Panel • Opening 

There is a generic function formula() for extracting formulas from a variety 
of objects; in this case, formula(termsl) would extract the formula from the 
terms object. 
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"factors": a matrix with factors along the rows and terms along the columns. The 
jth column says what factors appear in the jth term and also whether they 
are coded as contrasts or dummy variables. Values in the column are 1 for 
contrasts, 2 for dummy variables, and 0 if the factor does not appear in the 
term: 

> attr(terms1, "factors") 

skips 
Panel 

Opening 

Panel Opening Panel:Opening 
0 0 0 
1 
0 

0 
1 

1 
1 

The coding is specified according to the general rule in the previous section. 

"order": a vector giving the order of each term: 1 for main effects, 2 for second
order interactions, and so on: 

> attr(termsl,"order") 
[1) 1 1 2 

"variables": an expression whose elements are the expressions for each of the vari
ables, including the response (remember that these need not simply be names): 

> attr(termsl, "variables") 
expression(skips, Panel, Opening) 

"term.labels": the character form of the terms, only included to save repeated 
deparsing later: 

> attr(terms1,"term.labels") 
[1) "Panel" "Opening" "Panel:Opening" 

which can also be extracted using the labels() generic function. 

"intercept": a logical variable that will be TRUE unless the term -1 appears in the 
formula. Notice that the intercept term does not appear in the expression 
vector itself nor in the term labels. The label "(Intercept)" is used to label 
coefficients, etc. corresponding to the intercept. 

"response": which variable in the "variables" attribute is the response {o if there 
is no response specified). 

Since all the model-fitting functions include the terms object for a particular model 
in the object that represents the fitted model, you can use the information above 
to conveniently get at information about pieces of the model when designing new 
summary functions or modifying the model-fitting. Section 7.4 describes some ad
ditional arguments in the call to terms that add to its flexibility. 
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2.4.3 Terms and the Model Matrix 

The process of putting together data and formula to construct a model matrix 
involves three basic steps: 

1. Convert the formula into a terms object, in which all the interactions and 
nested terms have been expanded, and any simplifications resulting from sub
tractions, parentheses, dots, and powers have been applied. 

2. Compute a model frame from the terms and the data, containing variables 
corresponding to the expressions needed to compute the terms defined in step 
2. 

3. Generate the model matrix itself from the model frame. 

A model frame is a special type of data frame, described in the next chapter. For 
the moment, simply think of it as a list of the response variable and variables corre
sponding to all the terms in the formula. The function model. frame() uses the terms 
object, specifically its attribute variables, to determine which expressions will be 
used in· generating the model matrix. It returns a special data frame containing 
those variables. Notice that there is no restriction on the expressions appearing in 
the formula for the terms. The names of the variables will not necessarily be syntac
tic names inS; if one of the terms is log(Fuel) then the corresponding variable will 
have name "log(Fuel)". Two other, optional computations take place during the 
evaluation of the model frame. If a subset argument is supplied, the corresponding 
subset will be extracted from each computed variable before it is inserted into the 
model frame. Similarly, if ana. action function is supplied either as an argument or 
as an attribute to the data frame, this function will be applied to the model frame. 
See Section 3.3.3 for further details. 

Once the model frame has been computed, it is used to generate a model matrix, 
with columns corresponding to each of the terms in the model formula. A model 
matrix is a numeric matrix of suitably coded dummy variables, contrasts, or numeric 
variables, plus some attributes related to the model. 

We don't have to worry about the steps described above; the fitting functions 
such as lmO do the work for us, and will return both the model frame and model 
matrix if requested. On the other hand, we can create a model matrix from some 
data directly from the model.matrixO function. To illustrate the structure in model 
matrices, we will compute a model matrix from a market study data frame described 
in the next chapter. The model chosen will use the numeric variable usage along 
with a complete model (main effects and interaction} for two factors, nonpub and 
education: 
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> model1 <- model.matrix(~ usage + nonpub • education) 
> print(model1[1:6,], abbreviate • T) 

(lntrc) usage nonpub educationl education2 education3 
1 1 9 1 1 -1 -1 
2 
7 
8 

10 

1 

1 
1 
1 

2 1 
3 -1 
1 -1 
2 -1 

1 -1 -1 
-1 -1 -1 

-1 -1 
-1 -1 -1 

education4 
-1 
-1 
-1 
-1 
-1 

educationS nnp:edc1 nnp:edc2 nnp:edc3 nnp:edc4 nnp:edcS 
1 
2 
7 
8 

10 

-1 

-1 
-1 

-1 
-1 

> dim(modell) 
[1] 1000 13 

1 -1 
1 -1 
1 1 

.-1 1 
1 1 

-1 -1 -1 
-1 -1 -1 

1 
1 
1 1 1 
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Notice we used no response in the formula; had one been there it would have been 
ignored. The model matrix has as many columns as are required by the coding 
of the expanded formula. The abbreviate= argument to the printing method for 
matrix objects abbreviates the column labels. The unabbreviated column labels are 

> dimnames(model1)[[2)] 
[1] "(Intercept)" "usage" 
[4) "education1" "education2" 
[7) "education4" "educationS" 

[10] "nonpub:education2" "nonpub:education3" 
[13] "non pub: educationS" 

Model matrices have additional attributes: 

> names(attributes(model1)) 
[1] "dim" "formula" 
(6] "assign" ••dimnames•• 

11 class 11 

"nonpub" 
"education3" 
"nonpub:education1" 
"nonpub:education4" 

"order" "term.labels" 

The class attribute has value c("model.matrix", "matrix"), which means that 
model matrices inherit from the more general class "matrix". The formula, order 
and term.labels attributes are retained from the terms object. The assign attribute 
is a list, with length equal to the nwnber of terms. The elements of assign define 
which columns of the matrix belong to the corresponding terms: 

> attr(modell, "assign") 
$"(Intercept)": 
[1] 1 
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$usage: 
[1] 2 

$nonpub: 
[1] 3 

$education: 
1 2 3 4 5 
4 5 6 7 8 

$"nonpub:education": 
1 2 3 4 5 
9 10 11 12 13 

CHAPTER 2. STATISTICAL MODELS 

The model. matrix function produces the matrix of predictors for linear and gen
eralized linear regression and anova model-fitting routines; other model-fitting func
tions, such as those that build trees, require other constructions. These are discussed 
further in the relevant chapters, as well as in Section 3.3.3. There we also expand on 
the sequence of steps needed to create model frames and model matrices, to allow 
facilities for weights, missing data, and subsets. 

Bibliographic Notes 

The formula language described in this chapter was inspired by the the Wilkinson 
and Rogers (1973) formula language used in the package GLIM. Several of the 
enhancements introduced here, such as poly(), for example, were mentioned in the 
Wilkinson and Rogers paper, but not fully implemented in GLIM. 



Chapter 3 

Data for Models 

John M. Chambers 

This chapter describes the general structure for data that will be used throughout 
the book. In particular, it introduces the data frame, a class of objects to represent 
the data typically encountered in fitting models. 

Section 3.1 presents some datasets that recur as examples throughout the book. 
S functions to create, manipulate, modify, and study data frames are described 
in Section 3.2. Section 3.3 discusses the computations on data frames and related 
classes of objects at a detailed level, suitable if you want to modify functions dealing 
with these objects. 

As with Chapter 2, the ideas in this chapter underlie all the computations for 
various models in the following chapters. To get a general view of our approach 
to data, you should read some of this chapter before going on to specific models. 
Sections 3.1 and 3.2 should be plenty. Your data analysis will benefit from studying 
graphical and other summaries of the data before any commitment to a particular 
model. This chapter describes a number of such summaries and also shows how 
to apply S functions generally to the data in data frames. Therefore, we recom
mend reading through the first two sections of the chapter before fitting particular 
models. 

3.1 Examples of Data Frames 

The statistical models discussed in this book nearly always think of the underlying 
observational data as being organized by variables-statistical abstractions for dif
ferent things that can be observed. Values on these variables can be recorded for a 
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number of observations-points in time or space, for example. A data frame is an 
object that represents a sequence of observations on some chosen variables. In later 
sections of the chapter we will describe functions to create, modify, and use these 
objects. Here, we are only concerned with the concepts involved, not the specific 
functions. 

Data frames clearly have the flavor of matrices; in particular, in thinking and 
in computing both, the variables can be treated as columns and the observations 
as rows of a matrix-like structure. Data frames can also act as frames in S; that 
is, the variables can be thought of as separate objects, named by the corresponding 
variable name in the data frame. In particular, model formulas as discussed in 
Chapter 2 use variable names in just this way. Data frames are more general than 
matrices in the sense that matrices in S assume all the elements to be of the same 
mode-all numeric, all logical, all character string, etc. In contrast, the variables 
in a data frame can be anything at all, so long as each variable is indexed by the 
same observations. The variables can even be matrices; in fact, matrix variables in 
data frames are very useful in model-fitting. 

The essential concept to keep in mind throughout the book is that data frames 
support matrix-like computations, with variables as columns and observations as 
rows, and that, in addition, they allow computations in which the variables act like 
separate objects, referred to by name. 

Time now for some examples. Statistical software for models, as for any other 
data analysis, can only be fully appreciated when it is seen working on substantial 
applications. In this book, we present both examples that are as realistic as practi
cable as well as the usual small examples that illustrate specific points conveniently. 
In the next three subsections, three fairly substantial sets of data are introduced. 
Later in the chapter, we will present some details of the procedures that get the 
data into the data frame as well as techniques for computing with the data. These 
datasets will be made available in S if you execute the expression 

library(data) 

which attaches a library of datasets for use in computations. Attaching this library 
will let you experiment with the examples in this book. 

3.1.1 Example: Automobile Data 

Our first example is a somewhat recreational one, acknowledging the lasting passion 
for the automobile, in the United States and elsewhere. Suppose we are interested 
in understanding the properties of different automobiles, such as their fuel con
sumption or their reliability. Are expensive cars more reliable, or less fuel-e.fficient? 
What about differences due to country of manufacture? 

A wealth of data related to these questions is published by the magazine Con
sumer Reports, with one monthly issue per year devoted to automobiles, in addition 
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to detailed test reports throughout the year, all providing testimony to the automo
bile's central role in our society. The annual issue contains several tables of data, 
of which we will use three: overall summaries, dimensions, and specifications. The 
reader of Consumer Reports with an interest in data analysis could record some 
of this information in the computer and organize it suitably for analysis. We will 
now illustrate how this might be done. Let's consider the three tables individually, 
showing objects inS corresponding to each. In Section 3.2.2 we show how S objects 
are generated from such data. 

These tables are naturally represented as data frames, with rows corresponding 
to automobile models. The summary section of the issue, for instance, records five 
variables for price, country of origin, overall reliability, fuel mileage per gallon, and 
type of car. The S object cu.summary is a data frame containing the data. There are 
117 models; let's look at a sample of 10. We will generate a sample from the row 
names of the data frame, sorting them alphabetically to make it easy to refer back 
to the printed table. Data frames always have row names, in this case the model 
names as they appeared in Consumer Reports. These names can be used to extract 
the corresponding rows of the data frame: 

> summary10 <- sample(rov.names(cu.summary), 10) 
> summary10 <- sort(summary10) 
> cu.summary[summary10,] 

Price Country Rel. Mileage Type 
Acura Integra 4 11950 Japan 5 NA Small 

Audi 100 5 26900 Germany NA NA Medium 
BMW 325i 6 24650 Germany 4 NA Compact 

Chevrolet Lumina 4 12140 USA NA NA Medium 
Ford Festiva 4 6319 Korea 4 37 Small 

Mazda 929 V6 23300 Japan 5 21 Medium 
Mazda MX-5 Miata 13800 Japan NA NA Sporty 

Nissan 300ZX V6 27900 Japan NA NA Sporty 
Oldsmobile Calais 4 9995 USA 2 23 Compact 

Toyota Cressida 6 21498 Japan 3 23 Medium 

Other data frames, cu. dimensions and cu. specs, represent the dimensions and spec
ifications data. The set of rows (automobile models) changes from one table to an
other, so it will be natural to start with separate data frames and consider merging 
them when the data analysis demands it. In Section 3.2 we illustrate a variety of 
computations on data frames. 

3.1.2 Example: A Manufacturing Experiment 

Designed experiments to improve quality are important tools in modern manufac
turing. In such experiments, a number of variables are chosen as factors to vary in 
the experiment. Several levels (typically two or three) are chosen for each factor. 
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The levels may bt• values of some numeric variable, such as the quantity of some 
ingredient or the diameter of an opening on a machine. They may also simply be 
alternatives, such as the choice of an ingredient in a recipe. The experiment is 
planned as a number of runs, on each of which all the factors are supposed to be set 
at predetermined levels. After each run, one or more response variables is recorded. 
An observer may examine the output of the run and record statistics, or some test 
of the output may be carried out and recorded. 

A designed experiment will be represented in our work by a design object-a 
special class of objects that inherit all the properties of data frames. The variables 
in the data include design factors as above, plus some number of observed responses, 
plus perhaps other uncontrolled variables. The values of the factors are, in principle, 
prechosen according to the design selected by the statisticians and engineers to best 
achieve the goals of the study given any prior information available about the process 
and the constraints imposed by cost and other practical considerations. The factors 
may be ordered or unordered, according to whether we believe they represent some 
underlying, perhaps unobservable, numeric quantity. The entire design will usually 
be selected from some statistical definition (as we discuss in Chapter 5). Using this 
design, the experiment is run. To the design object are then added the responses 
and other observed variables to produce a data frame describing the experiment. 

You have already seen designs if you have read Chapter 1. There we discussed 
experiments to study alternatives in the wave-soldering procedure for mounting elec
tronic components on boards. Two experiments performed on the wave-soldering 
process were shown thP.re. Let's return to that example and consider it more closely. 
Factors in both of the experiments were: 

• opening: the amount of clearance around the mounting pad allowed in the 
solder mask; 

• solder amount; 

• mask: a composite factor coding the type and thickness of the material used 
for the solder mask; 

• pad type: the geometry and size of the pad on which the component was to 
be soldered; 

• panel: each board was divided into three panels at the beginning, middle, and 
end of tlu~ board (allowing three different experimental units to be defined in 
each board). 

Such experiments are difficult and important exercises in pursuing quality in man
ufacturing, so our general goal of providing precise and flexible computational fa
cilities is needtld t.o get the most information from the experiment. As we saw 
in Chapter ·1, t.lu!Hil experiments also provided some interesting challenges in data 
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analysis. An article by Comizzoli, Landwehr, and Sinclair (1990) discusses the 
background to this and similar experiments. It is an interesting example of the 
interaction between materials science and statistics, and well worth reading. 

The design object solder contains all the data from the experiment at the first 
site: 

> sampleruns <-sample( row.names(solder), 10) 
> solder[ sampleruns,] 

Opening Solder Mask PadType Panel skips 
865 M Thin 86 W9 1 3 
844 M Thin 86 04 1 5 
40 M Thick A1.5 06 1 0 

689 M Thin 83 L9 2 0 
636 L Thin 83 04 3 5 
836 L Thin 86 W9 2 0 
757 M Thick 86 L4 1 5 
493 M Thin A6 L6 1 2 
440 s Thick A3 L7 2 7 
834 L Thin 86 L8 3 9 

The variable skips is the response: a count of the number of visible soldering 
skips on the particular run. The other variables are the factors described in the 
experiment; for example, Solder is solder amount, and Mask is a combined factor for 
solder mask type and thickness (combined to economize on the size of the design). 
The row names are just the run numbers in the experiment. 

The dataset solder. balance shown in Chapter 1 was extracted from solder. The 
design object solder2 contains the data from the second wave-soldering experiment. 

3.1.3 Example: A Marketing Study 

For the third example, we look at data used in a marketing study at AT&T. A 
survey of 1000 households was carried out to characterize customers' choice of a 
long-distance company.1 Although relatively recent (1986), the study may already 
be regarded as historic, in the sense that it took place during the aftermath of 
the divestiture of the local telephone companies in the United States from the Bell 
System. As part of the divestiture process, each telephone subscriber was asked to 
pick a primary long-distance telephone company. 

Data in the study we will examine were obtained from three sources: a telephone 
interview survey of selected households; telephone data based on service and billing 
databases; and demographic data, taken from a separate marketing database. The 
study hoped to develop a model to predict the household's tendency to pick AT&T. 
The model would help the marketing group target their efforts more effectively. 

Variables from the survey included in our version of the data are: 

1This example was kindly provided for us by James W. Watson. 
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• the income level of the household; 

• the number of times the household had moved in the last five years; 

• the age, education level, and employment category of the respondent. 

Variables from the telephone records are: 

• whether the household picked AT&T; 

• the average monthly telephone usage of the household; 

• whether the household had an unpublished telephone number; 

• whether the household participated in some special AT&T plans or calling 
card service (before the choice of long-distance company). 

Demographic variables included are: 

• measures of affluence, such as mean income per household, average number of 
cars per household, and median housing value; 

• household size (average number of people per household); 

• the racial patterns, in particular the percent black population; 

• the employment profile, in terms of percent professional, percent college grad
uate, and percent management; 

• a clustering, presumably based on more extensive demographic data, that 
assigns a cluster number to each census block group. 

Substantially more than this already large amount of data could have been included; 
many demographic variables were dropped when they appeared to add little to the 
predictions. 

This example illustrates many of the features that make analysis of business 
data interesting but challenging. The data are highly "ragged": although we will 
treat all the variables as observations on the 1000 respondents to the survey, there 
are many missing values. The demographic data are unavailable for about 30% of 
the observations, and in any case are not observed on the individual households but 
rather on demographic entities determined by their addresses. The telephone data 
were derived (no doubt with considerable difficulty) from databases not originally 
intended to support data analysis at all. Nearly all the data, byt particularly the 
survey data, can be expected to be based at least partly on subjective opinion, open 
to questions about meaning, and prone to errors. 

The ten variables in the survey data are in data frame market. survey and the 
complete data, including nine additional demographic variables, are in market. frame. 
Both data frames have 1000 rows. Instead of sampling the data as we did in previous 
examples, let's make some graphical summaries of entire variables: 
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Figure 3.1: Two graphical summaries of the marketing data, market.frame. The left panel 
shows the number of observations for each level of the ordered factor age. The right panel 
plots the distribution of usage (monthly telephone usage) separately for the two levels of 
nonpub. 

The style of attaching a data frame and exploring the variables through a variety of 
interactive graphics and other computations is a rewarding one, and we recommend 
it as a preliminary before doing any formal modeling. 

3.2 Computations on Data Frames 

We proceed now to show how computations on data frames can be carried out in 
S. As you use the modeling software described in this book, you will find yourself 
carrying out the following general computations involving data frames: 

• setting up some data as a data frame; 

• extracting, inserting, or modifying variables and/or rows of the data frame; 

• plotting and summarizing the variables; 

• creating a fitted model with a model formula involving the variables in the 
data frame; 
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• examining the fitted model using the data; for example, by plotting residuals 
in various ways against variables in the data frame. 

Section 3.2.2 presents functions to create data frames. Section 3.2.3 provides meth
ods to use and modify data frames. Some general summary functions for data 
frames are described in Section 3.2.4. Additional plots and summaries using any of 
the features of S can be carried out by attaching the data frame, as described in 
Section 3.2.3. 

Throughout, the appropriate computations are more intuitively obvious if we 
keep in mind the two ways to think of data frames. First, a data frame can be 
regarded as a matrix with the variables being the columns and the observations the 
rows, but with the variables not restricted to any particular mode or class of object. 
Second, a data frame can be used as a frame within which the variable names define 
separate objects. 

3.2.1 Variables in Data Frames; Factors 

Variables in data frames can be anything that is indexed by the set of rows. However, 
variables that can be used for statistical models in this book are of three forms: 

1. numeric vectors; 

2. factors and ordered factors; 

3. numeric matrices. 

In each case, the variable is implicitly indexed by the rows of the data frame-the 
observations. That is, numeric and factor variables must have length equal to the 
number of observations, and matrix variables must have the same number of rows 
as there are observations. 

Numeric vectors and matrices should be familiar to any S user. We use the 
term "numeric variable" throughout this book to distinguish this type of variable 
from a factor. This replaces the terminology "quantitative variable" or "continuous 
variable" for such variables. Factors are not described in ~, and are introduced 
in Section 2.2.1. A factor is an object that represents repeated values from some 
set. The set is the levels attribute of the factor and is represented by a character 
vector. For example, suppose sex is a factor of length 10 with levels "Male" and 
"Female". 

> sex 
[1] Male Male Male Female Female Male Female Male Male 

[10] Male 

When operating on factors, think of them as containing character strings, but with 
only strings from the levels allowed. Factors can contain missing values, whjle 
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character vectors can not. On the other hand, factors are not numeric objects. 
Most basic functions behave as if they were operating on character data: 

> sex == "Male" 
[1] T T T F F T F T T T 

> sex+1 
Error in call to "+": Non-numeric first operand 

This is the key difference from categories, in which the numeric coding used in the 
implementation is not transparent to the user. Occasionally, one needs to replace 
a category by some corresponding numeric codes; in this case, use the function 
codes(): 

> codes(sex) 
[1] 2 2 2 1 1 2 1 2 2 2 

Some care is taken to make factors be well defined by the levels as a set; for 
example, neither the comparison nor the call to codes 0 depends on the ordering of 
the elements of levels(sex). That is, whether the first element in levels(sex) is 
"Male" or "Female" should make no difference to any calculation involving sex. The 
levels of a factor form a set. 

Users who became familiar with categories as described in ~ can think of 
factors as reimplementing categories as a class. Compared to categories, factors 
behave more strictly according to the model that says they are repeated values 
from some set of possible values. 

An extension of factors is the class of ordered factors. Conceptually, these differ 
from factors in that the levels !lfe taken to be ordered; now, the levels are not a set 
but a vector with elements in increasing order. A factor or a vector can be turned 
into an ordered factor by the function ordered 0: 

> osex <- ordered(sex, c("Male", "Female")) 
> osex 

[1] Male Male Male Female Female Male Female Male Male 
[10] Male 

Male < Female 

The second argument is the levels in their desired order. Ordered factors can be 
created with any number of levels. For modeling, an ordered factor with only 
two levels behaves identically to an unordered factor. With three or more levels, 
the choice of contrasts in a linear model will be different for an ordered factor (see 
Section 2.3.2). Models that use different fitting methods from those in linear models 
may treat ordered factors differently; see, for example, Section 9.4 for tree-based 
models. 

The function ordered() can also be used on the left of an assignment, with the 
same effect. For example; 
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> osex <- sex 
> ordered(osex) <- c("Male", "Female") 

would have the same effect as the previous computation to create osex. 
Variables in data frames can contain missing values. The computations described 

in this chapter to create and manipulate data frames allow missing values and do 
nothing to remove them. The model-fitting methods, on the other hand, mostly do 
not allow missing values, so that some computations need to be done to the data 
before fitting the model. By default, most of the fitting functions will generate an 
error if the missing values are still there when the model frame is computed (see 
Section 3.3.3). 

The functions in Section 3.2.2 to create data frames convert character or logical 
vectors to factors, since the modeling software interprets non-numeric variables as 
factors. If necessary, one can prevent this conversion; indeed, as we said, variables 
can be anything at all, so long as indexing them by the rows makes sense. All 
that is needed to ensure that a variable to be created in a data frame does not get 
converted is to make the expression that defines it an argument to the I 0 function. 
Thus, while the character vector state.abb would be converted to a factor, the 
expression I(state.abb) would stay a character vector. Section 3.3.1 goes into the 
implications of nonstandard variables in data frames. However, the three forms 
listed on page 52 are the most commonly useful, particularly since most statistical 
models are incapable of handling more general variables directly. 

3.2.2 Creating Data Frames 

New data frames can be created in a number of ways: by reading in data from 
an external file; by binding together objects of various kinds; by replacements or 
additions to existing data frames; and by other specialized methods. We begin by 
discussing how to read in an external table-like file, using the function read. table(). 
Starting on page 59, we discuss the function data.frameO, which combines other 
objects into a data frame. On page 62 we introduce a more specialized function, 
expand. grid(), to create a data frame over a regular grid of values. In addition to 
these specific functions, a list object can be coerced to be a data frame; see page 
63. 

Reading Tables of Data 

Data frames are naturally analogous to printed tables, with the columns of the table 
as variables, the column labels as variable names, and the row labels as row names. 
Data from such a table should start as a text file outside of S and be made into a 
data frame by calling the function read. table(). 

Consider the automobile data on page 46. The original data (from the viewpoint 
of a reader of Consumer Reports) consist of a number of tables along with verbal 
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summaries that implicitly define additional tables. Specifically, cu. summary is a dat;. 
frame containing information selected from the summary descriptions in the maga
zine. This table is a good example of data entry starting from a non-computerizec· 
source. To enter such data, you should begin by deciding what data you want_ 
and by then having the data recorded as a text file. Often, you may have receivec: 
data in this form, or close to it. Tables produced from other software (for exam
ple, spreadsheet software) often resemble printed tables, perhaps after cleaning ur, 
special control information. 

The function read. table() is designed to read files that look like printed two
way tables. Let's begin with a simple example, a file that is essentially like th£' 
printout on page 47: 

Price Country Reliability Mileage Type 
Acura.Integra.4 11950 Japan 5 NA Small 

Audi.100.5 26900 Germany NA NA Medium 
BMW.325i.6 24650 Germany 4 NA Compact 

Chevrolet.Lumina.4 12140 USA NA NA Medium 
Ford.Festiva.4 6319 Korea 4 37 Small 

Mazda.929.V6 23300 Japan 5 21 Medium 
Mazda.MX.S.Miata 13800 Japan NA NA Sporty 

Nissan.300ZX.V6 27900 Japan NA NA Sporty 
Oldsmobile.Calais.4 9995 USA 2 23 Compact 

Toyota.Cressida.6 21498 Japan 3 23 Medium 

If this is on a file named "auto1" it can be read in and turned into a data frame by 
a simple call to read. table 0. ' 

> somedata <- read.table("auto1") 
> dim(somedata) 
(1] 10 5 
> dimnames(somedata) 
[(1]]: 
[1] "Acura.Integra.4" 
[4] "Chevrolet.Lumina.4" 
[7] "Mazda.MX.5.Miata" 

[10] ·"Toyota. Cress ida. 6" 

[(2]]: 

"Audi.100.5" 
"Ford.Festiva.4" 
"Nissan.300ZX.V6" 

"BMW.325i.6" 
"Mazda.929.V6" 
"Oldsmobile.Calais.4" 

[1] "Price" "Country" "Reliability" "Mileage" "Type" 

Let's look at this example in a little more detail to see what is going on. The file 
contained fields separated by "white space" , one or more blanks or tabs. The first 
line of the file contained five fields, meant to be the names for the variables; the 
remaining lines had six fields, the first being the row label and the rest the data for 
this observation. Some of the fields are numeric; others are character strings. The 
character strings will be turned into factor variables, as we can see by the following: 
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> sapply(somedata, data.class) 
Price Country Reliability Mileage Type 

"numeric" 11 factor" "numeric" "numeric" "factor" 

(The function data. class() returns the class of an object, but for objects without 
a class it tries a little harder to figure out what the object might be.) Notice that 
the numeric fields could have NA values in the input. 

This is a good general form for a file to input with read.table(). You don't 
need to have either the variable names or the row labels; if they are missing, you 
can construct them later on. For example, suppose file "auto2" contained: 

11950 Japan 5 NA Small 
26900 Germany NA NA Medium 
24650 Germany 4 NA Compact 
12140 USA NA NA Medium 
6319 Korea 4 37 Small 

23300 Japan 5 21 Medium 
13800 Japan NA NA Sporty 
27900 Japan NA NA Sporty 
9995 USA 2 23 Compact 

21498 Japan 3 23 Medium 

The expression read. table("auto2") turns this into a data frame. 
The following options control the behavior of read. table 0: 

• Character strings by default cannot contain internal white space, hence the "." 
characters used in the row labels. You can allow white space by quoting the 
strings, by using an explicit default field separator character, or by organizing 
the data in fixed-format fields. In the example, we could quote all the model 
names used as row labels: 

"Acura Integra 4" 11950 Japan 5 NA Small 

The field separator is the argument sep= to read. table(); to use a non-blank 
as a separator, say ": ", we would need to replace all nonsignificant blanks by 
this character: 

Acura Integra 4:11950:Japan:5:NA:Small 

Notice that we edited out all extra blanks; when an explicit separator is used, 
blanks are significant in character fields. 

• An optional argument rov. names= to read. table() allows the call to specify 
where the row names come from, either giving explicit labels or specifying 
one of the fields to be used as row names instead of a variable. By default, 
the first field will be used for row names, if it is a non-numeric field with no 
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duplicates. If all else fails, the row names are just the row numbers. They are 
never null and must be unique. 

• Names for the variables can be supplied as the argument col.names=. By 
default, variable names will be read from the header line, if any; other
wise, the defaults are "Vl", etc. Explicit col.names override the default, but 
read. table 0 will still try to read over a header line so that unwanted column 
labels can be ignored. Names can also be changed after creating the object by 
using the function names() to assign new variable names to the data frame. 

• The header line can be explicitly forced in by the argument header=T. This is 
needed if there js a column label for every column, as would be the case if the 
first line of the file "autol" were 

Model Price Country Reliability Mileage Type 

since in this case the first line has the same number of fields as the remaining 
lines, not one fewer. 

Sometimes input data come in "fixed-format" fields; that is, it is known that 
each field starts in the same column on each line. In this case, the appearance of a 
particular separator character won't indicate a new field. The printed version of the 
automobile data on page 4 7 would make such a file. With a little tedious counting, 
we can find the starting columns of the fields. Providing this to read. table() reads 
in the data: 

> columns <- c(l, 21, 27, 35, 47, 55) 
> somedata <- read.table("auto",sep=columns, header = T) 

With the explicit columns used to put in separators, the first line now looks just like 
the remaining lines, so read. table() can't tell automatically that there is a header 
line; instead, we used the explicit header= argument. 

If you are not too sure about the column positions, it may be wise to create a new 
file with separators included, using the function make.fields(). Type ?make.fields 

to see the detailed documentation for this function. 
If you have been involved in many data-acquisition projects, your reaction to 

any list of possibilities such as the above may well be that serious projects tend to 
fall in the "none-of-the-above" category. If so, ad-hoc work will be needed, inside 
or outside S, to convert the data into a suitable form. Work outside S can involve 
any tools operating on text files; text editors (especially if they are reasonably 
programmable) and special languages like awk are helpful. Within S, two functions 
that may be useful are count.fields() and scan(). These functions count the 
number of fields in each line of a file and read data from a file. As an example 
of using them, consider the following sort of data. On each line of a file, we have 
recorded two variables, say x and Y, and then an arbitrary number of values of 



58 CHAPTER 3. DATA FOR MODELS 

a third variable z, corresponding to events measured under conditions given by X 

and Y. This is a common form of data; for example, imagine that the data record 
locations in the sky and the observed magnitude of all the stars within a certain 
radius of that location. The problem with such data is that there are a variable 
number of observations associated with each row. Putting aside the analysis for the 
moment, what is a convenient way to read the data in? 

Here is one technique, broken into three steps. First, we get the number of fields 
on each line. Second, we read in all the data, ignoring lines. Third, the number of 
fields per line is used to extract X, Y, and z. The following might be the data, on a 
file "sky. data": 

10 30 5.9 10.9 8.2 
20 40 13.8 
30 50 10.7 8.8 
40 60 9.8 11.0 
50 30 13.4 11.9 
60 40 9.2 
70 50 9.4 
80 60 13.4 7.2 

Here are the first two steps: 

> f <- count.fields("sky.data") 
> f 
[1] 5 3 4 4 4 3 3 4 
> data <- scan("sky.data") 

Now the problem is to split the data into the three variables. Doing this with a loop 
over the lines is fairly simple, and I will leave that as an exercise. The following 
technique is more typical of the advanced S user. It's not needed for understanding 
data frames, but you might find it interesting and helpful. We compute the positions 
of the X and Y values in the vector data, extract these values, remove them from 
data, and finally form z by splitting what is left according to the original line. 

> nline <- length(f) 
> Xpos <- c(1, 1 + cumsum(f[-nline])) 
> X <- data[Xpos] 
> Y <- data[Xpos+1] 
> data <- data[-c(Xpos, Xpos+1)] 
> Z <- split(data, rep(1:nline,f-2)) 

The S function cumsum() gives the cumulative sum of its argument. Convince your
self that the expression above gives the indices in the data of all the X values. The 
call to split 0 splits the data according to the values of its second argument: all 
the values corresponding to a 1 into the first element, and so on. The call to rep() 
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returns as many Is as there are z fields on the first line, followed by as many 2s as 
there are z fields on the second line, etc. 

Having formed the three variables, one can combine them into a data frame 
using the data. frame 0 function to be described in the next section: 

> sky.data <- data.frame(X, Y, Zci(Z)) 

The function I 0 is used to keep z as a single variable of mode "list". The standard 
use of the model-fitting functions cannot treat such variables directly, so some addi
tional calculations will be needed. For example, linear models to fit z as a function 
of X and Y could use 

> Zmean <- sapply(Z,mean) 
> W <- sapply(Z,length) 

to get a response Zmean and weights W, assuming all the individual observations were 
independent. Two possibilities for more direct use of this sort of data would be as 
a response in a general linear model in Chapter 6 (with a special family definition) 
or in a nonlinear model as in Chapter 10. 

Combining Variables into a Data Frame 

If the variables to be included in a data frame already exist in one or more S 
objects, the function data.frame() is the usual way to combine those objects into a 
data frame. For example, 

> state <- data.frame(state.abb, state.center, state.x77) 

takes data in the three arguments and creates a data frame combining all of them. 
The arguments to data. frame 0 are an arbitrary number of objects, each of which 

will contribute one or more variables in the data frame returned. These arguments 
can be more general than items 1-3 on page 52, including the following kinds of 
objects: 

1. Numeric vectors, factors and ordered factors: these each contribute a single 
variable. 

2. Character or logical vectors: these are converted into factors. The levels will 
be the set of distinct values in the vector. The factor will not be ordered; the 
function ordered() will convert the data into an ordered factor. 

3. Matrices: each column creates a separate variable in the data frame. Column 
names of the matrix, if any, are used for variable names. 

4. Lists: like matrices, these contribute one variable for each component of the 
list, according to the rules we are outlining here, applied recursively. (For 
example, a character vector that is a component of a matrix is turned into a 
factor.) 
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5. Data frames: the variables in the data frame become variables in the result, 
essentially without processing. 

If any argument to data. frame() is of the form I(x), then x will be inserted as is 
into the data frame as a single variable. In particular, logical vectors, character 
vectors, matrices, lists, and data frames will not be converted as described above if 
protected by I(). Needless to say, if you put something in that makes no sense, later 
calculations with the data frame are likely to run into trouble. Basically, though, 
you can put anything you like into a data frame and compute away with it, as we 
illustrated in creating sky. data above. 

As data. frame() proceeds through its arguments, it attempts to compute vari
able names and row names. For row names, the function takes the first reasonable 
candidate that comes along: a names attribute for a vector argument, row labels for 
a matrix, or row names for a data frame. This can all be overridden by supplying 
the argument roY. names=. The value of this argument can be one of the variables 
in the resulting data frame, specified either by number or by name, in which case 
that variable becomes the row names attribute and is deleted as a variable. Alter
natively, the row names argument to data.frame() can supply a specific vector of 
names. Wherever they come from, row names must be unique. 

Variable names can be specified by naming the actual argument to data. frame(). 
For matrix, data frame, or list arguments, the appropriate column labels, variable 
names, or names attribute will be used (with an actual argument name pasted 
on if supplied). A rule is enforced that variable names in a data frame must be 
syntactically S names, made up of letters, numbers and ". ", and not starting with 
a number. Variable names must also be unique. The function make.namesO is used 
to ensure both these conditions; see its documentation for details of the algorithm 
used. You can get any variable names you want, simply by assigning the names() 
attribute of the data frame after creating it. Remember, though, that when data 
frames are attached or used with formulas in models, life will be much simpler if 
the variable names are really names that can appear in S expressions. 

To illustrate, let's generate a data frame in which the xows correspond to the 
states of the United States. The standard S database contains several objects with 
related data (~.page 658): state. name and state.abb are character vectors with 
the name and its official abbreviation, state. center is a list whose components are 
the x andy co-ordinates for plotting on maps, state.region and state.division are 
factors for regions and divisions, and state.x77 is a matrix with some demographic 
data. These are just the sort of data for which a data frame is a convenient structure, 
with the states corresponding to rows, and the variables containing different kinds 
of information about the states. 

> state <- data.frame(state.center, state.x77, 
+ roY.names ~ state.abb) 
> state [1: 5,] 
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X y Population Income Illiteracy Life.Exp 
AL -86.7509 32.5901 3615 3624 2.1 69.05 
AK -127.2500 49.2500 365 6315 1.5 69.31 
AZ -111.6250 34.2192 2212 4530 1.8 70.55 
AR -92.2992 34.7336 2110 3378 1.9 70.66 
CA -119.7730 36.5341 21198 5114 1.1 71.71 

Murder HS.Grad Frost Area 
AL 15.1 41.3 20 50708 
AK 11.3 66.7 152 566432 
AZ 7.8 58.1 15 113417 
AR 10.1 39.9 65 51945 
CA 10.3 62.6 20 156361 

The first argument was a list. Its two components, x and y, became separate vari
ables. The second argument was a 50 by 7 matrix, providing seven more variables. 
The column labels of state. x77 were: 

> dimnames(state.x77)[[2]] 
[1] "Population" 
[5] "Murder" 

"Income" "Illiteracy" 
"HS Grad" "Frost" 

"Life Exp" 
"Area" 

Notice that these were automatically converted to legal names (by changing blanks 
to dots). The optional rov.names= argument forced the row names to be the abbre-
viations in state. abb. ' 

Now we will put in some additional information, and use argument names to 
data. frame() to control the variable names. 

> state <- data.frame(state.center, state.x77, 
+ name=state.name, region=state.region, rov.names = state.abb) 
> state[1:5,] 

X y Population Income Illiteracy Life.Exp 
AL -86.7509 32.5901 3615 3624 2.1 69.05 
AK -127.2500 49.2500 365 6315 1.5 69.31 
AZ -111.6250 34.2192 2212 4530 1.8 70.55 
AR -92.2992 34.7336 2110 3378 1.9 70.66 
CA -119.7730 36.5341 21198 5114 1.1 71.71 

Murder HS.Grad Frost Area name region 
AL 15.1 41.3 20 50708 Alabama South 
AK 11.3 66.7 152 566432 Alaska West 
AZ 7.8 58.1 15 113417 Arizona West 
AR 10.1 39.9 65 51945 Arkansas South 
CA 10.3 62.6 20 156361 California West 

The last two arguments would have produced variables state. name and state. region; 
we supplied shorter names. If we had named either the second or third arguments, 
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that name would have been pasted together with the individual compon(mt. or· col
umn names. Using center=state.center, for example, would give: 

center.x center.y Population Income Illiteracy Life.Exp 
AL -86.7509 32.5901 3615 3624 2.1 69.05 
AK -127.2500 49.2500 365 6315 1.5 69.31 
AZ -111. 6250 34.2192 2212 4530 1.8 70.55 
AR -92.2992 34.7336 2110 3378 1.9 70.66 
CA -119.7730 36.5341 21198 5114 1.1 71.71 

The state names were converted to a factor by the general rule given above. Oe<:a
sionally, you may want to retain them as a character vector, if they should never be 
used as a factor in modeling. The function I 0 can again be used for this purpose: 

>state<- data.frame(name = I(state.name), state.center, state.x77) 

by using the I 0 function as mentioned before. 

Data Frames from Regular Grids 

For some applications, one wants to generate pseudo-observations that form a grid 
over some specified variables. When such data are to be given to a function that 
expects a data frame as its argument, the grid needs to be used to generate the 
corresponding data frame. The predict() methods, in particular, expect new data 
to be a data frame. They return the values that the fitted model would predict to 
correspond to the observations in this data frame. Suppose Weight and Disp. from 
cu. specs were used as predictors in some model. To look at predictions from the 
model over the range of the two variables, we might ask for all the pairs of values 
from the two vectors: 

> pretty(Weight) 
[1] 1500 2000 2500 3000 3500 4000 
> pretty(Disp.) 
[1] 50 100 150 200 250 300 350 

There are 6 x 7 = 42 pairs of values. Since prediction and other similar computations 
usually want their input as a data frame, the function expand.grid() takes marginal 
specifications of the values and creates a data frame with all the combinations: 

> WDgrid <- expand.grid(Weight = pretty(Weight), Disp. = pretty(Disp.)) 
> dim(WDgrid) 
[1] 42 2 
> WDgrid[l :5,] 

Weight Disp. 
1 1500 50 
2 2000 50 
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3 2500 50 
4 3000 50 
5 3500 50 

The call to expand.grid() should provide the names for the variables in the new 
frame, along with the marginal values. To make it easy to alter the specificatiom 
of the grid, the entire set of arguments can be replaced by a single list argument: 

spec<- list(Weight = pretty(Weight), Disp. = pretty(Disp.)) 
WDgrid <- expand.grid(spec) 

The grid variables can also be factors; the analogue to a range of values for r 
numeric variable is the levels for a factor. If the argument to expand.grid() if 
such a character vector (or any character vector), the corresponding variable in th1 
result will be a factor with each level appearing the same number of times: 

> WDgrid2 <- expand.grid(Type = levels(Type), Weight= range(Weight)) 
> WDgrid2 

Type Weight 
1 Compact 1845 
2 Large 1845 
3 Medium 1845 
4 Small 1845 
5 Sporty 1845 
6 Van 1845 
7 Compact 
8 Large 
9 Medium 

10 Small 
11 Sporty 
12 Van 

3855 
3855 
3855 
3855 
3855 
3855 

Keep in mind that the total size of the grid can grow very quickly, since the numbe 
of rows is the product of the length of all the arguments! 

The rows of the data frame produced by expand. grid () are ordered in "standard 
order for a multiway array defined by the arguments to expand.gridO. So, fo 
example, any vector whose elements correspond to the rows of Wgrid2 could b 
made into a 6 by 2 matrix. This is, in fact, what some of the prediction method 
arrange to do (see, for example, Section 8.2.4). The same operation can be don 
in general by giving the corresponding vector, along with the data frame, to th 
function make.grid(). Another example of expand. grid() is given on page 81, i 
illustrating its use with the coplotO function. 

Coercing to a Data Frame 

Since a data frame has characteristics both of a matrix and of a list, it is reasonabl 
that either of these structures could be turned into a data frame. So they can, b 
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calling as.data.frame(object). This is the preferred way to create a data frame if 
the variables are naturally built up in an ordinary matrix or in a list. Any matrix 
can be turned into a data frame, but the operation is only likely to be useful if you 
plan subsequently to add new variables of a different class to the matrix or if the 
matrix contains character data that you want to treat as factors. If the data are all 
numeric, the data frame has no more information than the matrix. 

Lists to be turned into data frames should have all elements of the same length 
and should have non-null, unique names. 

3.2.3 Using and Modifying Data Frames 

Two approaches to working with data frames are useful, either using matrix-like 
computations or attaching the data frame and using the variables as separate ob
jects. The matrix view is most often useful when working with more than one data 
frame at a time and when extracting or replacing rows within a single data frame. 
To introduce new variables, to revise individual variables, or to study the variables 
interactively, the best approach is to attach the data. Some examples are given 
starting on page 67. 

Data Frames as Matrices 

Data frames can be treated as matrices in calls to most of the basic functipns 
treating arrays: subsets and elements, dim(), dimnames(), and functions based on 
those. If x is a data frame, then 

x[i,]; x[,j]; x[i,j] 
dim(x); dimnames(x) 
nroY(x); ncol(x) 

produce results corresponding intuitively to their behavior on matrices. For exam
ple, x [i, J produces a new data frame by using i to index the rows of x. The indexing 
by i can use numeric, logical, or character values. Similarly, x[.j] indexes on the 
columns (the variables) and x[i,j] on both. When a single column is selected, the 
result is by default the variable, not a data frame containing one variable. This 
action can be suppressed by including the argument drop=F, following the rules ap
plied to arrays ( 1§1, page 128). For example, if stats was some statistic computed 
for each of the variables in market. frame, the expression 

market.frame[, stats > cutoff , drop=F) 

ensures that the extracted object is still a data frame, even if it has only one column. 
A single row by default remains a data frame-there is no generally useful object 
corresponding to rows of a data frame. If you really want to, however, you can 
cause the single row to be dropped to a list by including the argument drop•T. 
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Variable names and row names may be abbreviated in selecting subsets, so long 
as the character strings given match the beginning of one unique name. In the state 
data, state[, "P"] would select the Population variable, but State[, "I"] would fail 
because it would partially match both Income and Illiteracy. Names given in 
replacement expressions must match exactly in order to replace rows or variables. 
These are just the standard S rules for partial matching, extended to data frames. 
Row and column replacements can specify positions not currently in the data. The 
result will be to extend the data frame as necessary. The example on page 66 uses 
this to combine data frames. 

The dimO attribute is just what one would expect: a numeric vector of length 
2 containing the number of observations and the number of variables. The list 
returned by dimnames() contains the row names and the variable names as its two 
elements. Notice that by the construction of data frames, both of these should 
contain a set of unique names, in contrast to a matrix in which dimnames() or 
either of its elements could be empty. These two attributes can also be replaced or 
modified by putting the expression on the left of an assignment. 

Computations that want to use data frames as ordinary matrices can convert 
them. The standard coercing function, as. matrix (), has a method for coercing data 
frames. The technique used by 

as.matrix(x) 

is to find the ordinary S mode required to represent the. data. The most typical 
case, if any of the variables in x is not numeric, is that the matrix will be of mode 
"character". It is also possible for the resulting matrix to have dimension different 
from that of x, if any of the variables in x was itself a matrix (see the discussion in 
Section 3.2.2). 

A second kind of conversion to an ordinary matrix is provided by the function 
data. matrix 0. This function tries its best to interpret the variables in the frame as 
numeric data. In particular, it converts any factors or ordered factors to numbers 
representing the levels, by calling the function codes 0 for each of them. In order not 
to lose information, the factor levels are kept in a list, as attribute "column. levels" 
of the resulting matrix. Like as.matrixO, data.matrix() will expand any matrix 
variables in the data frame. 

Another relation between data frames and matrices arises during the fitting of 
models. Most of the models discussed in this book proceed by creating a numeric 
matrix that describes all the terms included in the model. These objects belong to 
the "model.matrix" class, and can be generated by calling model.matrix(). These 
matrices encode appropriately all terms in a model, to produce a numeric matrix 
suitable for fitting. We describe them in Section 2.4.3, in discussing how variables 
of various kinds can be coded numerically. In particular, factors and ordered factors 
are converted to numeric variables derived from the "dummy" variables that code 
the presence of each level of each factor. 
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The three functions each produce different results, if any variable in the data 
frame is a factor or an ordered factor. Which result is right depends on the cir
cumstances. Models in Chapters 4-7 use model.matrixO, models in Chapter 8 
use a special function loess.matrixO, the tree-based models in (Chapter 9) use 
data.matrixO, and printing methods tend to use as.matrixO or a similar calcula
tion. 

An Example: Combining Data 

To illustrate data frames as matrices, we will combine some of the data in the three 
data frames of automobile data we discuss in Section 3.1.1 to form a single data 
frame. The goal is to match corresponding model names in the three data frames, 
and create a single data frame. Since the model names in the three original data 
frames are not quite consistent, we will use the S function pmatchO and some hand
editing to match rows. This sort of preliminary data cleaning is typical of most data 
analyses. All the details would take too much space to show, but we can convey 
the style of the computations. You can skip to the frames discussion on page 67 if 
you are not interested in the example. 

We first try to match row names in the three data frames as well as possible. 
The practical problem is that the three data frames use slightly different ways to 
refer to the automobile models. Of the three original frames, cu.dimensions seems 
to have the cleanest set of row names; sorting them and editing a little by hand 
produces our 111 target row names, saved in common. names. The row names in the 
other data frames tend to have extra characters after some of the model names. 

The function pmatchO finds row names in the data frames that contain exactly 
the common names, or a unique match with extra characters after the common 
names: 

match.summary <- pmatch(common.names, rov.names(cu.summary)) 
match.specs <- pmatch(common.names, rov.names(cu.specs)) 

These two vectors contain row numbers in cu. summary and cu. specs that we can 
match to names in common. names. We will use these matches to bind together rows 
from all three data frames. There will be NA's in the vectors where names didn't 
match uniquely. The next step is to try to match those names by hand. Editing of 
the matching vectors and perhaps of common.names will occur. 

Once we are satisfied with the matches, the new data can be set up by 

> car.all <- cu.dimensions[match.dims, ] 
> car.all[. names(cu.summary)] <- cu.summary[match.summary, 
> car.all[, names(cu.specs)] <- cu.specs[match.specs, ] 
> rov.names(car.all) <- common.names 

Notice that we appended the new columns to car. all using the names for the 
columns in the original frames. Although we started with the rows of cu. dimensions, 
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we end up with a match.dims as well, after editing and sorting. It was essential to 
check before the above calculation that the variable names were unique: 

> any(duplicated(c(names(cu.summary), names(cu.dimensions), 
+ names(cu.specs)))) 
[1] F 

Once uniqueness is assured, the computations above create a data frame with all 
the data, carrying over the individual variable names, and using common.names to 
name the rows. 

As another example, done similarly, we construct a data frame with just the 
automobiles for which Consumers Union test data are available. Since the Mileage 
variable in the cu. summary data frame is missing unless the model was tested, we 
begin by selecting rows from cu. summary: 

> ok <- !is.na(car.all[."Mileage"]) 
> car.test.frame <- cu.summary[ok,] 

From a process of matching row names from cu. specs, we then added some variables 
from cu.specs. Both car.test.frame and car.all will appear in examples in this 
and later chapters. 

Data Frames as Frames or Databases 

A frame in S is a mapping of names to objects for the purpose of evaluating S 
expressions using the names. The S evaluator maintains a frame to hold the argu
ments in a call to an S function, plus any local assignments, during the evaluation of 
the call. A database is a directory, S object, or other permanent construction that is 
attached via the attach() function to define a similar mapping of names to objects. 
The files in the directory, the components of the object, or whatever mapping the 
database implies make objects available by name to subsequent S expressions. 

A data frame can be attached as a database and can be used as a frame for 
evaluation. In either case, each of the variables in the data frame becomes available, 
by name, as a separate object. The model-fitting functions to be described in later 
chapters all take a data frame as an optional data argument. 

fuel.fit <- lm( Fuel~ Weight+ Disp., fuel.frame) 

The variables in the data frame fuel. frame include all the names appearing in the 
formula. These variables will be automatically made available by name during the 
computation of the fit. Section 3.3.3 will discuss the details of what happens when 
data frames are used in model-fitting. 

To do interactive computations with the variables in a data frame, you should 
attach it; for example, 
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> attach(cu.specs, 1) 
> h <- Weight/Disp. 
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This is the recommended way to revise a data frame, whether changing existing 
variables or creating new ones. Notice the second argument to attach(): the data 
frame is attached in position 1, as the working data. As a result, ordinary assign
ments, such as that for h above, take place in the attached database. A secondary 
benefit is that variables in the data frame will not be hidden by objects in the 
previous working database (typically the local . Data directory). 

Any calculations used to create or modify objects in the attached database do 
not modify the original data frame. In the example, h is created in the working data, 
an object internal to the S evaluator. The call to attach() initialized that object 
as a copy of the data frame cu. specs. From then on, assignments only changed the 
internal object. You can save a copy of this object at any time. The easiest, and 
the recommended, way to save it is at the time the attached database is detached; 
for example, 

detach(1, save = "new.specs") 

will save the revised data frame as the object new. specs, in the database in second 
place on the search list before detaching. This is typically the local .Data directory. 

This sequence of steps is the recommended way to revise data frames: 

• Attach a data frame as in position 1. 

• Carry out any computations to revise or create variables. 

• Detach and save the database in position 1. 

For most purposes, you do not need to know any further details, but we provide a 
few here anyway, in case they may be relevant. 

While the data frame is attached, its class is ignored in assignments. The objects 
created will not generally be valid variables in the data frame. For example, here 
is a natural way to take logs of a variable known to have zero, but not negative, 
values: 

> attach(market.frame, 1) 
> uu <- .OOOl•max(usage) 
> logU <- log(usage + uu) 

The object logU is a new variable, but uu is just a single number. Although the 
class of the attached database has not been lost, the internal object is not itself a 
valid data frame at this point. To turn it int.o such an object, the evaluator looks 
for a method for the generic function dbdetach(). There is such a method for data 
frames; specifically, it deletes all objects in the database that are not the right size 
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to become variables. Only objects that have length or number of rows equal to 
the row.names attribute of the database are retained. Another class of objects can 
be used if you do want to retain these objects of arbitrary length along with the 
variables-see Section 3.3.4. 

Attaching a data frame is also a good way to examine the results of a fit. Each 
kind of model provides methods for overall summaries and diagnostics. After looking 
at these, you will often want to examine the fit further, plotting variables from the 
data frame in a variety of ways along with components of the fit. Attaching the 
data frame makes such computations simple. 

As always in S, the data frame attached or included as an argument can be any 
expression that evaluates to a data frame, not just the name of an object: 

attach( car.all[1:50,] ) 

attaches a data frame from the first 50 rows of car. all. 

3.2.4 Summaries and Plots 

Plots and numerical summaries play a critical role in statistical modeling. Numeri
cal summaries provide an incisive, although quite limited, quantification of aspects 
of the data such as the variation of measurements of a single variable or the de
gree of correlation between measurements of two variables. Plots have two roles: 
exploratory analysis before embarking on a first model, and diagnostic checking of 
fitted models. For a thorough, interactive analysis, the best approach is to attach 
the data frame to the search list and use as wide a range of appropriate compu
tations in S as possible. In this section, we show the behavior of some generic 
functions that can be applied to entire data frames: 

• summary(): print summaries; 

• plot 0: plot variables; 

• pairs(): plot a scatterplot matrix; 

• coplot 0: plot, conditioning on other variables. 

These functions are generic; that. is, they have suitable methods for a wide range 
of objects. In the examples of this section, we will use the generic functions either 
with complete data frames 

summary(car.all) 

or with formulas 

plot(Mileage ~ Weight, car.test.frame) 
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used to select or transform variables from the data frame. Of course, we can use 
other S functions to plot and summarize, by giving rows or columns of a data frame 
as arguments. For example, one function, scatter. smooth 0, which we will also 
show here, makes a scatterplot and adds a smooth curve. 

The summary and plot functions are designed to give you an overall look at 
the data. They try to do something reasonable in choosing information to print or 
plot about the data variables and their interrelationships. Use them for an initial 
view, to be followed by detailed study of interesting details. Generally, graphical 
summaries are better for seeing unexpected features of the data than are printed 
summaries. When there are many variables, there may simply be too many plots or 
too much printed output, even for initial study. In that case, one approach is to look 
at smaller subsets of variables. For example, from the car. test. fraJDe constructed 
above, we select the Weight, Disp. and Mileage variables for some simple analysis 
of fuel economy: 

> fuel.fraJDe <- car.test.frame[,c("W","D","M")) 

We will produce some plots of this data frame, and will use it in later model-fitting 
examples. 

Plots and summaries can be produced by using the generic plot() and summary() 
functions with various classes of objects: data frames, individual variables, and 
formulas. Giving a formula to a summary or plot implies that the response, if any, 
and all the predictors in the formula should be displayed. As some examples will 
show, this is a flexible and convenient way to produce summaries and plots. 

Summaries 

Calling summary() produces a printed summary of the variables: 

> summary(car.test.fraJDe) 
Price Country Reliability Mileage 

Min. : 5866 USA :26 1 : 7 Min. :18.00 
1st Qu.: 9870 Japan :19 2 : 7 1st Qu. :21.00 
Median :12220 Japan/USA: 7 3 :12 Median :23.00 
Mean :12620 Korea 3 4 : 6 Mean :24.58 
3rd Qu.: 14940 Ge:rmany 2 5 :17 . 3rd Qu. :27.00 
Max. :24760 Sweden 1 NA's: 11 Max. :37.00 

(Other) 2 

Type Weight Disp. HP 
Compact:15 Min. :1845 Min. : 73.0 Min. : 63.0 
Large : 3 1st Qu. :2568 1st Qu. :113.5 1st Qu.: 101.0 
Medium :13 Median :2885 Median :144.5 Median :111.5 
Small :13 Mean :2901 Mean :152.1 Mean :122.3 
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Sporty : 9 
Van : 7 

3rd Qu. : 3243 
Max. :3855 

3rd Qu. :180.0 
Max. :305.0 

3rd Qu. :143.6 
Max. :226.0 

71 

The summary for numerical variables, like Price, gives mean, median, smallest and 
largest values and first and third quartiles. For factors or ordered factors, like Type 

or Reliability, a table of counts is produced. For all forms, if there are missing 
values, the number of these will be printed. 

Distribution Plots 

A plot() method for the variables of a data frame generates plots summarizing the 
distribution of the variables. For numeric variables, quantile plots are shown; that 
is, if the data are in x, sort (x) is graphed against ppoints (x). ·For facto.rs, plot() 
graphs the counts for each level. 

The method can be invoked by giving plot() a data frame. Where only some 
of the variables in the data frame are to be plotted, you can select a subset of the 
columns. This is illustrated in Figure 3.2: 

plot("' Country+ HP, car.test.frame) 

Brazil o 
England o 
France o 

Germany o 
Japan 

Country 

Japan/USA o 
Korea o 

Mexico o 
Sweden 0 

USA 

0 

0 
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HP 

0 

0 

8 

0 

0.0 0.2 0.4 0.6 0.8 1.0 
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Figure 3.2: Two distribution plots of data from car.test.frame. 

A flexible alternative is to use the model formulas to specify which variables to plot. 
A plotting method for formulas will produce scatter plots of the response (the left 
side of the ""'" operator) against each of the terms (the expressions separated by "+" 
on the right side of the operator). If the left side is omitted, however, distribution 
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plots will be produced of each of the terms. The plots in Figure 3.2 could have been 
made by: 

> plot<~ Country + liP, car. test. frame) 

This form is more flexible, in that any transformation or combination of variables 
could hav~ been specified in the formula. For a third option, the data frame could 
have been attached, after which the formula can be given without a second argu
ment: 

> attach(car.test.frame) 
> plot(~ Country + HP) 

See Section 2.3.1 for further discussion of formulas. 

Scatterplots, Scatterplot Matrices, and Smoothing 

Let us focus now on three variables from car.test.frame: Mileage, Disp., and 
Weight. Our purpose is to study the dependence of fuel consumption on weight 
and displacement. The scatterplot matrix is a useful graphical method for a first 
look at the data to show inter-relationships among the variables: 

> attach(car.test.frame) 
> pairs(~ Mileage + Disp. + Weight) 

The result is shown in Figure 3.3. To produce just the scatterplots of mileage 
against weight and displacement, give a formula object to plot(): 

plot(Mileage ~ Disp. + Weight) 

Given a formula with a left side (a response), the plot method makes scatterplots 
of the response against each of the terms on the right side. The result is shown 
in Figure 3.4. The last two plots show that the variables are strongly associated, 
and there is some suggestion of nonlinearities. In particular, the dependence of 
Mileage on Weight appears to be somewhat curved. Let us add a smooth curve to 
the scatterplot of Mileage against Weight to study the dependence more incisively: 

> scatter.smooth(Mileage ~ Weight, span = 2/3) 

The result is shown in the left panel of Figure 3.5. We have added the smooth 
::urve using a nonparametric regression procedure that is described in Chapter 8; the 
argument span controls the amount of smoothness. The curve confirms the nonlinear 
pattern. Since gallons pet mile are as sensible for measuring gas consumption as 
miles per gallon, it makes sense to attempt a straightening of the relationship by 
:\n inverse transformation: 

> scatter.smooth(100/Mileage ~ Weight, span • 2/3) 
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Figure 3.3: Scatterplot matrix of measurements of three variables from car. teat.frame. 
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Figure 3.4: Response against predictors. 
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The result is shown in the right panel of Figure 3.5. Now the dependence is nearly 
linear. 

Since we have been having so much fun with cars, we will study the variables in 
the data frame ethanol, which are from an experiment with a single-cylinder auto
mobile test engine (Brinkman, 1981). The data are graphed in Figures 3.6 and 3.7: 

> plot{ethanol); pairs{ethanol) 

The dependent variable, NOx, is the concentration of nitric oxide, NO, plus the 
concentration of nitrogen dioxide, N02 , in the engine exhaust. Concentration is 
normalized by the amount of work done by the engine, and the units are p,g of 
NOx per joule. One predictor is the compression ratio, C, of the engine. A second 
predictor is the equivalence ratio, E, at which the engine was run; Eisa measure 
of the richness of the air and fuel mixture. There were 88 runs of the experiment, 
and as the name of the data frame suggests, ethanol was the fuel. 

Coplots 

A conditioning plot, or coplot, is a graphical method for seeing how a response 
depends on a predictor given other predictors. The technique is described in the 
second edition of the book The Elements of Graphing Data, {Cleveland, to appear). 
The function coplot 0 implements this graphical method for one or two given pre
dictors. Coplots are used extensively in plotting with the ·local regression models 
in Chapter 8; look at the examples and discussion in that chapter for further mo
tivation and details. The graphical technique is useful generally, however, so we 
introduce it here. 

Figure 3.8 is a coplot of the ethanol data. The dependence paneLs are the 3 x 3 
array of square panels and the given panel is at the top. On each dependence panel, 
NOx is graphed against C for those observations whose values of E lie in an interval; 
thus, on the panel, we are seeing how NOx depends on C for E held fixed to the 
interval. The intervals are shown on the given panel. As we move from left to 
right through the intervals in the given panel, we move from left to right and then 
bottom to top through the dependence panels. Figure 3.9 is a coplot of NOx against 
E given C. Since C takes on five values, we have simply conditioned on each of 
these five values. 

Figures 3.8 and 3.9 show us much about the ethanol data. For low values of E, 
NOx increases with C, and for medium and high values of E, NOx is constant as 
a function of C. Thus there is an interaction between C and E. Second, over the 
range of values of E and C in the dataset, NOx undergoes more rapid change as 
a function of E for C held fixed than as a function of C for E held fixed. Finally, 
the plots show that the ·amount of scatter about the underlying pattern is small 
compared with the effect due to E and is moderate compared with the effect due 
to C. 
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Figure 3.6: Distribution plots for variables in ethanol. 
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Let us now see how we produced the two coplots, starting with Figure 3.8. First, 
the conditioning intervals were computed by the function co. intervals (). 

> attach(ethanol) 
> E.intervals <- co.intervals(E, number = 9, overlap = 1/4) 

The result is a 9 x 2 matrix that gives the left endpoints of the intervals in the left 
column and the right endpoints in the right column: 

> E.intervals 
[, 1] [,2] 

[1,] 0.535 0.686 
[2 ,] 0.655 0.761 
[3,) 0. 733 0.811 
[4,] 0.808 0.899 
[5.] 0. 892 1. 002 
[6,] 0.990 1.045 
[7,] 1. 042 1.125 
[8,] 1.115 1.189 
[9,] 1.175 1. 232 

The intervals have the following properties: they contain approximately the same 
number of values of E, and the fraction of values shared by two successive intervals 
is approximately equal to overlap. Now we call coplotO: 

> coplot(NOx ~ C I E, given.values = E.intervals, panel 
+ function(x,y) panel.smooth(x, y, degree = 1, span= 1)) 

The first argument is a formula that specifies the response, the predictor to plot 
against, and the given predictor; in our example we are graphing NOx against C 
given E. This is a special kind of formula, which uses the operator "I" to separate the 
predictor(s) from the conditioning variable. This operator is interpreted in formulas 
as "given", following its typical use in mathematics. With this interpretation, we 
read the formula as 

"Model NOx by c, given E" 

In the plotting functions, we extend "modeled" in a natural way to. imply the 
informal process of looking at one variable as a function of another. 

The argument given. values to coplotO specifies the conditioning values. For a 
numeric given predictor the values can be a two-column matrix as in the example, 
or can be a vector, in which case each element is both the left and right endpoint 
of an interval, so the intervals have length 0. We can also condition on the levels of 
a factor; in this case the argument is a character vector. 

The argument panel takes a function of x and y that determines the method of 
plotting on each dependence panel; x refers to the abscissas of points on a panel and y 
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refers to the ordinates. The default function is points (). In the above expression we 
have used the function panel. smooth to smooth the scatterplots. Notice a paradigm 
that is frequently useful in S: giving an in-line function definition to specify both 
a function and some optional arguments. In the example, we want panel. smooth{) 
to be called with two specific values for optional arguments. This defines a new 
function, but instead of assigning it somewhere, we just include the definition in
line: 

function(x, y) panel.smooth(x, y, degree = 1, span= 1) 

The value of this expression is an S function, just what we need as the panel 
argument. 

As with scatter.smoothO, the argument span to panel.smooth() controls the 
amount of smoothness. Also, the argument degree is specified. It controls the 
degree of the locally-fitted polynomials that are the basis of the smoothing method, 
and can take the values 1 or 2. Figure 3.9 was produced by the following expressions: 

> C.points <- sort(unique(C)) 
> coplot(NOx ~ EIC, given.values = C.points, column.row = c(3,2), 
+ panel = function(x,y) panel.smooth(x, y, degree = 2, span= 2/3)) 

In this case, given. values is a vector. The argument column.row has been used to 
specify the dependence panels to be arranged in an array with three columns and 
two rows. 

Coplots of Fitted Functions 

A coplot can also be used to display a surface fitted to a response as a function 
of two or three predictors. The points at which to do the plot will in this case be 
chosen by us, typically over a regular grid of values. The function expand. grid() 
will be used to generate a data frame corresponding to the grid. Let us look at 
one example. The data in data frame air are from an environmental study to 
determine the dependence of the air pollutant ozone on solar radiation, wind speed, 
and temperature: 

> summary(air) 
ozone radiation temperature 

Min. :1.000 Min. 7.0 Min. :57.00 
1st Qu. :2.621 1st Qu. :112.8 1st Qu. :71.00 
Median :3.141 Median :207.0 Median :79.00 
Mean :3.248 Mean :184.8 Mean :77.79 
3rd Qu. :3.968 3rd Qu. :255.8 3rd Qu.:84.75 
Max. :5.518 Max. :334.0 Max. :97.00 

Figure 3.10 is a scatterplot matrix of the data: 

wind 
Min. 2.300 
1st Qu.: 7.400 
Median : 9.700 
Mean 9.939 
3rd Qu.: 11.500 
Max. :20.700 
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Figure 3.10: Scatterplot matrix of air. 
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> pairs(air) 

In an analysis described in Chapter 8, a surface was fitted to ozone as a function 
of the three predictors. Suppose we want to make a coplot of the fitted surface 
against radiation, given wind and temperature. Denote the surface by s(r, t, w). 
We want to condition on values of t and w and graph against r; that is, we graph 
s( r, t•, w•) against r for various values of t• and w•. To do this, the surface was 
evaluated on a 50 x 5 x 5 three-dimensional grid in the space of the predictors-50 
values of radiation, 5 values of temperature, and 5 values of wind speed. Specifically, 
suppose object air .marginal is a list with three components: radiation, containing 
50 equally spaced values of radiation from 125 to 250; temperature, containing 5 
values of temperature from 70 to 85; and wind, containing 5 values of wind from 7.5 
to 11.5 (a call to seq() will generate each of these). For plotting, we need a data 
frame with all the 1250 combinations of these values. The function expand.gridO, 
defined on page 62, turns the marginal values into a data frame: 

> air.grid <- expand.grid(air.marginal) 

air.grid is a data frame with 3 columns and 1250 =50 x 5 x 5 rows; the row values 
are the coordinates of the grid points: 

> names(air.grid) 
[1] "radiation:" "temperature" "wind" 

The surface Values corresponding to this grid are an array, air.fit, with one di
mension for each predictor: 

> dim(air.fit) 
[1] 50 5 5 
> names(dimnames(air.fit)) 
[1] "radiation" "temperature" "wind" 

(How we construct these values is discussed in Chapter 8.) Now we add to the data 
frame air. grid to form a new data frame that has both the coordinates and the 
surface values: 

> air.grid[, "fit"] <- as.vector(air.fit) 

The as. vector() is just to be certain that the fitted values enter as a vector; the 
definition of expand.grid() ensures that the rows of air.grid come in the same 
order as the values of the three-way array for air. fi ~· Finally, we can make the 
coplot: 

> coplot(fit rv radiation I temperature * wind, data = air.grid, 
+ given.values • air.marginal[c("temperature", "wind")], type= "1") 
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The result is shown in Figure 3.11. The dependence panels- that is, the graphs 
of the surface against radiation given wind speed and temperature - are the 5 x 5 
array of square panels. The given panels, one for each conditioning predictor, are to 
the right and top. As we move up a column of dependence panels, the given values of 
wind speed increase, and as we move from left to right across a row of dependence 
panels, the given values of temperature increase. For example, the curve on the 
panel second from the bottom and third in from the left shows the surface given 
the second marginal grid value of temperature and the third marginal grid value 
of wind speed. Further study of the surface would construct two more coplots -
ozone against temperature given radiation and wind, and ozone against wind given 
radiation and temperature. 

3.3 Advanced Computations on Data 

The discussion in the previous section should be adequate for using data frames 
in basic fitting and analyzing of models, as well as in other data analysis. We 
discuss next some topics that may be needed for more advanced use of models, and 
for adapting the functions to special applications. Section 3.3.1 explains in more 
detail how computations with data frames work. Section 3.3.2 discusses some new 
facilities for databases in S as they may be useful for model-fitting. Section 3.3.3 
describes the intermediate model frame and model matrix objects. Finally, Section 
3.3.4 introduces the parametrized data frame. 

3.3.1 Methods for Data Frames 

First, here is a look at how data frames work (the "private" view, in the terminology 
of Appendix A). The various methods for data frames use only a small number of 
internal quantities and assertions: 

• The attribute rov. names must be defined and must have length n, equal to 
the number of rows in the data frame. 

• If x is a data frame, then unclass(x) should be a list with a non-null names 
attribute with unique names. The elements of this list are the variables 
(columns) in the data frame. 

• The variables of the data frame must be interpretable as either a vector of 
length n or as a matrix with n rows. 

Computations using a data frame as a frame require only that the names of the 
variables be unique, since any variable with a duplicate name will be inaccessible 
when the frame is attached. Variable names that are not syntactically names are 
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inconvenient, since the only way to refer to a variable named "Rev per mile", for 
example, is by 

get("Rev per mile") 

For this reason, read.table() and data.frame() convert all names to make them 
syntactically legal. The function make. names 0 can be used directly if you need to 
convert other strings to legal names. 

Computations using a data frame as a matrix require that the variables behave 
either as vectors or as matrices defined over the n observations. They do not, 
however, otherwise constrain what is in the variables. For example, a vector of 
length nand mode "list" or "character" will work fine. Functions"["(),"[["(), 
dim 0 , and dimnames 0 all have methods that treat data frames as if they were 
matrices. Assignment methods also exist for each of these. The methods for dim() 
and dimnames(} are fairly obvious, just using the row.names attribute to define the 
row dimensions and the row labels, and the length and names attribute of the 
unclassed list object for columns and column labels. 

The method for "[" replicates the behavior of the default subsetting for matrices 
(~.pages 127-129). Specifically, it treats expressions of the form 

X (i, j] 

where either i or j may be omitted, but not the comma (the expression x[i] is 
ambiguous since it has different matrix-like and frame-like interpretations). It also 
obeys the optional drop= argument. Either subscript can be numeric (positive or 
negative), logical, or character. Character subscripts are matched against the row 
names fori and the names for j. Matching is partial (via pmatchO) on extraction 
and strict on replacement, as with matrices. The semantics of subscripting can be 
summarized briefly as follows. The method creates a data matrix with one variable 
(column) for each variable extracted according to j. It then loops over the selected 
variables, selecting from each of those according to i. If the selected variable is 
a matrix,. the rows implied by i are extracted; otherwise, the vector subset. It's 
worth noting that the method is rather deliberately simple at this stage: if xj is 
some selected variable, then the extraction is done directly by 

xj [i] 
xj [i, ] 

in the two cases. The key point here is a reliance on methods for the variables; 
for example, a method " [.factor" 0 will ensure that extracted factors retain their 
factor-ness. If new classes of objects, including matrix-like classes, are to be used 
as variables in data frames, it is essential that methods be defined for them to make 
"["()work right. 

Computations that apply as.matrix() to a data frame will also work, using 
a method for data frames. One difference from ordinary coercing to a matrix is 
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important: if any of the variables in the data frame is itself a matrix or matrix
like, then the number of columns of the resulting matrix will not generally be the 
same as the number of variables. The method works as follows. It loops over the 
variables in the data frame, determining a common mode to represent the result. 
If all variables are numeric, so is the result. If some are non-numeric but none 
is recursive (list-like), then the result is a character matrix. Otherwise, the result 
is a matrix of mode "list". In particular, factors are converted into character 
vectors, each element containing the corresponding level of the factor. If the factor 
originated as character data, this will be the obvious result, but remember that 
logical data are also converted to a factor and will not be automatically converted 
back to logical (not that this is likely to be a major problem in practical situations). 
The result of the method is a member of the class "matrix", primarily to ensure it 
inherits a printing method capable of treating mode "list". 

As noted several times in earlier discussion, variables in a data frame can be 
considerably more general than the original description in Section 3.2.1. Once you 
try to use the data frame in any of the model-fitting in later chapters, however, 
you cannot expect variables other than those listed on page 52 to be interpreted 
sensibly when included in model formulas. Numeric vectors and numeric matrices 
are used as is. Factors and ordered factors are converted into coded numeric form, 
as is described in Section 2.4.3. Anything else will almost certainly cause an error. 
Other, future work on models could well make sense of more general variables, but 
the models discussed in this book do not. 

3.3.2 Data Frames as Databases or Evaluation Frames 

The version of S used in this book has a number of new features added since the 
publication of lj. Appendix A discusses one key addition, the use of object-oriented 
programming. Another addition is an extension and formalization of S databases
that is, of the things that can be attached and detached in order to access objects by 
name in S expressions. In lj, databases were always directories in the file system, 
and the objects were files, accessed by the name of the file. The current version 
allows databases to be list-like S objects, as well as compiled databases and user
defined classes of database objects. In addition, the object names can be arbitrary 
(nonempty) character strings, regardless of file system limitations. 

Of these extensions, the ability to attach S objects as databases is used exten
sively in the book. The use of arbitrary object names is also important, implicitly, 
in permitting unrestricted naming of methods and other functions. The other ex
tensions are not used. The whole topic of S databases in the current form is much 
too large to cover here, but in this section we outline some of the functions that 
deal with relevant aspects of databases. 

First, a definition of the search list. At any time during an S session, this special 
object, internal to the S evaluator, defines the databases currently accessible by 
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name in S expressions (see ~. Section 5.4). In ~. this object was in fact a 
character vector, although called a list. In the current version of S, it actually is 
a list. The elements of the list are the attached databases, which can be character 
strings (e.g., if they specify a directory), lists or other list-likeS objects, or objects 
of special database classes. We refer to the object in element 1 as the database in 
position i of the search list. 

When a name is used in an S expression, the evaluator matches that name to 
an object by looking successively in: 

• the local frame of the currently evaluating function; 

• frame 1, associated with the top-level expression; 

• a session database, called database o; 

• each of the databases on the search list, in order. 

This is essentially equivalent to ~, page 118. What is new is the way the search 
is carried out, as well as the generality of the search list. 

Each database in the search list can be examined by appropriate S expressions. 
Of course, the fundamental functions for this purpose are get(), exists(), assign(), 
and remove(). These get, test, and change the contents of the attached database. 
They behave consistently independent of whether the database was a directory, 
an object, or something else. In addition, objects() returns the names of all the 
objects known by name in the database, possibly restricted to those matching a 
regular expression in the sense of the grep command. 

A few additional functions give useful information about the currently attached 
databases: 

• database.object(i} returns the object that was attached as the database in 
position i. 

• database. type(i} returns a character string giving the type of the database 
in position i. The possible types are "directory", "object", "compiled", and 
"user". Only the first two types are used in this book. 

• database. attr(which, i} returns the value of the attribute which for the data
base object in position i. 

The third function is particularly useful for the applications in this book. Data 
frames and classes inheriting from them have useful attributes in addition to the 
variables, "row. names" being an example. When the data frames are attached to the 
search list, it may be important to have access to theSe attributes. The function 
database.attr() handles this. For example, if we have attached the data frame 
cu. specs, as on page 68, we can obtain the row names by 
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database.attr("rov.names") 

Notice that we omitted the second argument giving the position of the database. In 
this case the function will search through the databases in order, returning the first 
non-null instance of t.he requested attribute, or NULL. Direct use of the function will 
be safer if an explicit position is included, but functions that suspect a data frame 
to have been attached but do not know the position, will ask database. attrO to 
search. This is the case, for example, with the model. frame() function. There is 
also an assignment function for database attributes, which can be used to modify 
attributes in the attached database while leaving the original data frame alone. 

While the S evaluator is evaluating an expression, it creates temporary evalua
tion frames. Calls to S functions are evaluated in· such frames, which are list-like 
objects whose components correspond to the arguments and to locally assigned ob
jects. Each evaluation frame disappears when the evaluation of the function call is 
complete. An S function can create such a frame explicitly from a list or a data 
frame; for example, 

> n <- nev.frame(fuel.frame) 

creates an evaluation frame and returns the index of the new frame in the vector 
of evaluation frames. The new frame initially contains copies of all the variables in 
the data frame fuel. frame. The returned index can be used as an argument to the 
function eval 0: 

eval(expr, n) 

causes expr to be evaluated in the frame created by the call to nev.frame(). 
This is not something to be used directly in user-written expressions, but it 

provides an efficient mechanism for evaluating several expressions in the context of a 
particular data frame or other list-like object. In particular, it is used by the model
fitting functions for that purpose. Frames created by nev.frame() disappear when 
the function calling nev.frameO returns. A second useful mechanism, however, 
overrides this: 

move.frame(n, to) 

causes frame n to be handed over to frame to. This is an efficient mechanism for 
moving around intermediate results. See the documentation for nev. frame 0 and 
move. frame 0 for further details. 

Some of the other functionality described above for databases is available as well 
for temporary frames created by the evaluator: 

• sys.frame(i) returns the ith frame in the evaluator. 

• frame .attr(vhich, i) returns the value of the attribute vhich for the ith frame 
in the evaluator. 
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The concept of database. type 0 does not have an analogue for frames, since all 
frames are conceptually lists. There are a number of other functions that return 
quantities associated with the evaluator, but that are not meaningful for databases; 
for example, sys. call 0 and sys. function() give the call and the function definition. 

3.3.3 Model Frames and Model Matrices 

All the models in Chapters 4 through 7 prepare for fitting the model by essentially 
the same steps. Beginning with a formula, an optional data frame, and possibly 
other arguments such as subset or weights, they compute two intermediate forms 
of data: 

1. a model frame, a data frame containing just the data needed to fit the model; 

2. a model matrix, response variable, and possibly other information needed to 
carry out the fit. 

The development of these objects from the formula, particularly emphasizing the 
terms object, is discussed in Section 2.4.3. We now continue that discussion, em
phasizing the properties of the two intermediate data objects. Although the models 
discussed in Chapters 8 and 9 do not use model matrices, they do use model frames. 
From the model frame, they construct a different form of matrix suited to their own 
fitting methods, as described in those chapters. 

The function model. frame 0 computes the model frame corresponding to a for
mula, using the terms object computed from such a formula. The variables in the 
model frame are the expressions for the terms of order 1 (the variables that ap
pear as terms or as one of the arguments to "•", "/",or":" in an interaction). 
The response is also included. Optional weights and other special variables will 
be included in the model frame too, but under special names: " (weights)" for the 
weights, and so on. Enclosing the names in parentheses is intended to reduce the 
chance that they accidentally conflict with an actual variable name. 

Let's develop an example to examine the contents of the model frame and model 
matrix. Suppose we decide to fit the model formula 

100/Mileage ~Weight + bs(Disp.) +Type 

to the car. test. frame data. This will fit the transform of Mileage to a linear term 
in Weight plus a B-spline fit in Disp. plus a term in the factor Type. At the moment, 
however, it is not the fitted model that is of interest, but the objects common to 
all fitted models, specifically the model frame. Suppose we include the optional 
argument weights=HP, where HP is the horsepower variable in the same frame (don't 
ask for this to make statistical sense!). Finally, suppose the fit is only to be on the 
subset of the data for which Weight<3500. The actual call would be: 
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lm( 100/Mileage "" Weight + bs(Disp.) + Type, 
car.test.frame, weights c HP, subset • Weight < 3500) 
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We're not interested in the fit, but in the model frame. Suppose we compute the 
model frame and store it in mframe. This can be done by giving lmO the argwnent 

method = "model.frame" 

Some representative rows of the model frame are as follows: 

> mframe [sample. mframe, ] 
100/Mileage Weight bs(Disp.).1 bs(Disp.).2 

Chevrolet Beretta 4 3.B46154 2655 0.426447373B 0.14B760711B 
Chrysler New Yorker V6 4.545455 3450 0.32B7921649 0.4117BB2453 

Ford Mustang VB 5.26315B 3310 0.00049514B3 0.0377963202 
Ford Probe 3.333333 2695 0.426447373B 0.14B760711B 

Hyundai Sonata 4 4.347B26 2BB5 0.4413522746 0.1907077730 
Mercury Tracer 4 3.B46154 22B5 0.2494567223 0.02B7B346BO 

Mitsubishi Wagon 4 5.000000 3415 0.4413522746 0.1907077730 
Nissan 240SX 4 4.166667 2775 0.44337B2744 0.2035636103 

Toyota Corolla 4 3.44B276 2390 0.2494567223 0.02B7B346BO 

bs(Disp.).3 Type (weights) 
Chevrolet Beretta 4 0.0172977572 Compact 95 

Chrysler New Yorker V6 0.1719115976 Medium 147 
Ford Mustang VB 0.9617063693 Sporty 225 

Ford Probe 0.0172977572 Sporty 110 
Hyundai Sonata 4 0.02746B197B Medium 110 
Mercury Tracer 4 0. 0011070565 Small B2 

Mitsubishi Wagon 4 0.02746B197B Van 107 
Nissan 240SX 4 0.031153340B Sporty 140 

Toyota Corolla 4 0. 0011070565 Small 102 

In this model frame, there are four variables, one for each of the three terms in the 
model and one for the weights. The first term is an ordinary numeric variable, the 
second is a matrix returned by the B-spline function, and the third term is a factor. 
The matrix prints out as three columns, but the whole matrix is one variable in the 
model frame. 

The model frame and model matrix are not usually intended for direct user 
interaction, but for use by other functions. Both objects have extra attributes that 
link them to the model. The model frame, in particular, contains as an attribute 
the terms object discussed in Section 2.4.3. The terms object contains information 
such as the identification of variable 1 in the model frame as the response. 

A few of points of detail are worth noting. Since the model frame is not intended 
for human use, its variable names are left exactly as in the formula. In the example, 
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the second variable is itself a matrix, corresponding to the two orthogonal polyno
mials in Weight; this contributes two columns to the printout. The model frame 
contains only the rows of the original data corresponding to the subset argument. 

One further option affecting the model frame has not been shown. The na. action 
argument to one of the model-fitting functions specifies a function that carries 
out some action to detect missing values. The value returned by the na. action 
function must be a data frame without missing values. Any missing values left 
in the model frame cause an error in the model-fitting functions. Supplying the 
argument as na.omit causes all rows containing any missing values to be dropped 
from the analysis. Other strategies may be specified for particular kinds of models 
or the user may supply a special function. Whatever is supplied as na.action must 
be a function that takes a data frame as argument and returns another data frame 
as result, with the same variables and containing no missing values. 

The function model. matrix() takes a terms object and a model frame as argu
ments. It returns the matrix of linear predictors used in fitting linear models and 
in models that derive from linear models, such as those of Chapters 6-7. The con
struction of the model matrix from the terms was discussed in Section 2.4.3. Here 
we add a few points about the object itself. 

The model matrix is a valid numeric matrix. It contains, in addition, attributes 
that define its role in the model. The most important is "assign". This is a list with 
as many elements as there are terms. The elements of the list say which columns 
of the matrix estimate coefficients to the corresponding term. For example, if mm is 
a model matrix, the following computations would extract a matrix containing the 
columns corresponding to the third term: 

asgn <- attr(mm,"assign") 
x3 <- mm[, asgn[[3]], drop=F] . 

This information is kept correct during the fitting of linear and related models, is 
returned as an "assign" component of the fit, and is then used by the corresponding 
summary methods. If mm is the model matrix corresponding to mframe above, the 
assignment information is: 

> attr(mm, "assign") 
$"(Intercept)": 
[1] 1 

$Weight: 
[1] 2 

$"bs(Disp.)": 
[1] 3 4 5 
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$Type: 
[1] 6 7 8 9 10 

Both the spline term, bs(Disp.), and the factor Type contribute multiple columns 
to the model matrix. 

The importance of the model matrix comes in large part because key numerical 
results (for example, the coefficients in fitting a linear model) are indexed the same 
way as the columns of the model matrix. Numerical fitting methods that work 
from the model matrix are expected to keep the assign attribute consistent with 
any changes they make. An important example is our standard fitting algorithm 
for linear models, lm.fit.qrO. If a linear model is over-determined, this method 
removes the aliased columns of the model matrix (by pivoting them to the right 
end of the matrix). At the same time, it modifies the assign attribute to show 
that these columns no longer contribute to the corresponding term. Whatever is 
done to the assign attribute of this nature should not change the number, order, or 
names of the list. These are used to match the terms for future calculations. Thus 
the "assign" component of a linear model can be used to select the coefficients 
corresponding to a particular term. The assign attribute is also kept correct by 
subsetting methods for model matrices. 

3.3.4 Parametrized Data Frames 

The matrix nature of data frames requires that each variable can be indexed by the 
rows of the data frame, either as a vector of n elements or a matrix with n rows. 
This restriction is reasonable enough in that it agrees with the intuitive view of 
data frames as corresponding observations on a number of variables. Occasionally, 
however, it would be convenient to have additional information accessible from the 
data frame that does not correspond to variables in this sense. For example, suppose 
we are analyzing the solder data and have decided to model the data in terms of 
a chosen power transformation of the skips variable. The chosen power might be 
kept as an object, say pover. For clarity, it would be nice to write formulas in a 
style like 

skips"pover "' . 

In this way of thinking, we are regarding the chosen power as fixed (at least for the 
moment). It is then not a coefficient in the model, but neither can it be a variable 
in the data frame. We could just keep it separately, say in the working data, but 
this is also not very attractive, since it belongs with the solder data. 

To handle such situations, we provide an extension to data frames called para
metrized data frames, or pframe's. The class of a pframe object is 

c("pframe", "data.frame") 
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In addition to variables, pframe objects have parameters. These are accessed and 
set by special functions operating on the pframe object, but when the object has 
been attached for evaluation, they are accessible by name in the same way as vari
ables. Parameters, however, are not assumed to be indexed by the rows of the 
data frame. The function param() can be used to extract or set a given parameter, 
while parameters() does the same for the complete list of all the parameters. These 
functions are analogous to attrO and attributes() for handling attributes (e.g., 
~' pp. 143-146). For example, 

param(solder, "power") <- .5 

would set the parameter "power" and make expressions like skips"power work in 
any formula using solder. 

Parametrized data frames can be attached in position 1 to create new or revised 
data, as we showed on page 68 for ordinary data frames. When they are detached, 
however, objects that are not variables will be retained as parameters rather than 
being dropped. Only a few special objects generated by the S evaluator (e.g., 
.Last.value) will be deleted. A convenient way to work with pframe objects is: 
first, assign any parameter so as to copvert a data frame to a pframe; second, attach 
the object in position 1 and create or modify whatever parameters and/or variables 
you want; finally, detach and save the revised data frame. 

Parametrized data frames come into their own in nonlinear models, where the 
coefficients must be explicitly included in the model formulas. In Chapter 10, 
parametrized data frames are used extensively to achieve effects such as holding 
some parameters constant at pre-specified values. 



Chapter 4 

Linear Models 

John M. Chambers 

This chapter presents S functions and objects for classical linear methods in statis
tics, in which a numerical response variable is predicted by linear combinations of 
other numeric or categorical variables. S functions and classes of objects described 
in this chapter fit linear models by least squares, and analyze the models by a variety 
of techniques. By modifying and extending the functions provided, you can special
ize the modeling to your own applications or develop new statistical techniques for 
linear models. 

The statistical, computational, and mathematical ground covered in this chap
ter deserve to be called "classic" in any sense. The statistical use of linear models 
goes back to Laplace and Gauss early in the nineteenth century and continues to 
underlie much of statistical modeling. The numerical techniques, also, are excep
tionally reliable and well developed, representing some of the most successful results 
of numerical analysis. Many of the computational tools can be applied in other sit
uations as well; in particular, many computations in later chapters will use linear 
least-squares computations as building blocks. The mathematical analysis of this 
topic, particularly the fundamental results of linear algebra and vector geometry, 
also serve as the basis for many other results. 

If you expect to use linear models in your work, then you should read this 
chapter. The computational details described in Section 4.4 will likely be a useful 
reference for advanced work on other models as well, particularly those in Chapters 
5-7. This chapter follows a style and organization of computations, around classes 
of objects and the functions that create and use them, that provides a perspective 
on linear models different from traditional treatments. The data analyst has greater 
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freedom: summaries and displays are not restricted to a few predetermined printouts 
or tests. Instead, there is an essentially unlimited scope for getting the relevant 
analysis for particular problems. The theme is that one function, lmO, creates an 
object describing a fitted model, and other functions use this object to analyze or 
modify the fit. Optional arguments to lm() specialize the fitting. Fitted models can 
be updated in a simple and general way. 

The functions and objects in this chapter provide a number of statistical tech
niques directly. Equally important in their design, however, is the goal of providing 
a powerful basis for nonstandard computations or for the implementation of new 
ideas. Even such a well-developed area of statistics as linear models provides many 
challenges and opportunities. New functions, new user interfaces, and new algo
rithms can all be built on the basis provided here. 

4.1 Linear Models in Statistics 

This chapter describes S functions and objects for linear models that use least
squares as a fitting criterion. Some of the discussion will also be relevant to other 
situations, either because the techniques do not depend specifically on the fitting 
criterion or because the least-squares computations form an essential basis for other 
techniques. The first section of the chapter outlines the statistical concepts we 
will use in discussing linear models. The goal is to set the background for the 
computational discussions that follow in the rest of the chapter. We don't aim to 
teach the statistics of linear models; for that, you should look at one of the many 
good books on the subject (some are mentioned on page 144), either in advance or 
while you are reading this chapter. 

Linear regression models a numeric response variable, y, by a linear combination 
of predictor variables xi, for j = 1, ... , p. Each of the variables was observed on the 
same n observations. The fitted values are the sum of coefficients fli multiplying 
each of the x1 plus (usually) an intercept fl0 • Using our "..,.!' operator to mean "is 
modeled as", the linear model is: 

(4.1) 

Linear least-squares models estimate the coefficients to minimize the squared sum of 
residuals. If the response and predictors corresponding to the ith of n observations 
are y;, xil, x;2 , •.. , x;11 , then the fitting criterion chooses the fli to minimize 

n 1' 

L (y;- (flo+ Lflixii))2 (4.2) 
i=l j=l 

The standard statistical theory of linear models makes ( 4.1) more explicit by writing 
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the model for the ith observation as: 

p 

Yi = /3o + L ,B;Xij + €; 
i=l 

and by making the following assumptions: 

i. the c; are independently and identically distributed; 

ii. the c; have mean zero and (finite) variance u2 ; 

iii. the c; are distributed according to the normal distribution. 
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(4.3) 

Coefficients that minimize (4.2) define a fitted linear model, represented by what 
we will call a linear-model object. The object contains the estimated coefficients 
~i, the fitted values 

Yi = tJo + L tJ;x;; 
j 

and the residuals y; - y;. The statistical assumptions define the distribution of 
various components of the fitted model. The residuals will be normally distributed 
with zero mean, and the estimated coefficient tJ; will be normally distributed with 
mean /3;. The lineax-model object also contains a set of effects, which we define 
formally in Section 4.4.1 on page 133. Under the statistical assumptions, they are 
independently and normally distributed, with variance u2• The elements of the 
squared effects axe the contribution from fitting the corresponding coefficient to the 
standard analysis of variance breakdown. The effects are used extensively when 
linear models are applied in the context of the analysis of variance in Chapter 5. 

The standard error u can be estimated from the residuals. Estimated variances 
and covariances for the coefficients, fitted values, and residuals axe known functions 
of the x; multiplied by the estimate of u. 

These statistical characterizations lead to a variety of summaries and diagnos
tics, including plots. As with all models, both the structural form of the regression 
and its probabilistic characterization are at best simplifications that help us under
stand the data. Fortunately, linear models can use a particularly well-supplied box 
of tools to help assess and improve the model. 
. The model (4.1) is additive, representing y as the sum of p terms. In this view, 
flixi is the contribution of the x; term to the fit. Statistically, such a view needs 
to be taken cautiously since the contributions axe not independent, but the view 
of ( 4.1) as an additive model is a useful one that carries over to generalizations 
such as those discussed in Chapters 6 and 7. The symbols /3; in (4.1) are not 
needed to convey the model. Just specifying the terms as x; defines the structural 
form. Computer systems for additive models have evolved a notation in which 
the coefficients (including the intercept) are omitted. Our formula objects take 
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that evolution further by including the response, adding some new notation, and 
allowing more general expressions for terms. For computational purposes we will 
write ( 4 .. 1) as: 

Y "' X1 + • • • + Xp (4.4) 

As we will see, this form is very convenient and extends well to related models 
in later chapters. It is important to remember, however, that some additional 
statistical specification is always involved before ( 4.4) fully defines a model that 
can be used in practice. 

The variables in ( 4.4) were said to be numerical, but they can be more general 
than that. If x; is a factor or an ordered factor, its presence in the formula stands 
for fitting a coefficient in the additive model for each level of the factor. Terms that 
are factors can therefore contribute more than one coefficient (that is, more than 1 
degree of freedom) to the fit; still, it makes sense to regard the entire contribution as 
a single term. If x; is a numeric matrix, the intention is to regard all the coefficients 
contributed by x; as a single term in the model. As an example, choosing to fit a 
polynomial of degree d in one or more predictor variables usually means that the 
contributions of different basis vectors for the polynomials should be regarded as 
forming a single term. Similar comments apply to splines or other parametrized 
family of curves. 

The response in a linear model cannot be a factor. Generalized linear models in 
Chapter 6 treat factors with two levels as response variables, and tree-based models 
in Chapter 9 will allow arbitrary factors. The response in a linear model can however 
be a numeric matrix, a generality that will not extend to some of the other models. 
The reason is that the solution to (4.2) is characterized essentially in terms of the 
matrix formed from the x;. In particular the solution can be characterized by linear 
operators that are applied toy to generate coefficients, fitted values, residuals, and 
effects. If y is a matrix, the same linear operators apply, generating matrices instead 
of vectors. 

The fitting functions in this chapter mostly use one particular numerical algo
rithm for linear least squares. The algorithm has been chosen for high accuracy 
and good reliability, and is based on the widely used LINPACK algorithm library. 
However, a recurring theme of this and some later chapters will be that it is the 
objects representing the fitted models that are key, not a particular algorithm that 
computes them. Modifications of our chosen algorithm or the use of an entirely 
different algorithm are perfectly acceptable, so long as the computations produce 
objects containing the necessary information in a form that the various summary 
and diagnostic methods can handle. Section 4.4.2 reviews some of the underlying 
theory behind linear least-squares models, to explain how the computations work 
and how you can alter them. 

One extension of the standard model that will be discussed is that of weighted 
least squares, in which each of the squared residuals in equation (4.2) is given some 
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specified weight, say w; ;::: 0. This generalization arises both directly (see page 111) 
and as a computational technique for implementing other models in terms of linear 
least squares. If it is known or suspected th.<:~.t the variance of the errors is not the 
same for all observations, then the standard fitting shown so far is not appropriate. 
Treatments for this situation include looking for a transformation of the data that 
makes the variance constant or using a model, such as one of those in Chapter 6, 
which incorporates the changing variance in the model itself. If, however, the vari
ance is known (up to a constant), ordinary linear least-squares fitting can proceed 
by weighting the squared residuals proportionally to the inverse of the variance. 
For example, if each value of the response represents the average of observations on 
some known but varying number of replications for fixed values of the predictors, 
the variance will be inversely proportional to the number of replications, so that the 
number of observations can be used as weights in the fit. The statistical theory of 
linear models carries over essentially unchanged, by considering the model in terms 
of variables w!y and w!xi. For this to be valid, the weights (and the Xj as well) 
are assumed to be fixed and in particular not to involve y. 

In addition to providing the basic fitting of the model ( 4.4), functions in this 
chapter address some other important aspects of using linear models: 

• diagnostics, especially graphical, that look for aspects of the data that are not 
well explained by the model, often by looking at the residuals; 

• examining the structural form of the model, to see the result of adding, drop
ping, or changing terms; 

• summaries showing the inherent variability in the coefficients, fitted values, 
or predictions; 

• summaries using the effects and other information to study the importance of 
individual terms in explaining the response. 

Section 4.2.2 describes S functions to compute a number of analytical summaries 
and diagnostic plots. Variations on these and many other analytical results can be 
computed from the information in the objects, as described in Section 4.3. 

4.2 S Functions and Objects 

This section presents S functions for typical fitting and analysis of linear models. 
The function lmO returns an S object that we will call a fitted linear least-squares 
model object, or an lm object for short. Section 4.2.1 shows the fitting itself; Section 
4.2.2, some summary functions; Section 4.2.3, some functions to compute predic
tions. The last sections, 4.2.4 and 4.2.5, present some useful options for doing the 
fitting and a powerful general technique for updating the fit. 
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4.2.1 Fitting the Model 

The S function lmO creates a least-squares fit: 

lm(formula, data) 

where formula is the structural formula that specifies the model and data is the 
data frame in which the model is to be computed. Let's look at an example using 
data introduced in Chapter 3. On page 70, we created a data frame fuel.frame, 
including variables Fuel, Weight, and Disp .. A linear model that fits Fuel to Weight 

and Disp. is specified by the formula 

Fuel ~ Weight + Disp. 

which is read "Fuel is modeled as a linear combination of Weight and Disp.". The 
names occurring in the formula are interpreted in the frame fuel. frame. The fit, 

fuel.fit <- lm(Fuel ~Weight+ Disp., fuel.frame) 

does not produce printed tables or other summaries of the model. Instead, the 1m 
object created represents the fit, and contains all the essential information, such as 
coefficients, residuals, fitted. values, and some other less obvious things. The 
lm object can be given to functions to produce summaries, or to functions with the 
names above (coefficients(), etc.) to get at the specific information in the model. 
Short forms of the commonly used extracting function names are provided to save 
typing: coefO, resid(), and fitted(). 

> coef(fuel.fit) 
(Intercept) Weight Disp. 

0.4789733 0.001241421 0.0008543589 

Notice that the coefficients are printed with names, constructed automatically from 
the data and the formula. It is important to use the functions like coef 0, rather 
than prying open the inner contents of the 1m object, at least while you're getting 
used to the model-fitting. The functions can use all the information in the object 
to return a sensible result. Particularly with models that are derived from linear 
models, such as glm models, the raw components may be misleading. 

The lm object itself can be printed, like any S object, by just giving its name: 

> fuel.fit 
Call: 
lm(formula = Fuel ~ Weight + Disp., data = fuel. frame) 

Coefficients: 
(Intercept) Weight Disp. 

0.4789733 0.001241421 0.0008543589 

Degrees of freedom: 60 total; 57 residual 
Residual standard error: 0.3900812 
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The style of the printing method for this and for other models is to show the 
simple information in the model that seems most likely to be relevant. The printing 
method tends to give you just what is in the fitted model, with little statistical 
embellishment. Another function, summary(), gives a more technical, statistical 
description of the model, using the statistical assumptions mentioned on page 97. 
We discuss this function on page 104. 

Formulas are discussed extensively in Chapter 2 and will come up again repeat
edly, but here are a few points to keep in mind. The individual terms in the formula 
can be any S expressions that evaluate to something that can be a predictor: nu
meric vectors, factors, ordered factors, or numeric matrices. Several coefficients in 
the model may correspond to one factor or matrix term. The special name "." may 
be used on the right of the "~" operator, to stand for all the variables in a data 
frame other than the response. Assuming that Fuel, Weight, and Disp. were the 
only variables in fueL frame, the expression 

fuel. fit <- lm(Fuel "' . , fuel. frame) 

would produce the same fit as before. 
Terms in formulas are separated by "+"; therefore, if we want to have a single 

term equal to the sum of Weight and Disp., the "+" sign must be protected. This is 
done by enclosing the term in the "identity" function, I 0: 

Fuel ~ I (Weight + Disp.) 

The operators ":", "•", """, "I", and "-" are also special on the right side of 
formulas. Terms that use these operators in their usual arithmetic sense should be 
protected by the I () function. The operators are special only as predictors, not in 
expressions for the response. 

The terms for predictors can evaluate to numeric vectors, numeric matrices or 
factors. Logical or character vectors will be turned into factors. The response can 
be a numeric vector or a matrix. In the case of a matrix response, the coefficients, 
residuals, and effects will also be matrices, with the same number of columns as the 
response. 

Models that include factors are discussed in great detail in Chapter 5, in the 
context of the analysis of variance. The model-fitting functions fit factors by, in 
principle, replacing them with the corresponding set of "dummy variables," vari
ables that take the value 1 for observations with a particular level for the factor 
and 0 for all other observations. The details can be left for Chapter 5; for now, it's 
sufficient to know that factors can be included in models with the fitted values and 
residuals coming out correctly. With ~ur Fuel example, it might be interesting to 
include the type of automobile as a predictor: 
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> fuel.fit2 <- lm(Fuel ~ Weight + Disp. + Type, fuel.frame) 
> fuel.fit2 
Call: 
lm(formula ~ Fuel ~ Weight + Disp. + Type, data • fuel.frame) 

Coefficients: 
(Intercept) Weight Disp. Type1 Type2 Type3 Type4 

2.9606 4.164e-05 0.0075941 -0.14528 0.098084 -0.12409 -0.04358 

Type5 
0.19151 

Degrees of freedom: 60 total; 52 residual 
Residual standard error: 0.31392 

By the way, using the function update() would have been simpler than rewriting 
the whole call to lmO: 

fuel.fit2 <- update(fuel.fit, . ~ . + Type) 

This very handy generic function allows nearly all common changes in a model to 
be created from the original model and the changed arguments; in addition, it uses 
the "." notation as shorthand for the previous left or right side of the formula. 
Section 4.2.5 will describe update(). 

The factor Type has 6 levels, 

> levels(Type) 
[1) "Compact" "Large" "Medium" "Small" "Sporty" "Van" 

which produce five coefficients, or contrasts. The individual coefficients are usually 
less important for factors than the overall contribution of the term to the fit. If you 
do want to know more about the choice of contrasts, see Sections 2.3.2 and 5.3.1. 
Another example with factors as terms will be shown on page 111. 

It is worth emphasizing that a response or predictor in a formula is not restricted 
to being a name, but can be any S expression that evaluates to an object that can 
be used as that response or predictor. The variable Fuel was defined as 100/Mileage, 
so we could have fit the same model by: 

> fuel.fit2 <- lm(100/Mileage ~ Weight + Disp. + Type, car.test.frame) 

The operator "/" is special in predictor terms, but not in the expression for the 
response, so there was no need to protect it. As with the response, the predictors 
on the right of the "~" can be anything that evaluates to numeric vector, matrix, or 
factor. Of course, the variables should all be defined on the same set of observations 
in order to be meaningful in the model. 
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Most analysis of linear models will benefit from organizing the data into a data 
frame, encouraging the kind of preliminary analysis discussed in Chapter 3. It is 
possible, however, to omit the data argument from the call to lmO, in which case 
the names in the formula will be evaluated in the usual way for arguments, meaning 
they typically will be the names of permanent S objects. As an example, suppose 
we want to reproduce the analysis of the "stack loss" data, a classic set of data 
in which the loss of ammonia in an industrial process (an indirect measure of the 
yield of the process) is fitted to three measures of conditions in the process. The 
response variable and the matrix of three predictors are supplied with S as the 
vector stack.loss and the matrix stack.x (~'page 657). The fit can be produced 
directly from these objects: 

> stack.fit <- lm(stack.loss ~ stack.x) 
> coef(stack.fit) 

(Intercept) stack.x.Air Flov stack.x.Water Temp stack.x.Acid Cone. 
-39.92 0.71564 1.2953 -0.15212 

Notice that the formula referred only to the whole matrix of predictors, but the 
coefficients are labeled using the dimnames from the matrix. Nevertheless, expressing 
the formula in terms of stack.x means that the whole matrix should be regarded as 
a single term. More natural and more flexible would be to form a data frame and 
use the "." notation: 

> stack <- data.frame(loss=stack.loss, stack.x) 
> stack. fit <- lm(loss "' . , stack) 
> coef(stack.fit) 

(Intercept) Air.Flov Water.Temp Acid.Conc. 
-39.91967 0.7156402 1.295286 -0.1521225 

The terms in this case are separate vectors rather than one matrix. 
Formulas may be kept as objects to save the effort of retyping them: 

> fuel. f <- formula(Fuel "' Weight+Disp.) 
> fuel.f 
Fuel "' Weight + Disp. 

This assigns the formula expression as an unevaluated S object. The formula func
tion will also extract a formula from objects representing a fitted model; an equiv
alent way to get at the formula from the fitted model fuel. fit on page 106 would 
be 

> fuel.f <- formula(fuel,fit) 

Formula objects can be edited like other objects using S editor functions such as 
vi(). Usually, however, the update() function makes direct editing of formulas 
unnecessary, as in Section 4.2.5. 
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1.2.2 Basic Summaries 

\ wide range of plots and summaries can be applied to linear models. We will 
lescribe several of them, but you are definitely encouraged to design your own as 
veil. 

A plot method for lm objects makes two plots against the fitted values, one of 
he response and another of the absolute residuals. 

plot(fuel.fit) 

>roduces the plot in Figure 4.1. The left panel shows the general pattern of the 
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Pigure 4.1: Plot method for an 1m object, applied to fuel. fit. The left panel shows response 
against fitted values, the right panel plots absolute values of residuals against fitted values. 

l.t by plotting the response against the fitted values, with the y = x line super
,mposed. The right panel tries to point out patterns in the residuals by plotting 
~.heir absolute values against the fitted values. Figure 4.1 shows, for example, one 
residual considerably larger than the rest. To find out which observation it is we 
:an use identify() or look directly in the row names of the data frame. The high 
cesidual is the only residual with an absolute value greater than .9: 

> rov.names(fuel.frame)[ abs(resid(fuel.fit)) > .9) 
[1) "Chevrolet Lumina APV V6" 

The gerwric function summary() produces summary objects for fitted models in
;.cnded to give more "statistical" information than comes from just printing the 
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object. For a linear model, the summary contains estimated standard errors, cor
relations, and t-statistics for the individual coefficients, correlations for the coeffi
cients, and summaries of the residuals: 

> summary(fuel.fit) 

Call: lm(formula =Fuel~ Weight+ Disp., data= fuel.frame) 
Residuals: 

Min 1Q Median 3Q Max 
-0.81 -0.26 0.02 0.27 0.98 

Coefficients: 
Value Std. Error t value 

(Intercept) 0.47897 0.34179 1.40 
Weight 0.00124 0.00017 7.22 

Disp. 0.00085 0.00157 0.54 

Residual standard error: 0.39 on 57 degrees of freedom 
Multiple R-Squared: 0.74 

Correlation of Coefficients: 
(Intercept) Weight 

Weight -0.90 
Disp. 0.47 -0.80 

The Coefficients table gives the coefficients and their estimated standard error. 
The third column is the ratio of the estimated coefficients to the corresponding 
standard-error estimate, which could be compared to a Student's t distribution. The 
residual standard error is the sum of squared residuals, divided by the number of 
degrees of freedom for residuals (usually the number of observations less the number 
of coefficients). Multiple R-squared is the term for a quantity usually defined as 
the fraction of the total variation in the response accounted for by the variation 
in the fitted values. It can be a useful measure of the success in explaining the 
response by the current model, although it ignores the number of coefficients and so 
invites over-fitting. The table of correlations are those of the estimated coefficients; 
only the lower triangle is printed. Remember that these correlations are for the 
coefficients, not for the original variables. 

The summary() function is normally used to produce printed output. However, 
the value of the function is an S object of class "summary .1m", containing all the infor
mation printed. Computations needing the information printed above can extract 
it from the object. The printing is produced by a special method for summary.lm 
objects. Let's look at the components of the summary.lm object: 
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> fuel.summary <- summary(fuel.fit) 
> names(fuel.summary) 
[1) "call" "terms" "residuals" 
[5] "sigma" "df" "r. squared" 
[9] "correlation" 

"coefficients" 
"cov.unscaled" 

The meaning of most of these will be obvious from the printed version of the sum
mary. The cov. unsealed and df components are not reflected directly in the print
ing. The latter gives the degrees of freedom for each term. The discussion in Section 
4.4.1 clarifies the use of the unsealed covariance, cov. unsealed. 

The qqnorm () function ( 19, pp. 70-71) plots a vector of numbers, sorted, against 
corresponding expected values from a standard normal distribution. If the vector 
behaves like a sample from a normal distribution, the plot should look roughly 
linear. Since the standard statistical assumptions for linear models say that the 
residuals from the model are distributed as a normal sample, the plot is a useful 
way to look for patterns indicating that the candidate model needs to be modified. 
The residuals from the fitted model don't exactly follow this distribution, but the 
plot is still a reasonable way to look for problems. Figure 4.2 shows the result. The 
pattern looks reasonably linear in this example. 

"! 0 

0 

> qqnorm(residuals(fuel.fit)) 
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Figure 4.2: Normal probability plot of residuals, for the fit of Fuel ~ Weight + Disp. 

4.2.3 Prediction 

After fitting a model to some data, we would often like to know the predicted 
response from the model for some different values of the predictor variables. This 
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is provided by the generic function 

predict(fit,nevdata) 

where newdata contains the data for which we want a predicted response. Following 
our general approach, newdata is a data frame including all the variables used in 
fitting the model. The response variable is ignored in newdata and need not be 
present. 

The fuel.fit model was fitted to the automobile data for which the Mileage 
variable was present. One reason for fitting the model might well be to predict the 
fuel consumption for automobiles not road-tested by Consumers Union, for which 
Mileage would be NA. To obtain predicted values for a sample of those automobiles, 
we need to construct a data frame containing the Weight and Disp. variables. The 
data frame car. all contains all the variables for the automobile data. For prediction 
we want Mileage to be missing but Weight and Disp. to be present: 

> attach(car.all) 
> ok.for.predict <- is.na(Mileage) t !(is.na(Weight) I is.na(Disp.)) 
> sum(ok.for.predict) 
[1] 55 
> predict.rovs <- rov.names(car.all)[ok.for.predict] 

Let's sample 10 of the possible rows for prediction: 

> sample.rovs <- sample(predi~t.rows,10) 

> new.cars <- car.all[sample.rovs,c("Weight", "Disp.")] 

The data frame nev. cars is now suitable as an argument to predict 0: 

> new.cars 
Weight Disp. 

Volkswagen Golf 2215 109 
Volkswagen GTI 2270 109 

BMW 325i 2895 152 
Pontiac Bonneville 3360 231 
Mitsubishi Precis 2185 90 

Hyundai Excel 2345 90 
Sterling 827 3295 163 

Lincoln Continental 3695 232 
GEO Storm 2455 97 

Dodge Spirit 2940 181 

> pred.fuel <- predict(fuel.fit,new.cars) 

The predicted values have the same structure as the original response, either a 
numeric vector or a matrix. In our example: 
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> pred.fuel 
Volkswagen Golf Volkswagen GTI BMW 325i Pontiac Bonneville 

3.3218 3.3901 4.2027 4.8475 

Mitsubishi Precis Hyundai Excel Sterling 827 Lincoln Continental 
3.2684 3.467 4.7087 5.2642 

GEO Storm Dodge Spirit 
3.6095 4.2834 

Notice that the row names from new. cars have been retained as the names attribute 
of the predicted values. As for how well the model predicts, at least the names 
associated with low and high fuel consumption seem plausible. 

The predict() function has a number of useful options. The option se.fit=T 

causes the prediction to include pointwise standard errors for the predicted values. 
The argument type="terms" causes the predictions to be broken down into the 
contributions from each term, returning a matrix whose columns correspond to the 
individual terms in the model. For examples of these options, see Section 7.3.3. 

Prediction from a fitted model is usually straightforward, with one important 
exception. A problem arises whenever the expression for one of the predictors 
uses some overall summary of a variable. For example, consider the following two 
expressions: 

x/3; x/sqrt(var(x)) 

The first expression is fine for prediction; the second is not. The problem is that 
while we could compute a subset of values for the first expression just from know
ing the corresponding subset of x, the same is not true of the second expression. 
Ordinary prediction is precisely that: we try to compute values for the new data 
using only the formula and new values for the predictor variables. The functions to 
watch out for include: 

poly(x) #orthogonal polynomials 
bs(x) · #spline curves 

and any function that uses overall summaries, such as range 0, mean(), or quantile 0. 
These are all fine expressions for linear models, but if you use them and want to do 
prediction, look ahead to Section 7.3 for a safe method. 

Just in case you don't believe there is a problem, you can try a simple experi
ment. Fit the two models 

fuel. fi tq <- lm(Fuel ~ Weight + I (lleight"2) + Disp. , fuel. frame) 

fuel.fitq2 <- lm(Fuel ~ poly(lleight, 2) + Disp., fuel. frame) 
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These both fit a quadratic polynomial in Weight to the Fuel data. The coeffi
cients will be different but the fitted values are equivalent; they represent differ
ent parametrizations of the same model. Now compute predicted values for the 
two models. The fitted values for fuel. fitq are not very different from those for 
fuel. fit; for example, the low and high values are: 

Mitsubishi Precis Lincoln Continental 
3. 209793 5 .187772 

which can be compared to 3. 27 and 5. 27 before. But for the fit using poly(), the 
corresponding values are 

Mitsubishi Precis Lincoln Continental 
2.364744 6.642079 

which have changed more than is plausible from the small contribution of the 
quadratic term. 

4.2.4 Options in Fitting 

Additional, optional arguments to the 1m0 function and special features of the 
formula language give a great deal of flexibility in fitting the model. Among other 
things, it is possible to select subsets of observations, provide weights for fitting, 
deal with missing values, fit parallel regressions, handle over-specified models, and 
update models to produce new models. 

Fitting to Subsets of Observations 

The subset argument allows the call to specify a rule for selecting a subset of 
the rows in the data to be included in the fit. For example, the data frame 
car. test .frame includes a factor, Type, that specifies one of six types of car: 

> attach(car.test.frame) 
> levels(Type) 
[1] "Compact" "Large" "Medium" "Small" "Sporty" "Van" 

Suppose we decide that cars of type "Van" should be excluded (perhaps because 
they tend to be big fuel guzzlers and we're really only interested in standard cars). 
Evaluating the expression 

Type != "Van" 

identifies the non-Van observations in factor Type. Including this expression as the 
subset argument causes lmO to fit the model only for this subset of the observations. 
Let's assume we added Type to fuel.frame, and fit the restricted model: 
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> fuel.not.van <- lm(Fuel ~Weight+ Disp., fuel.frame, 
+ subset • (Type != "Van") ) 
> fuel. not. van 
Call: 
lm(formula =Fuel~ Weight+ Disp., data= fuel.frame, 

subset • (Type != "Van")) 

Coefficients: 
(Intercept) Weight Disp. 

1.1528 0.00084507 0.0035165 

Degrees of freedom: 53 total; 50 residual 
Residual standard error: 0.36717 

The original fit included seven cars of type van. We can see that the coefficients 
have changed somewhat and the residual standard error is reduced by about 10%. 
As an aside, suppose we want to ask also whether dropping out those seven vans 
from the data changed the pattern of the residuals. We can compare our two sets 
of residuals using qqplot, as in Figure 4.3. This function plots the quantiles of two 
sets of data and will give a roughly linear pattern if the two sets have the same 
distribution. In this case, the distribution of the residuals has changed very little, 

> qqplot(residuals(fuel.fit), 
+ residuals(fuel.not.van)) 
> abline(0,1) 

"! 
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residuals(fuel.fit) 

Figure 4.3: Empirical quantile plot of residuals, they-axis showing the fit with seven "Van" 
models excluded. The 1.! = x line is included. 

despite the differencE>. in the coefficients. The most discrepant point is the large 
residual in fuel. fit that appears also in Figure 4.1 on page 104. 



4.2. S FUNCTIONS AND OBJECTS 111 

Weighted Regression 

A vector of non-negative weights can be supplied with the fit for applications where 
the contributions of the observations to the fitting criterion are not equal. The 
optional argument weight= to lm() allows weights to be supplied as an expression 
to be evaluated along with the formula. Note that the weights are defined to be the 
weights appearing in the sum of squared residuals; some discussions of regression 
use the square root of these instead. 

Some data to illustrate this situation were reported by Baxter, Coutts, and Ross 
(1980). The data consist of the average cost of automobile insurance claims, along 
with the age of the policyholder, the age of the car, and the type of car, these 
predictors being recorded as factors with 8, 4, and 4 levels. The number of claims 
in each cell was also recorded. The data are in the data frame claims, as variables 
cost, age, car.age, type, and number. The model used in the published reference fits 
cost to the sum of terms in the age, the car's age and the type of car. Because the 
response is average cost, the rows should be weighted in the fitting by the number 
of claims. Also, there were five missing values in the reported cost data; we will 
explain how those were handled just a few paragraphs below. 

> claims.fit <- lm(cost ~ age + type + car.age, claims, 
+ weights = number, na.action = na.omit) 
> coef(claims.fit) 

(Intercept) age.L age.Q age.C age A 4 age A 5 age A 6 age A 7 
250.64 -58.261 30.195 5.9625 -34.107 -33.5 -7.1807 18.667 

type1 type2 type3 car.age.L car.age.Q car.age.C 
2.6612 9.4708 24.269 -78.918 -54.769 -49.47 

This model includes factors among the predictors, as discussed on page 20. The 
factor age has 8 levels, meaning there will be 7 linearly independent coefficients; 
similarly, for the factor type with 4 levels there will be 3 coefficients. Chapter 
5 discusses appropriate summaries for linear models in this context in detail. In 
particular, the summary method used there groups together all the effects for a 
particular term. While we did not fit this example explicitly by the function aov(), 
as we would have in Chapter 5, the summary methods are compatible. By using 
the name of the method explicitly, we can produce the same summary information 
for the lmO fit: 

> summary.aov(claims.fit) 
Df Sum of Sq Mean Sq F 

age 7 5618930 802704.3 2.18 
type 3 12110810 4036936.6 10.99 

car.age 3 6987861 2329287.1 6.34 
Residuals 109 40056968 367495.1 1.00 



112 CHAPTER 4. LINEAR MODELS 

The summary suggests that the type variable contributed the most to the fit, since 
it has the largest F-statistic value. 

The use of the summary.aov() method on an 1m object is worth remarking on. 
It illustrates a general principle throughout the book that the classes of model 
objects are linked as closely as makes sense, so that software for each kind of model 
takes advantage of work on other kinds of models. In particular, more advanced 
models are often designed to inherit from linear models. Many nice features of the 
computations result from this approach. Generalized linear models and additive 
models make particularly strong use of the style. 

The lmO function allows weights to be exactly zero (but not negative). Zero 
weights are rather ambiguous, however, and discouraged: the problem is to decide 
whether they just happened as part of some numeric computation, or whether they 
really imply that the corresponding rows should be omitted from the computations. 
We assume the latter; for example, summary() does not count zero-weighted obser
vations toward residual degrees of freedom. Expect to see a few warning messages 
if you use zero weights; on the whole, it's safer to use the subset argument to omit 
observations. In fact, the example just shown could have involved us in zero weights, 
since several observations had no recorded claims: 

> sum(claims[. "number"] ,.,. 0) 

[1] 5 

One way of avoiding zero weights would be to supply as a subset argument the 
expression number>O. 

Missing Values 

The lm() function, like most other model-fitting functions in the book, cannot 
deal with NA values in either response or predictor; instead, it takes an argument 
na. action that allows the user to specify what technique should be used to remove 
the missiJ·~~ values. By default, lmO generates an error if there are any NA's in the 
predictor", response, or weights. You can specify a method for removing missing 
values iu ll particular application, by giving an S function as an na.action, either 
in an ar~urnent to lmO or as an attribute of the data frame. The attribute is used 
if you WILli I. the na. act ion to apply to all models constructed from this data frame. 
This would be a reasonable approach in the example above: in the claims data, 
the avemv.,. c:laim was, as it should have been, recorded as NA whenever there were 
no claimH. A reasonable attitude would then be that any model that needs an 
na.action 11hould omit such observations. This would be achieved by: 

attr(c.t,.lms,"na.action") <- na.omit 

This funct.to11 drops any row of the data frame for which any of the variables has 
a missing vsduc. The function is applied to the data to be used in the actual fit; 
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missing values elsewhere in the data will be ignored. Giving an na. action attribute 
to a data frame automatically sets up the strategy for all models generated from 
that frame. If an action is supplied directly to lm() as the na. action argument, it 
will override the attribute, if any, of the data frame. Notice that since the na. action 
is a function, you can write your own function to take any action that is suitable 
for a specific application. 

Section 3.3 discusses na. action functions in general. We have not tried to provide 
a sophisticated facility for imputing values for NA 's; the function na. omit () is the only 
really general one. The problem is difficult and to some extent depends on the kind 
of model as well, of course, as the assumptions that can be made about the missing 
values. Tree-based models deal rather better than linear models with missing values; 
Section 9.2 discusses a nice method for replacing missing values in tree models. 
Otherwise, we encourage users to write na. action functions appropriate to their 
own data: the essential requirement is that the function take a data frame as an 
argument and return one in which there are no missing values. 

Another approach to removing the missing values is to work interactively to 
estimate them on a case-by-case basis, and then to work with the revised data 
frame. Keep in mind that only missing values in the observations and variables 
included in the fit will matter. Missing values anywhere else are irrelevant. 

Fits Through the Origin; Parallel Regression 

In (4.2) a constant or intercept term was included by default, as is usual. The 
coefficient for the intercept is labeled as (Intercept) in the fitted model. You can 
force a fit "through the origin"-that is, without an intercept-by including the 
term -1 in the model formula: 

Fuel ~ Weight + Disp. - 1 

Used with a factor as the first predictor, this produces "parallel regressions," models 
in which a different intercept is included for each level of the factor but the coef
ficients of subsequent terms are estimated on all the observations. The following 
example produces a parallel regression of Fuel on Weight for each Type of automobile: 

> lm(Fuel ~ Type - 1 + Weight, fuel.frame) 
Call: 
lm(formula = Fuel ~ Type - 1 + Weight, data fuel.frame) 

Coefficients: 
Type.Compact Type.Large Type.Medium Type.Small Type.Sporty Type.Van 

1.6721 1. 7153 1. 7743 1.2761 1.4816 2.2019 

Weight 
0.00088464 
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Degrees of freedom: 60 total; 53 residual 
Residual standard error: 0.3634 

Compare this with the use of Type with an intercept on page 102. In the parallel 
regression, there are 6 coefficients associated with each of the levels of Type. With 
an intercept there are 5 coefficients associated with the contrasts and not with 
individual levels. 

Parallel regression can be used with any number of other terms in the model. If 
we want the slopes to be defined within each level of Type as well as for the intercept, 
then we are dealing with a nested model, as discussed in Section 5.2.1: 

lm(Fuel - Type/Weight - 1, fuel.frame) 

The separate slopes and intercepts will fit 12 coefficients; without the -1 the model 
would fit contrasts for Type and then a coefficient for Weight within each level of 
Type. 

Overdetermined Models 

By default, lmO requires that the data be sufficient to estimate uniquely all the 
coefficients in the model. In numerical terms, the model matrix used in the fitting 
must be nonsingular. If the matrix is singular, the model is overdetermined; that is, 
there are (infinitely) many coefficient values that provide the same least-squares fit. 
In this case, computations using the coefficients may be meaningless. Our default 
approach is to- treat overdetermined models as an error. 

The application, the data, or the purpose of the analysis can suggest that overde
termined models should be allowed, or at least checked for by some nonstandard 
computations. Some designed experiments buy a smaller number of runs by ar
ranging that not all the effects in the model will be estimable. A very different 
perspective comes from retrospective studies with predictor variables that can be 
highly correlated and at the same time not measured exactly. The statistical and 
numerical questions are subtle, and discussion of them is deferred to Section 4.4.3. 
Here we will just describe how to allow singularities and how to check for badly
determined models. 

Fitted values and residuals will be well defined if the model is exactly singular. 
Such would be the case, for example, if the same predictor was effectively included 
twice in the model: 

y - x1 + x2 + poly(x1,2) 

The linear predictor in x1 appears twice in this formula. There was no need to have 
the first x1 term, but except for the coefficients, everything about the model should 
be well defined. 
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If the application suggests that such exact singularities are possible and not a 
problem, you can allow them by using the singular.ok argument to lm(): 

> lm( Fuel~ Weight + Disp. + poly(Weight, 2), fuel.frame, 
+ singular. ok = TRUE) 
Call: 
lm(formula =Fuel~ Weight+ Disp. + poly(Weight, 2), data= fuel.frame, 

singular.ok = T) 

Coefficients: (1 not defined because of singularities) 
(Intercept) Weight Diep. poly(Weight, 2)2 

0.50447 0.0012196 0.0011032 -0.45364 

Degrees of freedom: 60 total; 56 residual 
Residual standard error: 0.38894 

As the printing warns, not all the coefficients will be defined. The value of coef(fit) 
will give only the estimated coefficients; those not printed are stored as NA. The full 
story is that many coefficients will give the same fit. In this case, the linear part 
of the third term is completely aliased with the first term, and a one-dimensional 
linear family of coefficients will give the same fit. Chapter 5 deals extensively with 
overdetermined linear models and presents techniques for studying the pattern of 
aliasing. 

A somewhat different issue is that of models that are nearly singular, in that 
some small change to the data could make the model singular. Again, this is a 
complicated question, that we deal with in Section 4.4.3. The function kappa() 
returns an estimate of the condition number of the model matrix, large values of 
which indicate that the model is close to singularity. The argument to kappa() can 
be a fitted model or a matrix. A single number is returned; if it is large, there is a 
possibility that the numerical results of the fit are not well defined. For example, 
for the model on page 100, 

> kappa(fuel.fit) 
[1] 15494.84 
> kappa(diag(5)) 
[1] 1 

How large is large? The condition number of any orthogonal matrix is 1. Values 
that are approaching t:- 1 , where t: is the relative precision of the computations are 
cause for numerical concern. On the machine we are using, t: is small enough that 
the condition estimate for fuel. fit is not troubling from a computational view: 

> .Machine$double.eps 
[1] 2.220446e-16 
> .Machine$double.eps ·* kappa(fuel.fit) 
[1] 3.440546e-12 
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However, if the data in the problem are subject to sizable error of measurement 
you ought perhaps to be concerned long before numerical inaccuracy is a problem. 
Section 4.4.3 gives some suggestions. 

4.2.5 Updating Models 

Developing statistical models nearly always involves modifying an existing model 
when something is seen to be wrong with it. The structural formula may not be 
right or some other aspect of the fit may need to be adjusted. The function update() 

allows a new model to be created from an old one by providing only those arguments 
that have to be changed. This function works on all the kinds of models to be fit 
in this book, taking advantage of some common structure in the fitted objects and, 
again, of the ability of methods to be inherited from one class of objects to another. 

As an example, the model fuel. not. van that we computed above differed from 
the model fuel. fit only in the subset argument. Therefore, an equivalent but 
somewhat simpler way to generate it would have been: 

fuel.not.van <- update(fuel.fit, subset = (Type != "Van")) 

Updating also allows the formula to be updated so as to add, drop or change pieces 
of it while keeping the rest constant. For example, to add the variable Type to the 
fuel. fit model, as on page 102, we could update the formula: 

fuel.fit2 <- update(fuel.fit, . ~ . + Type) 

In giving the formula, we used "." both on the left and the right of the "~" to 
stand for "whatever was here before". On the left it stands for the old response, 
Fuel, and on the right for the old right side, Weight + Disp .. The same shorthand 
works for dropping terms. We could have gone back from fuel.fit2 to the original 
model by: 

fuel.fit.old <- update(fuel.fit2, . ~ . - Type) 

A different response can be fit to the same predictors. If we wanted to fit sqrt (Fuel), 

sqrt.fit <- update(fuel.fit2, sqrt{.) ~ . ) 

will substitute for"." the original response from fuel.fit2: 

> formula(sqrt.fit) 
sqrt(Fuel} ~ Weight + Disp. +Type 

The computations in update() attempt to simplify the new formula, so that adding 
and then dropping terms will work reasonably well: 

> formula(fuel.fit.old} 
Fuel ~ Weight + Disp. 
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The expressions to be simplified must match as expressions, not just numerically; 
for example, WeightA2 and Weight * Weight are different. 

Any arguments in the original call can be deleted from the new call by giving 
them as empty arguments to update 0. To go from the fit with a subset= argument 
to one without: 

> fuel.no.sub <- update(fuel.not.van,subset=) 
> fuel. no. sub 
Call: 
lm(formula =Fuel~ Weight+ Disp., data= fuel.frame) 

Finally, you can change from one kind of model to another by giving the class= 
argument to update 0. The value of the argument is the name of the fitting function 
to be used, instead of that called to produce the current fit. To refit a model using 
glmO instead of lm(), call update 0 with 

class = "glm" 

along with whatever other new arguments and changes in the formula are needed. 
The update() function's only assumptions about the fitting function are that it 

has formula as its first argument, and that the call that produced the old fit can 
be extracted from a "call" component in the fit. The new fit must be computable 
from the reconstructed call; in particular, the data must be available. If all the 
relevant data are in a data frame given as an argument, there should be no trouble. 
lf the data frame is omitted or if we mix in variables from several sources, updating 
can fail-for example, because the search list or the contents of the working data 
have changed since the original fit was computed. 

4.3 Specializing and Extending the Computations 

The techniques illustrated up to this point don't require knowing what lm() does 
internally. Most statistical use of the linear model software should be at this level: 
the analyst wants to concentrate on asking the relevant and interesting questions 
rather than being diverted into computational details. One's perspective begins to 
change when the modeling software starts to be used to develop further techniques 
(for example, when a number of related linear models are to be produced at once). 
Since most of the computing time taken by lmO is in analyzing and setting up 
the proposed model and only a small part in the actual numerical fitting, repeated 
fitting can be made faster by iterating at a lower level than lmO itself. 

Section 4.3.1 illustrates this in the context of general fitting of related models, 
and Section 4.3.2 discusses the special case of adding and dropping terms from 
the current model. Section 4.3.3 provides a framework for a variety of statistical 
techniques assessing the influence of observations. 
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4.3.1 Repeated Fitting of Similar Models 

When fitting a single linear model, the natural way to proceed is as shown in 
subsection 4.2.1. The model and data are provided as a formula and a data frame; 
all the details from that point on are worked out by the lmO function. In some 
applications, however, you may want to fit related linear models, varying some 
aspect each time but otherwise reusing the previous model. 

There are several ways to do this. Generally, they amount to a tradeoff be
tween saving computing time and getting deeper into the computations. The use 
of update() as described in Section 4.2.5. is by far the easiest and most flexible ap
proach. Anything can be changed (the new model doesn't even have to use lmO ), 
and shorthand notation is provided for the common case of making changes in the 
formula. You pay for the generality in that update() just constructs a new call to 
lmO or to a similar function and then recomputes the fit from scratch. In order 
to save the computer some of this work, a human will have to work harder. If 
similar problems arise repeatedly, the investment will usually be worthwhile. The 
first requirement is to understand a bit more about how lm() and its cousins work. 
The main stages are as follows: 

• From the formula, the data, and the optional arguments weights, subset, and 
na.action, lm() constructs an intermediate data frame, called the model. frame, 
containing just the data needed in the model. This includes the variables that 
appear in the formula, taking account of any subset selection, NA action, etc. 
The model frame has an attribute, terms, that summarizes in detail the terms 
of the model defined by the formula. See Section 3.3.3 for details. 

• From the model frame, lmO constructs the response as a numeric vector or 
matrix, and the predictors as the model. matrix, a numerical matrix with some 
additional information about the model. See Section 2.4.3. 

• The model matrix and the response are the arguments to lm.fit(x, y), which 
does the numeric fitting. 

• The basic fitted model returned by lm.fitO is augmented with components 
describing the terms, the call to lmO, and the response and/or model matrix, 
if the call asked for those. 

A look at the definition of lm() will show how this works. The special techniques 
for repeated fitting proceed by doing the first step or the first two steps once only, 
and then repeating the rest of the calculations as needed. 

Repeatedly modifying and using the model frame mainly saves manipulating 
the large data frame from which the (perhaps much smaller) model frame was 
constructed for this specific model. This technique is very general, using no special 
features of linear models. Therefore, it is a useful paradigm for repeated fitting 
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of any models. Repeating the fitting using the model matrix, rather than the 
model frame, saves much more of the preparation and so is important for large
scale computations, such as simulation studies. 

The other main question in repeated fitting is how to organize the results. Here 
too there is a tradeoff, this time between a simple list of ordinary lm objects and 
some more specialized organization. The list of fits has the advantages that the 
elements of the list are ordinary lm objects: all the usual summaries can be applied. 
Also, building the list needs no special knowledge of how lm objects are organized 
internally. Special structures can save on some space and can sometimes make 
later computations simpler. We will show one special organization, as a matrix of 
repeated fits by components of the fit. This simplifies. access by component (for 
example, getting the residuals from all the models at once) and can also save some 
space by not including components of the fit that stay the same or that are not 
needed in the result. 

Simple Repeated Fitting 

As an example, suppose we want to include a power of one or more predictor 
variables, and would like to investigate the fit for a sequence of possible powers. In 
particular, suppose we want to fit a model of the form 

Fuel ~ I(WeightAk) + Disp. 

where k is to be chosen. This is not a linear model with k as a parameter, but rather 
than drag in a more powerful algorithm, we can refit with a sequence of values for 
k and compare the fits. We choose to study different powers of a predictor, rather 
than the more common case of powers of the response, because the latter can be 
done in a single call to lmO; however, for models in later chapters such as those 
fit by glmO, powers of a response would need to be handled as in the example to 
follow. 

Let's begin with a purely lazy approach. Suppose k. values is a vector of values 
we want to try for k: 

> fits <- list() 
> for(k in k.values) 
+ fits[[as.character(k)]] <-
+ lm( Fuel ~ I(WeightAk) + Disp., fuel. frame) 

Notice that we assigned the elements of fits by name, not by position. This trick 
is recommended for many computations that create lists, because it creates named 
lists directly and avoids the confusion that can happen when a NULL value is assigned, 
deleting a component of the list. In this example, we called lmO each time, since 
the formula and data expressions were constant, with only the value of k changing. 



120 CHAPTER 4. LINEAR MODELS 

If there are changes in the call other than values for data, the update() function can 
be used to construct the new call each time. 

Once the list of models is created, we can pluck off specific results to study the 
fits. Several functions in S help, one of the most useful being sapply(). This applies 
a function to each element of a list and then attempts to simplify the result to a 
vector or matrix. The function supplied to sapplyO can be any function suitable 
to be applied to the elements of the list. In this case, each element will be an lm 
object, and we can apply any of the summarizing functions in Section 4.2.1. 

The "function" supplied to sapplyO really is an S function object, even though 
the argument is usually just a name. As a result, if the precise function you want 
doesn't exist, you can simply define it in-line. For example, suppose we want to 
compare the variance of the residuals of the fits. All that is needed is to supply 
sapply() with the function definition 

function(x) var(residuals(x)) 

This function will be called for each of the lm objects in fits: 

sapply(fits, function(x)var(residuals(x))) 
0.5 1 1.5 2 

0.1445124 0.1470052 0.1514131 0.1574302 

The four values of k, c (. 5, 1, 1. 5, 2), appe~r as the names of the vector of vari
ances. It seems that the square-root is the. best choice, but there is not much 
difference over the chosen range. To look more closely, let's draw boxplots of the 
sets of residuals. The argument to the boxplot 0 function is a list with each set of 
residuals as one element. The expression 

sapply(fits, residuals) 

would simplify its result to a matrix since each set of residuals is of the same length. 
Using the function lapplyO or giving the argument simplify=FALSE to sapply(), 
suppresses the simplification, so the resulting list can be passed to boxplot 0 di
rectly: 

> boxplot(sapply(fits, residuals, simplify = F)) 

Fitting from the Model Matrix 

Even though update 0 makes no effort to save on space or time, the simplicity of 
this approach makes it the one to start with. But if the computations are to be 
done many times, a lower-level version is useful. As noted, lm() eventually calls a 
function lm.fit(x,y) or, for weighted fitting, a function lm.wfit(x,y,w), where x 
nnd y are the model matrix and the response. In order to do more efficient fitting, 
we can construct these arguments and call the appropriate fitting routine directly. 



4.3. SPECIALIZING AND EXTENDING THE COMPUTATIONS 121 

The lmO function computes the model matrix and response, but by default does not 
return them as components of the lm object. If arguments r-=T or y=T are supplied 
to lmO, it will return the corresponding component in its value. 

Suppose we wanted to resample the data in a model with nrows observations, 
picking rows with replacement each time, to generate a new fitted model (a "boot
strap" resampling of the predictor and response). We can generate the model matrix 
and response for the resample by sampling with replacement from the observations 
of the original model. To begin, we create the original model, including the model 
matrix and response: 

> fitl <- lm(Fuel "'Weight+ Disp., fuel. frame, x=T, y=T) 
> x <- fitl$x; y <- fit1$y 

The resampling of rows can be applied to the model matrix x and the response 
vector y, and a new fit produced by lm. fit 0 : 

> rows <- sample(nrows, nrows, replace=T) 
> fit2 <- lm.fit(x[rows, ] , y[rows]) 

We can repeat the calls to sample() and lm.fitO to resample as many times as de
sired. For a substantial number of resamples, much less computation will be needed 
than when using update() or lm() each time. In this case, the computationally 
simpler form is simple for the human as well, once the necessary details of lmO are 
understood. 

The real payoff, of course, comes from writing an S function to encapsulate the 
details. Let's write bootstrap.lm() to carry out the bootstrap sampling given a 
single initial fit, z, and the number of resamples wanted: 

bootstrap.lm <- function(z, nsample) { 
x <- z$x; y <- z$y 
nrows <- dim(x)[l] 
value <- list() 
for(i in seq(nsample)){ 

} 

rows <- sample(nrows, nrows, T) 
value[[i)] <- lm.fit(x[rows, ], y[rows]) 

value 

A user-friendly version ofbootstrap.lmO should b~ a bit more careful than this; for 
example, if the original fit was missing the x or y component, bootstrap.lm() could· 
use update() to redo the fit. 

One caveat about proceeding at this lower level of numerical fitting is that not 
all of the information in the full 1m object will have been generated by lm.fitO. 
A fairly simple modification of the function above would retain all the information 
available in the lm objects. Replace the line 
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value[[i)] <- lm.fit(x[rows,], y[rows]) 

with the lines 

z$x <- xx <- x[rows,]; z$y <- yy <- y[rows] 
vi <- lm.fit(xx, yy) 
z[names(vi)] <- vi 
value [ [i]] <- z 

The technique here, which is quite general, arranges for each element of the list to 
have the following components: 

• all the components returned by lm.fitO on the ith call; 

• anything in the original fit not returned by lm.fitO; 

• the data x and y used in the ith fit (these are not required and could be 
omitted if there was a large amount of data). 

For large examples, the replication of identical information in the elements of the 
list may waste a serious amount of space. An organization of the results in an 
object of a special class (see, for example, page 124) avoids this wasted space at 
the cost of more effort in organizing the results. Either approach only works on the 
assumption that the information other than the components returned by lm.fitO 
stays the same from one fit to the next. This is often correct, but needs to be checked 
for each application. For example, bootstrap.lmO as written does not handlethe 
case that the sampled model is overdetermined (singular), as it could well be. A 
possible approach is to use the argument singular.ok=T to lm.fitO, but comparing 
a singular model with a nonsingular one is a bit ambiguous. Let's pass over these 
details, however, and discuss an alternative organization of the results. 

Matrix Organization for Repeated Fits 

Organizing the results of repeated fitting as a list of fits is undoubtedly the best way 
to start, and is probably the best choice in any case unless one expects to apply 
some extensive calculations repeatedly across the different fits. However, notice 
that it was necessary to use the function sapplyO to get at all the residuals. This 
does rather a lot of computing and efficiency might again be a consideration. In 
some specialized applications, it may be important to make indexing symmetric and 
efficient, either across the models or across the components of the models. 

What kind of data organization in S makes subscripting in two different ways 
easy? Obviously, a matrix. It is designed exactly for this purpose, and we should 
consider organizing the fits as a matrix, indexed by the components of an 1m object 
along one dimension, and by the different circumstances giving rise to the model 
along the other. This may sound a little strange at first since you are more likely 
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to encounter matrices of numerical data or of character strings than matrices of 
mode "list", as this one will be. However, nothing bizarre or specially constructed 
is necessary, and the technique will prove extremely useful. Therefore, let's pause 
to review a few things about matrices in S, to clarify what we are going to do. 
Sections 5.5.1 and 5.5.2 of ji (pages 126-135} are also useful reading. A matrix, or 
generally a multiway array, is any S object that has an attribute dim. This attribute 
gives the dimensions of the array; a matrix is just the special case in which the dim 
attribute is of length 2. S takes care to keep the dimension information meaningful 
and consistent with the length of the object, but otherwise it imposes no constraints 
on a matrix. In particular, the mode can be anything at all. 

The meaning and the importance of matrices reside largely in the functions that 
understand how to deal with them. In this case, it is the [ and [[ operators that 
will be essential. These both understand how to subscript matrices ( ji, p. 127), 
and they also are written so that matrices can have any mode at all. You will not 
have used [ [ much with matrices, but when the mode of the matrix is "list", there 
is an important distinction. The result of [ is always an object of the same mode as 
the original object; however, if you want to get a particular single element of a list, 
rather than the list of length 1 that contains that element, the [ [ operator is the 
one to use ( 1§1, p. 111). Arrays can also have a dimnames attribute that gives names 
to the rows and/or the columns, which can be used with the [or [[operators. 

With this brief review in mind, let's turn the value of bootstrap. 1m() into a 
matrix, whose rows correspond to the components returned by lm.fit() and whose 
columns correspond to the different samples. The calculations are identical, except 
that just before returning value: 

rnames <- names(value[[l))) 
value <- unlist(value, recursive = F) 
dim(value) <- c(length(value)/nsample, nsample) 
dimnames(value) <- list(rnames, paste("Sample",l:nsample))) 
class(value) <- "matrix" 

The call to unlist 0 makes a single vector from the components of all the nsample 
fits. Both the dim and dimnames rely on the assumption that lm.fitO returns the 
same components each time; other than that, the paradigm used above applies to 
essentially any similar sequence of refitting. The dimnames attribute is computed 
from the component names of the object returned by lm. fit 0 . Setting the class 
to "matrix" will bring in some matrix methods, the most important being a special 
printing method for matrices of mode "list" (see page 126). 

This same organization could have been used in the computation of the fits with 
different powers of the Weight variable on page 119. 

fits<- array(fits, c(length(fitl),length(k.values)), 
list(names(fitl), k.values)) 
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The poxplot function used on page 129 to produce Figure 4.5 expects as its argument 
a list of the data vectors to be plotted. With the matrix organization this does not 
require sapplyO: 

boxplot(fits["residuals",]) 

Other functions might want, for example, a matrix whose columns are the residuals 
from the different fits. This is obtained by the expression 

matrix(unlist(fits["resid",]), ncol = ncol(fits)) 

Remember also that the [ [ operator works for matrices of any mode. For example, 
a normal probability plot of the residuals for k=. 5 is produced by: 

qqnorm(fits[["resid", ".5"])) 

If you get unexpected error messages about trying to use non-atomic or non-numeric 
data, chances are you meant to use [[, but used [ instead. 

The matrix form makes extractions simpler to write and computationally faster, 
but the extra programming involved in computing the object is not worthwhile for 
"one-off" analyses. For substantial new software efforts, where the objects created 
may themselves be used for further computing, the matrix form can be useful. 
The approach could be taken further by designing a class of objects for the matrix 
version of bootstrap.lmO, for example, so that methods could smooth over the 
details of the implementation. This would allow us to return complete lm objects 
when columns are selected, without replicating all the components in each fit, as 
we did previously. The extra information would be copied once as an attribute of 
the object, and a method for the "[" 0 function would insert these in the value 
when a column subset was computed. The details would make an interesting, fairly 
advanced exercise. See Appendix A on how such classes and methods are designed, 
and t.he function "[.data. frame" 0 for an example. 

If you have read Chapter 3 on data, all this discussion of lists versus matrices 
might suggest that data frames are likely to pop up. Indeed they do, in somewhat 
different uses of refitting. One example is shown -in Section 4.3.2, in which new 
models will be formed by systematically adding or dropping one term from the 
current model. This example is sufficiently important that it rates a generic function 
and methods, but it is also interesting as another version of the general refitting 
techniques. 

4.3.2 Adding and Dropping Terms 

The analytic techniques to be considered next focus on individual terms that are 
candidates for inclusion in a linear model. The questions to consider include "Does 
this term appear to add a useful structural relationship to the model?", "What 
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structural form seems to represent the relationship best?", and "Is the relationship 
strongly influenced by a few observations?". These questions hark back to the 
displays and summaries in Chapter 3, where we were studying the relationships 
between variables in the data frame. The focus now is sharper and narrower. We 
have chosen a response and are looking for a good linear model. A candidate, initial 
model has been fitted. We. want to study some possible new models. 

Computationally and statistically, two different situations arise. In one case, 
we begin with a model and ask what would happen if we dropped a term. In the 
other, we begin with a model and an additional set of candidate terms, and ask 
what would happen if we added one of those terms. The analytic techniques are 
essentially the same, but the context is different, and different computations are 
used to provide an efficient answer. 

For the most part, we will talk about terms in this discussion, rather than 
coefficients. A distinction arises when the term being considered corresponds to a 
factor or a matrix, so that more than one coefficient is involved. Dropping single 
coefficients rather than terms is an option, but dropping some of the coefficients 
used to fit a categorical variable means quite a different thing from dropping the 
term, and is not always a meaningful operation. For example, if we coded an ordered 
factor by polynomial contrasts-linear, quadratic, cubic, etc.-then dropping the 
highest power would make sense, but dropping a lower power usually would not. So 
the discussions here will be of adding and dropping terms: 

dropl(fit) 

will return all the fits obtained from dropping one of the terms in fit and 

addl(fit, scope) 

will return all the fits from adding one term to fit from the possibilities in scope. 
These are generic functions. They find more frequent application in generalized 
linear models (Chapter 6), where adding and dropping terms involves somewhat 
more computations. The glm objects inherit from linear-model objects, however, 
and in this case the methods used for glm's are applicable to any linear model. 

As an example, suppose we consider the two terms in the original fuel. fit, and 
form an object representing this model and the two models that can be formed from 
dropping either Weight or Disp.: 

fuel.dropl <- dropl(fuel.fit) 

The object fuel.fit is the fitted model computed on page 100. The anova object 
fuel.dropl is a summary of the changes resulting from dropping each of the terms: 

> fuel.drop1 
Single term deletions 
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Model: Fuel "' Weight + Disp. 

Df Sum of Sq RSS Cp 
<none> 8.67 9.59 
Weight 1 7.931 16.60 17.21 

Disp. 1 0.045 8.72 9.33 

The printing method shows the initial model, and then a table with rows corre
sponding to the original and each of the deletions. The columns give the number 
of degrees of freedom in the deleted term, the sum-of-squares due to the deleted 
term, the residual sum-of-squares for the reduced model, and the Cp statistic for 
the subset of terms in the reduced model. For a discussion of the Cp statistic in 
this context, see page 233 in Chapter 7. 

The object returned by drop1 0 or addl 0 summarizes the fits by the quantities 
Df, etc., as shown in the printing above. In contrast to the examples in the previous 
section, the object is not a list of the individual fits. Additional information for each 
of the models will be returned if you supply the argument keep=T to the drop1 () 
function: 

> fuel.keep <- drop1(fuel.fit, keep=T) 

When printed out, this object will list some additional statistics kept for future 
computations: 

> fuel.keep 
$anova: 
Single term deletions 

Model: Fuel "' Weight + Disp. 

<none> 
Weight 
Disp. 

$keep: 

Df Sum of Sq RSS Cp 
8.67 9.59 

1 7.931 16.60 17.21 
1 0.045 8.72 9.33 

coefficients 
Weight numeric, 2 
Disp. numeric, 2 

fitted residuals 
numeric, 60 numeric, 60 
numeric, 60 numeric, 60 

x.residuals effects a 
Weight numeric, 60 numeric, 60 numeric, 4 
Disp. numeric, 60 numeric, 60 numeric, 4 

In this version, the object returned is a list whose anova component is the table seen 
before. The other component, keep, is a matrix of mode "list", whose columns are 
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indexed by different statistics and whose rows correspond to the dropped terms, here 
"Weight" and "Disp.". The printout "numeric, 2" means that the corresponding 
element of the matrix is a numeric vector of length 2. 

The keep component is similar to the organization in Section 4.3.1, where re
peated fits are represented as matrices. Elements of the matrix give single compo
nents for particular models: 

fuel. keep$keep[ [ "Weight", "residuals"]] 

gives the residuals from the model in which Weight was dropped. The column 
"x.residuals" gives the residuals of the corresponding predictor when it is regressed 
against all the other predictors in the original model. This statistic arises in a 
number of plots and summaries used for studying added and dropped terms. The 
other columns should be self-explanatory. Since the individual elements are whole 
objects, not numbers or character strings, the printing method for class "matrix" 
just prints a brief summary of each element. 

As an example of using the additional statistics from keep=T, suppose we want 
to look at the residuals of the model with Weight omitted. One useful plot shows the 
residuals of Fuel from this model plotted against residuals of Weight fitted against 
the same terms-in this case, regressed against Disp .. If the configuration of points 
in this plot shows a noticeable linear trend, this is evidence that Weight should be 
included; in particular, the simple linear regression of the points in this plot gives the 
same coefficient for Weight as in the full modellmf. For the statistical background, 
see Belsley, Kuh, and Welsch (1980, p. 30), Cook and Weisberg (1982, p. 44), and 
Chambers et al. (1983, pp. 268-277). All three references give a different name 
to the plot; we will call it the added variable plot, following the second reference, 
but with the caution that there are other reasonable plots for looking at added 
variables. 

Figure 4.4 shows the plot for our example, along with a similar plot when 
Displacement is dropped. There is a clear linear pattern for Weight, indicating that 
it deserves to be in the model, but a much less obvious pattern for Displacement, 
reinforcing the message given from the two printed summaries. To produce these 
plots we extract the corresponding components from each of the two columns: 

keepstuff <- fuel.keep$keep 
for(x in dimnames(keepstuff)[[l]]) 

plot (keeps tuff [ [x, "x. resid"]] , keepstuff [ [x, "resid"]] , 
xlab= paste("Residuals of" ,x, "from rest"), 
ylab=paste("Residuals without",x)) 

Note the use of double square-brackets: we want the vector in the corresponding 
element of the list, not a sublist (see 1§1, p. 111, if this is an unfamiliar distinction). 
It should also be obvious .that we could write an "added variables plot" function 
that did little more than the above, to produce this sort of plot for any drop-1linear 
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Figure 4.4: Plots of the "drop-1" fits from the fit of Fuel on \Ieight + Displacement 

model summary. As in the previous subsection, the goal of functions like dropl 0 
is to produce an object from which a wide variety of specific diagnostics can be 
generated easily. 

The opposite approach starts from a model and adds on one term from each of 
a possible choice of terms; for example, 

> fitO <- lm(Fuel "' 1, fuel.frame) 
> fuel.add1 <- addl(fitO, • "' Weight + Disp. + Type) 

The first statement creates an empty model, fitting only the intercept. The second 
then investigates all the one-variable fits by adding each of them to the empty 
model. The resulting object has the same structure as for drop1 0, but this time 
the individual models in the rows will all have one more term than the original 
model. 

> fuel.add1 
Single term additions 

Model: Fuel "' 1 

<none> 
Weight 

Disp. 

Df Sum of Sq RSS Cp 

1 

1 

33.86 35.00 
25.14 8.72 11.01 
17.25 16.60 18.90 
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Type 5 24.24 9.62 16.50 

The keep=T option is again available, with the same statistics. The x. residuals 
statistic contains the residuals from fitting each of the new terms against the same, 
original model. If we had computed fuel. addl with keep=T, boxplots of the three 
sets of residuals could be produced easily. Figure 4.5 shows that the spread of the 

·---r---

> boxplot(fuel.add1$keep[. "residuals"]) "! 
0 QOo 

: : • ___ J.. __ _ 
, ___ .~.. __ _. 

Weight Disp. Type 

Figure 4.5: Boxplots of residuals, fitting Fuel to three variables in the automobile data 
using the addl 0 function 

residuals is much less when fitting Weight or Type than Disp. (the comparison is not 
entirely fair, since Type uses 5 degrees of freedom and the numeric variables only 1). 

4.3.3 Influence of Individual Observations 

A weakness of least-squares models, in theory and sometimes in practice, is that 
individual observations can exert a large influence on the fitted model. If those 
observations were in some sense inconsistent with the bulk of the data, the con
clusions drawn from the model could be misleading. A wide variety of statistical 
techniques have been proposed to detect and analyze such situations: the books by 
Bclsley, Kuh, and Welsch (1980) and by Cook and Weisberg(1982) present a variety 
of techniques, some of which we will illustrate. The questions that we will consider 
center around what influence individual observations have on the fit. In particular, 
what would happen to various aspects of the fitted model if individual observations 
were omitted? Computing all the n models arising if one of the n observations were 
omitted would be impractical for large datasets. Fortunately, numerical techniques 
for linear least-squares models allow many relevant summaries of such models to be 
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computed all at once. (If this were not the case, the subject would have received 
much less attention than it has!) 

The function lm.influence() takes an initial linear model and returns an ob
ject whose components contain various summaries of the n models obtained by 
omitting one observation. These summaries tend to be either vectors of length n 
or matrices with n rows, corresponding to the omitted observation. Specifically, 
lm. influence() returns a list with components coefficients, sigma, and hat. The 
first is a matrix whose rows are the coefficients for the model with the corresponding 
observation omitted, and sigma is a vector of the estimates for the residual standard 
error in the corresponding model. The definition of hat is a little more technical, 
and has to anticipate just a little the theoretical discussion of Section 4.4. The 
fitted values for the response, say y, can always be written as the product of an n 
by n matrix times y: 

y=H·y 

The component hat is the vector of the n diagonal elements of H; large values of 
this vector indicate observations with a large influence on the fit. The matrix H 
depends only on the predictors, not on y. The utility of hat arises from its ability 
to summarize what is often called the leverage of the individual observations-that 
is, the effect on the fit arising from the corresponding row of the model matrix. 

The components of the lm. influence object, or at least coefficients and sigma, 
are directly interpretable and of some interest. The real point in their design, 
however, is that they can be combined with some of the components of the 1m 
object describing the original fit to compute a very wide variety of diagnostics. A 
number of these are summarized in Table 4.1. The S expressions in the second 
column of the table compute the specified diagnostics, using objects assumed to 
have been extracted from an 1m object, say lmf, and from corresponding summaries 
and influence objects as follows: 

lms <- summary(lmf) 
lmi <- lm.influence(lmf) 
e <- residuals(lmf) 
s <- lms$sigma; xxi <- diag(lms$cov.unscaled) 
si <- lmi$sigma; h <- lmi$hat 
bi <- t(coef(lmf) - t(coef(lmi))) 

A typical use of this information. would be to construct S functions that produce 
the particular statistics you want, using whichever of the quantities in the table are 
needed; for example, 

dfbetas <- function(fit, lms ~ summary(fit), lmi = lm.influence(fit)) { 
xxi <- diag(lms$cov.unscaled) 
si <- lmi$sigma 
bi <- t(coef(fit) - t(coef(lmi))) 
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Quantity Expression Meaning Reference 
Standardized e/(s•(1-h)".5) Residuals with equal BKW(20) 
Residuals variance 
Studentized e/(si•(l-h) .5) Use si as standard BKW(21), 
Residuals error CW(l8) 
DFBETAS bi/(si %o% xxi .5) The change in the BKW(13), 

coefficients, scaled by CW(125) 
the standard error for 
the coefficients 

DFFIT h*e/(1-h) The change in the fit- BKW(l5) 
ted value when that 
observation is dropped 

DFFITS h .5•e/(si•(1-h)) Change in fitted val- BKW(l5), 
ues, standardized to CW(124) 
variance 1 

Table 4.1: Computation of some diagnostic summaries for influential obserttations from 
the components of lmO and lm. influence(). References are to page numbers in flelsley, 
f1uh, and Welsch (1980} and Qook and Weisberg(Jg82}. 

bi/(si %o% xxiA0.5) 

The use of the outer product operator, %o%, produces a 60 by 3 matrix (observations 
by coefficients), matching the dimension of bi. 

Similar functions could be created for the other statistics in Table 4.1, as well 
as for many other related quantities. The computations done by summary .lm() and 
1m. influence() provide the building blocks. 

4.4 Numerical and Statistical Methods 

This section discusses details of fitting linear models that underlie the functions 
in the previous sections. You should read the material if you want to understand 
why things work the way they do, or if you want to make them work in a seriously 
different way. You're welcome to read it anyway, if you're just curious. Section 
4.4.1 gives a more formal discussion of the statistical regression model as we have 
used it in the chapter. Section 4.4.2 presents similar elaboration on the numerical 
methods used. Section 4.4.3 goes into some detail about the difficulties associated 
with over- or ill-determined models. 
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4.4.1 Mathematical and Statistical Results 

Mathematical, computational, and statistical results on linear models are covered 
in many books and articles. We give some references for further reading at the end 
of the chapter. In this section, the main results will be given briefly, along with 
some special considerations for statistical modeling not discussed in the numerical
analysis literature. The mathematical and computational discussion of linear least
squares fitting rests on a few fundamental results. To express these compactly, we 
need to use matrix notation. Let X be the model matrix whose columns, Xj, are 
the predictors in the model, including a first column whose elements are all 1, if 
the intercept is included. Let {3 be the vector of coefficients, again including the 
intercept if one is fitted. Let p be the length of /3. The least-squares estimate of the 
coefficients will be denoted {3. 

The vector of n fitted values from the linear model can be written in matrix 
form, for any coefficients /3, as 

X. /3 

where "·" denotes matrix multiplication. As in equation (4.3) on page 97, the 
residuals are: 

c=y-X·/3 

The least-squares fit chooses f3 = {3 to minimize the sum of squares of the residuals 
( 4.2). Two characterizations of a least-squares fit arise most frequently. One can 
be stated in terms of an orthogonal transformatfon that takes X into an upper
triangular matrix. Suppose Q is an orthogonal n by n matrix; that is, 

where QT is the transpose of Q, and I is the identity matrix. For the orthogonal 
decomposition, Q is chosen so that 

(4.5) 

where R is a p by p upper-triangular matrix; that is, 

Ri,i = 0, i > j 

and 0 is a matrix of all zeros. If Q1 is the first p columns of Q, then 

X =Q1 ·R 

In geometric terms, Q1 is a set of orthogonal vectors in n-space that span the 
columns of X; i.e., any linear combination of columns of X can be written as a 
linear combination of the columns of Q1 • 
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We now define the effects to be the vector c such that: 

(4.6) 

where c1 is of length p and c2 is of length n - p. Any /3 that satisfies the equations 

R · /3 = c1 = Q[ · Y (4.7) 

can be shown to produce a least-squares fit. Equation ( 4. 7) is the basis for practical 
numerical methods for least-squares solutions. The computations performed by lm() 

use the Householder decomposition for computing Q; this produces a complete and 
accurate definition of the transformation. Choosing R upper-triangular provides 
efficient, accurate solutions for ( 4. 7). Mathematically, we have not used the upper
triangular property, and all we need is the ability to compute an orthogonal basis of 
X and then solve for /3. More about this when we come to discuss the singular-value 
decomposition. We are assuming in this section that the linear model is of full rank. 
The characterizations of the results in terms of an orthogonal decomposition carry 
over to the case that the model is over-determined, but the notation becomes more 
cumbersome, so we prefer to postpone this generalization to Section 4.4.3. 

A second characterization of the least-squares fit begins from the cross-products 
and can be derived from (4.5) - (4.7). Any /3 satisfying the normal equations; 
namely, 

(4.8) 

gives a least-squares fit. The normal equations follow directly by substitution; in 
particular, 

RT ·R = xT .x 

nT · ct = xT. y (4.9) 

which provides a basis for the computations using the computed cross-products. The 
first equation of ( 4.9) is implemented by computing the Choleski decomposition of 
XT ·X. The second equation is then used to solve for c1 ; this is the solution of 
another triangular system of equations, and therefore can be computed quickly and 
accurately. Given c1 and R, /3 is computedas before from (4.7). 

The solution to (4.7) can be written as a linear transformation of c1 , say 

(3 = n- · c1 

If all the columns of X are linearly independent, as we are assuming in this section, 
then n- is the inverse of R, is upper-triangular, and is uniquely defined. Substi
tuting c1 from (4.7), we can write /3 as 

( 4.10) 
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where x- = R- · Q[. The relevance of (4.10) is not that one computes x-, but 
that writing /3 in this way shows that it is a linear transformation of y. So also are 
the least-squares residuals and fitted values. The fitted values are 

ii = X ·/3 
x-x--y 

= Qt·Qf ·y 
The last line follows from the definition of x- and the fact that 

The n by n matrix 
H= Qt·Qf 

projects y into its fitted values iJ. The diagonal elements of iJ are used in Section 
4.3.3 as a measure of the leverage the individual observations have on the fitted 
values. The residuals are also a linear transformation of y, 

e = y- iJ = (I -H) · y 

Much of the formal neatness of linear least-squares results from the estimated coeffi
cients, the fitted values, and the residuals all being linear functions of the respom:e. 

Statistical characterizations follow from making assumptions about the process 
that generated the data. In the usual treatment, the values of X are taken as fixed 
and the model assumes that 

y=X·f]+~ 

where the elements ~i of ~ satisfy the assumptions of independence, constant vari
ance, and (usually) normal distribution on page 97. The combination of these 
assumptions with the algebraic characterizations given before leads to relatively 
precise theoretical results on the distribution of estimates from the fitted model. 

In particular, because coefficients, fitted values, and residuals are linear transfor
mations of y, the assumptions determine normal distributions for these quantities 
as well. Linear combinations of normally distributed quantities are also normally 
distributed. If z has a multivariate normal distribution with mean p. and variance 
matrix E, then any linear transformation of z, say A· z, has a normal distribution 
with mean A· p. and variance 

V(A · z) =A· E ·AT 

From the characterization of ( 4.10), /3 is normally distributed with mean f3 and 
variance 

V(/3) = 

= 
x- . x-r . v(y) 
R- · R-T x u 2 
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The variances and covariances of the coefficients are estimated by replacing a 2 

by an estimate of the residual standard error, typically s2, the sum of squared 
residuals divided by the number of degrees of freedom for residuals (n- p if X is 
nonsingular). Notice that whatever estimate of a 2 is used, it just multiplies the 
unsealed covariance, R- · R-T. This is one reason why the unsealed covariance is 
included as a component of the summary object returned by summary .1m() (see page 
106). In particular, the correlation matrix of /3 in the model is the corresponding 
cross-product when the rows of R- are rescaled to have unit sum-of-squares. 

Given some new predictor data, say x, the model predicts the corresponding 
response values to be x · /3. Since this is a linear transformation of /3, the variance 
of the vector of the prediction is given by the formula for the variance of /3: 

V(x · /J) =X · V(/J) · XT =X- • X-T X a2 

where x- = x · R-; that is, x- satisfies 

R·x- =x 

Notice also that the prediction itself can be written as x- · c1. 

Let's summarize by noting what information from the fit we need in order to 
define various summaries. R and c1 are essential: they are used to get the coefficients 
and, with an estimate of a, are enough to estimate distributional properties, such 
as variances and correlations, for the coefficients and for predictions corresponding 
to new data. Some additional information is needed to answer similar questions 
about the n fitted values or residuals. This information comes from the orthogonal 
basis, Q1 , or through the projection matrix H defined from it. 

4.4.2 Numerical Methods 

One argument to lm() not discussed so far is method. This argument can spec
ify a function to use for the numerical fitting. The method of estimation remains 
least squares; the motivation is to provide a more efficient or desirable numerical 
algorithm for special applications. Three methods are supplied, implementing the 
algorithlllS discussed in the previous section: "qr" implements the QR decomposi
tion (in particular, the Householder method); "chol", the Choleski decomposition 
method; and "svd", the singular-value method. The default is "qr". 

> fuel.chol <- update(fuel.fit, method="chol") 
> fuel.chol 
Call: 
lm(formula ~ Fuel "' Weight + Disp., data = fuel. frame, method • "chol") 

Coefficients: 
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(Intercept) Weight Disp. 
0.47897 0.0012414 0.00085436 

Degrees of freedom: 60 total; 57 residual 
Residual standard error: 0.39008 
> effects(fuel.chol) 

(Intercept) Weight Disp. 
32.611 5.0139 0.21169 

Different methods will produce slightly different numeric results, as we will discuss, 
but only in situations where their particular numerical properties are relevant is this 
likely to matter to the user. For example, the Choleski method may be important in 
situations where computations using the cross-products are simpler or faster than 
those using the QR decomposition. The "svd" method may be important in some 
studies of ill-conditioned problems. 

Other than these numerical issues, the different methods should produce essen
tially equivalent objects, in that the summary methods and other functions using 
the lm objects can function regardless of the method. This goal is largely, but 
not completely, achieved with the current methods. If the summary methods are 
themselves built around generic functions that do not depend on the particular nu
merical method, the results will be transparent. However, the information available 
is slightly different, even between "qr" and "chol", which refer to the same underly
ing decomposition. As the example shows, one difference with the Choleski method 
is that the solution from the normal equations only determines the first p elements 
of the vector of effects. For most purposes, such as calling summary (), this makes no 
difference. Occasionally, you may encounter a diagnostic function that assumes all 
n elements of the effects have been computed, such as when doing plots of effects; 
for such diagnostics, the "chol" method will not be adequate. 

The most commonly used numerical methods for finding an orthogonal basis, in 
the sense of equation ( 4.5) on page 132, are the orthogonal-triangular decomposi
tion methods, usually just called orthogonal decompositions, and in particular the 
Householder decomposition. Solving linear equations in R is done by the efficient, 
accurate process of back-substitution. When the computations proceed from the 
normal equations rather than by decomposing X, this choice of R comes from the 
Choleski decomposition of XT · X. Either method works fine for most practical 
examples. The main argument in favor of the normal equations is usually speed, 
but it is necessary to understand, first of all, that in most applications the computer 
time taken in the numerical phase of solving linear least-squares problems is a small 
fraction of the total time spent preparing the model, displaying the results, and car
rying out other tasks. A more likely reason for using the method might be that the 
cross-products can be accumulated or derived from some other computation, but 
that the eorresponding full data are not easily produced. Historically, methods us
ing cross-products came from a background of accessing data sequentially by rows, 
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with the assumption that the full model matrix would take too much space. 
The time taken by the numerical solution of least-squares problems can be esti

mated by counting "flops," floating-point operations. The counts can be expressed 
in terms of panda, where 

a= njp 

is the ratio of observations to coefficients (hopefully a ;:::.: 1). The Householder 
solution takes 2p3(a- 1/3) operations, the solution from the normal equations, 
p3(a + 1/3). This means that if a is large, the normal equations solution ap
proaches half the operation count of the Householder method, whereas when a = 1 
the counts are equal. If you think such considerations might be important to your 
applications, you should study a careful account of the numerical methods, such as 
found in Golub and van Loan(1989), and also be prepared in most cases to do some 
detailed programming in FORTRAN or c. Just to make the situation more compli
cated (but also more interesting), if you do really need to worry about speed·, you 
should probably consider the option of special hardware dedicated to the numerical 
processing. For example, parallel computation is a practical alternative that can 
alter the relevant time estimates in a fundamental way. The book by Golub and 
van Loan is again a good place to start studying such questions. In using lmO to fit 
linear models, more time goes into computing the terms, model frame, and model 
matrix objects than into solving the estimation numerically. Therefore, techniques 
to re-use the model matrix and response, as discussed on page 120, should be the 
first step in saving on computations. After that, considerations of the algorithm 
used may become relevant. 

The other side of the comparison between normal equations and orthogonal de
compositions concerns accuracy. To oversimplify a complicated topic, if the numer
ical rank of X is well-defined computationally, either method will produce accurate 
solutions to the least-squares problems, but as X becomes ill-conditioned computa
tionally, two things happen. First, the solution itself becomes unstable, in the sense 
that small changes in X will substantially alter the least-squares coefficients and, 
perhaps, the fitted values or residuals. Second, the numerical accuracy of a solution 
using the normal equations will tend to degrade faster than that from an orthogonal 
decomposition. It is in this sense that the orthogonal decomposition can be said 
to be more accurate. But the question of non-unique or ill-conditioned solutions to 
the computation must be considered in the context of the statistical nature of the 
model, a context that usually dominates strictly numerical questions. We will say 
a little about this in the next section. 

One last topic in comparing the two approaches is important, but subjective. 
It can be argued that orthogonal decomposition starting from the model matrix is 
a more informative and more elegant solution than computations based on normal 
equations. A basis for this statement is that, particularly with the Householder 
method, one obtains a simple geometric characterization of the solution, consid-
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ered as the definition of a subspace spanned by the columns of X, within the 
n-dimensional space of possible response values. The Householder QR method de
fines this subspace by ·p reflections. Stored in the form of these reflections, the 
corresponding transformation can be applied to project vectors onto this subspace, 
or onto its orthogonal complement. S has a variety of functions related to the QR 
decomposition that implement the various computations in a simple manner, using 
for example the qr component that can optionally be returned from a call to lmO. 
For someone familiar with a little of the underlying mathematics, the computations 
made possible by this form of the decomposition may simplify programming new 
computations related to linear models. 

The third method provided for solving linear least-squares problems corresponds 
to choosing R in (4.5) of the form 

R=D·V 

where D is a diagonal matrix and V is a p by p orthogonal matrix. Solving equations 
in R is again easy: divide by the diagonal elements of D (assuming these are 
positive), and multiply by vT. These methods correspond to forming the singular 
value decomposition of X. In using the singular values, it is important to carry out 
the computations appropriately for least-squares problems: in particular, one can 
avoid the portion of the decomposition requiring an n by p orthogonal matrix. See 
again the comments in the next section, and the reference by Golub and van Loan. 

The different numerical methods are integrated into the lm object by the compo
nent R. This component must exist, and there must be methods for each new class of 
R objects to allow the functions treating 1m objects to work with the new numerical 
method. As far as the generic functions described in this book are concerned, the 
only critical method is for solving (back-solving in the case of upper-triangular R), 
as required by summary .1m () . 

4.4.3 Overdetermined and Ill-determined Models 

There is no guarantee that the formula and data in a model will define the least
squares fit precisely, or even be numerically unique. Two situations need to be 
considered, both arising quite frequently. First, if some column of X is exactly 
equal to a linear combination of the preceding columns, then the coefficients {3 
are determined only up to a one-dimensional family. However, the fitted values 
from the estimated model are unique: any least-squares coefficients are equivalent, 
geometrically, to fitting y to the p - 1 linearly independent columns of X. This 
sort of linear dependency arises all the time in models, such as those in Chapter 
5, that include factors. In this case, it is quite natural that some variables will be 
functionally equivalent to other variables; in particular, fitting such a factor always 
generates columns in the model matrix that are linearly dependent on the vector of 
ones representing the intercept term. 
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A somewhat different situation arises when some numeric terms are not exactly 
known, perhaps because of observation error. In this case, a column of X may be 
approximately equal to a linear combination of previous columns. The issue here is 
that a model may be statistically meaningless and substantively misleading because 
some linear combinations of variables are just noise. Hard decisions about which 
model to choose may not be possible in this situation; it may be necessary to look 
at several possible solutions. To make matters worse, in this case the fitted values 
may be affected by the choice as well as the coefficients. If we choose to include a 
questionable term in the model, the corresponding column of X will not be an exact 
linear combination of the preceding columns. Therefore, there is no guarantee what 
effect this inclusion will have on the fit. It could range from entirely negligible to 
being the only important effect in the model. 

Clearly, the proper treatment of these questions involves both statistical and 
numerical questions. The two situations above correspond numerically to singu
lar and ill-determined models, in numerical terminology. The distinction between 
these is clearly important statistically, but is not always made clearly in numerical 
discussions. 

Attitudes to the Problem 

To set the discussion in a realistic context, let's take the viewpoint of a user who 
needs to decide what precautions, if any, to take about these potential problems. 
Four plausible attitudes that one might have in presenting a linear model for fitting 
are: 

I. "This model is not singular or ill-determined, and -I don't want to waste time 
checking." · 

2. "This model shouldn't be singular or ill-determined, and if it is, treat that as 
an error. Errors in the predictor variables are not important." 

3. "This model may well be singular, because the particular design makes it 
impossible to fit all the coefficients I'd like; if it is, just fit the nonsingular part 
and note the ·family of coefficients. The model should not be ill-determined 
once we take account of these design limitations." 

4. "This model may be ill-determined; in particular, I realize that the predictor 
data are both correlated and not known precisely. Solve it in such a way that 
I can take account of these considerations." 

These alternatives do not exhaust all the possible situations, but they do cover 
the majority of practical situations. Number 3 is the typical situation in designed 
experiments that are not "complete"; Chapter 5 will discuss this situation. Number 
4, on the other hand, is a common situation in data where all the variables, response 
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and predictors, are measured numeric quantities. Data in the social sciences par
ticularly tend to be both subject to measurement error and strongly correlated. 

Alternative number 2 is the default assumption made by the lm() function, 
so let's begin by considering that situation. The approach only protects against 
numerical singularity; the important, but very difficult, question of errors in the 
predictors is not considered. Numerical methods for solving least-squares problems 
allow us to compute a solution, given the number of linearly independent columns 
of X, and then examine that solution to see whether the problem seems to be nearly 
singular. If singularity or ill-conditioning is to be an error condition, we proceed 
to compute the numerical solution assuming that all the columns of X are linearly 
independent (this will generate an error if the algorithm being used concludes that 
X is singular). If not, the standard lmO computation returns the result, without 
further checking. If ill-determined models are a statistical concern, however, some 
additional checking should be done. Theoretical results about numerical linear 
least-squares solutions offer some useful help. 

Estimating Numerical Sensitivity 

The condition number ~t(X) of a matrix X is defined as the ratio of the largest to the 
smallest nonzero singular value. The essential qualitative property is that ~t(X) will 
turn out to measure how well linear models using X are determined. Small condition 
numbers mean well-determined models, while large condition numbers mean that 
either the coefficients or the residuals may be poorly determined. This statement 
can be made more meaningful in terms of the sensitivity of the fitted model to 
changes in the data (that is, to X or y or both). Suppose we let 6 == 6(X,y) stand 
for a small relative change in the data, and let 6e and 613 be corresponding relative 
changes in the residuals and the coefficients of the fitted models. The fundamental 
sensitivity results are then 

6e < C ~t(X)6 

613 < (CI~t(X) + C2(e) ~t(X)2)6 ( 4.1l) 

Here C and C1 are constants, and C2(e) depends on the residuals; specifically, it 
is small if the residuals are small relative to y but becomes arbitrarily large if the 
residuals are nearly equal toy. Equation (4.11) is the key theoretical result on com
putational sensitivity in linear models. Both the residuals and the coefficients can 
be ill-determined if the condition number of X is large. The coefficients, however, 
are more sensitive than the residuals in that they can be ill-determined even for 
moderate condition numbers if the residuals are large relative to y, indicating that 
the model is not doing a good job of fitting y. In addition, the sensitivity of the 
coefficients grows with the square of the condition number rather than the condition 
. number itself, even if the model gives IL moderately good fit. 
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Although we have left a few notions unspecified in setting out (4.11), the defini
tions can all be made precise. The important practical message is that one should 
estimate the condition number of the model matrix. This and the size of the resid
uals relative to the response will give guidance as to the degree of ill-determinacy 
possible in the problem. We could compute ~t(X) from the singular-value decompo
sition, but this takes substantially more calculation than the default method for the 
least-squares computations themselves. An adequate approximation is available, as 
the function kappa(), using the triangular factor, R, from an orthogonal or Choleski 
decomposition of X. This requires only on the order of p2 floating-point operations. 
The resulting estimate of the condition number is not guaranteed as to accuracy, 
but experience with it has been that it gives reliable order-of-magnitude estimates. 
The underlying algorithm comes from the LINPACK library; the method is described 
in Golub and van Loan (1989, page 128). Let's examine the estimate on the model 
fitted to the Fuel data. Consider the lm object fuel. fit: 

> kappa(fuel.fit) 
[1] 15494.84 

Roughly speaking, if the condition number times the relative precision of the com
putations is small compared to 1, then linear algebra calculations using the matrix 
should be numerically well-defined (which of course does not say they are statis
tically meaningful). In this case, computations are being done with a precision of 
around 10-17• The product of this with 1t is then around 2 x 10-12 , which seems 
quite small. 

We can compare the estimated condition number with the actual value computed 
from the svd function applied to the matrix R. The condition number is the ratio 
of the largest to the smallest singular value: 

> xx <- svd(fuel.fit$R)$d 
> XX 

[1] 22822.766404 280.651689 
> xx[1]/xx[3] 
[1] 19997.27 

1.141294 

So the cheap estimate from kappa() has underestimated ~t(R), but not very seriously. 
An estimate of ~t(X) produces an estimate of the two kinds of sensitivity in the 

fitted model, via equation (4.11). The function 1m. sensitivity takes an 1m object 
and returns two numbers: the estimated sensitivities for the residuals and for the 
coefficients. In the example previously shown: 

> lm.sensitivity(fuel.fit) 
residuals coefficients 

1766469 21546499 

Despite the numerical accuracy implied by the value of It, these numbers would be 
cause for worry, particularly about the values of the coefficients. To interpret the 
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value 2 x 107 for coefficients, think of it as estimating how much the relative change 
in the coefficients might be as a multiple of some small relative change in the data. 
The term "relative change" is defined as follows: if we change some vector x to 
x + 6x, the relative change is ll6xllfllxll, with "II" standing for the Euclidean norm, 
that is, the square root of the sum-of-squares. Clearly, the estimated coefficients in 
this model are very sensitive, or can be, to changes in the data. 

The definition of relative change in residuals is a little different: it is taken to be 
the ratio of the norm of the change in the residuals over the norm of y. Here again, 
the fit is clearly sensitive to changes in the data, although not quite so much so. 

Using the Estimated Sensitivity 

The sensitivity numbers are upper bounds, if the condition number is known ex
actly. If the inexpensive estimate is used, this tends to underestimate the condition 
somewhat, but usually by less than a factor of two. In any case, the bound from the 
condition number is likely to be much larger than the actual change in the fit due to 
a small change in the data. Nevertheless, the bounds are useful in that they point 
out models in which there is potential for the results to be influenced by such small 
changes. Very large values, such as those in the example above, should be cause to 
interpret the model cautiously, and to experiment statistically with changes in the 
data or the model. 

The use of such diagnostics following a fit that is numerically nonsingular is 
recommended as a careful approach to situation 2 in our list. This is also a reason
able approach to situation 4; in this case, however, some explicit account should, if 
possible, be taken of the uncertainties in the predictors. A thorough treatment of 
this problem is far. beyond the scope of this section, but the following procedure is 
one approach. Suppose we are willing to assume that the uncertainty or measure
ment error in the values of X can be adequately represented by a model in which 
the observed value x;; has an error, say cf;, with the errors being independently 
distributed with mean 0 and standard deviation u;. Furthermore, assume we have 
an estimate, say, s; of u;. The prescription is then: 

• Divide the jth column of X by s;. If your model includes an intercept term, 
first subtract means from y and from each column of X. 

• Use the singular-value decomposition of X to compute the regression. Exam
ine the singular values. If any of them are substantially smaller than fo, the 
suggestion is that these linear combinations of columns of X are essentially 
noise, under the assumptions made about errors in X. Therefore, you should 
not use these columns in computing a meaningful regression. 

• From the examination of singular values above, select one or more possible 
ranks for the regression and compute corresponding fitted values and resid-
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ual. Since assumptions about errors in X are usually not very accuratP, it is 
strongly recommended that you try several models if the singular valtli'H are 
at all ambiguous. 

Our alternative 3 on page 139, in which one expects to find some ••xact Hillgu
larities, can also be accommodated by using a standard method (say, au ortho",onal 
decomposition) with an included test for strong linear dependence or a column 
on preceding columns of X. Both Householder and Choleski methodH are Pludly 
adapted to this test; roughly, either allows one to compute the norm of t.he residual 
of the jth column of X from a regression on the preceding j - 1 colu111ns. If this 
number is small, we treat the new column as a linear combination of preceding 
columns, and pivot it out. The result, in the case of an orthogonal decomposition, 
is that we will end up with a decomposition that can be represented as follows: 

X·P=Q·R (4.12) 

where Q is orthogonal as before, R is triangular with a special form that we will 
examine shortly, and P is a permutation matrix-that is, X · P is a permutation of 
the columns of X. In practice, of course, P is not kept as a matrix but rather as a 
vector, pivot, such that X[,pivot] is the permutation. The pivot is chosen so that 
the first r columns of R represent the full-rank portion of X: 

In this form, R11 is an r by r matrix giving the full-rank decomposition, R12 is an 
r by p- r matrix giving the "aliasing" pattern (the computed dependencies of the 
dependent part on the first r columns), and il{J is treated as being zero. 

Detailed discussion of how this information can be used to understand what 
coefficients can be estimated in the model, and methods to present singular models 
informatively are given in Chapter 5. The first point to note here is that we can 
use R11 exactly as we would use R in the full-rank case to compute fitted values, 
residuals, and one valid set of coefficients. In particular, the various standard 
summaries and diagnostics are generally designed to use the full-rank portion of 
the decomposition. Because lm.sensitivityO works from the computed R, the 
sensitivity estimates apply directly to the full-rank portion of the model. This gives 
us an essentially complete treatment of models, in the sense that we can compute the 
apparent rank of X and then get a sense of how well this rank is defined by looking 
at the sensitivity of the corresponding model. For experiments using standard, 
balanced designs, the rank should be easy to compute and the reduced-rank model 
well-conditioned. 

If singular models are allowed, by supplying singular. ok=T as an argument to 
lm(), then pivot and rank components are returned in the 1m object to define the 
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full-rank part of the model. The coefficients are retained in unpivoted form, with 
NA's corresponding to effects that cannot be estimated. Some additional components 
are included in the lm object to help later computations allow for the singularities. 
See the methods summary.aov() and print.aov() for examples. In manipulating 
this extended version of the lm object, it is important that any calculations using 
the R component should treat the data in the permuted form. Chapter 5 discusses 
aliasing and its relation to the full set of coefficients. 

Bibliographic Notes 

Both the statistical and the computational literature on linear least-squares regres
sion are substantial. Further statistical discussion should ideally be oriented to 
the applications you are interested in. Books exist that discuss regression models 
in many applications (economics, engineering, social sciences, biology, and many 
more). Draper and Smith (1981) and Weisberg(1980) give general discussions of 
linear models in applications; Searle (1971) emphasizes the connections with the 
analysis of variance. 

For numerical issues, Golub and van Loan (1989) is the best general referen< l 

as background to all the discussions of matrix methods in this book. Additional 
discussions of linear least squares may be found in Lawson and Hansen (1974). 
The user guide to the LINPACK subroutine library (Dongarra et al., 1979) is also 
recommended as a reference, since our numerical methods derive from that library. 



Chapter 5 

Analysis of Variance; 
Designed Experiments 

John M. Chambers 
Anne E. Freeny 
Richard M. Heiberger 

This chapter provides for the modeling of numeric variables by factors, variables 
that take on one of a specified set of levels. Such data are often the result of a 
designed experiment, in which observations of one or more responses are made for 
changing values of several factors. The variation in the response is then studied, 
in the hope of understanding how it depends on the underlying phenomena that 
the levels of the factors represent. One of the most important contributions in the 
history of statistics was R. },.. Fisher's notion that choosing the factors according to 
a suitable experimental design could provide more information on such dependencies 
than varying only a single factor at a time. Techniques for choosing such designs 
and for analyzing the results, particularly the analysis of variance, have become 
an important part of scientific studies in agriculture, biology, social sciences and, 
increasingly, in manufacturing and other applications of engineering and the physical 
sciences. 

Our goal is a general computing capability for such data. This chapter draws on 
the ideas of Chapter 3 to represent the experiments, and on those of Chapters 2 and 
4 to represent and fit the models. The classical models for designed experiments 
are very closely related to the linear models of Chapter 4; in fact, many of the 
modeling techniques are the same, but with important differences in how the models 
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are viewed and used. In addition to modeling techniques, this chapter contains 
functions to generate common designs and informal ways to look at the results of 
the experiments without using a specific model. 

While the motivation and statistical theory arising from experimental design 
are central to this chapter, it's worth noting that many of the techniques work for 
any data in which the behavior of a numeric response is studied in terms of some 
categorical predictors. Most of the computational techniques are organized to be 
valid for arbitrary experiments. However, the statistical techniques sometimes are 
invalid, or at least the results from them need to be interpreted carefully when the 
assumptions of balanced experiments are not met. 

Since there are many software packages for the analysis of variance, we should 
emphasize what this chapter provides and what it does not. We are presenting a new 
approach based on the general ideas of model formulas, data frames, classes, and the 
techniques these ideas make possible. We stress generality, directness of expression, 
and an ongoing process of making powerful computations easily accessible. The 
emphasis is on computed objects describing the data and fitted models, to be used 
in an open-ended set of displays and diagnostic computations, rather than on fixed 
output reports of the analysis. The functions described here are far from a final 
package and we especially hope that users will extend them and adapt them to 
their own interests. Some topics, such as multiple error terms, are treated relatively 
thoroughly; for others, such as random-effects models, we provide only a fraction of 
the possible software. 

5.1 Models for Experiments: 
The Analysis of Variance 

An experiment, in the sense we will use the term, is described by the values of 
some chosen variables for each of a number of runs or observations. In a designed 
experiment, some of those variables will, in principle, have values from a finite set 
of levels specified by the experimenter in advance. In classical experimental design, 
these variables are categorical, and are usually called the factors in the design. 
Other variables are observed when the experimental runs take place. The data 
frames introduced in Chapter 3 provide a natural way to represent such experiments 
in S. The factors are represented as factor objects and the response as a numeric 
variable or matrix. 

Complete factorial designs consist of one run for each possible combination of 
levels for each of the factors. For example, Table 5.1 shows a design with three 
factors, each having two possible levels, giving eight runs. In this experiment, as 
described in Box, Hunter, and Hunter (1978, p. 308), the experimenter plans to 
run a process using two catalysts, identified only as A and B, at two choices of 
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concentration and with two choices for the temperature at which the process runs. 
Notice that two of the three variables are inherently quantitative, although they 
are treated as factors in the design by choosing two specific values. Such variables 
are ordered factors as described in Chapter 3, although with only two levels the 
distinction is not important. 

Temp Cone Cat Yield 
1 160 20 A 60 
2 180 20 A 72 
3 160 40 A 54 
4 180 40 A 68 
5 160 20 B 52 
6 180 20 B 83 
7 160 40 B 45 
8 180 40 B 80 

Table 5.1: A factorial experiment with factors temperature, concentration of cataly.•t, and 
catalyst type, each ha:uing two levels. The response is the yield of the process. 

The scenario is that the experimenter now runs the process in some randomized 
order under each of the eight conditions given by the design, and records the Yield 
in the last column of Table 5.1. In many situations, the experimenter will choose 
to randomize the order of the runs (see page 175), to the extent practicable, in the 
hope of disentangling sequential effects from the factors of interest. The results 
of the experiment are now available for analysis. As always, some careful studies 
of the data, particularly through plots, should precede or at least accompany the 
formal modeling. One such graph is shown in Figure 5.1: the average of the values 
of Yield are shown for each level of each factor, with a horizontal line showing the 
overall average for comparison. 

The analysis of variance, the principal classical model for factorial experiments, 
uses formulas and estimation that are formally special cases of the linear models 
discussed in Chapter 4. The emphases differ substantially, however. Discussion 
centers more on the contribution of terms in the model to the total variation of the 
response and less on individual coefficients. The categorical nature of the variables 
means that detailed study of the way in which the response depends on a single 
predictor variable is usually impossible-with only two levels of temperature, the 
form of dependence of yield on temperature will not be available. The compensation 
is that much broader exploration of the effects of several factors may be possible. 
New questions arise, as well, such as which factors should be assumed to interact. 

An experiment on the quality of integrated circuit fabrication was reported by 
Phadke et al. (1983). Th~ objective of the experiment was to investigate various 
factors that might affect the quality of the fabrication process, with the goal of 
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Figure 5.1: Yield from the experiment in Table 5.1, avemged for each level of the factors. 
Vertical position shows the mean yield for the corresponding level; for example, the position 
labeled 180 is the mean of the observations with Temp at level 180. 

controlling both the average level and the variability of the quality. The experi
mental design had 18 runs, varying 8 factors based on an orthogonal-array design 
(p. 171). In principle, two wafers with 5 measurements each should have been 
manufactured for each run, but three wafers were broken. Two measures of quality 
are the pre-etch line width and post-etch line width. The line widths are numeric 
responses, measured five times on each wafer. The published analysis uses the mean 
and standard deviation for each experimental run for pre- and post-etch line width 
as responses, the goal of the experiment being to control both the average quality 
and the varinbility in quality. Table 5.2 shows a sample of6 runs to suggest the form 
of the data. This experiment will be used several times in the chapter to illustrate 
some interesting techniques of analysis. See the reference for more discussion of the 
experiment and additional analysis. 
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maskdim visc.tem spinsp baketime aperture exptime devtime etchtime 
2 2 204, 90 normal 30 2 normal 45 13.2 
5 2 206,90 normal 30 3 -20~. 30 14.5 

10 2.5 204,90 lov 40 3 normal 45 14.5 
14 2.5 206, 90 normal 40 1 normal 30 15.8 
15 2.5 206,90 high 20 2 -20% 45 14.5 
18 2.5 204,105 high 30 1 normal 60 14.5 

pre.mean pre.dev post.mean post.dev N 
2 2.684 0.1196 3.14 0.063 10 
5 1.870 0.1168 1. 72 0.400 5 

10 2.660 0.1912 3.31 0.350 10 
14 2.308 0.0964 3.14 0.160 10 
15 2.464 0.0385 2.55 0.210 5 
18 3.494 0.0473 4.34 0.078 5 

Table 5.2: Part of an experiment {6 of 18 runs} on wafer fabrication: 8 factors, 4 responses 
{the mean and standard deviation for pre- and post-etch line width}, and the number N of 
measurements per ron. 

Models for experiments may differ from other linear models also in the emphasis 
they give to structure among factors and in the error assumptions. Factors may 
be dependent on other factors, in that levels of the one factor are meaningful only 
within each level of the other factors, giving rise to nested or hierarchical models. 
The experimental situation may also imply that the errors of observation depend 
on the levels of some of the factors, giving rise to an error model. In our approach 
this situation can be expressed by including the error model as an additional term 
in the formula. The analysis of variance will then reflect the multiple sources of 
error, so that estimated effects are compared to the appropriate error estimates. 
These aspects of factorial experiments will be handled in this chapter by extensions 
to the basic computational techniques developed in earlier chapters, while keeping 
the organization built around formula, data, and fitted model. 

The experiment in Table 5.1 is small and complete. Such experiments tend 
perhaps to appear mostly in textbooks. In practice, a large number of factors, more 
factor levels, unbalanced or incomplete designs, and other practicalities are likely 
to arise. The experiment in Table 5.2 is somewhat larger and, in its complexity and 
slight irregularity, more typical of practice. We will also deal with the wafer solder 
experiment introduced in Chapter 1. This, with its large size (900 observations) as 
Well as its irregular features, is indeed a serious application. In choosing examples 
for this chapter, we will~ small examples for ease of illustration with these more 
realistic ones to emphasize the issues such experiments raise. 
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5.2 S Functions and Objects 

This section describes the basic use of S functions to do analysis of variance, to 
display the results of experiments graphically, and to generate designs: 

The modeling techniques of the analysis of variance apply the ideas of formulas 
and data from previous chapters, expanding on the range of formulas and introduc
ing some summaries of particular relevance for designed experiments. Subsection 
5.2.2 presents some summary and diagnostic techniques, chiefly graphical. These 
are particularly valuable, and we encourage you to use the plots as preliminary 
views of the data and as communication tools. Subsection 5.2.3 presents functions 
for generating some standard designs and running experiments. This subsection 
will not be relevant if you are only analyzing data after collection. The first two 
subsections, however, should be read by anyone interested in analyzing designed 
experiments. 

5.2.1 Analysis of Variance Models 

The basic expression for fitting an analysis of variance is 

aov(formula, data) 

where formula is a model formula, relating the response to appropriate factors, and 
data is an optional design object containing the data from the experiment. The 
object returned by the aovO function has class "aov". It is very similar to a linear
model object, and inherits the use of functions fitted, 'residuals, coef, and effects 
to return the named components of the aov object. 

Suppose the catalyst experiment in Table 5.1 is contained in design object 
catalyst. To fit a simple additive model in all the factors, 

> aovcat <- aov(Yield ~ . , catalyst) 

Notice that we used the shorthand "." to refer to all the variables in the data frame 
except for the response on the left of the formula. As with all fitted models, there 
are methods for printing and for a slightly more statistical summary: 

> aovcat 
Call: 

aov(formula ~ Yield ~ Temp + Cone + Cat, data ~ catalyst) 

Terms: 
Temp Cone 

Sum of Squares 1058.0 50.0 
Deg. of Freedom 1 1 

Residual standard error: 7.1589 

Cat Residuals 
4.5 205.0 

1 4 
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Estimated effects are balanced 

> summary(aovcat) 
Df Sum of Sq Mean Sq F Value Pr(F) 

Temp 1 1058 1058 20.64 0.0105 
Cone 1 50 50 0.98 0.3782 
Cat 1 5 5 0.09 0. 7791 

Residuals 4 205 51 

The printing and summary methods for analysis of variance objects reflect the dif
ferent approach to what is essentially the same information as returned by lm(). 
While a printed linear-model object shows individual coefficients, printed aov ob
jects show terms, which may correspond to several coefficients. In this, and in other 
ways we will demonstrate, the focus will shift somewhat in this chapter. Nothing 
has been lost, however, because methods for linear models can always be applied 
explicitly to aov objects, such as those for the coefficients or residuals: 

> coef(aovcat) 
(Intercept) Temp Cone Cat 

64.25 11.5 -2.5 0.75 
> resid(aovcat) 

1 2 3 4 56 78 
5.5 -5.5 4.5 -4.5 -4 4 -6 6 

We could also have previously attached the design object: 

attach(catalyst) 

to allow us to refer to the individual variables (Temp, etc.) in arbitrary S expressions. 
In this case, the second argument to aovO can be omitted, but at a price: without 
the data argument there is no context to define the meaning of ".", so the formula 
would have to be given in full. 

Crossed and Nested Terms 

In models involving factors as predictors, interactions among the factors are often 
important. When possible, good data analysis suggests that one should ask whether 
the effect of one factor depends on the levels of one or more other terms. This leads 
us to a richer use of formulas than is typical of Chapter 4. 

The expression A • B in a model formula puts into the model the terms for A, 
B, and the interaction of A and B (represented as A:B). The notation can be used in 
any general way that makes sense: the operands of • can be any expression that 
evaluates to a factor, and crossed terms can be combined with other operators, 
and parenthesized to indicate grouping. This is needed to permit covariates to be 
crossed and nested. With a small factorial experiment, we may want to fit the full 
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model including all possible effects. This model is specified by combining all the 
terms with • (an alternative specification avoids writing an explicit formula at all, 
as we show on page 153). In our previous example: 

> aovall <- aov(Yield ~ Temp • Cone • Cat, catalyst) 
> aovall 
Call: 

aov(formula = Yield~ Temp * Cone • Cat, data= catalyst) 

Terms: 
Temp 

Sum of Squares 1058.0 
Cone 
50.0 

Deg. of Freedom 1 

Sum of Squares 
Deg. of Freedom 

Temp:Conc:Cat 
0.5 

1 

Estimated effects are balanced 

Cat Temp:Conc Temp:Cat Conc:Cat 
4.5 4.5 200.0 0.0 

1 1 

The specified model fits three main effects, three two-way interactions and one 
three-way interaction. Notice that the term "Residuals" did not appear, nor the 
residual standard error. When all interactions in this experiment are included in 
the model, no degrees of freedom are left for residuals. Intermediate models can 
be specified, including whatever set of interactions make sense. Some short forms 
simplify writing common instances of such models, as we will illustrate shortly. 

When the levels of factor B are meaningful only given the level of some other 
factor A, B is said to be nested in A. The notation in a formula is A I B, saying to 
fit first A and then the effects of B in each level of A. Main effects for B are not 
meaningful in this case. As with •, the operands to I can be arbitrary expressions. 

An experiment on methods for firing naval guns was reported by Hicks (1973, 
page 194). Two methods were tested by gunners corresponding to three different 
physiques (slight, average, and heavy). Nine gunners of each physique were divided 
into three teams, and each team tested the two loading methods twice, for a total 
of 36 runs. The response was the number of rounds fired per minute. The data are 
in design object gun; a sample of six runs is as follows: 

Method Physique Team Rounds 
3 H1 A T1 22.0 
4 H2 A T1 14.1 

14 H2 s T3 12.5 
25 M1 s T2 26.9 
29 M1 H T2 23.7 
34 H2 A T3 16.0 
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For this experiment, the Team factor is only meaningful within each physique, so 
one possible model is: 

Rounds ~ Method + Physique/Team 

which will fit effects for Method, Physique and Team within Physique, as follows: 

> gunaov <- aov(Rounds ~ Method + Physique/Team, gun) 
> summary(gunaov) 

Df Sum of Sq Mean Sq F Value Pr(F) 
Method 1 652.0 652.0 316.8 0.0000 

Physique 2 16.1 8.0 3.9 0.0330 
Team 7.in7. Physique 6 39.3 6.5 3.2 0.0178 

Residuals 26 53.5 2.1 1.0 0.5000 

Short Forms for Formulas 

When an experiment involves a substantial number of factors, writing a formula 
to contain them all is tedious. An alternative is to generate a model specification 
including all the possible terms, up to a specified order of interaction. The "." 
convention introduced in Section 2.3 is a shorthand way of referring to all the 
variables, as an additive model. We used it to specify the main-effects model, but 
in fact it can appear anywhere. It is replaced by all the variables in the data frame, 
with the exception of those used in the expression for the response. In analysis of 
variance models, the notation is often conveniently combined with the """ operator. 
This operator specifies all the main effects and interactions in the operand on its 
left, up to the limit defined by the "power'' on its right. So: 

aov(Yield ~ . " 2 , catalyst) 

says to fit the main effects and the two-way interactions of all the factors in the 
data. 

If you plan to work for some time on a subset of the variables in a design, it may 
be worthwhile to create a new data frame containing only this subset, so that "." 
will have the desired meaning. The data from Table 5.2 are in the data frame vafer. 
It contains 8 factors, 4 responses, and the auxiliary variable N. To study pre.mean, 
the first response, we can create a new data frame, vpm: 

>wpm <- vafer[, c(1:9)] 
> vaov1 <- aov( pre.mean ~ . , wpm ) 
> summary(vaov1) 

Df Sum of Sq Mean Sq F Value Pr(F) 
maskdim 1 0.652 0.6521 107.4 0.0092 

visc.tem 2 1.343 0.6717 110.6 0.0090 
spinsp 2 0.7~6 0.3827 63.0 0.0156 

baketime 2 0.002 0.0012 0.2 0.8380 
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aperture 2 0.032 0.0158 2.6 0.2771 
exptime 2 0.545 0.2724 44.9 0.0218 
devtime 2 0.280 0.1401 23.1 0.0415 

etch time 2 0.103 0.0517 8.5 0.1052 
Residuals 2 0.012 0.0061 

Model updating, discussed in Section 4.2.4, can also be used to refine the speci
fication, by adding or dropping individual terms. For example, we can pool the 
contribution of the factor baketime into the estimate of the residual mean square: 

> summary(update(waov1, . ~ . - baketime )) 
Df Sum of Sq Mean Sq F Value Pr(F) 

maskdim 1 0.652 0.6521 180.0 0.00018 
visc.tem 2 1.343 0.6717 185.4 0.00011 

spinsp 2 0.765 0.3827 105.6 0.00035 
aperture 2 0.032 0.0158 4.4 0.09848 
exptime 2 0.545 0.2724 75.2 0.00067 
devtime 2 0.280 0.1401 38.7 0.00242 

etchtime 2 0.103 0.0517 14.3 0.01513 
Residuals 4 0.014 0.0036 

In the formula given to update 0, the "." notation can be used on both sides of 
the "....,"", referring to the response on the left and to all the terms in the original 
model on the right. See Section 4.2.4. 

Multiple-Response Models 

The examples described so far have dealt with single response variables. It is also 
possible to supply a numeric matrix as the response variable. Columns of the matrix 
are interpreted as the individual responses. The fit carries through as before, with 
the distinctions that the object now inherits from class "maov" and that the effects, 
coefficients, residuals, and fitted values will be matrices having as many columns 
as the response. These models should not be confused with the "manova" analysis, 
which studies the dependence of the covariance structure among the responses on 
one or more factors. Each response is modeled separately in our analysis. 

Multi-response models can be described in the same way as single-response mod
els. To illustrate this and also a useful way to organize multiple-response data, let's 
construct a new data frame from the wafer data with all four responses stored as a 
single matrix-valued response. While we're at it, we take logarithms of the standard 
deviations, which should be analyzed on the Jog scale: 

> waferm <- wafer[, 1:8] 
> attach("wafer") 
> waferm[, "Line"] <- cbind(pre.mean, log(pre.dev), post.mean, 
+ log(post.dev)) 
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We first select the 8 factors, then insert in this data frame a single new variable, Line, 
set to all the columns of vafer containing responses. With a single column on the 
left of the assignment and a matrix on the right, the replacement method for data 
frames inserts the entire matrix as one variable. Now we can fit the multivariate 
anova simply: 

> vmaov <- aov(Line "' . , vaferm) 

Summaries for multi-response models repeat the univariate summary for each re
sponse: 

> summary(vmaov) 
Response: pre.mean 

Df Sum of Sq Mean Sq F Value Pr(F) 
maskdim 1 0.652 0.6521 107.4 0.0092 

visc.tem 2 1.343 0.6717 110.6 0.0090 
spinsp 2 0.765 0.3827 63.0 0.0156 

bake time 2 0.002 0.0012 0.2 0.8403 
aperture 2 0.032 0.0158 2.6 0.2770 
exptime 2 0.545 0.2724 44.9 0.0218 
devtime 2 0.280 0.1401 23.1 0.0415 

etchtime 2 0.103 0.0517 8.5 0.1052 
Residuals 2 0.012 0.0061 

Response: log(pre.dev) 
Df Sum of Sq Mean Sq F Value Pr(F) 

maskdim 1 0.661 0.6606 4.03 0.1825 
visc.tem 2 0.165 0.0826 0.50 0.6667 

spinsp 2 0.191 0.0956 0.58 0.6329 
baketime 2 0.492 0.2460 1.50 0.4000 
aperture 2 1.114 0.5570 3.40 0.2273 
exptime 2 0.651 0.3255 1.99 0.3344 
devtime 2 0.015 0.0074 0.05 0.9524 

etchtime 2 0.313 0.1566 0.96 0.5102 
Residuals 2 0.328 0.1638 

Etc. 

Summaries for multi-response models (and also for models with Error strata) are 
lists of the summaries for the individual responses or error strata. If we wanted to 
print only the summary for one response, we could just select the corresponding 
element of the summary object for the whole model. 

Aliasing; Over-specified Models 

The specification of a model for the analysis of variance may include more terms 
than can actually be estimated from the design. In this case the fit goes through, 
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but some of the terms or coefficients specified in the formula may not appear in the 
fit. A table of aliasing information can summarize the relation between effects that 
can be estimated and those that cannot. Let's consider a small example. Suppose 
that instead of the complete eight observations in the catalyst data shown in Table 
5.1 on page 147, we could only afford four observations. By taking the half-replicate 
consisting of rows 2, 3, 5, 8, and assuming the yields were the same as in Table 5.1, 
we would obtain the following data, in design object catalyst2, say: 

> catalyst2 
Temp Cone Cat Yield 

2 180 20 A 72 
3 160 40 A 54 
5 160 20 B 52 
8 180 40 B 80 

What happens if we fit the complete model in the three factors? 

> half. aov <- aov(Yield "' Temp•Conc•Cat, catalyst2) 
> half .aov 
Call: 
aov(formula Yield "' Temp • Cone • Cat, data = catalyst2) 

Terms: 

Sum of Squares 
Deg. of Freedom 

Temp Cone Cat 
529 25 9 

1 1 

4 out of 8 effects not estimable 
Estimated effects are balanced 

The printing method warns us that some of the effects in the model formula can't 
be estimated in the data. The fit includes three terms plus the intercept, using up 
all 4 degrees of freedom available. 

The function alias() defines the relation between the effects that could not be 
estimated (the rows) and the effects that were estimated (the columns). Looking at 
the alias pattern gives information about what happened to the interaction terms: 

> alias(half.aov) 
Complete 

Temp:Conc 
Temp:Cat 
Conc:Cat 

Temp:Conc:Cat 

(Intercept) Temp Cone Cat 
1 

1 
1 

For example, the first row shows that the estimate for the Temp:Conc interaction 
was completely aliased to the Cat main effect, already included. Statistically, the 
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implication is that the design cannot distinguish these two terms. Only if one is 
willing a priori to treat the Temp: Cone interaction as known to be zero can the 
sum-of-squares assigned to Cat be attributed unambiguously to that term. The 
last row shows that the Temp:Conc:Cat interaction is aliased with the intercept. 
In the terminology of f ac . design 0, this says that the interaction is the defining 
contrast for the fractional design represented by the four rows of catalyst2. For 
more discussion of aliasing, see page 178. 

Incomplete balanced, or fractional factorial, designs are widely used and useful 
when experiments are expensive to run or when many factors need to be studied 
simultaneously. It's perhaps preferable in these cases to understand beforehand 
what can be estimated, and to phrase the model to make the assumptions plain. 
In this case, for example, if we had specified only the main effects, as in the initial 
example on page 150, we would have got the same fit, but without aliasing. On 
the other hand, if you are unsure just what can be estimated from a particular 
balanced design, specifying a complete model and then examining the alias pattern 
is one way to find out. The aliasing depends only on the design and the structural 
form of the model, not on the response itself. Therefore, the aliasing can be studied 
before running the experiment; for example, if halfdesign were the half-replicate 
design in catalyst2: 

alias(halfdesign, ~ . "3) 

would show the same alias pattern as above. If the formula is omitted, ~. "2 is 
assumed. See Section 5.3.2 for more discussion of aliasing. 

Error Terms 

The analysis of experiments with multiple factors departs from standard linear mod
els in an important way when the model includes multiple error terms. An example, 
described in Federer (1955, page 274), will suggest the idea. In an experiment on 
eight varieties of guayule (a Mexican plant yielding rubber), four different treat
ments were applied to the seeds. The question of interest was the effect of the 
treatments on the rate of seed germination. The experimenter reasoned that plants 
grown on different greenhouse flats were likely to have differences due to the flats. 
These differences are not of particular interest and can be modeled as a random 
quantity depending on the individual flat. 

In order to gain the most information on the seed treatments, the experimenter 
divided each flat (plot in the classic terminology) into subplots and assigned all 
treatments to each subplot so as to allow estimation of the treatment effects or
thogonal to flat effects and subject only to within-flat variability. Specifically, each 
fiat was planted with seeds of one variety and each subplot contained 100 seeds 
treated with one of the four treatments. Each seed variety was planted in three 
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flats for a total of 24 flats. The response in this example consisted of 96 observa
tio~ of the number of plants germinating per 100 seeds planted in each subplot. 
The first two treatments in eight of the flats are shown below: 

> guayule[1:16, ] 
variety treatment reps plants flats 

1 V1 Tl 1 66 1. V1 
2 V2 Tl 1 77 1.V2 
3 V3 T1 1 51 1.V3 
4 V4 T1 1 52 1.V4 
5 V5 T1 1 45 1. V5 
6 V6 T1 1 59 1.V6 
7 V7 T1 1 56 1.V7 
B VB T1 1 49 LVB 
9 Vl T2 1 12 1. V1 

10 V2 T2 1 26 1.V2 
11 V3 T2 1 B 1.V3 
12 V4 T2 1 4 1.V4 
13 V5 T2 1 20 1.V5 
14 V6 T2 1 B 1.V6 
15 V7 T2 1 12 1. V7 
16 VB T2 1 14 LVB 

In the analysis of variance, we want to specify an error term corresponding to the 
levels of flats, which we do by including the expression Error(flats) in the model 
formula: 

> attach(guayule) 
> gaov <- aov(plants ~ variety * treatment + Error(flats)) 

This model will produce a separate fit for the portion of the data corresponding to 
the effects of the variable flats and for the residuals from these effects-in classical 
anova terminology, the whole plot and subplot error strata. 

As you might expect, since there is a separate fit for each error stratum, the 
overall fit is represented as a list of aov objects. Its class is aovlist, and methods 
exist for the usual functions such as print 0 and summary 0: 

> summary(gaov) 
Error: flats 

Df Sum of Sq Mean Sq F Value Pr(F) 
variety 7 763 109.0 1.232 0.3421 

Residuals 16 1416 88.5 

Error: Within 
Df Sum of Sq Mean Sq F Value Pr(F) 

treatment 3 30774 1025B 423.4 O.OOOe+OO 
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variety:treatment 21 
Residuals 48 

2620 
1163 

125 
24 

5.2 1.327e-06 
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Notice that the experimenter chose a design such that treatment effects, which the 
experiment was particularly anxious to estimate accurately, were entirely orthogonal 
to flats. They do not appear in the first (less accurate) stratum at all. The 
experimenter's assumption of substantial flat-to-flat variation is supported by the 
residual mean square in the flats stratum being over three times that of the Within 
stratum. 

The error model specified can include more than one term; the argument to 
ErrorO can be anything that would go on the right side of a formula. For example, 
depending on how the experiment was run, the experimenter might have wanted 
to reflect a situation in which flats within one replication would tend to be more 
alike than those in different replications. This reasoning suggests having two error 
terms: reps and flats. The formula 

plants ~ variety • treatment + Error(reps + flats) 

produces an analysis divided into three strata: reps, flats after removing reps, 
and residuals from both. In this case, flats are actually defined within reps, but 
nothing in the computations requires this. The model is as follows: 

> gaov2 <- aov(plants ~ variety • treatment + Error(reps + flats)) 
> summary(gaov2) 
Error: reps 

Df Sum of Sq Mean Sq F Value Pr(F) 
Residuals 2 38.58 ' 19.29 

Error: flats 
Df Sum of Sq Mean Sq F Value Pr(F) 

variety 7 763 109.0 1.108 0.41 
Residuals 14 1377 98.4 

Error: Within 
Df Sum of Sq Mean Sq F Value Pr(F) 

treatment 3 30774 10258 423.4 O.OOOe+OO 
variety:treatment 21 2620 126 5.2 1.327e-06 

Residuals 48 1163 24 

This experiment was designed so that treatments, varieties, and their interaction 
were balanced within each replication. As a result, there are no effects from 
varieties•treatment at all in the reps stratum. 

Random-Effects Models 

Some factors in experiments have the property that the levels chosen are not so 
much interesting in themseives but instead are examples of "typical" values for the 
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underlying variable. Samples of counties within a state, households on a block, or 
animal or human subjects for testing may have been chosen in the hope that conclu
sions made from the experiment can be generalized to the overall population from 
which the samples are chosen. The random-effects model applied to such factors 
looks at the variability in the effects for a particular term, not the individual effects 
themselves. The standard distributional assumption is that the coefficients for indi
vidual levels are distributed with zero mean and some unknown standard deviation. 
Large or small standard deviation then indicates important or unimportant terms. 

We have included only a special case of this model, implementing the completely 
random model for the balanced case, as described by Searle (1971, page 393). The 
software tests for balance, by computing the number of replications for each of the 
terms involved. To obtain a fitted analysis of variance including random-effects 
information on all the factors, use 

raov(formula, data) 

instead of aovO. Let's do an example. Box, Hunter and Hunter (1978, page 572) 
report an experiment in which 15 batches of a pigment were each sampled analyti
cally twice and two repeated analyses were performed from each sample, to measure 
the moisture content. Given this experiment, in a design object, pigment, we can 
compute the random-effects analysis of variance as follows: 

> _pigment 
· Batch Sample Test Moisture 

1 B1 S1 T1 40 
2 B2 S1 T1 26 
3 B3 S1 T1 29 
4 B4 S1 T1 30 
5 B5 S1 T1 19 
6 B6 S1 T1 33 
7 B7 S1 T1 23 
8 B8 S1 T1 34 
9 B9 S1 T1 27 

> praov <- raov(Moisture ~ Batch/Sample, pigment) 
> summary(praov) 

Df Sum of Sq Mean Sq Est. Var. 
Batch 14 1210.933 86.49524 7.12798 

Sample Y.inY. Batch 15 869.750 57.98333 28.53333 
Residuals 30 27.500 0.91667 0.91667 

See 'the references cited for further discussion of the analysis. 
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Analysis -.~f Unbalanced Experiments 

The term balance describes a relation between a pair of factors in which every level 
of one factor appears with every level of the other factor the same number of times. 
If all the pairs of !actors are balanced in this sense, the variables in the model matrix 
will be orthogonal, and interpreting the analysis will be more straightforward. On 
the other hand, data from an unbalanced experiment must often be analyzed. The 
nature of the unbalance can be studied, and alternatives to the usual summaries help 
with the interpretation. It should be emphasized that there is no problem in fitting 
the model, regardless of balance; the issues arise in summarizing and interpreting 
the fitted model. 

The function replications() presents the relevant information about balance 
as part of a more general result. The arguments to replications() are a model 
formula and an optional data frame. The value returned has as many elements as 
there are terms in the model. Each element describes the pattern of replications 
for all the levels associated with the corresponding term. In general, these elements 
will each be a table of the number of replications of the levels (a one-way table for 
main effects, a two-way table for two-factor interactions, and so on). H the term 
is balanced in the design, all the numbers in this table will be equal. In this case 
replications() replaces the table by this single number. If all terms are balanced, 
replications() replaces the list by a numeric vector containing for each term the 
number of replications. The response in the formula given to replications() is not 
used in computing the replications, but may be helpful if we want to ·use "." in the 
formula (the response will then not be included incorrectly in the definition of"."). 

An example of replications() on the solder data is 

> replications (skips ~ . , solder. balance) 
Opening Solder Mask PadType Panel 

240 360 180 72 240 

We stated that this subset of the data was balanced, and indeed it is. It came from 
a larger set of data from an experiment originally designed to be balanced, but not 
balanced as actually run. The result of replications() for the full set of data is 

> rep. all <- replications( skips ~ . , solder) 

The test for balance is 

> is.numeric(rep.all) 
[1] F 

Given that there is some unbalance, a simple computation to find the unbalanced 
terms is 

> sapply(rep.all, function(x)length(x)>l) 
Opening Solder Mask PadType Panel 

F F T F F 
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This calculation applies a function to each element of the list, in this case the in-line 
function 

function(x)length(x)>1 

which returns TRUE wherever the replications did not reduce to a single number. 
The result shows us that one term, that for Mask, caused the unbalance. We can 
look at the replication pattern for that term: 

> rep.all$Mask 
A1.5 A3 A6 B3 B6 

180 270 90 180 180 

Level A6 of the Mask factor is found in the full experiment, but not in solder. balance. 
You might be able to guess what happened from this printout. Level A6 was orig
inally intended to be used on 180 runs, just like the other levels. In the actual 
experiment, however, half of those runs were done with level A3 instead. Level A6 
turned out not to be a good one to pursue, but as a result, the full experiment 
left the data analyst with the dilemma of choosing between a larger, unbalanced 
experiment and a smaller, balanced one. With a properly randomized experiment, 
the balanced subset is still a legitimate one to study, but it does represent a loss of 
information. 

Chapter 1 shows an analysis of sqrt (skips) over the balanced subset. For com
parison, we now fit the main effects over the complete set of data. Since aovO is 
based on a linear model estimation, there is no problem with the fit, but the inter
pretation of the results is different. First, we fit and use the standard summary. 

> aov.solder.all <- aov(sqrt(skips) ,..., . , solder) 
> summary(aov.solder.all) 

Df Sum of Sq Mean Sq F Value Pr(F) 
Opening 2 740.8 370.4 527.7 O.OOOe+OO 
Solder 1 295.1 296.1 420.4 O.OOOe+OO 

Mask 4 
PadType 9 

Panel 2 
Residuals 881 

548.7 137.2 195.4 O.OOOe+OO 
161.3 17.9 25.5 O.OOOe+OO 
22.7 11.3 16.2 1.272e-07 

618.4 0.7 

With 881 degrees of freedom for residuals, and the F probabilities nearly all off
scale, the formal statistical analysis is not perhaps too relevant. However, if we 
were worried about its validity, we should take account of the unbalance. That is 
to say, the standard table above is to be interpreted sequentially. The contribution 
of each row must be interpreted as adding that term to the model containing the 
previous terms. A different analysis is obtained by the function drop1 0, introduced 
in Section 4.3.2 for linear models. This function produces a table showing the effect 
of dropping each term from the complete model, and therefore is interpretable 
without the sequential considerations required for the standard summary. 
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> drop1(aov.solder.all) 
Single term deletions 

Model: sqrt(skips) ~ Opening + Solder + Mask + PadType + Panel 

<none> 
Opening 
Solder 

Mask 
Pad Type 

Panel 

Df Sum of Sq RSS F Value Pr(F) 

2 
1 
4 
9 
2 

618 
684.3 1303 487.5 O.OOOe+OO 
226.0 844 322.0 O.OOOe+OO 
548.7 1167 195.4 O.OOOe+OO 
161.3 780 25.5 O.OOOe+OO 
22.7 641 16.2 1.272e-07 
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The summary here has sums of squares and F-statistics, but replaces the mean
square column with RSS, the residual sum-of-squares for the reduced model. This 
is useful in that it gives a direct comparison of the terms, showing that dropping 
Opening or Mask has the largest effect on RSS. The function drop10 is further dis
cussed in the context of generalized linear models in Chapter 6. 

Another way to investigate the lack of balance is with the function alias(). An 
example of this is given in Section 5.3.2. The aliasing information is derived from 
the numerical fit, not from the factors. In cases like the example here, where the 
unbalance is systematic, replications() generally gives more interpretable results. 
But if a few runs at random were omitted, no terms would be balanced. In this 
case, alias() gives direct numerical information about the pattern of unbalance. 

5.2.2 Graphical Methods and Diagnostics 

There are a number of useful graphical methods for displaying data that includes 
multiple factors. The plots shown in Figure 1.1 in Chapter 1 and Figure 5.1 in this 
chapter are examples. Figure 5.1 is produced by the default plotting method for 
designs: 

plot(catalyst) 

which shows a plot of the means at each level of each factor for the data given in 
Table.5.1. Similarly, Figure 1.1 was produced from the balanced subset of data from 
the experiment on wave soldering. The experiment, in design object solder. balance, 
has factors Opening, Solder, Mask, PadType, replication factor Panel, and response 
skips. So 

plot(solder.balance) 

plots the response, skips, showing its mean value for each level of each of the factors. 
When the plotting method gets only one argument, as in the above examples, it 

looks for a numeric variable in the design to use as the response. If there are several 
such variables, separate plots will be produced for each of them. A second argument 
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can be provided to define the variables to be plotted. Typically, this argument is a 
formula, to be interpreted in terms of the variables in the design; for example, to 
plot the square root of the skips in solder. balance against all the factors: 

> plot(solder.balance,sqrt(skips) ~ .) 

The plotting method for designs can use summary statistics other than means. In 
this case, a third argument is used to specify the function. Figure 5.2 shows the 
median skips for each level of each factor in the design, obtained by 

plot(solder.balance, fun = median, ylim = c(O, 10)) 
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Figure 5.2: Median number of solder skips at each level of each factor in the solder. balance 
data. 

Graphical parameters can be supplied in the call to the plot methods; in this case, 
the limits on the y-axis have been specified to include 0. The supplied function may 
be anything returning a single numeric value. Slightly more complicated cases-for 
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example, when the function needs another argument-can be handled by providing 
an in-line function definition. See the example on page 167. 

Two other specialized plotting functions are also available for use with designs: 

• plot. factor() shows the distribution of a response for each level of one or 
more factors; 

• interaction. plot 0 shows the interaction of two factors on some summary of 
the response. 

The distribution of the response for different levels of one or more factors can be 
summarized using boxplots, shaded bar plots, and other plots, from plot . factor 0 . 
Figure 5.3 shows the first four of five boxplots produced by the expression: 

plot.factor(solder.balance) 

As its name implies, plot.factorO is a method for plotting factors or ordered 
factors. For example, the two calls 

plot(Mask); plot(Mask, sqrt(skips)) 

would make a barplot of the factor Mask and a boxplot of sqrt(skips) for each 
level of Mask. Since the function is often called with a design or data frame rather 
than a factor as its first argument, we are emphasizing its direct use by calling 
plot. factor() as well as its automatic use as a plotting method for factors. 

The arguments to plot.factor(), like those to the plot method for designs, can 
be a design plus an optional formula or response. If the second argument is omitted, 
as in this case, all the numeric variables in the design object will be plotted, split 
up by levels of each of the factors. One plot is produced for each combination of 
factor and response. 

As another example of plot .factor(), suppose we want to produce a plot of the 
data in solder. balance by boards. The interaction of the factors Opening, Solder, 
and Mask uniquely identifies a board. We could plot boxes for each board, but let's 
try instead a character plot and identify the Panel within each board by plotting 
characters: 

> attach(solder.balance) 
> Boards <- interaction{Solder, Mask, Opening) 
> plot(Boards, skips, character s Panel) 

The function interaction() produces a new factor indexed by all combinations of 
levels of the arguments to interaction(). By giving the argument character= we 
tell the plotting method for factors to produce a character plot, using the levels of 
the factor Panel to label individual points. Figure 5.4 shows the result. 

The function interaction.plotO summarizes graphically how pairs of factors 
interact in influencing the response. The function takes three arguments, the first 
two being factors and the third the response: 



166 

0 

0 

0 

0 

0 
0 

T 
I 
I 
I 
I 
I 

B 

0 

0 

s 

0 

0 
8 

' ~ M 

Opening 

0 
0 

s 

0 
0 

' c:::::=:J 

L 

I 
0 

0 ~ 

8 ' : 

' I 8 gQ 
A1.5 A3 B3 86 

Mask 

CHAPTER 5. ANALYSIS OF VARIANCE 

0 .... 

0 

0 

0 .... 

0 

0 

0 

0 
0 

I 8 
0 

8 I s I 
I l g 

Thin Thick 

Solder 

0 

8 8 
0 0 

8 
0 0 

W404 L4 06 L6 07 L7 L8W9L9 

PadType 

Figure 5.3: Box plots of solder skips by factors for the solder. balance ·:lata. Each box 
pattern shows the distribution of the response skips for one level of a factor. 
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Figure 5.4: Chamcter plot of solder skips by boards, showing the levels of factor Panel as 
the chamcters 1, 2, and 3. The prevalence of 2 and 3 in higher values suggests that the 
second and third panels had more skips. Board Thin.B6.S tended to have the most skips 
ovemll. 

> interaction.plot(Opening, Solder, skips) 

The left panel of Figure 5.5 is the result. The horizontal axis of the plot shows levels 
of the first factor. For each level of the second factor, connected lines are drawn 
through the mean of the response for the corresponding level of Opening:Solder. 
The style of the plots are related to the matplotO function ( ii, page 67). Like 
plot.designO, interaction.plotO uses a summary function, again the mean by 
default. Interesting plots for datasets with many factors may be suggested by 
looking at an analysis of variance table that includes two-factor interactions, or 
by previous knowledge of the factors. The right panel of Figure 5.5 shows the 
95th-percent-point plot for Mask by Opening, produced by the expression: 

> interaction.plot(Mask, Opening, skips, 
+ fun c function(x) quantile(x, probs = .95) ) 

This example again shows the use of an in-line function definition to increase the 
flexibility of the plots. We wanted to give quantile() a second argument. Rather 
than assign a special object to be the new function, we can supply the expression 
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Figure 5.5: Interaction plots of solder skips. The left panel plots mean skips at each 
combined level of Opening and Solder, and connects the points with the same level of Solder. 

The right panel does the same for Mask and Opening, using the 95th percentile rather than 
the mean. 

function(x) quantile(x, probs = .95) 

The value of this expression is an S function object. The function takes one argu
ment and returns the corresponding value from quantile(). 

All of these plot functions take plotting parameters and can, as noted, sometimes 
take either factors or designs. In addition, plot. design and plot. factor can take 
formulas to specify the desired plot. See the on-line documentation for details. 

Normal Quantile-Quantile Plots of Effects 

Under the standard assumptions for linear models (independently normal errors 
with constant variance), the effects computed in fitting the model are also inde
pE>ndently normal. If the true value of the coefficient for a particular contrast were 
zero, the corresponding effect would have mean zero. Thus, large values on a nor
mal quantile-quantile plot of the effects suggest important effects. Since the signs of 
the effects are of secondary interest, the absolute values are traditionally plotted (a 
"half-normal" plot). A method for the S function qqnorm() for aov objects produces 
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this plot. Effects corresponding to residuals or to factors having no contribution to 
the response should form a roughly linear pattern in the lower left of the half-normal 
plot; the slope of this pattern estimates the residual standard error in the fit. More 
importantly, points that lie well above this pattern suggest important contributions 
to the fit. Separate plots will be produced for each response in a multiple-response 
model and for each error term in a multiple-strata analysis of variance. Optional 
arguments can control the labeling of points on the normal or half-normal quantile
quantile plot of effects. If label is provided as a positive integer, the largest in 
absolute value label effects will be identified; if the option identify=T is included, 
the function prompts for interactive identification (e.g., with a mouse) of interesting 
points on the plot. In either case, the corresponding effect labels will be plotted. 

As an example, we show in Figure 5.6 the half-normal plot of effects from the 
analysis of pre-etch mean in the wafer data discussed in the previous subsection, 
with the six largest effects identified: 

qqnorm(vaovl, label=6) 

The effect names are abbreviated on the plot; typing effects(vaovl) gives the 
full labels. For example, vsl is visc.teml, the first effect for visc.tem, and exp.L is 
the linear contrast for the factor exptime. 

5.2.3 Generating Designs 

Design objects inherit from data frames, and thus any manipulations that can be 
done on data frames should also be appropriate for design objects. Designs can 
be created either by using some special functions or by taking any data frame and 
coercing it to be a design. 

Two functions, fac.designO and oa.designO, are provided to generate com
monly used experimental designs-namely, factorial designs (complete or fractional), 
and orthogonal array designs. In the simplest call, these functions take an argu
ment levels, giving the number of levels for each of the factors to be included in 
the design: 

fac.design(levels) 
oa.design(levels) 

A call to fac.design() produces a factorial design, with a row of the design object 
for each possible combination of the factors in the design. To generate a 23 design, 
as in Table 5.1 at the beginning of the chapter, we ask for a design with three 
factors, each at two levels: 

> fac.design(c(2,2,2)) 
A B C 

1 A1 Bl Cl 
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Figure 5.6: Half-normal plot of pre-etch mean effects in the wafer experiment. The six 
largest points are labeled: "vsl" is the first effect for factor vise. tem; "sp.L" is the linear 
effect for ordered factor spinsp, etc. 

2 A2 Bl Cl 
3A1 B2 Cl 
4 A2 B2 Cl 
5Al Bl C2 
6 A2 Bl C2 
7A1 B2 C2 
8 A2 B2 C2 

A call to oa.designO produces an orthogonal array design. These designs aim to 
study a large number of factors in as few runs as possible. The designs returned 
by oa.designO select as small a design as possible from a given set of such designs, 
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on the assumption that only main effects need to be included in the model, and 
allowing for an optional request to provide a specified number of degrees of freedom 
for residuals. The wafer experiment in Table 5.2 is an example of such a design. 
The underlying design had nine factors, three with two levels and six with three 
levels. Two of the two-level factors were combined in a special way to define a three
level factor, creating an experiment with one two-level factor and seven three-level 
factors. 

> wafer.design <- oa.design(c(2,rep(3,7))) 
> wafer.design 

A 8 C D E G H I 
1 A1 81 C1 D1 E1 G1 H1 !1 
2 A1 81 C2 D2 E2 G2 H2 !2 
3 A1 81 C3 D3 E3 G3 H3 !3 
4 A1 82 C1 D1 E2 G2 H3 !3 
5 Al 82 C2 D2 E3 G3 H1 !1 
6 A1 82 C3 D3 E1 G1 H2 !2 

Etc. 

Orthogonal array design with 2 residual df. 
Using columns 1, 2, 3, 4, 5, 6, 7, 8 from design oa.18.2p1x3p7 
> replications(wafer.design) 
ABCDEGHI 
9 6 6 6 6 6 6 6 

The printing method for the design shows the number of degrees of freedom for 
residuals (the default minimum requested is 3). H this is less than 10% of the size 
of the design, a warning is given. The call to replications shows that we have a 
balanced design with 18 runs. 

The oa.designO function uses a table of known designs of which the largest 
contains 36 runs to handle a limited range of requests for factors with two or three 
levels. Outside of that range, it gives up: 

> oa.design(rep(2,100)) 
Error in oa.design(rep(2, 100)): Don't have an all 2 levels oa for> 32 

runs, use fac.design 

Other factors can sometimes be accommodated by adjusting the design; for exam
ple, a four-level factor can be formed out of two two-level factors, provided the 
interaction of those factors is estimable. 

By default, fac.designO and oa.designO generate standard names for factors 
and for the levels of the factors. These names may be provided by the factor .names 
argument. If supplied, factor.names can either be a character vector or a list; in 
either case, it should have length equal to the number of factors. A character vector 
provides names for the factors. The names for the levels are then constructed from 
an abbreviated form of the factor names: 
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> fac.design(c(2,2,2), factor.names ~ c("Temp","Conc","Cat")) 
Temp Cone Cat 

1 T1 Col Cal 
2 T2 Col Cal 
3 T1 Co2 Cal 
4 T2 Co2 Cal 
5 T1 Col Ca2 
6 T2 Col Ca2 
7 T1 Co2 Ca2 
8 T2 Co2 Ca2 

If factor. names is a list, its elements provide names for the levels of the correspond
ing factors, and the names attribute of the list gives the factor names: 

> nlist <- list(Temp = 
> fac.design(c(2,2,2), 

Temp Cone Cat 
160 20 A 

2 180 20 A 
3 160 40 A 
4 180 40 A 
5 160 20 B 
6 180 20 B 
7 160 ' 40 B 
8 180 40 B 

c(160, 180), Cone= c(20, 40), Cat= LETTERS[1:2]) 
factor.names = nlist) 

The expression factor .names(design) returns a similar list giving the factor and 
level names of design. Factor names can be assigned to an existing design by using 
factor. names() on the left of an assignment. The same interpretation is given to the 
object on the right of the assignment as was outlined for the factor. names argument: 

> cdesign <- fac.design(c(2,2,2)) 
> factor.names(cdesign) <- nlist 

This produces the same design as in the previous example. A factor .names argu
ment can be used in calling oa.designO as well, with the same interpretation. 

The function fac.design() also takes an optional argument row .names to provide 
names for the rows of the resulting design object: 

> cdesign <- fac.design(c(2,2,2), names= nlist, 
+ row.names 2 paste("Run",1:8)) 

The row names are the attribute "row.names" of the resulting data frame, and 
can be extracted or assigned as this attribute. For oa.design, and by default for 
fac. design, the values of row. names are the sequence numbers of the rows. As with 
the factor names, the row names can be assigned after creating the design: 



5.2. S FUNCTIONS AND OBJECTS 173 

> cdesign <- fac.design(c(2,2,2)) 
> row.names(cdesign) <- paste("Run",l:nrow(cdesign)) 

For designs created by oa.designO this will generally be necessary, since the number 
of runs is not known in advance. 

Factorial designs can be generated with multiple replications of each combination 
offactor levels by setting the optional replications argument to the number of repli
cates wanted. Fractional factorial designs can also be generated from fac.designO, 
but only for 2k designs. The argument fraction defines what fraction of a design 
is wanted. The argument can be a numeric fraction: 

> fac.design(rep(2,5),fraction~l/4) 
A B c 0 E 

1 A1 B2 C1 01 E1 
2 A2 Bl C2 01 E1 
3 A2 B2 C1 02 E1 
4 A1 Bl C2 02 El 
5 A2 Bl Cl 01 E2 
6 A1 B2 C2 01 E2 
7 A1 Bl C1 02 E2 
8 A2 B2 C2 02 E2 

Fraction: y "" A:B:O + B:C:E 

In this case, the function provides a one-quarter replicate of a 25 design, using some 
standard choices to pick the fraction. For more control over how the fractionation 
is done, fraction can be one or more defining contrasts. In terms of our model 
formulas, a defining contrast is an interaction of factors, such as A:B:C. In a two
level design, each such interaction defines one contrast with two possible values. 
Therefore, each such contrast implicitly divides the design into two halves, one of 
which will be chosen in forming the fractional design. If one contrast is supplied, 
a half-replicate is produced; if two contrasts are supplied, a quarter-replicate, and 
so on. The half chosen is specified by the sign of the corresponding term in the 
formula. The following creates a specific quarter-replicate of a 25 design: 

> fac.design(rep(2,5), fraction •"" A:B:C- B:O:E) 
A B C D E 

1 A2 B1 Cl 01 E1 
2 A1 B1 C2 01 El 
3 A1 B2 C1 02 El 
4 A2 B2 C2 02 E1 
5 A1 B2 Cl 01 E2 
6 A2 82 C2 D1 E2 
7 A2 81 Cl 02 E2 
8 Al Bl C2 D2 E2 
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Fraction: ~ A:B:C - B:D:E 

It's important that we used ":", not "•" in defining the contrasts. We wanted only 
the three-factor interactions, not the expanded model with all the main effects, etc. 
The latter will produce a design, but not one we want. The printing method for 
designs will show the defining contrasts, whether chosen automatically or specified 
in the calL 

Design objects are essentially just data frames in which the design itself is repre
sented by the factor variables. The function design() can be used to make a design 
object from one or more arguments (data frames, matrices, etc.), each variable or 
column being coerced to be a factor. In particular, designs are sometimes printed as 
tables, with numbers 1, 2, ... , in each column to stand for the levels of the factors. 
For instance, the first five rows of the orthogonal array design on page 171 in this 
form and without row labels would look like: 

1 1 1 1 1 1 1 1 
1 1 2 2 2 2 2 2 
11333333 
1 2 1 1 2 2 3 3 
1 2 2 2 3 3 1 1 

The function read. table() will read in such a file and convert it to a data frame. 
Suppose the complete design was read in this form, as waferd. Then design(waferd) 

will convert the data frame waferd to a design object. 
Once a design object has been created, .the factor names can be assigned from a 

list. For example, we could make up the names for the factors in the wafer. design 
design as follows: 

> fn <- list() 
> fn$maskdim <- c(2, 2.5) 
> fn$visc.tem <- c("204,90", "206,90", "204,105") 
> fn$spinsp <- c( "lo~", "normal", "high") 
> fn$baketime <- c(20, 30, 40) 

> factor.names(wafer.design) <- fn 

Alternatively, fn could have been given to design() as the factor .names= argument. 
In some designs, we want to indicate that some factors are ordered. Either single 
factors or selected factors in a design can be designated as ordered by using the 
function ordered 0 on the left of an assignment. The right side can give for each 
factor either a TRUE/FALSE value or the vector of levels in the order desired. With a 
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logical value, the current levels are assumed to be in increasing order. For example, 
in wafer. design, all the factors except the second and fifth are ordered: 

> ord <- rep(T, 8) 
> ord[c(2,5)] <- F 
> ordered(wafer) <- ord 

Further control over the parametrization can be obtained by specifying contrasts 
for the factors. See Section 5.3.1. 

Randomization 

In carrying out an experiment, one may want to randomize the order in which the 
runs are to take place. A randomized order could be generated by 

mydesign[ sample(1:nrow(mydesign)), ] 

which permutes the rows of the design in a random order. Unfortunately, things 
may not be quite so simple. In practice, some factors may be difficult to vary. 
We want to restrict randomization to leave these factors alone, so they can be 
varied as infrequently as possible. The function randomize() takes a design and the 
names of some factors to be restricted, and returns an ordering, first by levels of the 
restricted factors, and then randomized within those levels. Running the experiment 
in the order given by this permutation would provide the restricted randomization 
requested. For example, suppose we wanted to randomize the design in Table 5.1, 
but not over the Cat factor: 

> perm <- randomize(catalyst, restrict = "Cat") 
>perm 
[1] 1 3 4 2 8 6 5 7 
> catalyst[perm,] 

Temp Cone Cat Yield 
160 20 A 60 

3 160 40 A 54 
4 180 40 A 68 
2 180 20 A 72 
8 180 40 B 80 
6 180 20 B 83 
5 160 20 B 52 
7 160 40 B 45 

The result is to do all the A catalyst runs first, then all the B catalyst runs, while 
randomly permuting within each level of the catalyst factor. The restrict argument 
is essentially a subscript argument on the factors and can have any form suitable 
for such a subscript: character, numeric, or logical. 
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5.3 The S Functions: Advanced Use 

In this section, we present some more advanced techniques for using S functions 
to parametrize contrasts in more customized ways, to investigate aliasing, and to 
compute projections. 

5.3.1 Parametrization; Contrasts 

If we think of the anova model as implying coefficients for each level of each factor 
or interaction, then the model is inherently over-parametrized. The sum of all the 
coefficients for a main effect is trying to estimate the same thing as the intercept 
term, and the sum of the coefficients over one factor in a two-factor interaction is 
estimating the same thing as a single level of the other factor. No matter how many 
observations we take, these parameters are functionally aliased. In addition, if the 
experiment does not include all the possible combinations of levels for the factors 
in the model, even parameters that are not functionally aliased may be aliased in 
the design. 

The resolution of these ambiguities is done in two steps. First, a parametriza
tion of the model is constructed according to a choice of contrasts for each factor 
appearing in the model, to eliminate functional aliasing. Second, the numerical 
fitting of the model checks for and identifies any further design-dependent aliasing. 

The need to parametrize factors to fit linear models is common to all models in 
Chapters 4 to 7, although the details may vary a little depending on the emphasis 
in the modeling. For most analysis of variance, the default choice of contrasts is 
adequate: unordered factors use the Helmert contrasts, and ordered factors use or
thogonal polynomials. In particular applications, you may want to set the contrasts 
or study the fit in terms of particular contrasts. In doing any of these computations, 
two tools are particularly useful: 

• The function CO takes a factor and a chosen set of contrasts, and returns 
a factor with those contrasts inserted. You typically use CO directly in the 
formula of a fit, to set the contrasts for that fit. 

• The function contrasts 0 returns or sets the contrasts of a factor. If you want 
to modify the contrasts, you can start by getting the current contrast matrix 
and then make any changes you want to that matrix. The matrix can then 
be used with CO in a formula or assigned as the contrasts of the factor. 

Chapter 2 presents the techniques for defining and modifying contrasts in Section 
2.3.2 with the rules examined in detail in Section 2.4.1. In addition to C() and 
contrasts 0, a number of other techniques in this chapter are handy when studying 
contrasts. For example, the projections of the fit for individual terms are useful as 
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responses in fits designed to study the effects of different contrasts for the corre
sponding factors. The remainder of this section illustrates some of these techniques. 

It is possible to choose fewer than k - 1 contrasts for a factor with k levels, if 
the remaining contrasts are of no particular interest. There are two distinct ways 
to do this: 

contrasts(x) <- value 
contrasts(x, hov.many) <- value 

The first version value and fills it out to give a complete parametrization. The sec
ond version assigns only how.many contrasts, allowing a partial term in the analysis, 
in the sense that at most how .many degrees of freedom will be given to this term. 

Suppose we wanted to make sure the first effect for a four-level factor contrasted 
the average of the first and third against the average of the second and fourth levels: 

> attach(state, 1) 
> contrasts(region) <- c(1,-1,1,-1) 
> contrasts(region) 

[.1] [,2] [,3] 
Northeast 1 -0.7 -0.1 

South -1 0.1 -0.7 
North Central 0.7 0.1 

West -1 -0.1 0.7 

The assignment function for contrasts has appended two additional, orthogonal 
columns to the supplied contrast. The rows of the contrast matrix, as always, are 
labeled by the levels of the factor. 

For an example of omitting degrees of freedom from a term, we look again at 
the wafer data in Table 5.2. The factor called visc.tem was a three-level factor 
concocted from three of the four possible levels constructed by combining two levels 
each for viscosity (204 and 206} and baking temperature (90 and 105). In analyzing 
this factor, one needs to choose contrasts specially. If one chose to assume that 
the temperature factor had no effect, then the quadratic effect from three-level 
orthogonal polynomial contrasts turns out to be equivalent to the single contrast 
for viscosity. One way to install this assumption in the anova fitting would then be: 

> attach(wafer, 1) 
> contrasts(visc.tem,1) <- contr.poly(levels(visc.tem))[, 2] 
> contrasts(visc.tem) 

[.1] 
204,90 0.40825 
206,90 -0.81650 

204,105 0.40825 
> detach(1, save • "wpm1") 
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This is a fairly typical computation; let's examine it a step at a time. We want 
to create a new data frame with the modified contrasts for vise. tem; to start this 
off, we attach wafer as the working data. Now we generate the quadratic contrast 
for vise.tem (since it is not an ordered factor, its default contrasts would not use 
eontr.polyO). Because we assigned this with how.manyc1, only one degree of free
dom will be used for this term. Detaching and saving gives us our new data, in 
wpm1. Now we fit the pre.mellll response to the new data: 

> wvaov <- aov(pre.mellll ~ . , wpm1} 
> summary(wvaov} 

Df Sum of Sq Mellll Sq F Value Pr(F) 
maskdim 1 0.652 0.652 67.1 0~0038 

vise.tem 1 1.326 1.326 136.4 0.0013 
spinsp 2 0.765 0.383 39.4 0.0070 

baketime 2 0.002 0.001 0.1 0.8904 
aperture 2 0.032 0.016 1.6 0.3318 
exptime 2 0.545 0.272 28.0 0.0115 
devtime 2 0.280 0.140 14.4 0.0289 

etehtime 2 0.103 0.052 5.3 0.1033 
Residuals 3 0.029 0.010 

Only one degree of freedom goes to vise. tem, the other being included in the resid
uals. The same technique could have been used in a formula, replacing vise. tem 
by 

C(vise.tem, eontr.poly(levels(vise.tem}}[, 2], 1} 

The third argument to CO is again how.mlllly, with the same interpretation as when 
setting contrasts. In this example, permanently setting the contrasts seems more 
straightforward than having to include such a complicated expression in formulas. 

5.3.2 More on Aliasing 

The term aliasing is used in the analysis of variance to refer to the inability in some 
circumstances to talk about the estimate of an effect in the model without reference 
to other effects, either: 

• complete or full aliasing, in which the estimate is identical to (completely 
aliased with) some previously estimated effect or linear combination of effects; 
or, 

• partial aliasing, in which all the effects can be estimated but with correlation 
between estimates of the coefficients. ' 

There are many ways to phrase the definition of aliasing, and other terminology 
is sometimes used (the term confounding is used in some cases for partial aliasing, 
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particularly between block and treatment factors). The wording we use reflects our 
linking of analysis of variance with linear models. In fact, complete aliasing corre
sponds to singularity of the model matrix and partial aliasing to non-orthogonality 
of the columns of that matrix. 

Complete aliasing will happen in fractional factorial designs, and may be delib
erate if the design has been chosen to alias some higher-order interactions in the 
hope that not all of these will be important. Numerically, an effect or coefficient 
that would have been estimated is found to be equal to some linear combination of 
previously estimated parts of the model. That is, a column in the model matrix 
representing a contrast for one of the terms is found to be linearly dependent on 
previous columns of that matrix. 

Complete aliasing is represented by a matrix of dependencies, with rows for 
inestimable effects and columns for estimated effects. Each row equates an ines
timable effect to a linear combination of previously included effects. The expression 
alias(fit) returns the aliasing pattern appropriate to the object fit: for a linear 
model or an anova with a single error stratum the result is a matrix or NULL; for a 
model with multiple error strata the result is a list of the non-null alias matrices 
for the strata. The alias pattern in the fractional factorial analyzed on page 156 is: 

> alias(half.aov) 
Complete 

Temp:Conc 
Temp:Cat 
Conc:Cat 

Temp:Conc:Cat 

(Intercept) Temp Cone Cat 
1 

1 

1 

In this example the interpretation of the pattern is very sjmple, since each ines
timable contrast is exactly aliased with one earlier contrast. For example, one can 
say that the two-factor interaction Temp:Conc is aliased with the main effect Cat. 
When several nonzero coefficients appear in single rows of the alias matrix, inter
pretation may be more difficult. 

Partial aliasing is used to refer to the situation when two contrasts are correlated 
but not exactly linearly dependent. Where complete aliasing relates inestimable 
effects to estimable ones, partial aliasing is a relationship among the estimable 
effects. The measure we use is the correlation matrix of the coefficient estimates, 
with the diagonal terms set to zero. 

As an example of partial aliasing, we return to the wafer-processing example in 
Table 5.2 on page 149. The analysis in the referenced paper, and our own analysis 
so far, have ignored the fact that 3 of the 18 runs were done on one wafer, meaning 
that they had 5 instead of 10 repeated observations from which to compute the 
mean and standard deviation of the line widths. Under these circumstances, linear 
model computations should weight the observations proportionally to the number 
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of repeated observations, since the variance of the mean line width is inversely 
proportional to this number. The weighting is easy to do with the aov() function. 
Arguments to aov() can include optional arguments to lm(), such as weight"' to 
provide weights to be used in the fitting. 

wwaov <- aov( post.mean ~ maskdim + visc.tem + spinsp + baketime + 
aperture+ exptime + devtime + etchtime, data= wafer, weight = N) 

The weighted linear model is not balanced, and we can examine the alias pattern: 

> alias(wwaov) 
Partial 

(I) m v1 v2 sL sQ bL bQ al a2 eL eQ dL dQ eL2 eQ2 
(Intercept) 

maskdim 
visc.teml 
visc.tem2 
spinsp.L 
spinsp.Q 

baketime.L 

3 6 -1 6 1 -4 -5 1 -1 -6 1 -1 -1 -9 

baketime.Q 
aperture! 
aperture2 
exptime.L 
exptime.Q 
devtime.L 
devtime.Q 

etchtime.L 
etchtime.Q 

Notes: 
$"Max. Abs. Corr.": 
(1] 0.184 

4 6 6 -3 1 -1 -6 -4 6 -3 -4 
-5 4 -3 -4 -2 4 3 -7 5 -4 -3 -8 

2 4 2 -3 -6 -4 5 -7 6 4 1 
4 -4 -3 1 -4 -4 -2 4 -2 -8 

-2 3 -1 -7 3 -4 6 -3 -1 
-2 -4 2 4 -2 1 4 5 

5 -3 2 3 -1 -6 6 
1 -4 6 -4 -6 -1 

-3 4 -6 3 1 
-5 4 3 8 

-6 -4 -1 

1 
1 

Most effects are partially aliased with most other effects. The object returned to 
represent partial aliasing is a table simplified by coding the substantially nonzero 
correlations from -9 to +9 relative to the maximum absolute correlation, which is 
added as a note to the table. In addition, since the table is symmetric, only the 
upper triangle is shown, with the column labels abbreviated since they are the same 
as the row labels. There are many other ways to try to simplify this sort of pattern. 
The function pattern() is used to produce the simplified form: 

alias(vwaov, pattern = F) 

suppresses the call to pattern() and returns just the numerical alias pattern. Some 
nested designs tend to produce less global partial aliasing patterns. 
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In the examples shown, we either had complete aliasing (half. aov) or partial 
aliasing (wwaov). It's possible, of course, to have both, in which case alias() returns 
both as elentents of a list. Arguments Complete=F or Partial=F will suppress one 
part of the report if it is not of interest. 

So far, we have shown alias() as applied to a fitted model. You might well 
want to study the aliasing properties of a proposed design before fitting the model. 
In particular, studying the alias pattern of a proposed design and model may be a 
useful step in selecting a design. For this reason, alias 0 has a method for design 
objects: 

alias(mydesign) 

This method returns the aliasing pattern of the design, with respect to a model that 
fits all possible main effects and second-order interactions. Generally, the numerical 
aliasing pattern is determined by the design and the structural form of the model 
(but not by the response data). For this reason, an optional model formula can be 
added to the above call (a response is not needed). The default model is equivalent 
to 

alias(mydesign, "' . 11 2) 

5.3.3 Anova Models as Projections 

The description of a model formula as the sum of terms suggests an analogous way 
of looking at the fitted model. The model formula for the gun example on page 152 
is 

Rounds "' Method + Physique/Team 

which expands to 

Rounds "' Method + Physique + Team %in% Physique 

This additive model can usefully be related to the sum of five vectors, one for each 
of the terms in the model (including the intercept) and one for the residuals. These 
vectors identically sum to the response: 

Rounds = Y1 + Y2 + Y3 + Y4 + Ys 

where y1 is the projection of the response on the intercept, Y2 is the projection on 
the Method term, and so on. These projections are useful diagnostics and summaries 
of the fit. They can be computed, either during the fit or later. The projections are 
represented as a matrix. H computed during the fit (the most efficient approach) 
they are returned as the projections component of the fit. In the gun example, the 
computations would be as follows: 
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> gunaovp <- aov(Rounds ~ Method + Physique/Team, gun, 
+ projections • TRUE) 
> gunproj <- proj(gunaovp) 
> dim(gunproj) 
[1) 36 5 
> dimnames(gunproj)([2)) 
[1) "(Intercept)" "Method" "Physique" 
[4) "Team Xin% Physique" "Residuals" 

The argument projections=! to aov() causes projections to be computed. If we had 
previously computed a fit and just wanted to produce the projections, this can be 
done by 

> gunproj <- proj(gunaov) 

This usually does as much work as the previous version, since proj 0 must refit the 
model unless a qr component was requested in the original fit. 

The projection has one column for each term and one for the residuals. The 
linear equation above corresponds to asserting that the sum of the columns of the 
projection is equal to the response (up to rounding error): 

> sum.of.projections <- gunproj X•X rep(1,5) 
> all.equal.numeric(sum.of.projections, gun$Rounds) 
[1) T 

Since the columns of the projections are defined by the corresponding factor (main 
effect or interaction), all the elements of the column that correspond to the same 
level of the factor are equal. Thus, for all rows with the same level for Method, the 
values of gunproj [,"Method") are the same. For example, with Method••"M1", the 
common value is 4. 256. The same is true for the Physique effect. For the "Team 
XinX Physique" nesting, all cells indexed by each unique combination of Team and 
Physique have a common value. 

The sums of squares of each of the columns of gunproj are the sums of squares 
listed in the anova table (with, as usual, the sum of squares for the "(Intercept)" 
suppressed from the anova table). 

> apply( gunprojA2, 2, sum) 
(Intercept) Method Physique Team XinX Physique Residuals 

13456 651.95 16.052 39.258 53.499 

Compare this with the summary on page 152. 
Indeed, the anova table is a systematic way of recording the quadratic equa

tion that expresses the total sum-of-squares as the sum of the five values above. 
This quadratic equation is often called Cochran's theorem in the statistics litera
ture. It is a multidimensional analogue of Pythagoras's theorem. The degrees of 
freedom associated with the sums of squares are kept in the computed projection, 
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as attr(gunproj, "df"). The sums of squares for single-degree-of-freedom projec
tions are effects(gunaov)"2. We could store the sums of squares as an attribute of 
gunproj, but have chosen not to do so. Recording the degrees of freedom in gunproj 
is necessary. The row sums of the linear equation recover the response variable 
Rounds. The sum of the sums of squares equals the sum-of-squares of Rounds, and 
the sum of the sums of squares excluding "(Intercept)" is the corrected total sum 
of squares often seen in anova tables. 

Each column of gunproj is the projection of the response variable into the linear 
space spanned by the columns of the model matrix corresponding to that term of 
the model. The standard notation for the model expansion 

Rounds - Method + Physique + Team %in% Physique 

gives the linear equation: 

R R + RM + Rp + RT%in%P + e 

= l/3o + XRf3R + XMf3M + XT%in%P.6'r%in%P + e 

where the Rterm columns are projections of R onto the linear space of the model 
terms, the X term matrices are subsets of the columns of the model matrix, and the 
f3term coefficients are subsets of gunaov. qr$coef. In this notation Cochran's equation , 
is: 

t -t- ~t ~ ~t ~ ~t ~ t 
R R = R R + RMRM + RpRp + RT%in%PRr%in%P + e e 

Projections of the vector gun [, "Rounds" l onto each of the single-degree-of-freedom 
columns of the model matrix are also possible: ' 

> gunprojl <- proj(gunaov, onedf = T) 
> dim(gunprojl) 
[1] 36 11 
> dimnames(gunproj1)[(2]] 

[1] "(Intercept)" "Method" 
[3] "Physique.L" "Physique.Q" 
[5] "PhysiqueSTeaml" "PhysiqueATeaml" 
[7] "PhysiqueHTeaml" "PhysiqueSTeam2" 
[9) "PhysiqueATeam2" "PhysiqueHTeam2" 

[11) "Residuals" 

The sums of squares of the columns of gunproj 1 are the single-degree-of-freedom 
sums of squares. They are identical to the squared effects, effects(gunaov)"2. 

Projections with Multiple Sources of Variation 

Projections in the multiple-stratum models form a list whose elements are the pro
jections for each of the Error() terms. They are created by the same generic proj 0 
function. We illustrate using the guayule example: 
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> gaov.proj <- proj(gaov) 
Refitting model to allow projection 
> names(gaov.proj) 
[1] "(Intercept)" "flats" "Within" 

Each element of the list of projections is the projection matrix for the corresponding 
error term. The number of columns is the number of non-empty terms in the analysis 
for that error term: 

> sapply(gaov.proj, dim) 
(Intercept) flats Within 

[1,] 96 96 96 
[2.] 1 2 3 

In the analysis on page 158 that produced gaov, there are two terms for the flats 
strata, with two corresponding columns of gaov.proj$flats: 

> dimnames(gaov.proj$flats)[[2]] 
[1) variety Residuals 

Each of the projection matrices has its own df attribute, recording the degrees of 
freedom for the projections: 

> attr(gaov.proj$flats, "df") 
variety Residuals 

7 16 

The projections in a multi-stratum model represent two steps of projection. 
First, the response is decomposed into projections onto each term of the error 
model. Then, each of these projections is decomposed into projections onto each 
term of the treatment model. 

As with the single-stratum projections, we could use design.table() to examine 
each of the projection matrices in the multiple-stratum case. The value of each 
projection is constant within each level of the interaction factor corresponding to 
that term. 

Single-degree-of-freedom projections are again available, with the same interpre
tation. 

5.4 Computational Techniques 

This section presents some background on the computations shown in previous 
sections, including numeric and statistical results to justify the computations. The 
purpose is to make clearer the computations available and how they might be further 
extended. The topic is a rich one and our discussion here is necessarily brief and 
incomplete. However, it should help to clarify what is going on and why. Section 
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5.4.1 relates the effects and coefficients to the underlying linear model. Section 
5.4.2 discusses what happens when aliasing prevents estimating all the effects in 
the model. Section 5.4.3 adds the results needed when the model has an Error() 
model. Computations for projections are discussed in Section 5.4.4. 

5.4.1 Basic Computational Theory 

This section states some results that link the computations for aov models to the re
sults for linear models. Specifically, we state the algorithm for generating the model 
matrix and give the essential properties of the effects. A thorough treatment would 
require a fairly extensive excursion into linear algebra or geometry. Fortunately, the 
numerical algorithms themselves provide a natural way to motivate these results in 
an informal way, extending the corresponding results from Section 4.4. 

We start by rephrasing the linear model appropriately for this chapter. Suppose 
there are m terms in the formula, with expressions involving • or I expanded, 
the result simplified to eliminate duplicate terms, and with the intercept, if any, 
included as the first term. The n observations on the response y can be written: 

(5.1) 

where each T; represents the expected contribution from the jth term and e is the 
error, conventionally assumed independently normal with zero mean and variance 
u2 , as outlined in Chapter 4, page 97. In this chapter, the emphasis is on terms 
and on single-degree-of-freedom effects. The algorithms used to fit the models, 
however, work by finding a model matrix, X, that is equivalent to (5.1). The term 
TJ corresponds to X;, a submatrix of X. The columns of Xj are generated from 
contrast definitions for all the factors appearing in the term T;. These contrasts 
are chosen so as to represent all the linear combinations of the dummy variables for 
the factors that are not redundant (in the sense of being functionally dependent on 
previous terms). 

The rules for constructing the columns of X1 were given in Section 2.4.1, where a 
recursive rule was given. For a factor, F, appearing in T;, the computation generates 
a matrix with n rows and either k or k- 1 columns, where k is the number of levels 
of F. If Tj is an interaction of two or more factors, then X; is formed by taking all 
possible products of columns from the matrices generated for each of these factors. 
Section 2.4.1 has an informal proof that this is a valid coding of the model. 

We can write the model matrix as: 

(5.2) 

and let X; have d; columns. Then d; is the maximum number of degrees of freedom 
forT;, as determined from the form of the model (5.1). If the design is complete 
or the model is chosen so· that all terms are estimable, then X will be of full rank. 
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Otherwise, the number of degrees of freedom for some T; will be less than d;. Since 
the notation is a bit simpler, let us assume to begin with that X has full rank, 
d = 'Ed;, and then consider the general case in Section 5.4.2. 

Given a valid coding of the model in the form (5.2), we can use the orthogonal 
decomposition discussed in Section 4.4 to state the properties of the effects. The 
decomposition expresses X in terms of ann by n orthogonal matrix Q and ann by 
d upper-triangular matrix R such that 

Qt ·X = R 
Qt. y c 

= [c1 cz · · · Cm Cm+t) (5.3) 

where c; is the set of effects associated with term T; (d; of them by the assumption 
of full rank), and Cm+1 is the set of residual effects, if any. These effects are the key 
computational tool for standard anova summaries. Their essential properties follow 
directly from the construction of the orthogonal decomposition: 

1. The elements of c are all uncorrelated, both within and between terms, re
gardless of whether the design is balanced or not. 

2. The distribution of c; is unaffected by any of the preceding terms T;•, j' < j; 
in particular, T;• contributes nothing to the expected value of c1. Again, this 
is true regardless of balance. 

3. In addition, if a following term 7';•, j' > j, is balanced with respect to T1, the 
same is true of it; that is, the distribution of c1 is unaffected by T;•. 

By "unaffected" in properties 2 .and 3 we mean that the mean of c; does not involve 
the coefficients from term T;•. These three properties justify the use of standard 
summaries, such as the anova tables and the association of effects in probability 
plots with the corresponding terms. 

To complete this section, we outline how the three properties can be derived 
from the linear model. Equation (5.3) and the model assumptions imply the first 
property, since the elements of y are independent and c is an orthogonal transfor
mation of y. To see the other properties, we write Q in columns corresponding to 
the terms, 

In the Householder algorithm, Q is not stored explicitly as an n by n matrix, but 
the matrix form is nevertheless fully defined. We also write out the linear model 
for y in terms of coefficients corresponding to the chosen contrasts, 

(5.4) 



>5.4. COMPUTATIONAL TECHNIQUES 187 

and partition the upper-triangular matrix R into rows and columns corresponding 
to the terms; that is, Rn is the first d1 rows and d1 columns, R21 the next d2 rows 
of the same columns, and so on. Since R is upper-triangular, 

R;i' = 0, j' < j 

In addition, if the j'th term is balanced with respect to the jth term, 

R 0 •I • 
jj' = 'J > J 

as well. The second and third properties then follow from writing out Cj: 

Cj = Q}·y 

= Q} · (X1/31 + Xz/3z + · · · + Xkf3k + t:) 
k 

- L Rii' . /3;• + Qj . t: 
j'=l 

= Rji · f3i + · · · + Rik · !3k + Q} · t: 

and c; = Rii · f3;, if all the terms are balanced. 

(5.5) 

As in the linear model, all the basic results extend directly to the case of a 
multivariate response-that is, to the case that y is ann by q matrix. Then c, c;, 
f3 and /3;, all become matrices with q columns. 

5.4.2 Aliasing; Rank-deficiency 

This section derives the matrix returned by the alias 0 function to represent alias
ing in an over-determined model. When the computed rank r of X is less than 
d = Ed;, the decomposition pivots columns so that the first r columns are linearly 
independent. In this case, the numerical decomposition is written: 

(5.6) 

Here Pis a permutation matrix, representing the permutation of columns described 
by the component pivot returned from the decomposition, and R+ is an r by r 
upper-triangular, nonsingular matrix. The computation has decided that the diag
onal elements in the triangular matrix corresponding to the pivoted columns are all 
effectively zero. 

The matrix Ra contains the aliasing information. To see this, let Xo be the 
columns of X found to be linearly dependent, the last d - r columns of X · P in 
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(5.6). Similarly, let X+ be the first r columns of X ·P, and Q0 , Q+ the corresponding 
columns of Q. Then 

Q~ · Xo = Ra 

By analogy with (5.3), Ra contains the effects from fitting X0 to X+· In the 
stmse developed in Section 4.4, the elements in Ra define the contribution of the 
contrasts in X+ to predicting the contrasts in X0 . But since the fit is exact, the 
effects actually define X0 in terms of X+. The alias() method returns R~ as the 
definition of complete aliasing as illustrated in Section 5.3.2. 

This discussion of aliasing shows clearly the extension to partial aliasing. When 
complete aliasing occurs, the contrasts in Xo are regressed on X+ with effectively 
zero residuals. However, when the jth contrast is not fully aliased, we can still 
consider fitting it to the preceding j - 1 columns of X, and it remains true that the 
jth column of R represents the effects of this fit. If the first j - 1 elements of this 
column are effectively zero, then the jth column is orthogonal to (unaliased with) 
the preceding columns. Otherwise, partial aliasing exists, and can be summarized 
in various ways. The result returned by alias() uses the above-diagonal elements 
of the correlation matrix of the coefficients. This is a relatively easy summary to 
interpret. However, there is no single definitive numerical summary. In terms of 
theory, the matrix R itself is attractive. It clearly has all the information and 
connects fairly smoothly between complete and partial aliasing. It is not scale
independent, on the other hand, and probably is not as easy to explain intuitively. 

5.4.3 Error Terms 

This section explains the computations used with an explicit error model, supplied 
as an Error 0 expression in the formula. The method is nicely simple and general, 
awl uses the basic linear model computations in a neat, recursive way. The general 
J>r<•hlem is to fit an analysis of variance model when the error is assumed to be the 
surrr of errors due to the levels of certain factors occurring in the error model, as 
w•·ll as a common residual error. 

To begin, we need to write such a model explicitly. Let's submerge the specifics 
of t.he terms and just let 11- stand for the sum of all the terms in (5.1) on page 
18f,, except for the Error() expression. This is often called the treatment model. 
Suppose the error model has s terms. Then (5.1) can be rewritten for observation 
i: 

• 
Yi = J.li + LCl(i,j) + E; (5.7) 

j=l 

wh''"' the notation l(i, j) just means that the jth error term is at level l(i,j) for 
the tl.h observation. 

The key to the computations is to write the element-wise model (5.7) in terms 
of th•! equivalent model matrix, XE, for all the terms in the Error() expression. In 
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matrix form: 
y := 1-' + XE . EE + E 

But now we can compute an orthogonal matrix QE from the decomposition of XE. 

As in (5.3), QE applied to y produces s + 1 sets of orthogonal effects, which we 
write y•: 

Q~. y y• 

(YiY2 · · ·y;y;+l) 
:= 1-'. + RE. EE + Q~. E (5.8) 

where yJ are the effects for error term j, and 

Since Q E is orthogonal, Q~ · E has the same distribution as E under the normal error 
assumptions. The analogy with (5.3) extends to equation (5.5). In particular, the 
j'th error term contributes nothing to the variance of yJ, for j' < j. Statistically, 
this says that the jth term of the error model produces a set of effects, say bi of 
them, constituting the components of y affected by the jth error term (but not by 
previous error terms), and a set of n- L: bi components affected only by the Within 

(intra-block) errors. The appropriate analysis th~n applies the treatment model 
separately to these sets of effects, producing analyses for each that can be related 
to the corresponding error estimates. 

Computationally, this works out quite simply. The quantity we have written as 
J.L is really the sum of the components from each of the terms in the treatment part 
of the model (5.1) and can be written in terms of the model matrix (5.2): 

Therefore 
~-'. == x·. /3 

where x• = Q~ ·X. Equation (5.8) fits Yi to the first b1 rows of x•, Yi to the 
next lrz rows, and so on. Each fit may produce estimates for any of the terms in the 
treatment model, which are to be compared to the relevant error estimates for that 
fit, assuming there are degrees of freedom left for residuals in that fit. It is these 
separate fits that correspond to the error strata. 

To summarize the computations: 

1. Compute the orthogonal transformation, Q E. for the error model. 

2. Apply this to the response and to the model matrix for the treatment model, 
producing y• and x·. 
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3. For each term in the error model, fit the elements of y• assigned to that term 
to the corresponding rows of x·. 

4. The object representing the complete analysis of variance is the list of these 
models. 

5.4.4 Computations for Projection 

Section 5.4.1 extends the QR calculations for linear models to handle the single
stratum analysis of variance. In essence, we partitioned the response variable y in 
equation (5.4): 

The columns of the X; components are not necessarily orthogonal, neither within 
nor between X;. The projections are a repararnetrization of the same equations 
with the substitution X = Q · R. In terms of computed quantities: 

where ~ means equal up to computational error, the f; are the elements of the 
product-)'= R·/3 and e is the computed residuals. Each term Q;f; in equation (5.9) 
is one column of the n by m projection matrix returned by the generic function 
projO. For ordinary linear models, and so for anova models without an Error() 
model, the result follows directly from the QR method of fitting. If single-degree
of-freedom projections are not wanted, all the columns associated with each term 
of the model formula are summed into one column. By supplying the argument 
onedf=T, this summation is suppressed. The column of residuals is appended to the 
projection matrix, so the columns sum to the response. 

The multiple-stratum projections are more interesting. They begin with the 
objects constructed as described in Section 5.4.3. The fit in stratum j b;, generally 
much smaller than n. Specifically, the computations solved the linear model: 

where Ej is the part of Q E · E associated with the jth term in the Error 0 model. The 
projection computations in this case begin by producing the projections of column
length b; for the ith error term. They then reconstruct the n-row projection matrix 
for each error term by embedding the length b; projection into an n-row matrix of 
zeros and premultiplying by Qe. 

To make this concrete, consider again the guayule example. Recall that the 
Error() model forms a stratum from the flats factor, specifically, 

plants ~ variety • treatment + Error(flats) 
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The assign component of gaov.qr assigns 1 degree of freedom to the Intercept 
stratum, 23 degrees of freedom to the flats stratum, and the remaining 72 degrees 
of freedom to the Within stratum. Suppose Q E is the orthogOIIIt] transformation 
defined by the QR decomposition of the Error() model. For an.v (n = 96)-vector 
x, Q~ · x projects the first element onto the Intercept stratum, Uu· next 23 to the 
flats stratum, and the remaining 72 to the Within stratum. In )>hrf.icular, if M is 
the treatments model matrix, Q~ · M projects each column of M iu this way. This 
is the key step in computing the analysis of variance (and the Jl''•.iections) with 
multiple error strata. 

The anova for the flats stratum is computed by fitting element.k 2 through 24 
of Q~ · y to the corresponding rows of Qt -M, and the anova for the Within stratum 
fits elements 25 through 96 to rows 25 through 96. The computational efficiency 
is realized because each of these steps has computational cost proportional to 113 , 

where 11 is the number of degrees of freedom in the stratum. For example, 11 = 23 
in the flats stratum. The projection process reverses the subsetting process. The 
column-length 23 projection in the flats stratum is embedded into rows 2 through 
24 of an otherwise 0-valued 96x23 matrix, which we will call P. The column-length 
96 projection returned in the component gaov. proj$flats is calculated as Q E . P. 

As we noted, there is no need to specify separate treatment models for the 
different strata; with a balanced design the balance will cause the columns of the 
transformed model matrix to be zero {within computational accuracy) in strata 
where the corresponding terms drop out of the analysis. For example, the flats in 
this experiment are orthogonal to the treatment factor, so that the corresponding 
treatment columns of Q~ · M will be zero in rows 2 through 24. 

The computations are designed to be general. An error structure with more 
than two strata would correspond to additional factors in the Error() model. Also, 
there is no computational requirement for balance, either in the error strata or 
between the error factors and the treatment factors. Of course, statistical use and 
interpretation of analysis of variance models fitted to unbalanced data are adversely 
affected and need to be much more carefully stated. 

Generalized Yates Algorithm for Direct Projection 

We derive here an algorithm for fitting the models of this chapter from projections, 
without explicitly using linear model calculations. The function aov. genyates 0 
implements this algorithm. The relevance is that for some large, balanced designs 
the calculations may be much more efficient than those based on linear models. In 
addition, the method illustrates a more general notion; namely, that our approach 
to these models can be adapted to any algorithm capable of producing the essential 
information used for computing summaries and derived quantities. While we do 
not discuss them, method& exist that solve a wider range of models without using 
linear model calculations. These too could, in principle, be used to generate aov 
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objects. 
The generalized Yates algorithm is based on knowing that the columns of the 

X matrix in the regression setting are orthogonal. Hence the fundamental mathe
matical specification for the projections, 

is numerically simplified because X 1 X is diagonal. By starting with an orthogonal 
X matrix we are able to avoid the cross-product and inversion in the cross-product 
algorithm, or the orthogonalization process in the QR algorithm: 

xx <- apply(X•X,2,sum); 
xy <- crossprod(X,Y) 
coef <- xy/xx 

From this we can calculate the projections directly: 

# element by element multiplication 
proj <-X • matrix(coef,nrov(X),ncol(X),byrov=T) 
Yhat <- apply(proj,l,sum) 
# alternatively: 
Yhat <- X %•% coef 
residual <- Y - Yhat 

We collect in function aov. genyates () the direct calculation of the single-degree
of-freedom projection information from the model formula and the data frame. The 
result is an aov object with an added proj component. 

This process gives us projections onto single-degree-of-freedom contrasts that 
correspond to the columns of the specific contrast matrix used in the construction 
of the model matrix. Often we care about the projection into the subspace, but 
not onto the arbitrary individual degrees of freedom. We therefore collect them by 
summation of all the columns of the projection that have been assigned (with the 
assign attribute) to the same model term. Since the columns are orthogonal, their 
sums by the assign groups retain the orthogonality. 

Generalized Yates Algorithm with Multiple Error Strata 

The error strata correspond to a model matrix similar to that used for treatments. 
The calculations for the multiple-strata designs are also similar to those for the 
simpler one-stratum designs. We describe them in terms of the direct projection 
algorithm. 

First, the response variable Y is partitioned via aov. genyates () into a set of 
projections onto the terms of the Error() model formula. For the gun example, 
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there are the "(Intercept)", flats, and Within terms. Each carries the entire sum 
of squares and degrees of freedom of what will become its stratum. 

Second, each column of the projection onto the error space and its residual 
is partitioned, by recursive use of the aov. genyates 0 function, into columns cor
responding to the terms of the treatment model. Treatment terms whose model 
matrix columns are orthogonal to the columns of the error model matrix that de
fine a stratum have projections with 0 sum-of-squares and 0 degrees of freedom. 
Should a stratum be entirely orthogonal to the treatment model, the entire sum-of
squares for the stratum appears in the stratum residual. To avoid redundancy in 
terminology, the stratum to which the residuals from the fit to the Error() model 
are assigned is called the Within stratum. 

The direct projection algorithm is efficient but not immediately generalizable to 
situations where the error and treatment models do not define orthogonal model 
matrices. Common designs such as partially confounded designs are therefore ex
cluded. In addition, designs for which there are missing values on some observations 
are excluded. 

We can partially compensate for the lack of generality by including an optional 
argument in the multiple-stratum function. When it is known that the error and 
treatment model matrices are not orthogonal, setting the argument causes the treat
ment model matrix to be projected onto the space of the error model matrix before 
the recursive anova of the current partition of the response variable. 

Bibliographic Notes 

There are many good introductions to the analysis of variance. Box, Hunter, and 
Hunter (1978) is widely used in industrial applications. Searle (1971) gives a some
what less applied approach, connecting the methods to linear models as we have 
done here. Computational methods for the analysis of variance are presented in 
detail in Heiberger (1989). 



Chapter 6 

Generalized Linear Models 

Trevor J. Hastie 
Daryl Pregibon 

Linear models and analysis of variance are popular. Many phenomena behave lin· 
early (at least over small ranges) and have errors that are Gaussian. Often even 
nonlinear phenomena can be modeled linearly by transforming or "bending" the re
sponse. This simplifies the computations, but it can lead to interpreting the modej 
in unnatural scales. 

This chapter is devoted to a class of models that is as tractable as classical linear 
models but does not force the data into unnatural scales. Instead, separate functiom 
are introduced to allow for nonlinearity and heterogeneous variances. Generalized 
linear models are closer to a reparametrization of the model than to a reexpression 
of the response. 

Take, for example, binary response data, where the outcome variable takes onf 
of two values, say "success" or "failure." If the response is coded 1 for success and 
0 for failure, the mean is the probability of success and is a natural candidate f01 
modeling. We might want to investigate the effect of the predictor variables on 
this probability. Is the linear regression model still appropriate for binary responsE 
data? Probably not, unless we are willing to constrain the fitted values to be in 
[0, 1]. FUrthermore, the variance of a binary response depends on the mean, which 
we are modeling as a function of the predictors, so we should account for that a!' 

well. The logistic regression model, described in this chapter, is a generalized linear 
model (GLM) that is specially designed for modeling binary and more generally 
binomial data. 

The family of generalizations includes log-linear models for contingency tables 

195 
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and count data, models for multinomial responses, gamma models for positive data 
with long-tailed error distributions, and many more. These models share several 
features: 

• They can be described concisely in terms of a link function, which describes 
the relationship between the mean and the linear predictor, and a t>ariance 
function, which relates the variance to the mean. 

• They can be fitted by iteratively-reweighted least squares. Apart from the 
computational convenience, the accompanying quadratic approximation to 
the log-likelihood makes for simple approximate inferences. 

• The fitted nonlinear models can be summarized by statistics, tables, and plots 
that are all natural generalizations of their linear model counterparts. 

S is a natural environment for exploring generalized linear models and for cre
ating suitable data structures for their representation and fitting. For example, the 
link and variance functions are packaged up in the family argument to the glmO 
function, and are themselves S functions; typically they are very simple, and as such 
they can be easily modified and new link and variance functions can be created. 

6.1 Statistical Methods 

The classical linear model 
y =f3Tx +e- (6.1) 

postulates that e is (normally) distributed with zero mean and constant variance. 
This model serves a large variety of data situations very nicely, and it has seen a 
lot of use. In some situations, (6.1) is not appropriate for one or more reasons: 

• If y assumes values over a limited range, the model E(y) = J.L = {3tx for the 
mean does not incorporate this restriction. 

• For many types of data a change in the mean of y is accompanied by a change 
in its variance. 

For example, binary response data have their mean J.L E [0, 1] and a variance 
J.L( 1- J.L) that changes with the mean. The problem seems to be that a mean linear in 
the parameters/predictors is not restricted to [0, I] without additional assumptions, 
and that a constant variance is not always realistic. 

Generalized linear models deal with these issues in a natural way by using 
reparametrization to induce linearity and by allowing a nonconstant variance to 
be directly incorporated into the analysis. Specifically, a generalized linear model 
requires two functions: 
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• a link function that describes how the mean depends on linear predictors, 
g(J.L) = {3T x, and 

• a variance function that captures how the variance of y depends upon the 
mean, var(y) = Q>V(J.L), with 4> constant. 

Link functions are monotone increasing, and hence invertible; the inverse link f = 
g-1 is an equivalent and often a more convenient function for relating J.L to the 
predictors: 

J.L = f({3Tx). 

For convenience, it is c\.istomary to denote the linear predictor by T/ = {3T x. For 
example if the response is binary, the so-called logit link 

T/ = log(-IL-) 
1-J.L 

or 
e'~ 

1 +e'~ 

guarantees that J.L is in the interval (0, 1], which is appropriate since IL is a proportion 
in this case. The logit link, together with the binomial variance function V(J.L) = 
J.L{1 - J.L) defines the popular logistic regression model. 

Although binary data problems are an important application, the following table 
summarizes other commonly used generalized linear models, along with their default 
link and variance functions: 

Distribution Link FUnction Variance FUnction 
Gaussian J.L 1 
Bernoulli log{J.L/{1 - J.L)} J.L{1- J.L) 
Binomial log{J.L/{1- JL)} J.L{1 - J.L)/n 
Poisson log(J.L) IL 
Gamma 1/J.L J.L2 
Inverse Gaussian 1/J.L2 1-'3 
Quasi g(J.L) V(JL) 

Apart from the last entry, all the distributions in the table belong to the one pa
rameter exponential family of distributions. The last entry in the table refers to 
the quasi-likelihood model. While all the other entries are generated by a specific 
distribution or likelihood, this need not be the case for quasi-likelihood models; they 
are specified entirely by the mean and variance functions. A thorough account of 
quasi-likelihood inference would be out of place here; McCullagh and Neider {1989) 
is a good reference for all the material in the chapter. 
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Generalized linear models are an alternative to response transformation models 
of the form 

(6.2) 

which are also used for enhancing linearity and homogeneity of variance. In fact, 
certain choices of g and V above lead to analyses very similar to the class of response
variable reexpression models, but in fact they are more general due to their flexibility 
in allowing separate functions to specify linearity and variance relationships. 

Reexpressions, although very useful at times, suffer from several defects: 

• Familiarity of the measured response variable is sacrificed in the analysis of 
1/J(y). 

• A single reexpression 1/J(y) must simultaneously enhance both linearity and 
homogeneity of variance. 

• Often the preferred transformations are not defined on the boundaries of the 
sample space; e.g., the logit transformation is not defined for observed pro
portions exactly equal to zero or one. 

Generalized linear models finesse both these problems. 
The next question is how to estimate the model. We use maximum-likelihood 

estimation. For the class of response models we consider here, maximum-likelihood 
estimation has a particularly convenient structure. An iteratively reweighted least
squares (IRLS) algorithm is used to compute the model parameter estimates, and 
weighted least-squares plays a central role in the asymptotic inference. We give an 
outline of the methodology in Section 6.4.1. Readers not familiar with this area 
might even read that section first, because we draw on the concepts throughout the 
chapter. 

Another popular arena for GLMs is the analysis of cross-classified count data, 
or contingency tables. The margins of a table are indexed by factors, and the cell 
counts are very similar to the response in a balanced, multiway, designed experi
ment. For example, an entry in a three-way table niik is the number of individuals 
at level i of factor I, level j of factor J and level k of factor K. The most popular 
models are linear in the logarithm of the expected cell count J.Lijk = Enijk· For 
example, the main-effects model has the form 

log Jliik = a + !3{ + !3/ + !3f 

where the superscript refers to the factor and the subscript to the level of the factor. 
Alternatively, we can write the log-linear model as a multiplicative model for the 
expected cell count 

0 1 J K 
Jlijk = JL JL; Jlj J.Lk 
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which is the complete independence model for the table. All the models for various 
forms of independence, such as conditional independence and marginal indepen
dence, have a log-linear representation. Although the multinomial distribution is 
usually appropriate as the sampling model for the cell proportions, appropriate 
Poisson models for the cell counts produce identical estimates and inference. De
spite the similarity with a fully-balanced designed experiment, the estimated effects 
are not independent because of the nonlinearity of the mean and the changing error 
variance. Nevertheless, the analysis is similar, and an analysis of deviance table is 
used to compare nested sequences of models. We return to this member of the GLM 
family in Section 6.2.5, where we fit a log-linear model to the wave-soldering data 
of Chapters 3 and 5. 

In the next section we describe S functions for fitting GLMs. Since weighted 
least squares is used iteratively to fit the models, the final fit is also a weighted 
least-squares fit. Indeed, we have made sure that objects produced by the glmO 
functions inherit as many of the properties of the 1m and aov objects as possible. 
This means that summaries and diagnostics described in Chapters 4 and 5 can also 
be used here, typically with minor modifications. 

Section 6.3 describes the functions in more detail, and examines more advanced 
functions for model selection, diagnostics, and creating private families. Section 6.4 
gives details on the statistical concepts associated with maximum-likelihood infer
ence, as well as algorithmic details. 

6.2 S Functions and Objects 

Here we describe some S functions for fitting generalized linear models, and for 
printing, summarizing, and working with the fitted glm objects. Many of the func
tions here resemble those encountered in Chapter 4; indeed, the glm object inherits 
all the properties of an lm object. Readers familiar with the earlier chapters will 
not have to learn too many new names here; functions such as summary(), plot(), 
and so on work as before, with suitably modified effect. We show in the examples 
how this inheritance can also be exploited to provide additional views of a fitted 
generalized linear model. 

We encourage you to read Chapter 4 on linear models before reading this chap
ter in order to become acquainted with the basic functions associated with linear 
models. Although this chapter is self-contained, the pace is quicker than in Chap
ter 4. 

6.2.1 Fitting the Model 

A call to the S function glmO in its simplest form looks like 

glm(formula, family) 
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Figure 6.1: Boxplots of the kyphosis data 
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The argument family captures all the relevant information about the link and vari
ance functions. Without the family argument, the glm() function is equivalent to 
lmO, modulo some additional returned components. 

Let us explore glmO using some binary data. The data frame kyphosis consists 
of measurements on 81 children following corrective spinal surgery. The first few 
observations are 

> kyphosis[1:13,] 
Age Number Kyphosis Start 

1 71 3 absent 5 
2 158 3 absent 14 
3 128 4 present 5 
4 2 5 absent 1 
5 1 4 absent 15 
6 1 2 absent 16 
1 61 2 absent 17 
8 37 3 absent 16 
9 113 2 abeent 16 

10 59 6 present 12 
11 82 5 present 14 
12 148 3 absent 16 
13 18 5 absoout 2 

where the binary out<·•11ue variable Kyphosis indicates the presence or absence of 
a postoperative deformit.y (called Kyphosis). The other three variables are Age of 
the child in months, Nw"'"•r of vertebrae involved in the operation, and Start, the 
beginning of the range of vertebrae involved. 
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The questions are: how do the latter three variables relate to the response, and 
can they be used to screen the patients prior to the operation? In 17 of the 81 
children Kyphosis is present. Figure 6.1 summarizes the data. We start with a 
simple linear logistic model involving all the predictors 

kyph.glml <- glm(Kyphosis ~ Age + Start + Number. 
family =.binomial. data = kyphosis) 

The formula reads "Kyphosis is modeled as a linear function in Age, Start, and 
Number." The family= argument is given as binomial, which means that the link 
function defaults to logit and the variance to the binomial variance. The response 
is coerced to a 0-1 variable with 1 indicating the presence of Kyphosis. So what the 
formula really means is "The logit of the mean of Kyphosis, given the predictors, is 
linear . . . . " Symbolically, the model is 

where p. is the probability of Kyphosis. Although we have named the family= 
argument, this is unnecessary since it is the second argument to glmO; we could 
simply have entered the word "binomial" in this second position. We return to the 
family= argument in Sections 6.2.2 and 6.3.3. Data can either be explicitly provided 
as a data frame via the data= argument, as is done here, or else the variables named 
in the call to glm() are expected to be found in one of the directories attached 
during the session. Of course, the data frame kyphosis' itself can be attached once 
and for all at the beginning of the session using attach(kyphosis). 

The glmO function fits the coefficients of the linear logistic model using max
imum likelihood in the binomial family. When we print the fitted glm object, it 
resembles an lm object, but with slightly different naming conventions: 

> kyph.glm1 
Call: 
glm(formula = Kyphosis ~ Age + Start + Number. family • binomial. 

data s kyphosis) 

Coefficients: 
(Intercept) Age Start Number 

-2.035 0.01092 -0.2064 0.4103 

Degrees of Freedom: 81 Total; 77 Residual 
Residual Deviance: 61.38 

To print kyph.glm1, we simply typed the name of the fitted object. The print() 
function uses the class of kyph.glm1 and invokes the print method print.glm(). 
A brief summary is produced by printing an object, while a more detailed one 
is produced by the summary() function. The call component of kyph.glm1 gives 
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a succinct record of how it was created, and is useful for distinguishing different 
fitted objects. Instead of the residual standard error reported for an 1m object, the 
deviance of the fitted model is printed, which is a more meaningful measure in this 
context. The deviance, described in Section 6.4, is similar to the residual sum-of
squares, and is a useful quantity for comparing models. The residual degrees of 
freedom are needed to calibrate the deviance. The signs of the coefficients match 
the information we get from the boxplots, but that is about all we can say from the 
analysis so far. 

Our call to gl110 above has explicit arguments. Several shortcuts are available 
in these calls, some pertaining only to this case: 

• As always, if we had attached the data frame kyphosis, we would not need 
the datackyphosis argument. 

• Since we are using all the variables in the data frame as predictors in a simple 
additive model, we could use the "dot" facility in formulas 

glDI(Kyphosis ~ . , bino11ial, kyphosis) 

For "dot" to be interpretable, the data argument has to be present. 

• Since Kyphosis is the first column of the data frame kyphosis, 

glDI(kyphosis, binomial) 

will also work, since the foi'IIIulaO method for data frames assumes that the 
first column is the response. ' 

• We simply give the response as Kyphosis, leaving glDIO to coerce into the form 
of a 0-1 variable. Here Kyphosis is a two-level factor, with levels "absent" and 
"present", and the rule is that the first level is the 0 and the rest are Is 
(Section 6.3.3). An alternate, more explicit specification would be 

glm(Kyphosis .. = "present" ~ .) 

All the above would produce the same result. 
The components of kyph.glDI1 include all the components of an lDI object: 

> na~~es(kyph.glDI1) 
[1] "coefficients" "residuals" "fitted. values" 
[4] "effects" IIR" "rank" 
[7] "assign" "df.residual" "veights" 

[10] "linear.predictors" 11 deviance" "null. deviance" 
[13) "call" "iter" tty II 
[16] "terms" "fa~~ily" "foi'IIIUla" 

with some added extras. A glm object inherits from the class "lDI": 
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> class(kyph.glml) 
[1] "glm" "lm" 
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This means that we could have printed kyph. glml using print .1m() instead, although 
the merit of doing this is not obvious at this stage. 

There are several functions for extracting single components from the fitted 
objects, which we list here and explain as we go along: 

• residuals() or its abbreviation resid(): produces residuals, with an argument 
specifying the type of residual; 

• fitted() or fitted. values():· extracts the vector of fitted values; 

• predict 0: has several arguments, and by default extracts the linear predictor 
vector; 

• coef 0 or coefficients(): extracts the coefficient vector; 

• deviance(): extracts the deviance of the fit; 

• effects(): returns the vector of labeled 1 degree-of-freedom effects; 

• formula(): extracts the model formula that defines the object; 

• family(): returns the family object used or implicitly used in producing the 
object. 

All of these functions are generic, which means they should produce sensible results 
for a number of different classes of models, provided specific methods exist. 

The details of a glm object are described in the documentation section of the 
appendix, under glm.object, and can also be obtained online using the expression 
help(glm.object). Among the components are both 

fitted.values 
linear.predictors. 

The former is on the scale of the mean, while the latter is the linear parametrization 
obtained from the fitted values via the link function. A simple way to extract these 
is to use the functions fitted() and predict(). For example, the first three values 
of the linear predictor for kyph. glml are 

> predict(kyph.glm1)[1:3] 
1 2 3 

-1.061 -1.969 -0.02822 

while the first three fitted values are 
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> fitted(kyph.glm1)[1:3] 
1 2 3 

0.2571 0.1225 0.4929 

which lie in (0, 1] as expected. These are obtained in this case by applying the 
inverse logit transformation 

> TT <- exp(predict(kyph.glm1)[1:3]) 
> TT/Cl+TT) 

1 2 3 
0.2571 0.1225 0.4929 

The summary() function gives a. more detailed description of the fitted model: 

> summary(kyph.glm1) 

Call: glm(formula = Kyphosis ~ Age + Start + Number, 
family = binomial, data = kyphosis) 

Deviance Residuals: 
Min 1Q Median 3Q Max 

-2.398 -0.5702 -0.3726 -0.1697 2.197 

Coefficients: 
Value Std. Error t value 

(Intercept) -2.03491 1.432240 -1.421 
Age 0.01092 0.006353 1.719 

Start -0.20642 0.067061 -3.078 
Number 0.41027 0.221579 1.852 

(Dispersion Parameter for Binomial family taken to be 1 ) 

Null Deviance: 83.23 on 80 degrees of freedom 

Residual Deviance: 61.38 on 77 degrees of freedom 

Number of Fisher Scoring Iterations: 4 

Correlation of Coefficients: 
(Intercept) Age Start 

-0.2755 
Age -0.4552 

Start -0.3949 
Number -0. 8466 0.2206 0.1236 

Residuals for GLMs can be defined in several different ways. The summary() method 
produces deviance residuals, and prints a five-number summary of them. These 
are different from the residuals component of a glm object, which are the so-called 
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working residuals from the final IRLS fit. The residuals() method has a type= 
argument, with four choices: 

• "deviance" (the default): Deviance residuals are defined 

rf = sign(y; - {.t;)v'd; (6.3) 

where d; is the contribution of the ith observation to the deviance. The de
viance itself is then D = L;(rf)2 . These are presumably reasonable residuals 
for use in detecting observations with unduly large influence in the fitting pro
cess, since they reflect the same criterion as used in the fitting. 

• "vorking": We name these working residuals because they are the difference 
between the working response and the linear predictor at the final iteration of 
the IRLS algorithm. They are defined 

w ( ")&,; ri = Yi - J.Li -{). 
J.Li 

(6.4) 

They are an example of why it is safer to use the extractor functions such as 
residuals 0 rather than accessing the components of a glm object directly; 

residuals(kyph.glml) 

would produce the deviance residuals, while 

kyph.g1m1$residuals 

would give the working residuals. Working residuals are used to construct 
partial residual plots; we give an example in Section 6.2.6. 

• "pearson": Pearson residuals are defined by 

(6.5) 

and their SUJ}l-Of-squares 

n ( • )2 x2 = L Yi- J.Li 
i=l V(j.t;) 

is the chi-squared statistic. Pearson residuals are a rescaled version of the 
working residuals, when proper account is taken of the associated weights: 
rf = JWirf. 

• "response": These are simply y; - {.t;. 
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For Gaussian models these definitions coincide. 
The summary() function is generic; the method summary.glm() is used for gl!n 

objects. One can assign the result of summary() rather than printing it, in which 
case it produces a summary.glm object. The summary object includes the entire 
deviance residual vector and the asymptotic covariance matrix, which are often 
useful for further analysis. 

Along with the estimated coefficients, the summary() method produces standard
error estimates and t values. The standard errors are square roots of the diagonal 
elements of the asymptotic covariance matrix of the coefficient estimates. More 
simply stated, they are the standard errors appropriate for weighted least-squares 
estimates, if the weights are inversely proportional to the variance of the obser
vations. We discuss the quadratic approximation that leads to these estimates in 
Section 6.4. The t values are the estimated coefficients divided by their asymptotic 
standard errors and can be used to test whether the coefficients are zero. 

The printed summary reports the value for the dispersion parameter ¢. For 
the binomial and Poisson families, the dispersion parameter is identically 1, and is 
not estimated in these cases. For other families, such as the Gamma or Gaussian, 
¢ is estimated by X 2 fv, the Pearson chi-squared statistic scaled by the residual 
degrees of freedom. Of course, for the Gaussian-error model, this is the usual 
procedure. The dispersion parameter is used in the computation of the reported 
standard errors and t values for the individual coefficients. These defaults can be 
explicitly overridden by specifying the value for the dispersion parameter using the 
dispersion= argument to the sUIIIIDary() method; dispersionaO will result in the 
Pearson estimate, irrespective of the family of the object. 

6.2.2 Specifying the Link and Variance Functions 

The family argument is the main difference between calls to glmO and calls to 
lm(). The family argument expects a family object, which is a list of functions 
and expressions that are needed to define the IRLS algorithm and calculate the 
deviance. In our example above we used family=binomial. 

Actually, binomial() is itself not a family object but a family generator function 
that evaluates to a family object. It can have arguments of its own, as we see later. 

Let's explore a binomial family object: 

> faml <- binomial() 
> names(faml) 
[1] "family" "names" 
[6] "initialize" "variance" 

11 1ink 11 

"deviance" 

11 inverse 11 

"weight" 

11deriv 11 

The family component is simply a vector of names used for printing, and is used 
by the print 0 method for families 
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> fam1 
Binomial family 

link function: Logit: log(mu/(1 - mu)) 
variance function: Binomial: mu(1-mu) 
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Three components of fam1 are S functions for computing the link function, its in
verse, and its derivative: 

$link: 
function(mu) 
log(mu/(1 - mu)) 

$inverse: 
function(eta) 
1 I (1+exp(-eta)) 

$deriv: 
function(mu) 
1/(mu • (1 - mu)) 

Similarly, the remaining components are also S functions and expressions that enable 
the IRLS algorithm to fit the logistic regression model. 

For the binomial model, link functions other than the logit are also possible. 
For bioassay problems, the probit link, defined by g(p,) = q;-1(p,), where 4> is the 
Gaussian distribution function, is popular. To invoke the probit link, use 

binomial(link = probit) 

or, in a call to glmO, 

glm(formula, binomial(link = probit)) 

Some of the components of the binomial family object are changed: 

$link: 
function(mu) 
qnorm(mu) 

$inverse: 
function(eta) 
pnorm(eta) 

$deriv: 
function(mu) 
1/dnorm(qnorm(mu)) 
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> eta <- seq(from = -5, to = 5, length = 200) 
> plot(range(eta), c(O,l), xlab ="eta", ylab = "mu", type= "n") 
> lines(eta, binomial(link = logit)$inverse(eta)) 
> lines(eta, binomial(link = probit)$inverse(eta), lty = 2) 
> lines(eta, binomial(link = cloglog)$inverse(eta), lty = 4) 

Figure 6.2: A plot of three commonly used (inverse) link functions for the binomial family. 
The functions are the logit (solid line}, the probit (dotted line) and the complementary 
log-log (broken line). 

Figure 6.2 displays the inverse logit, probit, and complementary log-log link functions, 
three commonly used links for binomial data. The expressions used to create the 
plot are also displayed, if only to convince the reader that these components of the 
family objects are legitimate functions. 

Other family generator functions are gaussian () (the default), poisson (), Gamma 0, 
inverse.gaussian(), and quasi() (we use uppercase Gamma to distinguish this fam
ily function from the S probability-distribution function gamma()). All but the last 
are special families implied by an error model with the same name. Since the 
error model determines the variance function, these generator functions do not 
have a variance• argument. The quasi() function has both a linkz and variance
argument, and is used for constructing arbitrary link/variance combinations. In 
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Section 6.3.3, we give some more details on families. We show how to construct 
special-purpose families and modify existing ones. A great deal of flexibility can be 
achieved through the family argument to glmO. Two examples described later are 

• the power() link function, which allows the link to be parametrized; 

• the function robust(), which converts a family into a robust version of itself. 

6.2.3 Updating Models 

We seldom know in advance what model will be appropriate, so we typically fit a 
number of different models and explore various combinations of predictors. Usually, 
the new model will differ from the preceding one in a simple way: 

• one additional predictor is included in the model formula; 

• the response in the model formula is transformed; 

• a subset of the data is used in the fit; 

• a slightly different family is used in fitting the model, and often all the other 
arguments to the original call are held fi?c:ed. 

It is convenient in situations such as these to have a function for updating a model. 
Suppose we want to drop the term Age from our fitted model kyph.glm1. The 

call 

kyph.glm2 <- update(kyph.glm1, ~ . - Age) 

results in 

> kyph.glm2 
Call: 
glm(formula • Kyphosis ~ Start + Number, family = binomial, 

data = kyphosis) 

Coefficients: 
(Int.) Start Number 
-1.029 -0.1849 0.3574 

Degrees of freedom: 81 total; 78 residual 
Residual Deviance: 64.54 

Apparently Age is not a very important predictor (if modeled linearly), since the 
deviance increased by only 3.16 when Age was dropped. 

The first argument to update() is a model object, and the second an updating 
fonnula. A "." (on either side of "') is replaced by the corresponding left or right 
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formula of the model object. In this case, the response is the·same, and the linear 
predictor has the term Age removed. For convenience, the "." on the left of "' can 
be omitted. Any additional named arguments to update() are used to replace the 
corresponding arguments of the object being updated. For example, 

update(kyph.glm1, subset c -79) 

simply augments the existing call with a subset argument to repeat the fit, with 
observation 79 deleted. 

Arguments can also be removed from the call. For example, suppose kyph. subset 
was created using a subset•-79 argument; then 

update(kyph.glml, subset =) 

will remove the subset argument, and fit the same model to all the data. 
Updating is also described in some detail in Section 4.2.5, and is used several 

times in Chapter 1. Although we emphasize its simple uses, some more exotic 
applications include: 

• The class= argument can be used to change the fitting mechanism from, say, 
glm() to lmO, or even to tree() or loess(). 

• By supplying a data= argument to update(), we can refit the model to an 
entirely new dataset (as long as the variables named in the formula and other 
arguments in the call are to be found in the new data). 

• Using evaluate=F causes update to return the call corresponding to the new 
model, without actually evaluating {fitting) the modeL This can be useful if 
the original attempt at updating an object caused an error of some kind. 

6.2.4 Analysis of Deviance Tables 

More often than not, we fit more than one glm model. It is convenient to summarize 
a series of fitted models in an analysis of deviance table. An analysis of deviance 
table is simply the analogue of an analysis of variance table, such as that produced 
by summary.aovO. 

There are many ways to arrange a series of models into such a table, and more 
importantly, there are many ways of generating an appropriate series of models. 
In this and subsequent sections we describe several functions that produce anova 
tables, or more precisely objects of class "anova": 

• anova( ... ) takes an arbitrary number of fitted models as arguments, and 
makes sequential pairwise comparisons in the order the fitted models are listed. 
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• anova(object): given a single object, anova() fits a sequence of modul., by 
successively dropping each of the terms (from last to first), and prodllthR a 
table to summarize the changes. 

• drop1 0 and add1 0 produce tables by making a series of single term deleti• •us 
or additions. These functions are also encountered in Chapters 4, 5 and 7, 
and we describe them in some detail in the next section. 

• step() is a stepwise model selection function that builds a model by seqth.10 . 

tially adding or dropping terms (Sections 6.3.5 and 7.3.1). 

Let's look at a simple example of the use of the anovaO function: 

> anova(kyph.glml, kyph.glm2, kyph.glm3) 
Analysis of Deviance Table 

Response: Kyphosis 

Terms Resid. 
1 Age + Start + Number 
2 Start + Number 
3 Start 

Df Resid. Dev Test Df Deviance 
77 61.38 
78 64.54 -Age -1 -3.157 
79 68.07 -Number -1 -3.536 

If adjacent models are nested with respect. to the terms in the linear predictor, 
as is the case here, then the ter11¥1 comprising the difference are named in the 
Test column. Either way, the column labeled Deviance reports the difference in 
deviances between each model and the one above it, and Df is the difference in 
degrees of freedom. 

The output of anova() is an S object with class "anova" that inherits from the 
class "data.frame". There are several advantages to arranging the output in this 
form. As a data frame, the numbers in the individual columns can be accessed, and 
columns can be subscripted out. For example, for large models the Terms column 
can be rather wide, so we might choose to omit it when printing the table. The table 
could then be printed in pieces, with the row numbers used for cross-referencing. 

> kyph.anodev <- anova(kyph.glm1, kyph.glm2, kyph.glm3) 
> kyph.anodev[,-1] 
Analysis of Deviance Table 

Response: Kyphosis 

Resid. Df Resid. Dev Test Df Deviance 
1 77 61.38 
2 78 64.5~ -Age -1 -3.157 
3 79 68.07 -Number -1 -3.536 
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Similarly, if we want to use the numbers in the "Deviance" column, we can simply 
extract them: 

> kyph.anodev$Deviance 
[1] NA -3.157 -3.536 

When given a single model as an argument, anovaO behaves a bit differently: 

> anova(kyph.glm1) 
Analysis of Deviance Table 

Binomial model 

Response: Kyphosis 

Terms added sequentially (first to last) 
Df Deviance Resid. Df Resid. Dev 

NULL 80 83.23 
Age 1 

Start 1 
Number 1 

1.30 
16.63 
3.92 

79 
78 
77 

81.93 
65.30 
61.38 

Notice the table header is different, as are the row labels and columns in the table. 
The table reports the effect of sequentially including each of the terms in the original 
model, starting from the NULL model. The NULL model is a constant, and is the 
mean of the response if an intercept is present in the model, as is the case here; 
if there is no intercept, the NULL model has a linear predictor that is all zeros. 
The same table is obtained if we drop terms sequentially from the full model, from 
right to left in the formula. The formula in our example is rather simple; for more 
complicated formulas with interaction terms, the formula is first expanded and then 
terms are dropped while honoring the model's hierarchy. This version of anovaO 
mimics the table produced by summary.aovO when applied to an aov or 1m object. 
In fact, the anova() method for these two classes is summary.aovO. The distinction 
is worth noting, however. For a balanced aov model, the table is the same no 
matter what the order of the terms. For an unbalanced aov or 1m model, the order 
is relevant, as it is for glm models. For large models, anova.glm(object) might take 
a while to compute, since it has to fit each of the submodels of object iteratively; 
for 1m models no refitting is needed. 

It is apparent that the contents of an anova object are rather general; any data 
frame can be transformed into one by attaching a character vector header attribute. 
There is a print method for anova objects, and all it does is print the header and 
hand it over to the printer for data frames. Typically each row corresponds to a 
term in a model, and there will be columns labeled "Deviance" or "Sum of Sq" and 
"Df". 
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The anovaO methods all have a test= argument. The default is "none" for 
anova.glmO, and other choices are "Chisq", "F", and "Cp". For a binomial model, 
the changes in deviances between nested models are typically treated as chi-squared 
variables, so test="Chi" is appropriate here (notice abbreviations are allowed): 

> anova(kyph.glml, test = "Chi") 
Analysis of Deviance Table 

Binomial model 

Response: Kyphosis 

Terms added sequentially (first to last 
Df Deviance Resid. Df Resid. Dev Pr(Chi) 

NULL 80 83.23 
Age 1 

Start 
Number 1 

1.30 
16.63 
3.92 

79 
78 
77 

81.93 0. 2539 
65.30 0.0000 
61. 38 0. 0477 

The additional column labeled "Pr(Chi)" gives the tail probability (p-value) of the 
chi-squared distribution corresponding to the values in the "Df" and "Deviance" 
columns. The test~"F" option is suitable for Gaussian GLMs, Gamma models with 
a dispersion parameter, and perhaps for overdispersed binomial and Poisson models. 
The choice test="Cp" is discussed in Section 6.3.5. 

One can directly augment an anova object with one or more test columns using 
the function stat. anovaO. For example, the sequence 

> anova1 <- anova(kyph.glml) 
> stat.anova(anoval, test = "Chisq") 

produces the same table as above. This function is useful in situations where the 
original table is expensive to compute. 

6.2.5 Chi-squared Analyses 

A glm object looks very similar to a fitted 1m object, as it should. We say that 
it inherits the properties of an lm object. The fitting algorithm uses iteratively 
reweighted least squares, which means that the final iteration is a weighted least
squares fit. This linearization is not only a coincidence of the numerical algorithm, 
but is the same linear approximation that drives the first-order asymptotic inference 
for generalized linear models. So, for example, the usual covariance matrix from this 
linear fit is the same as the inverse of the expected Fisher information matrix for 
the maximum-likelihood estimates. This is precisely what is used as the asymptotic 
covariance matrix of the coefficients and is what is usually reported along with the 
fit. Section 6.4 has more details. 
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Apart from simplifying the algorithms for fitting these models, this linearization 
allows us to use many of the tools intended for linear models and models for designed 
experiments. To illustrate this, we return to the wave-soldering data introduced in 
Chapter 1 and revisited in subsequent chapters. Recall that in this experiment the 
response is the number of defects or skips, an integer count taking on values 0, 1, .... 
In some of the earlier analyses we reexpressed the response using the square-root 
transformation, and modeled the transformed data using aovO as though the errors 
were Gaussian. An alternate and perhaps more justifiable approach is to model the 
response directly as a Poisson process. The natural link for the Poisson family is 
the logarithm of the expected counts. The effect of the log link is similar to that of 
the square-root transformation, but in addition it guarantees that the fitted means 
are positive. 

The call looks similar to the aovO call: 

paov <- glm(skips ,...., 0. family a poisson, data • solder 0 balance) 

Once again we can print and produce summaries of the fitted object using either 
the methods appropriate for glm objects or else, in this case, those appropriate for 
aov or 1m objects: 

> summary(paov) 

Call: glm(formula = skips ,...., Opening + Solder + Mask + PadType + Panel, 
family a poisson, data= solder.balance) 

Oeviance Residuals: 
Kin 1Q Median 3Q Max 

·3.661 -1.089 -0.4411 0.6143 3.946 

Coefficients: 
Value Std. Error t value 

(Intercept) 0.735680 0.029481 24.955 
Opening.L -1.338898 0.037898 -35.329 
Opening.Q 0.561940 0.042005 13.378 

Solder -0.777627 0.027310 -28.474 
Kask.1 0.214097 0.037719 5.676 
Mask.2 0.329383 0.016528 19.929 
Mask.3 0.330751 0.008946 36.970 

PadType.1 0.055000 0.033193 1.657 
PadType.2 0.105788 0.017333 6.103 
PadType.3 -0.104860 0.015163 -6.916 
PadType.4 -0.122877 0.013605 -9.032 
PadType.5 0.013085 0.008853 1.478 
PadType.6 -0.046620 0.008838 -5.275 
PadType.7 -0.007584 0.006976 -1.087 
PadType.8 -0.135502 0.010598 -12.786 
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PadType.9 -0.028288 
Panel.1 0.166761 
Panel.2 0.029214 

0.006564 -4.310 
0.021028 7.931 
0.011744 2.488 

(Dispersion Parameter for Poisson family taken to be 1 ) 

Null Deviance: 6856 on 719 degrees of freedom 

Residual Deviance: 1130 on 702 degrees of freedom 

Number of Fisher Scoring Iterations: 4 

Correlation of Coefficients: 
(Intercept) Opening.L Opening.Q 

Opening.L 0.4472 
Opening.Q -0.1082 0.3844 

Solder 0.3277 0.0000 0.0000 
Mask.1 -0.1350 
Mask.2 -0.3095 
Mask.3 -0.4050 

0.0000 
0.0000 
0.0000 

0.0000 
0.0000 
0.0000 

Solder Hask.1 

0.0000 
0.0000 0.1605 
0.0000 0.1483 
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plus many more correlations which we omit. Using summary.aovO instead we get 

> summary.aov(paov) 
Df Sum of Sq Mean Sq F Value Pr(F) 

Opening 2 2101 1050 706 O.OOe+OO 
Solder 1 811 811 545 O.OOe+OO 

Mask 3 1429 476 320 O.OOe+OO 
PadType 9 473 53 35 O.OOe+OO 

Panel 2 66 33 22 4.89e-10 
Residuals 702 1045 1 

The default summary method for glm objects concentrates on the individual pa
rameters, while summary.aov() concentrates on the fitted terrns. The F values and 
their tail probabilities are only valid under some special assumptions, in particular 
that the Poisson model is over- or underdispersed. In this case, the scaled chi
squared estimate of </J is 1.49, which is somewhat larger than 1 and does indicate 
overdispersion. Of course, the default summary() for a Poisson GLM makes the even 
stronger assumption that <P = 1, which justifies the use of chi-squared rather than 
F-statistics. In practice, it seems that this often is not the case, the above example 
being a case in point. 

It is interesting to note that the asymptotic correlations (and hence covariances) 
between the parameter estimates are zero in the same places as they are for the 
balanced analysis of variance model. This is a special feature of the main-effects 
Poisson model, a result of the multiplicative structure of the fitted values (they cre
ate weights that are similar to those arising from a proportionally balanced design). 
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The sums of squares in the analysis of variance table are appropriately weighted 
versions of the usual sums of squares. 

If paov is summarized by summary .lmO, the residuals reported are the Pearson 
residuals 

Kin 1Q Median 3Q Max 
-3.382 -0.852 -0.402 0.664 5.259 

and what is reported as the residual standard error estimate is JX2 jv, the square 
root of the scaled Pearson chi-squared statistic. 

The "balance" property referred to above also means that the weighted sums 
of squares decompose orthogonally. This is not the case in general for other GLMs, 
where orthogonality is rare. For example, we can use summary. aov () on the kyphosis 
model 

> summary.aov(kyph.glml) 
Df Sum of Sq Mean Sq F Value Pr(F) 

Age 1 0.1 0.1 0.1 0.738 
Start 1 11.1 11.1 12.5 0.001 

Number 1 3.4 3.4 3.9 0.053 
Residuals 77 68.5 0.9 

but the components here are not as meaningful. The entries would differ depending 
on the order of the variables, which is the case for any "unbalanced design." The 
last effect, Number in this case, approximates the change in deviance resulting from 
dropping this variable from the model formula. The approximation in effect takes 
one step toward the solution, and as such is similar to Rao's score test. The functions 
add10 and drop10 are also based on score tests, and are described in Section 6.3.5. 

6.2.6 Plotting 

We have already seen some plots of fitted GLMs in Figure 1.6, where we plot the 
observed versus fitted values (on the square-root scale) for the wave-soldering data. 
Many plots are possible for GLMs, so our selection for a plot method is bound to 
be subjective and not please all. Figure 6.3 shows the result of plot(paov), a plot 
of our Poisson model. The left panel graphs the response variable against their 
fitted values, while the right panel graphs the absolute deviance residuals against 
the linear predictor values. This is similar in spirit to the plot() method for 1m 
objects introduced in Chapter 4. In fact, plot.lm() can be used on glm objects to 
produce a variation of the two plots in Figure 6.3. In that case, the axis labeled 
response would actually be the. working response, and the fitted values would be 
the linear predictor. 

By using the extractor functions fitted(), predict(), and residuals{), we can 
easily produce a large variety of plots. For the wave-soldering data, we plot response 
residuals against the fitted values in Figure 6.4: 
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Figure 6.3: A plot of the glm object paov. The left panel shows the response plotted against 
its fitted values; the broken line is at 45 degrees. The right panel shows the absolute deviance 
residuals plotted against the linear predictor. The discrete nature of the response introduces 
strange striations in the residuals. 

> attach(solder.balance) 
> plot(sqrt(fitted(paov)), skips- fitted(paov)) 
> abline(h=O) 

We could have used the residuals() function with type="response" to extract the 
residuals, although our usage here produces more informative plot labels. We ac
tually plot against the square root of the fitted values to expand the horizontal 
scale. 

The mean of the residuals is approximately zero, with the most striking feature 
being the increase of variability with the mean. This is, of course, expected for 
Poisson data, since the variance is supposed to increase linearly with the mean. 
The plot on the left uses the main-effects model, and we see some large negative 
residuals for high values of the fitted values. This indicates lack of fit for some 
regions of factor space, and we need to fit some interaction terms. The plot on the 
right is the residual plot for the model 

paov2 <- glm(formula • skips ~ . + (Opening + Solder + Mask)A2, 
family= poisson, data = solder.balance) 

Which is the same model selected in the analysis in Chapter 1. The large neg-
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Figure 6.4: The residuals for two Poisson models fitted to the wave-soldering data, plotted 
against the square root of the fitted values. The residuals on the left correspond to the main
effects model, while those on the right are from a model that includes some interactions. 

ative residuals a.l'e not as pronounced as for the main-effects model. Both plots 
exhibit rather strange curved bands due to the constrained and discrete nature of 
the response and fitted values. This behavior is far more extreme for binary data, 
rendering plots of this kind almost useless in that case. 

Other plots such as the half-normal plot of Figure 5.6 can also be generated for 
a glm object, although one should exercise caution in making interpretations not 
necessarily valid in the nonlinear context. 

Partial residual plots are useful for detecting nonlinearities and for identifying 
the possible cause of unduly large residuals. The partial residuals for variable Xj 

are defined to be 
(6.6) 

The term to the right of the plus sign in (6.6) is simply the working residual, 
while the term on the left is the jth fitted term. As mentioned earlier, the working 
residual is available using the type="vorking" argument in a call to residuals(), and 
is in fact the "residuals" component of a fitted glm object. The individual fitted 
terms are available from the predict() method, with the argument type""terms". 
A matrix of values is returned, with a column for every term in the model. We 
remind the reader that a term is often composite, involving several coefficients. So, 
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in fact, the expression 

predict(kyph.glml, type • "terms") + kyph.glm1$residuals 

will produce a matrix of partial residuals, one column for each term. The expression 
takes advantage of the fact that matrix addition recycles the values in the vector
~ued residuals term {fortunately columnwise). 

Curvature in the pattern of these residuals {plotted against xi) can suggest 
nonlinear transformations of the variables, which might improve the fit. A smooth 
curve fitted to these partial residuals enhances this display and allows one to detect 
the nonlinearities more easily. Figure 6.5 shows such plots for the kyphosis model. 
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Figure 6.5: Partial residual plots for the kyphosis data. In each plot the residuals are 
summarized by a loess() smooth curve, which suggests nonlinear transformations. One 
large negative residual seems to have a strong local effect on the curve for Number. 

After some exploration with these partial residual plots, and experimenting with 
various nonlinearities, we eventually arrived at the model 

Kyphosis ~ poly(Age, 2) + !((Start > 12) • (Start - 12)) 

which has a quadratic effect for Age, and a piecewise-linear effect for Start. The 
functions poly() and IO are both special, and are described in Chapter 2. For 
convenience, we describe them again here. 

• poly 0 is an s function that takes one or more vector arguments (or a matrix 
argument), as well as a degree= argument, and generates a basis for polynomial 
regression. Since this is itself a matrix, it is a valid object for inclusion in a 
formula. The more common application uses a single, vector argument (or an 
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expression that evaluates to 1), as is the case here, and the resulting columns of 
the basis are orthonormal. For more than one argument or a matrix argument, 
the bases are no longer orthonormal. In either case, the polynomials defining 
the columns have maximum degree given by the degree= argument. 

• I 0 is the identity function, and protects its argument from the formula parser. 
Such protection is clearly needed here since its argument uses the "•" and "-" 
operators, which have a different interpretation in a formula. In this case, the 
expression evaluates to the truncated linear function (Start- 12)+, where 
the 0+ notation refers to the positive part. 

If the positive part function were to be used frequently, it would make sense to write 
a special function, say pos.partO, for future inclusion in formulas. Any function 
with arbitrary arguments can be used in a formula, as long as it evaluates to a 
numeric vector, a matrix, or a factor. The use of compound expressions such as 
poly() and I() in formulas is discussed in some detail in Chapter 2, as well as in 
Chapter 7. We saved the fitted model in kyph.glm4: 

> kyph.glm4 
Call: 
glm(formula =Kyphosis~ poly(Age, 2) +!((Start> 12) • (Start- 12)), 

family = binomial, data = kyphosis) 

Coefficients: 
(Intercept) poly(Age, 2)1 poly(Age, 2)2 !((Start > 12) • (Start - 12)) 

-0.684961 5.77193 -10.3248 -1.35101 

Degrees of Freedom: 81 Total; 77 Residual 
Residual Deviance: 51.9533 

We can plot the fitted terms by separating out the relevant columns and multi
plying by their fitted coefficients. If we want to see pointwise standard-error curves, 
we need to do a similar partitioning of the covariance matrix of the parameter es
timates. Both these operations can be performed by the predict() method; the 
expression 

predict(paov, type= "terms", se .. T) 

will return a list with two components, "fit" and "se.fit". Both of these will be 
matrices, the former having as columns the fitted terms, the latter, the pointwise 
standard errors for each term. Section 6.3.6 has more details. 

There is an even easier way out. Chapter 7 focuses on the fitted terms in additive 
models, and the plot. gam() method produces exactly the type of plot outlined above. 
The pair of plots in Figure 6.6 were created by the call 

plot.gam{kyph.glm4, se • T, residuals • T) 
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Figure 6.6: The fitted polynomial and step function for kyph.glm4, constructed using 
plot.gam(). The broken lines are pointwise 2 x standard-error curoes, and the points 
are the partial residuals. 

It can also be useful to plot factor terms and even linear terms in a similar 
fashion, especially if the factors are ordered. Figure 6. 7 displays such a plot, created 
by the expressions 

> preplot.paov <- preplot.gam(paov, terms= c("Mask", "PadType")) 
> plot(preplot.paov, se = T, rug~ F, scale = 2.1) 

If all the plots are on the same scale (achieved by using the scale argument), 
the fitted effects or slopes can be easily compared visually. Detailed discussion 
of plot. gam{) and preplot. gam() is given in Section 7.3.5. 

6.3 Specializing and Extending the Computations 

6.3.1 Other Arguments to glm 0 

In addition to the formula and data argument, glmO shares other arguments with 
lm() and aov(). These include the subseta and veights= arguments. The lat
ter allows one to specify prior weights for the observations. A common situation 
requiring prior weights is when the responses are themselves averages over homo
geneous groups of independent responses. The weights would then be the number 
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Figure 6.7: The fitted effects for two of the factors in the main-effects model for the wave
soldering data . . The broken bars indicate two standard errors. 

in each average. Binomial proportions have this form, in which case the n; or 
numbers of trials corresponding to each proportion can be passed as weights. Bi
nomial responses can also be presented as a two-column matrix; we discuss this in 
Section 6.3.3. 

A commonly used device in GLM models is the offset, a component of the linear 
predictor that is known and requires no coefficient. An offset is redundant for 
standard Gaussian linear models, since one can simply work with the residuals. An 
offset allows a form of "residual" analysis for GLMs; we can evaluate the contribution 
of additional terms while holding fixed those already fit. In some stratified sampling 
situations, offsets are required to correct the sampling imbalance. An offset term 
is specified directly in the model formula by including it as the argument to the 
offset() function, as in 

y ~ dose + age + offset(prior.fit) 

There will be no coefficient fit for the offset term; it is added as is into the linear 
predictor. 

The start= argument allows initial values for the linear predictor different from 
the default given in the "initialize" component of the family object. The control= 
argument sets algorithmic constants, and expects a named list. The default values 
are given by the expression 
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> glm.controlO 
$epsilon: 
[1] 0.0001 

$maxit: 
(1] 10 

$trace: 
[1] F 

and glm.controlO can be used to adjust any of the values as well: 

• epsilon= gives the convergence threshold, described Section 4. 

• maxit= sets the maximum number of IRLS iterations. 

223 

• If trace=T, then iteration information is printed during the execution of glm(). 

Any of the three arguments to glm.controlO can optionally be given directly as 
named arguments in the call to glm(). 

We list on page 202 some shortcuts in constructing the call to glm(). The main 
candidate for shortcuts is the formula= argument. The function formula(), which 
has methods for a variety of object classes, is used inside glmO {and other mod
eling functions) to extract a formula from the given argument, in the event that 
it is not an explicit formula. In particular, there is a formula() method for data 
frames, and a slightly different method for design matrices (as described in Chap
ter 5). The expression formula(data. frame) assumes the first column of data. frame 
is the response, the remaining columns are predictors, and constructs a simple linear 
model formula. A consequence of this is that glm(data. frame) will fit a Gaussian 
GLM (and implicitly use the argument data .. data.frame as well). The expression 
formula(design.matrix), on the other hand, uses the firstnumeric (nonfactor) col
umn as the response, discards all the remaining numeric columns, and constructs a 
formula additive in all the factors. 

6.3.2 Coding Factors for GLMs 

In Sections 2.3.2 and 5.3.1, we describe how factors are coded in forming the model 
matrix. By default, unordered factors are coded using Helmert contrasts, and or
dered factors by orthogonal polynomials. Both these choices lead to uncorrelated 
parameter estimates for balanced designs, both within and between factors. A lot of 
this appeal disappears for GLMs, where balanced designs rarely lead to uncorrelated 
parameter estimates, except in special case5. The easiest way to see this is through 
the information matrix 



224 CHAPTER 6. GENERALIZED LINEAR MODELS 

which will typically be full due to the presence of the diagonal weight matrix W. 
Two other popular coding schemes are described in Section 5.3.1, each accom

panied by a contrast function to generate them. Suppose a factor f has k levels: 

• contr.sumO produces k- 1 contrasts, which compare each level of the factor 
to the last level. This is equivalent to constraining the k original coefficients 
corresponding to each level of the factor to sum to zero. 

• contr.treatmentO simply produces the k -1 dummy variables corresponding 
to all but the first level of the factor. GLMs are frequently used for analyzing 
medical data, where it is common to compare a number of new procedures, 
drugs, or, more generally, treatments. Usually there is a control treatment 
that can be considered the baseline for comparison, which we assume to be 
at the first level of the factor. Each coefficient then measures the difference 
between a treatment and the control. 

One can explicitly attach a contrast attribute to a factor using the CO function, 
if a one-time special coding is desired. For example, 

C(f, treatment) 

creates a new version off, with the appropriate contrast matrix attached. A more 
convenient and permanent approach is to reset the default using the options() 

function; for example, 

options(contrasts = c("contr.treatment", "contr.poly")) 

makes contr. treatment 0 instead of contr. helmert 0 the default for factors. The 
effect remains for the duration of the session. 

Let's look at a simple example using contr.treatment() as the default: 

> f <- factor(rep(1:3, 3)) 
> X <- -4:4 
> model.matrix(~ f • x) 

(In) £.2 £.3 X f:x.2 f:x.3 
1 0 0 -4 0 0 
2 1 1 0 -3 -3 0 
3 1 0 1 -2 0 -2 
4 1 0 0 -1 0 0 
5 1 1 0 0 0 0 
6 1 0 1 1 0 1 
7 1 0 0 2 0 0 
8 1 1 0 3 3 0 
9 1 0 1 4 0 4 

Using contr.helmertO as the default we get: 
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(In) f.1 f.2 x f:x.1 f:x.2 
1 1 -1 -1 -4 4 4 
2 1 1 -1 -3 -3 3 
3 1 0 2 -2 0 -4 
4 1 -1 -1 -1 1 1 
5 1 1 -1 0 0 0 
6 1 0 2 1 0 2 
7 1 -1 -1 2 -2 -2 
8 1 1 -1 3 3 -3 
9 1 0 2 4 0 8 

Setting the default to "contr.sum", on the other hand, produces: 

(In) f.1 f.2 x f:x.l f:x.2 
1 1 1 0 -4 -4 0 
2 0 1 -3 0 -3 
3 1 -1 -1 -2 2 2 
4 1 1 0 -1 -1 0 
5 1 0 1 0 0 0 
6 1 -1 -1 1 -1 -1 
7 1 1 0 2 2 0 
8 1 0 1 3 0 3 
9 1 -1 -1 4 -4 -4 

In examples like this, where we have a quantitative predictor as well as a factor, we 
may well prefer one of the alternative codings. For instance, it is harder to interpret 
a contrast of slopes than a contrast of simple mean effects. 

6.3.3 More on Families 

In Section 6.2.2, we introduce the family• argument of glmO, and looked at some 
of the components of the binomial family in detail. In this section we explore their 
flexibility and power in extending the capabilities of the GLM functions. 

The initialize component of a family object is an expression that sets up 
internal variables before the iterations begin. At face value it simply assigns initial 
values for the linear predictor, on which everything else depends. The potential is 
far greater, however. Since it is simply an expression involving variables local to 
the main frame of glmO, it allows an opportunity to insert additional code in the 
glm() function at the point at which it is evaluated. The binomial family illustrates 
some of this potential: 

> binomial()$initialize 
expressionq 

if(is.matrix(y)) { 
if(dim(y)[2) > 2) 
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} 
) 

} 
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stop( 
"only binomial response matrices (2 columns)" 
) 

n <- as.vector(y Y.•Y. c(l, 1)) 
y <- y[, 1] 

else { 
if(is.category(y)) 

y <- y != levels(y)[l] 
else y <- as.vector(y) 
n <- rep(1, length(y)) 

y <- y/n 
w <- w • n 
mu <- y + (0.5 - y)/n 

In the above example, the local variables that are used in the body of glmO are y, 
w, and mu. 

If the response is a matrix with two columns, say m 1 and m2 , they are assumed 
to be of the form m1; successes and m2; failures. The initialize expression converts 
to Yi = mli/(mli + m2;) and incorporates the mli + m2; into the weight vector. If 
the response is a category, factor or ordered factor, the first level is assigned the 
value 0, and all other levels are 1. 

In general, the initialize expression allows an arbitrary amount of user-defined 
preprocessing of the data. Although expressions such as this are more flexible than 
functions in that no arguments need to be specified, they are more dangerous since 
careless use of them can disturb local variables unintentionally. 

The variance and deviance functions form a logical group in that a variance 
function implies a deviance function [see ( 6. 7) ]. Let's look at the Poisson family: 

> poisson() [c("variance", "deviance")] 
$variance: 
function(mu) 
mu 

$deviance: 
function(mu, y, w, residuals = F) 
{ 

nz <- y > 0 
devi <- - (y - mu) 
devi[nz] <- devi[nz] + y[nz] • log(y[nz)/mu[nz]) 
if(residuals) 

sign(y - mu) • sqrt(2 • w • devi) 
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else 2 • sum(v • devi) 

The variance function gives the variance of Yi as a function of the mean P.i, whilE' 
the deviance function computes the residual deviance. Notice that the deviancE' 
function has a residuals= argument that is convenient for computing the deviance 
residuals; it is mainly there for the residuals() function. Although variances and 
deviances usually arise from a likelihood corresponding to a particular error model, 
quasi-likelihood models are more general. They allow any variance function V(p.) 
to determine a corresponding deviance element: 

111y-u 
D(y, p.) = 2 IJ. V(u) du. (6.7) 

There are two auxiliary lists for families: glm.links and glm.variances. Their 
separate presence is indicative of the disjoint contributions of link and variancE' 
functions to a family. Each of them is stored as a matrix of mode "list", and their 
dimnames are instructive: 

> dimnames(glm.links) 
[[1]]: 
[1] "name" ''link" 

[ [2]] : 
[1] "identity" "logit" 
[7] "1/mu"2" "sqrt" 

> dimnames(glm.variances) 
[[1]] : 

"inverse" 

"cloglog" "probit" 

[1] "name" "variance 11 ''deviance'' 

[ [2]] : 
[1] "constant" "mu ( 1-mu) " "mu" 11mu"2 11 

"initialize" 

ulogu 11 inverse" 

11mu"3 11 

We see that each column of glm.links is a link subfamily with five elements. 
and each column of glm.variances is a variance subfamily with three elements. 
The family generator functions, such as binomial() and poisson(), protect the user 
against bad choices; for example, only logit, probit, and cloglog are permissiblE 
links when constructing a binomial family. 

There are several ways to modify the families and construct private ones: 

• The quasi() function can be used to build a family from the supplied link~ 
and variances whose names appear in the two lists above. 

• Users can build their own link or variance subfamilies (by mimicking any ol 
the supplied ones). These can then be used to construct a family, either using 
quasi() or the function make.family(). 
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• An entire family object can simply be constructed from scratch. 

• Functions such as robust 0 can be used to modify existing families. 

The second approach is probably safer than the third. The function make. family() 
(type ?make.family to see detailed documentation) forces the user to include the 
appropriate components together with suitable naming information, and builds an 
object with class "family". This new object would then be passed via the family• 

argument to glm{). Of course, it is the responsibility of the creator to ensure that 
all the components behave as they should. 

As a start to creating a family object, it might seem reasonable to simply type 
poisson to see an example; the Poisson family generator function would be printed 
out! Typing poisson() is not much better; this evaluates to the poisson family, 
but there is a print() method for families that simply prints the names of the 
family, link, and variance (we give an example on page 206). This feature was 
built in partly to protect the user from unwittingly having to see all the family 
function definitions. One can avoid the print() method for family objects (and 
more generally for objects of any class), by using either of the following expressions: 

print.default(binomial()) 
unclass(binomial()) 

The link and variance subfamilies do not have print() methods that need to be 
side-stepped, so 

glm.links [, "logit ") 

would extract the logi t link subfamily and print out the list of functions. 
A slightly more advanced modification in family construction is to parametrize 

the link and/or the variance subfamilies. We provide a function power(lambda) that 
creates a link subfamily with components link, inverse, deriv, and initialize, 
each of which depends on the value of lambda. A call to glm() might have the form 

> glm(formula, family = quasi(link = power(0.5))) 

where the first few components of quasi(link = power(0.5)) are 

> quasi(link = power(0.5)) [c("link", "inverse", "deriv")) 
$link: 
function(mu) 
mu110.5 

$inverse: 
function(eta) 
eta" (1/0. 5) 
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$deriv: 
function(mu) 
0.5 • muA(0.5 - 1) 
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A much more advanced modification of a family is the robust () wrapper function. 
It takes a family as an argument, and returns a new family that has been robustified. 
Its definition begins 

robust <-function(family, scale, k = 1.345, maxit = 10){ 

This allows for a rather elegant modification to the call to glmO, which now may 
have the form -

> glm(formula, family = robust(binomial, scale = 1)) 

Instead of minimizing the usual sum of deviance contributions 

n 

D = L D(y;, fJ;), 
i=l 

the robust minimum-deviance estimate uses the tapered criterion 

D.., = t r/Jwk ( D(y;, fJ;)) 
i=l 1/> 

where Wk dampens contributions larger than k2 

The dispersion parameter 1/> is either supplied or else estimated if it is missing. 
Two aspects of the IRLS iterations need to be modified to handle robust families: 

• The iterative weights get multiplied by an additional weight factor Wr, which 
is 1 for suitably small deviance contributions, and decreasingly small for in
creasingly large contributions. The parameter k determines the point at which 
the weights get smaller than 1. 

• The deviance function needs to be replaced by a tapered version. 

The function robust() achieves these changes by modifying the weight and deviance 
components of its family argument. The details of how it does this are rather 
technical but interesting, since it involves augmenting the weight expression and 
deviance function with additional code, some of which depends on the arguments 
to robust(). We encourage readers to explore the details by reading the code of the 
robust() function. 
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6.3.4 Diagnostics 

In Chapter 4, we describe some tools for generating diagnostic statistics for linear 
models. The function lm.influenceO (page 129) takes a linear-model object and 
generates a list of three basic diagnostic elements that, together with the output of 
summary .lmO, can be used to construct all the currently popular diagnostic mea
sures. The three diagnostics are the delete-one coefficient matrix, the delete-one 
standard-error estimate, and the diagonals of the hat matrix. The exact compu
tation of a delete-one statistic, say a coefficient, is quite expensive for a nonlinear 
model. Essentially, each observation has to be removed one at a time and the fit
ting algorithm iterated until convergence. A cheaper but effective approximation is 
to remove the observation, and perform only one iteration of the IRLS algorithm 
toward the new solution, starting from the model fit to the complete data. It turns 
out that lm.influence() achieves exactly that when given a fitted glm object as 
its argument! This pattern is becoming familiar, and is once again a consequence 
of the fact that a GLM is fitted by iteratively-reweighted least squares, and the 
least-squares fit at the final iteration is part of the glm object. 

We demonstrate these diagnostics on the glm object kyph. glm4, which is displayed 
in Figure 6.6. The Cook's distance diagnostic 

(6.8) 

measures the effect of the ith observation on the coefficient vector. Writing fl = X iJ 
and il(i} = xjJ(i} leads to 

C;= 
!Iii- il(i} 11: 

p¢ 
(6.9) 

showing that it also measures an overall difference in the linear predictor when the 
observation is removed, suitably standardized. The W that subscripts the norm 
ll·llw reminds us that the squared norm is in fact a weighted sum-of-squares, or in 
other words we are computing the norm in the chi-squared metric. The term in the 
denominator is usefully viewed as the average variance of the fitted values, where 
once again we mean weighted average. Figure 6.8 is a plot of these distances against 
the sequence number for the fitted model kyph.glm4. There are three observations 
with large values for the distance-namely 11, 25, and 77. Possibly a more useful 
diagnostic in this scenario is the version of Cook's distan..:es confined to a subset of 
the parameters, in particular those belonging to an individual term in the model. 
Figure 6.9 shows index plots of the Cook's distance for both the quadratic and 
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Figure 6.8: An index plot of the Cook's distances for kyph.glm4. The numbers in the figure 
identify the observations with large distances. 

piecewise linear terms in kyph.glm4. The expression 

{6.10) 

where / 1 = XJiJj denotes the subset of the model matrix and coefficient vector for 

the jth term in the model, and similarly fj(t) = xjjJj(i) is an approximation to 
the jth term fit with the ith observation removed. It now becomes apparent why 
some of the observations have large Cook's distances. In each case, the observation 
is a 1 in a region of nearly pure Os. In logistic regression with binary response 
data, such points are highly influential. In a sense they are the most important 
observations in regions where the probability of a 1 is small. It is also clear that 
if we were to remove them, the fitted functions and hence ·coefficients could change 
quite dramatically, and in some cases diverge. 

The overall Cook's distance in {6.8) can be computed most efficiently using the 
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Figure 6.9: Cook's distances for the individual functions, plotted against the respective 
variables. The lower figures reproduce the fitted functions in Figure 6. 6 and identify the 
partial residuals corresponding to the points with largest distances. 
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equivalent formula 

where the h;; are the diagonal "hat" elements of the weighted least-squares projec
tion matrix used in the final IRLS iteration. The r; are the standardized residuals 
from this final regression, and ~ is the scaled chi-squared statistic. These are im
mediately available from the output of lm. influence 0 and summary .lm() applied to 
kyph.glm4. 

For the distances for the different terms, it is more convenient to use the delete
one coefficients themselves rather than a hat element equivalent. As an illustration 
of working with glm objects, we end this example by showing a function written to 
derive the Cook's distances for each of the terms in a glm or lm object: · 

Cook.terms <- function(fit) 
{ 

fit.s <- summary.lm(fit) 
fit.infl <- lm.influence(fit) 
R <- fit$R 
I <- t(R) :t.•'l. R 
Iinv <- fits$cov.unscaled 
ass <- fit$assign 
D <- matrix(O, length(fit$residuals), length(ass)) 
dimnames(D) <- list(names(fit$residuals), names(ass)) 
Dcoef <- scale(fit.infl$coefficients, 

center = fit$coefficients, scale• F) 
for(subname in names(ass)) { 

sub <- ass[[subname]] 

} 
D 

Dcoefi <- Dcoef[, sub, drop • F] Y.•Y. t(R[, sub, drop = F)) 
denom <- ![sub, sub, drop • F) Y.•Y. Iinv[sub, sub, drop • F) 
denom <- sum(diag(denom)) • fit.s$dispersion 
D[, subname] <- apply(DcoefiA2, 1, sum)/denom 

6.3.5 Stepwise Model Selection 

A typical GLM analysis proceeds in a stepwise fashion. We build models by adding 
in new terms and seeing how much they improve the fit, and by dropping terms 
that don't degrade the fit by a "significant" amount. This is usually a tedious 
task if performed manually, since many different models need to be tried, and the 
bookkeeping alone <;an get voluminous. Since each candidate model is fit iteratively, 
the computations can be time-consuming as well. Here we describe some ways to 
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finesse these operations, and provide a function step.glmO for conducting a stepwise 
selection procedure. We illustrate the functions on the wave-soldering data. 

The function step.glmO operates as follows: 

1. It starts with an arbitrary glm object. 

2. It takes a step by adding or removing that term from the current model that 
reduces the AIC selection criterion the most. 

3. It stops when it hits a specified model boundary or when no step will decrease 
the criterion. 

The second step is clearly the most work and would be quite time-consuming if 
carried out exactly. It assumes there is a current model from which to work. The 
AIC statistic 

AIC = D+2p~ 
is used by step.glmOto evaluate different models, where D is the deviance, p the 
degrees of freedom in the fit, and~ an estimate of the dispersion parameter. AIC 
is the likelihood version of the Cp statistic, and like Gp, changes in AIC due to 
augmenting or subsetting a model by a given term reflects both the change in 
deviance caused by the step, as well as the dimension of the term being changed 
(often terms involve more than 1 degree of freedom}. 

The idea is to fit all the models obtainable by deleting a single term from the 
current model, and computing the AIC statistic for each. Similarly, all models 
obtainable by adding a single term to the current model are fit, and the A/Gstatistic 
is computed. A step is taken toward the model having the smallest value for the 
AIC statistic; if none are smaller than the original model, the procedure terminates. 

There is an inherent vagueness in the previous paragraph that is cleared up by 
the scope= argument to step.glmO. Although it may seem obvious what terms can 
be dropped at any stage, the terms available for inclusion have to be specified in 
some way. This information is supplied in the form of a list with two components, 
"upper" and "lover". Each is a formula (for which only the right side is of relevance). 
Only those models are considered that include the terms in scope$lower and whose 
terms are included in scope$upper. Since the lower limit is often the null model, the 
scope= argument can be given simply as a formula, in which case it is interpreted 
as the upper formula, and the lower is taken to be the null model. Our example 
starts with the model paov fit to the wave-soldering data. 

> formula(paov) 
skips "' Opening + Samt + Stype. th + PadTyp~ + Panel 
> paov.step <- step(paov, scope a "' . A3) 

This will potentially step through all models ranging from the full third-order in
teraction model down to the null model. 
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At each step, not all single terms in scope$upper ILre eligible for inclusion; sim
ilarly, not all terms in the current model (less those in scope$lover) are available 
for exclusion). The reason is that the model hierarchy has to be honored; for ex-
8JDple, main-effect terms must be added before their interactions. The function 
add. scope() is useful for seeing what terms can be added in a hierarchical fashion: 

> form1 <- formula(paov) 
> add.scope(form1, update(form1, ~ .~3) 

[1] "Opening:Solder" "Opening:Mask" 
[4] "Opening:Panel" "Solder:Mask" 
[7] "Solder:Panel" "Mask:PadType" 

[10] "PadType: Panel" 

"Opening:PadType" 
"Solder:PadType" 
"Mask:Panel" 

So even though the upper formula included third-order interactions, only the second
order interactions could be added at this stage. Similarly drop. scope 0 determines 
what terms can be dropped at any stage: 

> drop.scope(form1) 
[1] "Opening" "Solder" "Mask" "PadType" "Panel" 

Both these functions are used before each step taken by step.glmO, and thus re
peatedly throughout its execution. 

Suppose step.glm() is considering as current model.the initial model, paov. It 
has ten separate terms to consider for inclusion and five for deletion. A maximum
likelihood fit of each of these models requires iteration and would be time-consuming. 
We expect the fit of each of these subset or augmented models to be reasonably 
close to the parent model. This suggests that the quadratic approximation to the 
deviance can be used rather than the deviance itself in computing the selection 
criterion, and more importantly that we can use the one-step approach of the score 
test in computing all the subset fits. We use the Pearson chi-squared version of AIC, 
which is the Cp statistic for the local quadratic model, defined by Cp = X 2+ 2p~. 

The consequence of all this is that we can simply hand the glm object corre
sponding to the current model to dropl.lmO and addl.lmO, which compute all the 
subset and augmented models efficiently. This is another example of where we can 
exploit the inheritance properties of classes of models in a very natural way. We 
then select for deletion or addition the term corresponding to the smallest value 
of Cp, and complete the IRLS iterations for that model. The AIC statistic is then 
computed for this selected model; if it is lower than the AIC for the previous model, 
the new model becomes the current model, and the stepping continues, otherwise 
step.glmO terminates by returning the previous model. 

Before we examine the output of step.glm{), let us make a slight diversion and 
take a closer look at add10 and drop10: 
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> addl(paov, "' . "2) 
Single Term Additions 

Model: skips "' Opening + Solder + Mask 
Df Sum of Sq RSS Cp 

<none> 1045 1099 
Opening:Solder 2 23.07 1022 1082 

Opening:Mask 6 68.02 977 1049 
Opening:PadType 18 46.26 999 1106 

Opening:Panel 4 10.93 1034 1100 
Solder:Mask 3 48.74 996 1059 

Solder:PadType 9 43.82 1001 1082 
Solder:Panel 2 6.48 1039 1098 
Mask:PadType 27 57.12 988 1122 

Mask:Panel 6 21.48 1024 1095 
PadType:Panel 18 14.63 1031 1138 

> drop1 (paov) 
Single Term Deletions 

+ PadType + Panel 

Model: skips "' Opening + Solder + Mask + PadType + Panel 
Df Sum of Sq RSS Cp 

<none> 1045 1099 
Opening 2 2101 3146 3194 
Solder 1 811 1856 1907 

Mask 3 
PadType 9 

Panel 2 

1429 2474 2518 
473 1518 1545 

66 1111 1159 

Although these are generic functions, the drop1.lm0 and add1.lm0 methods are 
what actually get invoked since no particular methods exist for glm objects, which 
inherit from the class "lm". They both return anova objects, and have arguments 
scope• and scale=. The scale= argument is also used in step(), and allows the 
user to specify the dispersion constant 4> to be used in computing the Cp or AIC 
statistic. If scale is missing, add1 0 and drop1 0 use the residual variance of the 
original model. By default, step() uses the dispersion parameter for the original 
glm objr~ct, which is 1 for binomial and Poisson models, and the scaled Pearson 
chi-squared statistic in all other cases. Both these functions are described in some 
detail in Section 4.3.2, where additional arguments such as keep'" are described. See 
also their detailed documentation for a precise description. 

Typir:nlly, one calls step() using the trace•T argument, which then displays all 
the drop1 and add1 anova tables along the way. For large models, such as the wave
soldering example, the function can take a while to run so it is encouraging to see 
the intermediate results: 
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> paov. step <- step(paov, -. "3) 
> paov.step$anova 
Stepwise Model Path 
Analysis of Deviance Table 

Start: skips - Opening + Solder + Mask + PadType + Panel 

Final: skips - Opening + Solder + Mask + PadType + Panel + 

Opening:Mask + Solder:Kask + Solder:PadType + 
Opening:Solder + Opening:PadType + Opening:Solder:Mask 

Step Of Deviance Resid. Of Resid. Oev AIC 
702 1130 1166 

2 + Opening:Mask -6 -71.0 696 1059 1107 
3 + Solder:Kask -3 -55.0 693 1004 1058 
4 + Solder:PadType -9 -43.3 684 961 1033 
5 + Opening:Solder -2 -32.2 682 929 1005 
6 + Opening:Solder:Mask -6 -52.7 676 876 964 
7 + Opening:PadType -18 -47.7 658 828 952 
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The result of step.glmO is a glm object corresponding to the final model selected. 
The object includes an anova object, printed above, which shows the path taken 
to the final model. No terms were deleted in this case, only added, including one 
third-order interaction. 

There are other arguments to step(), namely keep=, direction=, scale=, and 
steps=; these are described in the detailed documentation, and also in some detail 
in Section 7 .3.1. 

As is pointed out in Chapter 4, we do not always want to drop or include entire 
terms. For example, we might wish to try different orders of a polynomial fit for 
one of the variables. It would be simple, for example, to modify dropl.l.m() (and 
make it less smart) so that it dropped columns of the model matrix rather than 
subsets of the columns corresponding to terms. But this would not be sufficient, 
because we do not really want to drop these columns in any order. 

In Chapter 7, a more general stepwise method step.gam() is described for ad
ditive models and can be used with GLMS and LMs as well. It allows a regimen of 
subterms to be specified for each term in the model, and performs stepwise back
ward and forward selection on subsets defined by these. For example, a particular 
regimen for polynomial regression may be . 

~1 + Age + poly(Age, 2) + poly(Age, 3) 

There is an ordering in this sequence of subterms, ranging from no term at all 
to a third-degree polynomial. The price to be paid for this greater generality is 
speed, since each of the candidate models has to be fitted separately. Although 
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this stepwise model works for both glm and lm objects as well, we postpone its full 
description until Chapter 7. 

6.3.6 Prediction 

Often we wish to evaluate the fitted model at some new values of the predictors, 
either for predictive purposes, or for validation. The method predict.glmO is used 
to make such evaluations. The expressions 

predict(gl.mob) 
fitted(glmob) 

are simple ways of extracting the linear predictor and the fitted values from glmob. 
More generally, the syntax for predict 0 is 

predict(glmob, newdata) 

where newdata is a data frame consisting of the new data. This will once again 
produce values for the linear predictor evaluated at the new data. If the newdata 
argument is missing, predictions are made using the same data that were used to 
fit the model. Unless some of the options below are selected, the predictions in this 
case already exist on the fitted gl.m object, so no additional work is required. 

Prediction for GLMs is not much different than that for LMs, which is discussed 
in Section 4.2.3. Our discussion here is meant to complement that section, as well 
as describe any features specific to GLMs. The type= argument allows a choice of 
either "link", "response", or "terms"; thus 

fitted(glmob) 
predict.glm(gl.mob, type = "response") 

produce identical results. Choosing type="terms" results in a matrix of predictions, 
with a column for each term in the model. The construction of these columns is 
quite straightforward. Recall that a component of a gl.m or lm object is the "assign" 
list; it has an element for each term, and each element is a vector of numbers. For 
example, 

> kyph.glm4$assign 
$"(Intercept)": 
[1) 1 

$"poly(Age, 2)": 
1 2 
2 3 

$"!((Start > 12) • (Start - 12))": 
[1] 4 
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tells us that the columns 2 and 3 of the model matrix correspond to the quadratic 
term "poly(Age, 2) ", and similarly elements 2 and 3 of the coefficients vector. The 
relevant components are extracted and multiplied together to form a single fitted 
term, and the same is done for all terms: 

> predict(kyph.glm4, type = "terms") [1:5,] 
poly(Age, 2) !((Start > 12) • (Start - 12)) 

1.06519 2.2648 
2 0.06911 -0.4133 
3 1. 07005 2. 2648 
4 -2.28338 2.2648 
5 -2.35883 -1.7523 

These fitted terms are centered such that, when computed for the original data, 
they average zero. Fitted terms are typically used in plots-i.e., plotting a fitted 
polynomial term against its predictor(s). The terms are centered because the inter
esting features in such plots are typically the slope and shape, while the level is of no 
importance. The matrix of predicted terms returned has an attribute "constant", 
which is a single number; the sum of the terms plus this constant is then identical 
to the linear predictor. The centering is simply achieved by subtracting from each 
column of the model matrix the (weighted) mean of the corresponding column of 
the model matrix for the original data. 

Standard errors can optionally be computed using the se.fit= argument in a 
call to predict(). The object returned is then a list with four components: 

• fit: the usual output that would have been returned if se.fit=F; either a 
vector or a matrix if terms"'Tj 

• se.fit: the standard errors of each element in the fit component, and there
fore having the same shape as fit; 

• residual. scale: the scale estimate used in constructing the standard errors; 

• df: the degrees of freedom used in estimating the scale estimate. 

The last two components are provided in case alternative scaling is required, and 
for computing pointwise confidence intervals. 

When the type="terms" option is used, the "assign" component is once again 
used to extract the relevant sub-block of the estimated covariance matrix of the 
parameter estimates. Assume we have available the model matrix X, which has 
been centered in the fashion described above. Suppose we are constructing the fit 
and standard error~ for the jth term, and we have extracted the relevant subset of 
the model matrix Xi, the coefficients {3i, and the covariance submatrix Eii· Then 
the fitted term and its pointwise standard errors are given by 
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Centering is even more important when standard errors are computed, once again 
in the context of plotting fitted terms. Since plots of this kind are produced by 
the plot() method for additive models, we defer further discussion of the centering 
issue until Section 7.3.5 (page 296). 

When the type="response" option is used in combination with se.fit=T, the 
delta-method standard errors are computed: 

(6.11) 

Let's look at an example. The mean of the binary response Pick in the market 
survey data has a strong dependence on Usage, as we see in Chapters 7 and 9. We 
fit the simple model 

survey.fit <- glm(pick ~ log(Usage + 2), binomial) 

The sample is rather large (759 observations), and our model is simple; rather than 
plot all the fitted values, we choose to represent them over a grid of 50 evenly spaced 
values of Usage. The following computations produce the required fitted values and 
standard errors: 

Usage.grid = seq(from = min(Usage), to= max(Usage), length= 50) 
survey.pred <- pr~dict(survey.fit, list(Usage = Usage.grid), 

type= "resp", se = T) 

Notice that even though we have only one predictor, the newdata= argument of 
predict expects a data frame or a list. In fact, a matrix is acceptable as well, as 
long the number of columns coincides with the number of coefficients. Since an 
intercept is included in this model, we would have to provide a two-column matrix, 
so 

predict(survey.fit, cbind(l, Usage.grid), type = "resp", se = T) 

would give the same predictions as the previous expression. In general, it is at least 
as simple to provide a list or data frame of new data, and far safer when factors might 
be involved. Figure 6.10 shows the fitted proportions at the selected points, as well 
as line segments joining the twice-upper and -lower pointwise standard errors. The 
fitted values are not too extreme, and the delta method seems to have worked well. 
Had the fitted values been around zero or one, it is quite likely that the standard
error bands could have gone outside [0, 1], which is not acceptable for binomial data. 
An alternative approach in situations such as this is to instead compute the bands 
on the scale of the linear predictor and then invert the upper and lower bands using 
the inverse logit transform. We give an example in Section 7.3.3 {page 291). 
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Figure 6.10: The central curve is the fitted proportion for the binary response Pick, modeled 
linearly in the logarithm of Usage for the market survey data. The curve was evaluated at 
50 points ()ver the range of Usage using predict 0, as were the pointwise standard errors. 
The vertical bars join the upper and lower twice-standard-error points, meant to represent 
approximate 95% confidence intervals for the mean response. 

GLMS also inherit from LMs the pitfalls in prediction arising from the general 
expressions allowed in model formulas, as described in Section 4.2.3. For example, 
"' log(x - min(x) + 1) is a perfectly valid formula expression; any coefficient for 
this term is likely to be meaningless when the same expression is applied to new 
data. The predict. gam() method is designed to avoid these pitfalls at a slight loss 
in computational efficiency; we defer discussion of this safer form of prediction to 
Section 7.3.3. 

6.4 Statistical and Numerical Methods 

Here we give a brief overview of the estimation of generalized linear models by max
imUm likelihood, and the associated iteratively-reweighted least-squares algorithm. 
We describe the inference tools available for this model of analysis, which are similar 
to those for linear models. 

In Section 6.4.3, we give some additional algorithmic details about glmO, and 
discuss starting values. in Section 6.4.4. 
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6.4.1 Likelihood Inference 

If f(y; p.) is the density or probability mass function for the observation y given p,, 
then the log-likelihood, considered as a function of p,, is simply 

l(p.;y) = logf(y;p.). 

Large values of l(p.; y) correspond to more likely values of the parameter p., for a 
given value of y. Now suppose we have a sample of n independent observations 
y1 , ••. , Yn with Ey; = J.li; then the log-likelihood for the entire sample is 

l(p.;y) = 'L)ogf(y;;p,i). (6.12) 

If g(p.;) = xf {3, then the parameters {3 can be estimated by maximizing (6.12). For 
example, for independent binary response data the log-likelihood of the sample is 

l(p.;y) = L{y;log(p.;) + (1- y;)log(1- p.;)} 
i 

If we use the logit link, then the log-likelihood can be written as 

l(o:,{3;y) = L[y;xff3 -log{1 +exp(xff3)}) (6.13) 
i 

The Bernoulli distribution is a member of the exponential family of distributions, 
whose members have densities of the form 

f(y;B,tj)) = exp{(y8- b(B))ja(f/J) + c(y,f/J)} (6.14) 

Other familiar members are the binomial, Poisson, gamma, and Gaussian distri
butions. For our purposes, a(fjJ;) = f/J/w;, where fjJ is referred to as the dispersion 
parameter, and the w; are prior weights. If the dispersion parameter is known, then 
the distributions are one-parameter members; the binomial, Bernoulli, and Poisson 
all have a(fjJ) = 1, while for the Gaussian distribution fjJ = o-2 , the variance param
eter. The parameter 8 is known as the natural parameter; the links in the table on 
page 197 are the corresponding natural links that transform the mean of a family 
to the natural parameter. For this class of link functions, the regression parameters 
enter the log-likelihood as linear combinations 

The deviance function is linearly related to the log-likelihood, and is often used 
as a goodness-of-fit criterion. The deviance D(y; p.) is defined by 

D(~ p.) = 2l(p.*; y)- 2l(p.; y) (6.15) 
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where J.t* maximizes the log-likelihood over J.t unconstrained. Often it is the cas1· 
that J.t* = y, as it is in the exponential family models that we discuss here. For thr 
Gaussian distribution, the deviance is 

D(y; J.t) = L w;(y;- J.L;)2 
i 

and is simply the residual sum-of-squares. Since the first term in (6.15) does not 
depend on the parameters, maximum-likelihood estimation i~ identical to minimum
deviance estimation, with the latter being more natural since it has the interpreta
tion of a distance. 

To compute the maximum-likelihood estimates, we solve the score equations 
8l(f3; y) / 8{3 = 0. These score equations are nonlinear in {3, so iteration is required 
to solve them. The IRLS algorithm for exponential-family models consists of the 
following steps: 

• Compute a working response with typical value 

zo = 71o + (y- J.LO)(::) 0 

where 11 = g(IJ,) is the linear predictor, and the subscript 0 denotes evaluation 
at the current value of the parameters {30 . 

• Compute weights 

• Regress .zo on the predictors x1. ... , xi with weights W0 to obtain an updated 
{31. 

These steps are iterated until the relative change in the coefficients is below some 
small threshold. For the binary response example, the working response and weights 
are 

+ (y- J.LO) 
zo = 1'/o J.LO(l _ p.o) 

Wo J.LO(l - J.LO) 

The IRLS algorithm can be justified in a variety of ways. When the natural 
link function is used, it is equivalent to the Newton-Raphson algorithm for itera
tively solving the score equations. For other link functions it is equivalent to the 
Fisher-scoring algorithm, a close relative to the Newton-Raphson algorithm. The 
maximum-likelihood score equations can be written as 

(6.16) 



244 CHAPTER 6. GENERALIZED LINEAR MODELS 

for each predictor Xj. These equations represent a form of orthogonality between 
the residual (y- JJ.) and the linearized version of the model at the solution, in the 
metric of v-I, where V is the variance of the residual; in this sense they are the 
analogues of the usual least-squares normal equations. 

Although these estimating equations are formally derived from maximum-like
lihood principles, one could simply write them down knowing the link and variance 
functions. We may not know or be willing to postulate the distribution of a response, 
but may be happy to pin down its mean-variance relationship. These estimating 
equations behave like score equations in several important respects, and provide a 
basis for estimation in this case. This is known as quasi-likelihood estimation, and 
extends the class of generalized linear models considerably. 

We have seen that fitting a generalized linear model is not much harder than 
fitting a linear model. The interpretation generalizes in a similar way. The steps in 
comparing two models are very similar to those for comparing two Gaussian-error 
linear models. The difference in deviance between two nested models measures the 
contribution of the parameters by which they differ, just as does the numerator 
of the F-test statistic. The distribution theory is asymptotic; under appropriate 
assumptions and the null hypothesis that the smaller model f.J.I is correct, the dif
ference in deviance 

has an asymptotic f/Jx2 distribution with degrees of freedom 11 = 111 - 112 equal to 
the difference in the dimension of the linear spaces implicit in p,1 and p,2 • These ap
proximations can be poor in small sample situations, but the difference in deviance 
between two models can still be useful as a screening device. 

Also of interest is the distribution of the parameter estimates /3. Under the 
same asymptotics and a correct model, the distribution of /3 approaches that of 
a N(J3, (XTW X)- 1 4J) distribution, where X is the model matrix and W, the 
diagonal matrix of weights. This approximation is often used to perform hypothesis 
tests on subsets of the parameters. The form of the asymptotic-covariance matrix 
alerts us to a possible additional difference between these models and the usual 
linear models: even if the predictors are orthogonal, the nonlinearity of the model 
can induce correlations in their associated parameter estimates. 

6.4.2 Quadratic Approximations 

Each step of the IRLS algorithm minimizes the weighted least-squares criterion 

n 

L Wi(z; -: z[ .8? (6.17) 
i=l 
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where z; = x'{/30 + (y;- Jld(arlifaJl;) and W;-1 = (firJdaJl;fV;, and each of 

JJ-;, 1'/i and V; are evaluated at /30 • At convergence, {30 = /3, which means that the 
criterion (6.17) reduces to the Pearson chi-squared statistic 

(6.18) 

By a simple Taylor series expansion, (6.18) can be seen to be a quadratic approxi
mation to the deviance D(y; p.) = 2 L; {l(y;; y;) -l(JL;i y;)} at the minimum. 

All the first-order asymptotic theory for maximum-likelihood estimates is based 
on this approximation. A simple way of viewing this theory is through the work
ing response, evaluated at the MLE /3. The asymptotics can be derived by as
suming that the z; are asymptotically independent with mean TJ; and variance 

( 8TJ;/aJl;) 2 V;lj>, where 7J; and V; now depend on the true mean Jli· 
As an example, consider the asymptotic covariance matrix of the parameter 

estimates: 
(6.19) 

where W is a diagonal matrix with elements W;. This is exactly the covariance 
matrix that would be obtained from the weighted linear regression of z; on x; 
with weights W;. The weights W; are estimated, based on the fitted values. The 
dispersion parameter is either assumed known (as is often assumed in the case 
of binomial or Poisson regression), or else is estimated by X 2 jv, where v is the 
residual degrees of freedom. Both these quantities are computed automatically 
by the summary.lmO function when handed a weighted least-squares fit object; a 
glm object inherits from the class "lm", and so has all the components of weighted 
least-squares object. 

It is also clear that all the other functions designed for 1m objects will work 
when handed glm objects. These include print.lmO, lm.influence(), dropl.lmO, 
and addl.lmO. They will produce appropriate weighted least-squares output, and 
so can be interpreted as the Pearson chi-squared equivalent of the usual output. 
In each case we need to be careful about interpreting the results. For example, 
the results of dropl.lm() and addl.lm() are conditioned on the weights and the 
working response of the current fit when computing the subset or augmented fits. 
This is equivalent to taking one IRLS step toward the new solution, and is the same 
philosophy that motivates Rao's score test. 

6.4.3 Algorithms 

The IRLS computations in glmO are performed by the function glm.fitO, which 
uses repeated QR decompositions. The only nonstandard aspect of glm.fitO is 
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its family= argument, which is the same as in glm(), and the generality of the 
response y. Otherwise, it receives an X matrix and optional prior weights, offset 
and starting values, as well as some iteration constants. The implications of this are 
that the fitting mechanism of glm() could be replaced without much knowledge of 
the workings of glmO. The only constraints on such a replacement function would 
be: 

• the family argument would have to be used in much the same way as it is by 
glm.fitO; 

• the object returned should include the essential components of a glm object. 

There are several reasons why one might embark on such a venture: 

• For standard families, all the computations could be performed in c or FOR

TRAN. This would be faster than the current setup, where the iteration up
dates are computed in S, and only the weighted least-squares fit is computed 
in FORTRAN. Whether or not a family is standard could be identified by the 
family component of a family object, which is an identification tag. 

• This modularity allows dramatic functionality changes to be made with rel
ative ease. For example, one could create a function to fit the Cox's propor
tional hazards model with relative ease, perhaps by using a cox family. The 
initialize expression of the family object would be responsible for untangling 
the death timeS and censoring information, and glm. fit. cox 0 would fit the 
model using the usual Newton-Raphson algorithm for minimizing the partial 
likelihood. 

Currently such modifications to glmO can be implemented via the method= argu
ment, which defaults to "glm.fit". Using the Cox model as an example, a typical 
calling sequence would look like: 

glm(Times ~Dose + Age, family = "cox", method= "glm.fit.cox") 

Alternatively, users could write their own version of glm.fitO that identified what 
algorithm to use by examining the family object. Such a (more permanent) modi
fication could simultaneously deal with both the generalizations suggested above. 

6.4.4 Initial Values 

As is always the case, the Newton-Raphson iterations are not guaranteed to con
verge unless step-length optimization is used. No such step-length calculations are 
performed in glm(), simply because they add to the computational burden and are 
rarely needed. 
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There is an art, however, in selecting starting values for the iterations. It might 
seem that an obvious starting point should be the sample mean for the fitted values. 
This causes problems, however, when the response is binary and the sample mean 
is too small or large. Similarly, it might seem even more natural to start the 
iterations of the stepwise algorithms from the previous fit, or even better, from the 
fit produced by the single step taken by dropl 0 or addl 0. This strategy, too, is 
dangerous; while it may save one or perhaps two iterations most of the time, these 
starting values cause convergence problems far more often than those we describe 
below. It is also worthwhile to note that selection of a model is computationally far 
more intensive than iterating the selected model to convergence. 

We use the data themselves as starting values for the fitted response. These 
need to be corrected in some cases. For binomial data, we user;+ (0.5- r;)/n;, 
where r; is the proportion of 1s, and n; is the number of trials for the ith response. 
This shrinks the response toward 0.5 to avoid a proportion of 0 or 1; for binary 
data the shrinking is dramatic (all initial values are 0.5). For Poisson counts and 
gamma data, a zero response is replaced by 1/6. 

There is a start argument to glm(), so in the rare situations when convergence 
problems are encountered, alternative starting values for the fitted response can be 
tried. 

Bibliographic Notes 

GLMS have become popular over the last 10 years, partly due to the computer 
package GLIM (Generalized Linear Interactive Modeling; Baker and Neider, 1978). 
GLIM is a FORTRAN-based interactive environment that features a formula language 
for describing the components of the linear predictor, and easy specification of the 
different components of a GLM. Apart from the formula language, the core of GLIM 

is the iteratively-reweighted least-squares (IRLS) algorithm; the remainder is an 
environment for setting up the data structures and summarizing and plotting the 
fitted models. Our formula language, described in Chapter 2 and used throughout 
this book, was inspired by the the Wilkinson and Rogers (1973) formula language 
used in GLIM, and features many enhancements. Several recent books have appeared 
on the practice of using GLIM and on the GLM mode of modeling (Healy, 1988; Aitkin 
et a!., 1989). 

McCullagh and Neider's (1989) research monograph is a comprehensive text 
about the theory of generalized linear models. They study many examples covering a 
wide spectrum of applications, and give an excellent overview of the recent advances 
in the field. They discuss in some detail the asymptotic results referred to in this 
chapter, and also summarize the recent work that has been done to improve them. 

The robust 0 function follows the conventions for resistant GLMS established by 
Pregibon {1982), and described in Hastie and Tibshirani {1990). 





Chapter 7 

Generalized Additive 
Models 

Trevor J. Hastie 

In the previous chapters we introduced a number of new functions for fitting linear 
models. In particular, glm() fits linear models in a variety of settings such as 
ordinary regression or logistic regression for binary data. The data and formula 

arguments provide a flexible language for specifying the variables and their form in a 
model, and the family argument supplies information on the error structure and the 
link function. The output of glmO can be fed into a number of auxiliary functions 
for summarizing the estimated coefficients and evaluating and examining the fits. 
In particular, residual and partial residual plots are used to identify discrepant 
observations and to identify nonlinearities. This chapter describes some tools for 
identifying nonlinearities in a more direct way by incorporating them into the model. 
This practice is not new, of course, if by nonlinearities we mean polynomial terms 
and parametric transformations. We use a more adaptive approach; the techniqueE 
described here allow us to model the terms nonparametrically using a scatterplot 
smoother, and in so doing let the data suggest the nonlinearities. The gam functiom 
share many of the features of glmO and lmO, with some added flexibility. The 
output of gam(), being graphical in nature, tends to complement rather than overlap 
with glmO. 

249 
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7.1 Statistical Methods 

An additive regression model has the general form 

(7.1) 

where each of the X; are predictors and the /; are functions of the predictors or terms. 
The name additive refers to the multivariate assumption underlying the model, 
namely that the p-predictor function TJ has a low-dimensional additive structure. 
Such models are attractive if they fit the data, since they are far easier to interpret 
than a p-dimensional multivariate surface. 

So far we have entertained additive models in which each of the terms is a 
parametric function of the predictor-in fact, a function linear in its parameters. 
Examples are simple transformations such as logarithm, polynomials, and sinu
soids, as well as step functions introduced by transforming numeric variables into 
ordered factors. More elaborate functions can be used to generate piecewise linear 
or polynomial functions with breakpoints at specified values of the predictors. 

The innovations in this chapter are additional flexible methods for modeling 
an individual term in an additive modeL This relieves the user of the burden of 
fishing around for the correct transformation for each variable. The functions are 
fitted using scaiterplot smoothers, nonparametric techniques for fitting a regression 
function in a flexible data-defined manner. Several smooth terms are fitted simul
taneously in an additive model by using the scatterplot smoothers iteratively. Of 
course, nothing comes for free; for the nonparametric techniques to be successful 
and remain parsimonious, the underlying functions need to be reasonably smooth. 

The additive predictor TJ can be used in all the situations where the linear pre
dictor was used for generalized linear models. Lets look at a few examples: 

• A univariate smoother estimates the unknown function in the simple additive 
model y = f(x) +£,having only one term. 

• A semiparametric model y = :r- 1{3 + f(z) +£is an additive model, where only 
one term is modeled nonparametrically. Of course, the purely linear model 
is additive as well! These semiparametric models have received attention in 
the analysis of agricultural field trials; the linear terms usually correspond to 
design effects and the nonlinear function models spatial ordering of the plots. 

• The additive model y = {31x + fi(zi) + h(z2 ) + · · · + Jq(zq) +£is also semi
parametric, but more complicated. There are several linear and several non
parametric tP.rms. 

• The nonparametric logistic regression model has the form 
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Once again the additive predictor 11(x) can be a single term, a semi parametric 
term, a full additive model as in (7.1), or a mixture. 

Often the nature of the variables determines to a certain extent how we model 
them. For example, if a variable xi is a factor, we would most likely fit it as a set of 
constants corresponding to each level, and so it would appear in the linear part of 
the semiparametric predictor. If a variable is quantitative, we can choose whether 
we want to model it in a parametric or nonparametric fashion-often we want to 
try both. 

The examples above may give the impression that each of the terms is univariate. 
On the contrary, they may be parametric compound variables, or even multivariate 
nonparametric terms, which might be fitted using a surface smoother. 

We have presented these models from a rather formal statistical point of view. 
In fact, each of the items above represents somewhat independent and rather large 
sections of the statistical modeling literature. The next step is to define algorithms 
for fitting these models, subject to suitable constraints on the nonparametric func
tions. The methods we use unify this large literature, and in fact allow us to discuss 
all these different models under the description generalized additive models. One 
approach is based on penalized likelihood and smoothing splines. Others are based 
on the idea of local estimation. Section 7.1.2 gives a brief overview of the steps 
involved; a more detailed account is given in Section 7.4. 

7.1.1 Data Analysis and Additive Models 

New and adventurous techniques abound in the applied statistics literature. In 
order for these new techniques to be used and become popular, they must blend 
with the existing technology. Additive models and the associated methodology 
naturally blend well, and the software described in this chapter emphasizes this. 

For example, the formula 

ozone "' wind + s(temp) 

specifies an additive model in which wind is to appear linearly and temp is to be 
modeled by a nonparametric smooth term. This model looks very similar to the 
model 

ozone "' wind + poly(temp, 3) 

except that smoothers allow the term in temp to be modeled in a more flexible 
way. Readers familiar with smoothing will wonder about the amount of smoothing 
or smoothing parameters implicit in the term s(temp). Using the concept of the 
equivalent degrees of freedom of a smoother, we are able to prespecify the value of 
the smoothing parameter. So in the example above, s(temp) implies a smooth term 
lit using a smoothing spline with df=5 (the default), while the general form would be 
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\ 
s(temp, df). Similarly, the term lo(temp) implies a smooth term using the loess() 

smoother, with a default amount of smoothing. 
The fitted model is therefore very similar to a parametric model, and similar 

analyses are possible. For example, we can perform tests (albeit crude) for whether 
terms should be linear or simply smooth, by fitting the two separate models and 
analyzing the change in deviance relative to the change in df. Similarly, we can 
use stepwise model-building algorithms for automatically selecting terms. We can 
compute pointwise standard-error bands for the curves, and make predictions at 
new observations. The fitted functions have strong graphical appeal, and are almost 
always plotted. 

Some analysts may not be comfortable with the more confirmatory type of 
analysis proposed above. Additive models can also be used in a diagnostic mode as 
a tool for suggesting parametric transformations or alternative forms for terms in 
the model. Once the transformations have been discovered, subsequent fitting and 
testing can then be based on these parametric transformations. 

7.1.2 Fitting Generalized Additive Models 

This section briefly outlines how we fit additive models, leaving the details to Sec
tion 7.4. A general and efficient algorithm for fitting a generalized additive model 
(GAM) consists of a hierarchy of three modules: 

• Scatterplot smoothers, which are used to fit individual functions, can be thought 
of as a general regression tool for fitting a functional relationship between a 
response and, in our case, a one- (or typically low-) dimensional predictor 
variable. So locally weighted polynomials (loess() in Chapter 8), smooth
ing splines, kernel and near-neighbor smoothers fall into this category. So do 
linear parametric regression fitters such as simple and polynomial regression. 

• The backfitting algorithm cycles through the individual terms in the addi
tive model and updates each using an appropriate smoother. It does this by 
smoothing suitably defined partial residuals. l(nown as the Gauss-Seidel al
gorithm in numerical analysis, the cycles continue until none of the functions 
change from one iteration to the next. Typically, three or four smooths per 
variable are required. 

• The local-scoring algorithm is similar to the Fisher-scoring algorithm or IRLS 
used to fit generalized linear models. Each iteration produces a new working 
response and weights, which are handed to a weighted backfitting algorithm, 
which produces a new additive predictor. 

These three steps are a rather natural and intuitive generalization of the usual 
linear model algorithms, and that is how they were originally conceived. The al-
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gorithm can be placed on firmer theoretical ground if we are willing to corrunil 
ourselves to particular classes of smoothers. For example, if all the smooth term~ 
in the additive model are polynomial smoothing splines, then the local scoring algo 
rithm solves an appropriately penalized likelihood problem. 

7.2 S Functions and Objects 

This section presents the S functions for fitting and understanding generalizf!d ad 
ditive models (GAMs). Readers who visit Chapters 4 and 6 will soon discover tha· 
the tools are the same, and most of the new functions introduced here can be use< 
with lm and glm objects as well. 

7.2.1 Fitting the Models 

Readers familiar with S may have used lovess(), an example of a scatterplo 
smoother. Figure 7.1 (left panel) shows the lovess smooth of Mileage against Weigh· 

gam(Mileage - lo(Weight)) gam(Mileage - s(HP)) 
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Figure 7.1: Scatterplot smoothers summarize the relationship between the variable Milea! 

as a response and Weight and HP as predictors in the automobile data. The first panel us< 
the loess() smoother, while the second panel uses a smoothing spline. They can also 1 

viewed as nonparametric estimates of the regression function for a simple additive modt 
The straight line in each case is the least-squares linear fit. 



:.:!54 CHAPTER 7. GENERALIZED ADDITIVE MODELS 

for the automobile data, using the default smoothing parameter and no iterative 
reweighting. We can also view this smooth as an estimate of the regression function 
fin the simple additive model y = f(x) +e where y is Mileage, xis Weight, and the 
E represents iid errors. We can go further, and estimate that there are 4.5 equiv
alent degrees of freedom (df) used in the smooth fit, versus 2 df for the linear fit. 
Comparing the residual sum-of-squares (RSS) for the two models, we can perform 
an approximate F-test for the hypothesis that the regression is linear: 

F = (380.8- 317.3)/(4.5- 2) = 4_45 
317.3/(60- 4.5) 

and compute the corresponding percentage point of the F distribution 

> 1 - pf(4.45, 4.5-2, 60 - 4.5) 
[1] 0. 01063 

which is significant. So it seems that, although visually undramatic, the nonlinearity 
exhibited by the smooth is real. This model was actually fit by the expression 

gam(Mileage ~ lo(Weight)) 

This is a call to gam() with a model formula that specifies a single smooth term in 
Weight, using the smoother loO, which is an abbreviation for loess() (the newer 
version of the S function lovess (), described in Chapter 8). The amount of smooth
ing is set to the default (span=1/2); otherwise this parameter could be passed as well, 
as in the expression 

gam(Mileage ~ lo(Weight, span = 1/3)) 

The span= argument gives the fraction of data to be used in computing the local 
polynomial fit at each point in the range of the predictor. Since this model only 
involves a single term rather than a sum of terms, it could also have been fit using 
the loess() function described in Chapter 8. 

The plot on the right in Figure 7.1 also displays a scatterplot smooth, using a 
different predictor HP (horsepower) and a different smoother. It was created by the 
call 

gam(Mileage ~ s (HP)) 

where s(Mileage) requests a smooth term to be computed using a smoothing spline. 
The smoothing parameter is also set to the default, which in the case of sO is df=4 
for the smooth term, or 5 in all for the overall fit. The df= argument stands for 
rlegn:es of freedom, and is a useful way of calibrating a smoother. Smoothing splines 
arc discussed in a bit more detail in Section 7.4.1; there we mention the stand-alone 
smoothing-spline function smooth.splineO, which could also have been used to 
produee the spline curve in Figure 7.1. 
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Figure 7.2: An additive model relates Mileage to Weight and HP. Each plot is the contribution 
of a term to the additive predictor, and has as "y" label the expression used to specify it 
in the model formula. Each curve has been centered to have average 0. The effect of HP in 
this joint fit is greatly reduced from that in Figure 7.1. 

What smoother to use is a matter of taste, and the very question has given 
rise to a large research literature; visually the performance of the two used here 
seems comparable. In practice, both have complementary advantages and disad
vantages. For example, it is almost as easy to fit two- or higher- dimensional surfaces 
with loess() as it is to fit one-dimensional curves; the computational complexity 
of smoothing splines increases dramatically as we move from curves to surfaces. 
Smoothing splines, on the other hand, minimize a data-defined convex criterion, 
while the loess() method is based on sensible heuristics; one consequence is that 
both the theoretical and numerical behavior of smoothing splines is cleaner than 
for loess 0. We discuss the use of different smoothers in additive models in more 
detail in Section 7.3.4. 

The variables Mileage, Weight, and HP in the data frame car. test. frame are 
available by name, because we attached the data frame for use in the entire session: 

attach(car.test.frame) 

This is a useful alternative to supplying the data= argument each time we fit a 
model. 

We can model Mileage additively in Weight and HP: 
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Figure 7.3: A scatterplot smooth for binary data (jittered to break ties). The smooth 
estimates the proportion of ATT subscribers {ls} as a function of usage. 

auto.add <- gam(Mileage - s(Weight) + s(HP)) 

and plot the fitted model 

plot(auto.add, residuals=!) 

Figure 7.2 shows the result, which seems to indicate that the effect of HP is dramat
ically reduced in the presence of Weight. The curves in the plot are produced by 
the plot() method for gam objects, which joins up the fitted values for each term 
by straight line segments. 

We can get a numerical summary of the fit by simply printing the gam object: 

> auto.add 
Call: 
gam(formula • Mileage ~ s(Weight) + s(HP)) 

Degrees of Freedom: 60 total; 51 Residual 
Residual Deviance: 306.4 

Similarly the model fit to Weight alone prints as 
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> gam(Kileage "' s(Weight)) 
Call: 
gam(formula • Mileage "' e(Weight)) 

Degrees of Freedom: 60 total; 55 Residual 
Residual Deviance: 313.6 
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and we see that the residual deviance (or residual sum-of-squares in this case) has 
not increased much (relative to the average residual deviance of the bigger model). 
We should not be too surprised by this particular result; heavier cars tend to have 
higher horsepower, so on its own HP acts as a surrogate for the more important 
predictor Weight. 

The overall predictor-response relationships are evident in Figure 7.1 without 
the smooth fits, although the finer details are not. Often the structure of interest 
is not at all evident for bivariate data. Figure 7.3 shows a plot of a binary variable 
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Figure 7.4: The left figure smooths pick against the transformed log(ueqe+2). The right 
figure plots the same fit against the untransformed usqe. 

pick against a numeric variable usage, two variables from the frame market.survey. 
The response pick indicates whether a household chose All or DCC (Other Common 
Carrier) as their long-distance carrier. These data are described in some detail in 
Chapter 3. Of interest in this particular plot is the proportion of ATr subscribers 
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as a function of usage. Although we have randomly perturbed (jittered) usage to 
break ties, it is still difficult to detect the trend from the data alone. The scatterplot 
smooth is really needed here; it shows an initial increase which then flattens off. 
Although we could simply have smoothed the 0-1 data directly, that was not done 
here. The curve in Figure 7.3 was fit on the logit scale, which guarantees that 
the fitted proportions (which is what is plotted) lie in [0, 1) (scatterplot smoothers 
do not in general guarantee this). Our fitting mechanism also takes the changing 
binomial variance into account. This model was fit by the call 

gam(pick c= "ATT" ~ s(usage), family = binomial) 

which should look familiar to those readers who are reading this book serially. Notice 
the form of the response in the formula. The variable pick is a factor with levels 
"DCC" and "ATT", and we want to make sure that we are modeling the proportion 
of AT&T subscribers. We can express that preference directly in the formula, by 
creating the binary (logical) variable pick=="ATT". The fit in the right tail of usage 

appears to track the data rather closely. This is not surprising, since the data are 
very sparse in this region. Smoothers such as smoothing splines and loess give high 
leverage to outlying points such as these, and as a consequence the variance of the 
fit is high. In situations such as this, it is useful to transform the predictor prior 
to smoothing to bring in the long tails. In this case, the log transformation seems 
appropriate (a histogram of log(usage+2) appears symmetric with short tails). The 
transformation can be applied directly in the model formula, as in 

mkt.fit1 <- gam(pick == "ATT" ~ s(log(usage + 2)), family= binomial) 

The fitted values are shown in Figure 7.4, plotted against both log(usage+2) and 
usage. The fitted values are easily obtained using fitted(mkt. fitl), which produces 
the fitted mean of the response-in this case the fitted proportion of AT&T sub
scribers. So, for example, the right plot in Figure 7.4 was produced by the sequence 
of expressions 

> plot(usage, pick== "ATT", type= "n", ylim = c(-.1, 1.1), yaxt "n") 
> axis(2, at = c(O, 1)) 
> points(jitter(usage), pick== "ATT", pch ="I") 
> o <- order(usage) 
> lines(usage[o), fitted(mkt.fit1)[o]) 

Along with fitted(), other generic functions such as residuals(), summary(}, 

predict(), family(), deviance(), formula() produce appropriate results when ap
plied· to gam objects. Printing the fitted gam object 



7.2. S FUNCTIONS AND OBJECTS 

> mkt.fitl 
Call: 
gam(formula =pick== "ATT" "' s(log(usage + 2)), family =binomial) 

Degrees of Freedom: 1000 total; 995.01 Residual 
Residual Deviance: 1326.9 
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we notice that the residual degrees of freedom is not an integral quantity. As we will 
see, the df of a nonparametric term is an intuitively defined quantity, and can take 
on fractional values. Our smoothing spline was requested to produce a fit with 4 df 
(the default), and it returned one with 3.99, which is certainly close enough for our 
purposes. One might compare such a fit to a parametric fit with four parameters, 
such as a quartic polynomial; only here the functional form is not nearly as rigid. 

We now move on to some data used in Chapter 6 on spinal bending in children. 
Figure 7.5 shows the fitted functions for the additive logistic regression model: 

logitP(Kyphosis) =a+ /Age(Age) + !Number(Number) + fstart(Start) 

relating the prevalence of Kyphosis, a spinal deformity in young children, to three 
possible predictors: Age, Number, and Start. The response indicates the presence 
or absence of this deformity, a forward flexion of the spine, after an operation to 
correct it. The last two predictors refer to the number of vertebrae involved in the 
operation, and the position of the first. These data are also used in Chapter 6 and 
are described there. The plot is produced by the call 

plot(kyph.gaml, residuals = T, rug = F) 

Each of the functions represented in the plot is the contribution of that variable to 
the fitted additive predictor, the analogue of the linear predictor in GLMs. The curves 
are drawn by connecting the points in plots of the fitted values for each function 
against its predictor. The vertical level of these plots is of no importance since 
there is an intercept in the model; the fitted values for each function are adjusted 
to average zero. We have included the partial residuals, which automatically put 
all the figures on the same scale. Notice that for Age and Start there are regions 
where the residuals are all below the fitted curve. These correspond to pure regions 
in the predictor space where only zeros occur in the sample, and tend to dramatize 
the fitted curves in those regions. 

This model was fit by the call: 

kyph.gaml <- gam(Kyphosis"' s(Age) + s(Number) + s(Start), 
family = binomial, data = kyphosis) 

The summary function produces 
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Figure 7.5: A graphical description of the generalized additive model fit of the binary 
response Kyphosis to three predictors. The figures are plotted on the logit scale, and each 
plot represents the contribution of that variable to the fitted logit. Included in each of the 
plots are partial residuals for that variable. 
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Figure 7.6: A scatterplot matrix of the three predictors in the Kyphosis data. The presence 
(solid dots) and absence (hollow circles) of Kyphosis is indicated in the plots. 
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> summary(kyph.gam1) 

Call: gam(formula =Kyphosis~ s(Age) + s(Number) + s(Start), 
family = binomial, data = kyphosis) 

Deviance Residuals: 
Min 1Q Median 3Q Max 

-1.3603 -0.45752 -0.16406 -0.009855 2.0945 

(Dispersion Parameter for Binomial family taken to be 1 ) 

Null Deviance: 83.234 on 80 degrees of freedom 

Residual Deviance: 40.53 on 68.086 degrees of freedom 

Number of Local Scoring Iterations: 7 

DF for Terms and Chi-squares for Nonparametric Effects 

(Intercept) 
s(Age) 

s(Number) 
s(Start) 

Df Npar Df Npar Chisq P(Chi) 
1 

1 

1 
2.9 
3.0 

5.743 0.1162 
5.777 0.1263 

3.0 5.838 0.1181 

The last part of the summary gives a crude breakdown of the degrees of freedom be
tween terms, and separates the parametric and nonparametric contributions within 
terms. This is represented in an anova table, which is a component of the output 
of summary. gam 0 . The column labeled "Npar Chisq" represents a type of score test 
to evaluate the nonlinear contribution of the nonparametric terms. In this case it 
seems to indicate that none of the nonlinear components are significant. Further 
details can be found in Section 7.4.5. 

Figure 7.6 is a scatterplot matrix of the three predictors, with the response 
encoded. We see that Start and Number are negatively associated, and so it is 
possible that the fit would not suffer much by removing one of them. Let's remove 
the term in Number using the update() function: 

> kyph.gam2 <- update(kyph.gam1, ~ . - s(Number)) 
> summary (kyph. gam2) 

Call: gam(formula ~Kyphosis~ s(Age) + s(Start), family= binomial, 
data = kyphosis) 

Deviance Residuals: 
Min 1Q Median 3Q Max 

-1.6917 -0.44878 -0.20098 -0.030184 2.0857 
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(Dispersion Parameter for Binomial family taken to be 1 ) 

Null Deviance: 83.234 on 80 degrees of freedom 

Residual Deviance: 48.615 on 72.24 degrees of freedom 

Number of Local Scoring Iterations: 6 

DF for Terms and Chi-squares for Nonparametric Effects 

Df Npar Df Npar Chisq P(Cbi) 
(Intercept) 1 

s(Age) 
s(Start) 

2.9 
2.8 

6.122 0.1016 
7.639 0.0469 
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Figure 7. 7: The additive logistic fit of Kyphosis to Age and Start. The dashed curves are 
pointwise 2 x standard-error bands. 

We see that the term s(Start) has apparently gained in importance. The fitted 
functions for s(Start) look much the same for the two models, and are displayed in 
Figure 7.7. They were produced by the expression 

plot(kyph.gam2, se ~ T) 

We can use the anovaO function to make the comparison of the two models for us: 
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> anova(kyph.gam1, kyph.gam2, test • "Chi") 
Analysis of Deviance Table 

Response: Kyphosis 

Terms Resid. Df Resid. Dev Test 
1 s(Age) + s(Number) + s(Start) 68.09 40.53 
2 s(Age) + s(Start) 72.24 48.61 -s(Number) 

Df Deviance Pr(Chi) 
1 

2 -4.154 -8.085 0.097 

and find that the omitted term is not quite significant. These nonparametric curves 
suggested a quadratic term in Age and perhaps a low-order spline in Start; they led 
to the final parametric model selected for these data, as displayed in Figure 6.6 on 
page 221. 

7.2.2 Plotting the Fitted Models 

Since gam() fits an additive model consisting of a sum of flexible components, the 
emphasis in many of the functions in this chapter is on the individual terms in the 
formula. The plot 0 method for gam objects tries to produce a sensible plot for 
each term. To illustrate, suppose we fit the two-term model mkt. fit2 to the market 
share data: 

> summary(mkt.fit2) 

Call: gam(formula = pick == "ATf" "' s(log(uaage + 2)) + 
. income, family m binomial, data= market.survey, 
na.action = na.omit, trace = T) 

Deviance Residuals: 
Min 1Q Median 3Q Max 

-1.6625 -1.1008 0.79345 1.1373 1.4811 

(Dispersion Parameter for Binomial family taken to be 1 ) 

Null Deviance: 1086.9 on 784 degrees of freedom 

Residual Deviance: 1038.7 on 774.02 degrees of freedom 

Number of Local Scoring Iterations: 2 

DF for Terms and Chi-squares for Nonparametric Effects 
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Df Npar Df Npar Chisq P(Chi) 
(Intercept) 1 

s(log(usage + 2)) 1 3 6.194 0.1014 
income 6 

2(i[i 

where income is a five-level factor. Notice that we have used the na ~tction= argu 
ment in creating mkt.fit2, since there are missing observations for l.he predictor 
income. The na.omitO action removes all observations missing any values in the• 
model frame derived from market. survey. Section 7.3.2 gives more de• tails on tile' 
use of na.actions(). The pair of plots in the top row of Figure 7.8 WM created by 
the expression 

plot(mkt.fit2, se = T, scale = 3) 

A plot was produced for each term in the model, and since the se=T option was set, 
each includes upper and lower pointwise 2 x standard-error bands. Some features 
to notice in the pair of plots: 

• The curve for s(log(usage + 2)) is plotted against usage itself rather than 
against log(usage+2). The rugplot at the base of the plot indicates the loca
tions of the observed values of usage, randomly perturbed or jittered to break 
ties. The rugplot offers an explanation for the wide standard-error bands, 
since the observations are sparse in the right region of the plot. 

• The variable income is an ordered factor with seven levels, and so an appro
priate step function is produced. The jittering at the base of this plot results 
in solid bars because there are so many observations; the width of the bars is 
proportional to the level membership for the factor. 

The plot 0 method is set up to produce a variety of different plots, depending 
on the nature of the term and the predictors involved. It will plot a curve for 
any term that can usefully be represented as a curve, a step function for a factor 
term, and two-dimensional surfaces for terms that are functions of two variables. 
In Section 7.3.5, we outline how users can add their own plot functions to the list. 

For example, plot.gam() is used in Figure 6.6 in Chapter 6 to plot a polynomial 
term. The coefficients of polynomial terms and other similar terms that result in 
a curve, such as the B-splines produced by terms that are expressions in bs 0 , are 
kept together and the composed polynomial or spline is plotted as a function of 
the argument, Age in that case. Even straight line fits are usefully plotted in this 
fashion, for visual comparison with other terms in the model. The details and 
options given in this section are therefore pertinent for plotting fitted 1m, glm, and 
even some aov models as well. 

In Figure 7.8 we give an argument scale=4 in the call to plot.gam(). The scale 
argument is a lower bound for the range of each vertical axis, in this case large 
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Figure 7.8: Representations of some additive fits to the market share data. The top 
row was created by the expression plot (mkt. fi t2, se • T, scale • 3). The x-axis in each 
plot is labeled according to the "inner" predictor in the term, such as usage in the term 
s (log(usage+2)); the y-axis is labeled by the term label itself. The bottom row is a plot of 
the GLM model glm(pick••"ATT" ~ log(usage+2) + income, binomial), using a similar call 
to the /unction plot. gam(). 
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enough to ensure that both the plots are on the same vertical scale. This allows 
us to make visual judgments of how important different functions are relative to 
each other. Setting a common scale is essential when plotting purely linear terms; 
otherwise the lines would all be plotted as 45-degree diagonals. 

The argument se=F is a logical flag, and is a request for pointwise standard-error 
curves. These are constructed at each of the fitted values by adding and subtracting 
two (pointwise) standard errors, resulting in an upper and lower curve that define 
an envelope around the fitted term. Under additional assumptions of no bias, these 
can be viewed as approximate 95% pointwise confidence intervals for the ''true" 
curve. 

The rug=T flag causes a frequency plot of the x-values to be represented at the 
base of the plot. Ties are broken by randomly jittering the values, and each value is 
represented by a vertical bar. Usually this information is available if residuals are 
included in the plot, which is also an option. In some cases, especially for generalized 
linear or additive models, adding residuals to a plot is unhelpful because they can 
distort the scale dramatically. Any interesting features in the functions get lost 
because of a few large residuals, even though they may carry a very small weight. 
In cases such as these, where residuals are omitted, the rugplot is useful since it 
warns us about influential predictor values. For example, in the top left panel in 
Figure 7.8, we see that three values of usage occupy about half its range! No wonder 
the standard-error bands are so wide in that region. 

The residuals= argument can either be a logical flag, or a residual vector. If 
residuals•T, the plot for each term includes partial deviance residuals; these are 
simply the fitted term plus the deviance residuals. The residuals= argument can 
also be supplied with a residual vector rather than a logical flag, thus allowing the 
user to choose what partial residuals to use in the plots. For example 

> plot(gamob, residuals = residuals(gamob, type • "working")) 

would construct partial residuals by adding the working residuals to the fitted values 
for each term. The points resulting from this choice have the property that if the 
term in question is refit to the points using the final iterative weights, in a univariate 
fashion, then the same fitted term values would be obtained. We use the deviance 
residuals as the default because they have the variance information built in. 

We have seen that a variety of choices have to be made in plotting the terms 
of an additive model. Not all terms are suitable for plotting; for example, plots 
are not available for interaction terms. Other choices have to be made for each 
plot, regarding standard-error curves, partial residuals, the rugplot, and the scale. 
For these reasons, plot. gam() has an interactive mode, initiated by the plotting 
parameter ask•T. When used, a menu is displa~ed on the screen: 

> plot(mkt.fit2, ask • T) 
Hake a plotter selection: 
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1: plot: s(log(usage + 2)) 
2: plot: income 
3: plot all terms 
4: residuals on 
5: rug off 
6: se on 
7: scale (0) 

8: browser 
9: exit 
Selection: 

Some of the menu options, such as "se on" in item 6, are flags that can be switched 
on or off; for example, the display "se on" means that currently the standard-error 
flag is off, but choosing this item will flip the switch. Subsequent plots would include 
standard-error bands. 

Options 4, 5, 6, and 8 in this example are similar flags. The "browser" option 
allows the user access to a local frame within the function call, and therefore access 
to all the variables, the fitted values and the component functions. This is useful for 
augmenting the standard plots, or creating a new plot. It is up to the user to define 
the plotting region before invoking plot (). By using the "browser" option, users can 
reset the plotting parameters, or even change devices without leaving plot .gam(). 

When the "scale" item (7 above) is selected, the user is prompted to enter a 
new vertical scale; thereafter, each plot will be produced using the new scale. After 
each plot is completed, the scale actually used is printed on the screen; this helps in 
selecting an appropriate scale for all the plots. We give further details of the plot 
function in Section 7.3.5. 

Getting back to the examples, it is interesting to note that on page 264 the 
summary() function flags the nonlinear part of the nonparametric term for usage in 
mkt. fit2 as nonsignificant. This claim is supported by fitting the model 

pick == "ATI" "' log(usage + 2) + income 

So although we are using logarithms to improve the behavior of the smoother, 
it appears that the nonparametric term is well approximated by a term linear in 
log(usage + 2). The bottom row of Figure 7.8 displays this model. The standard
error bands for the log-linear term are much narrower for large values of usage since 
three less parameters are being used in the fit. 

7.2.3 Further Details on gam() 

The functions for fitting additive models look very similar to those for fitting linear 
and generalized linear models; the only change is in the formulaz argument. To fit 
the functions in Figure 7.5 on page 260, we used the formula 

Kyphosis "' s(Age) + s(Number) + s(Start) 
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The sO function indicates that a smooth term is 1.11 I.e fitted as a function of its 
argument, using a smoothing spline as the smooth-., and the default amount of 
smoothing. We are able to mix smooth terms with liu.,,Lr t<'rms or factors as in 

pick "' s(usage) + income 

and mix smoothers within an additive model 

Kyphosis "' poly(Age, 2) + lo(Number) + s(Start) 

All the other possibilities available for GLMs and LMs can be mixed in with 
smooth terms; so, for example, both 

ozone "' log(ibt) + poly(dpg, 3) + s(ibh) 
ozone "' ibUibh + s(dpg) 

are also accommodated. The former indicates a linear term in the log of ibt, a 
cubic polynomial in dpg, and a smoothing spline term in ibh. The !attn indicates 
an interaction term between the quantitative predictors ibt and ibh, consisting of 
main effects and tensor product interaction, and a smoothing spline term in dpg. 

The function sO can have more than one argument. A second argument is df=, 
which determines how much smoothing is done (default df=4). The units are in 
degrees of freedom, a convenient but approximate way of calibrating a nonparamet
ric·smoother. A third possible argument is the more customary but less intuitive 
smoothing parameter that we call spar. These parameters are described in more 
detail in Section 7.4. 

The term lo() can be used to specify functions of more than one variable, using 
the loess() smoother. For example, lo(vind, rad, 1/2) implies a smooth nonpara
metric loess surface as a function of wind and rad, using a span or neighborhood 
size of 50%. There is an optional degree= argument to lo() that can be 1 (default) 
or 2 for local quadratic fits. 

To avoid any possible confusion, it is probably worth noting up front an impor
tant detail about the implementation of gamO, which is described at greater length 
in Sections 7.3.4 and 7.4.5. A term using loO or sO, such as s(Age), does not itself 
evaluate to a smooth term. It evaluates to an object that conveniently packages 
up the information needed for gam() to jointly model that term with the others in 
the model. In the case of s(Age), the evaluation results in Age itself, with some 
attributes containing the other arguments to sO and more. This behavior is con
sistent with a linear parametric term such as poly(Age, 3), which does not evaluate 
to a cubic polynomial itself, but rather to a basis for polynomial regression. 

The software does not currently fully accommodate interaction terms of the sort 
a:s(b) or a:lo(b) (anything interacting with smooth term), although in principle 
this is possible. Even more plausible would be terms of the type a/s(b), or separate 
nonparametric curves within each level of the factor a. We say "not fully", since 
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using such terms is not illegal; they simply result in the usual linear interaction 
between a and the term that results from the evaluation of s(b) or lo(b). Of 
course, parametric versions of these interactions could be used instead; this issue is, 
resumed in the next two sections. 

In principle, any number of different smoothers can be used; see Section 7.3.4 
for details on adding personalized smoothers to the list. 

The object returned by gam() has the following components: 

> names(kyph.gam1) 
[1] "coefficients" 11 residuals" 
[4] "R" "rank .. 
[7] "nl.df" "df.residual" 

[10] "assign11 11 terms 11 

[13] 11 formula 11 "family" 
[16] "y" 11 Veights 11 

[19] "additive.predictors" 11 deviance•• 

A gam object inherits from class "glm": 

> class(kyph.gam1) 
[1] "gam" "glm" "lm" 

and has a few additional components: 

"fitted.values" 
11 smooth'' 
"var•• 
"call" 
"nl.chisq" 
11 iter 11 

"null.deviance" 

• $smooth is a matrix of fitted smooth functions with as many columns as there 
are sO or lo() terms in the formula; 

• $var is a matrix, like $smooth, of pointwise variances; 

• $nl. df is a vector of the effective degrees of freedom for the nonlinear part of 
1:ach smooth term; and 

• $nl. chisq is a vector of chi-squared statistics that approximate the effect of 
n~placing each nonparametric curve by its parametric component. 

0111:1: again functions like residuals(), fitted, and predict() are useful for 
extra.c:l.ing particular components from the fitted object. 

7.2.4 Parametric Additive Models: bs() and ns() 

The f,,. 11s of this chapter is on flexible methods for fitting terms in an additive 
model. The greatest flexibility for any single term is achieved by using a non
pararn«l.ric n~gression smoother, with user control over the smoothing parameter. 
In HOIII" applic:1J.tions we might prefer an intermediate level of control. Flexible 
parmn•,l.ric nwt.hods exist that fill this gap. These typically construct the fit for a 
terJJI IIHing a JIILrametric fit to a set of basis functions. Some simple examples that 
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we have already seen include step functions-e.g., cut(Age, 4)-and polynomial 
terms-e.g., poly(Age, 3). Although somewhat less flexible than the non paramet
ric techniques, these models (albeit large at times), are fitted using weighted least 
squares rather than the iterative algorithms required to fit nonparametric GAMS. 
Although this implies a slightly faster fitting method, the more important conse
quence is that the fit is a least-squares projection, while the nonparametric fits are 
not. Consequently, issues such as degrees of freedom, standard-error bands, and 
tests of significance are straightforward, while for nonparametric GAMs we rely on 
approximations and heuristics. 

A special class of parametric linear functions with a flexibility approaching that 
of smoothing splines and loess () are the piecewise polynomials and splines as spec
ified by bs() (B-splines) and nsO (natural splines). We give a very brief description 
here, and refer the reader to the literature for more details. 

A piecewise polynomial requires the placement of interior 1.:-nots or breakpoints at 
prechosen places in the range of the predictor. These knots separate disjoint regions 
in the data, and the regression function is modeled as a separate polynomial piece 
in each region. It is common to require the pieces to join smoothly; a polynomial 
spline requires that the d - lth derivatives be continuous at the knots when the 
pieces are dth-degree polynomials. Cubic splines are very popular. The space of 
functions that are cubic splines with a given set of k interior knots is a linear space 
of dimension k + 4, and so k + 4 basis functions are needed to represent them: 

k+d 

f(x) =a+ L aiBi(x) 
j=l 

where d = 3 for cubic splines. B-splines are one particular class of basis functions 
that represent piecewise polynomials, popular in the numerical analysis literature. 
The function bs() computes the values of the k +dB-spline basis functions at the 
n values of its argument, and returns then x (k +d) matrix of evaluations. So, for 
example, a cubic spline term in Start with one interior knot at 12 can be specified 
by bs(Start, knots = 12), and will result in a term with 4 df. 

Other arguments to bs () besides the variable itself are 

• knots=: a vector of (interior) knot locations. The degree of continuity at a 
given knot can be dropped by duplicating the knot. So j copies of a knot for 
a d-degree spline results in continuity of order d - j - 1. 

• dfm: rather than specify knots, one can simply give the degrees of freedom, 
and have bs place df- d knots uniformly along the range of the predictor. 

• degree=: the degree d of the spline, with a default of 3 for cubic splines. 

• intercept~: by default, intercept=F and bs() evaluates to a matrix whose 
columns are all orthogonal to the column of ls. 
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Figure 7.9: A demonstration of B-spline functions using bs(). They-labels show the term 
used in a call to Im(); the functions were plotted using plot. gam(). The dotted vertical lines 
are included to show the placement of the single knot. 

Figure 7.9 shows two splines fitted to the scatterplot of NOx versus E, two vari
ables from the ethanol data frame. The response NOx is a measure of nitric oxide 
concentration in exhaust emissions from automobiles, and the predictor E is the 
equivalence ratio, a measure of fuel/air mixture. These data are described in more 
detail in Chapter 8. The function on the left, a cubic spline with a single interior 
knot at 0.93, was created by a call to lm(): 

gas.bs1 <- lm(NOx~ bs(E, knots m 0.93)) 

and then plotted using plot.gam(). The function on the right was created by the 
expression 

gas.bs2 <- lm(NOx~ bs(E, knots = 0.93, degree = 1)) 

The function nsO is similar to bs(); it produces a basis for a natural cubic 
spline function in its first argument. A natural cubic spline is a cubic spline with 
the additional constraint that the function is linear beyond the boundary knots, 
which we take to be the endpoints of the data. Natural cubic splines tend to have 
better behaved tails than cubic splines, and the 2 degrees of freedom saved by 
the endpoint constraints can be spent on additional knots in the interior. As an 
illustration, we refit the model above using nsO rather than bs(): 
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gas.ns <- lm{NOx~ ns{E, knots s c{0.7, 0.93, 1.1))) 

Here we used two additional interior knots, and end up with the same degrees of 
freedom as gas.bsl: 

> anova{gas.ns, gas.bs1, gas.bs2) 
Analysis of Variance Table 

Response: NOx 

Terms 
1 ns(E, knots c c(0.7, 0.93, 1.1)) 
2 bs(E, knots c 0.93) 
3 bs{E, knots = 0.93, degree = 1) 

Sum of Sq F Value Pr(F) 

2 -0.743 
3 -3.149 14.38 4.343e-06 

Resid. Df RSS Test Df 
83 9.09 
83 9.83 1 vs. 2 0 
85 12.98 2 vs. 3 -2 

Notice that the anova table does not report F values for model 1 versus 2 since they 
have the same degrees of freedom; the difference is still large though, relative to the 
residual variance of about 0.1. Figure 7.10 graphs the fitted natural spline, showing 
the knot placement as well as pointwise twice standard-error curves. Although these 
models were all fit by lm(), the plots were all produced by plot.gam(). 

Further details can be found in the detailed documentation of bs 0 and ns 0. 

7.2.5 An Example in Detail 

The example in the previous section is based on one of the two predictors in the 
ethanol data frame. In this section, we explore the ethanol data further using 
additive models; these data also receive considerable attention in Chapter 8. We 
perform many fits, summaries, and plots, and in so doing demonstrate the ease 
with which quite complex analyses can be simply performed using the hierarchy of 
additive modeling software. 

Figure 7.11 {top row) shows NOx plotted against both E and C. C stands for 
compression ratio, and the other two variables are described in the previous section. 
The right plot seems to suggest that an additive model would be ideal for modeling 
these data; in fact c does not seem to play a role. Indeed, we fit the model 

> attach(ethanol) 
> eth1 <- gam(NOx ~ C + lo(E, degree = 2)) 
> eth1 
Call: 
gam(formula = NOx ~ C + lo(E, degree = 2)) 
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Figure 7.10: A demonstmtion of a natural cubic B-spline using ns(). The vertical lines 
indicate the placement of knots. The upper and lower curves are pointwise twice standard
error bands. 

Degrees of Freedom: 88 total; 80.118 Residual 
Residual Deviance: 5.1675 

and show the plotted functions in the bottom row of Figure 7.11. We have included 
the partial residuals and the pointwise twice standard-error curves. The fit seems 
acceptable at face value. The figure suggests that perhaps the linear term in C is 
not needed; we can check this by simply dropping it: 

> eth2 <- update(eth1, "' . - C) 
> eth2 
Call: 
gam(formula • NOx "' lo(E, degree = 2)) 

Degrees of Freedom: 88 total; 81.118 Residual 
Residual Deviance: 9.1378 

and we see that the residual deviance has increased dramatically relative to the 
error variance estimate 6. 2/80. 2•0. 06 for 1 df. 
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Figure 7.11: The top row shows NOx plotted against C, the combustion level, and E, the 
equivalence ratio for the ethanol data. The bottom row shows an additive model fit, where 
Cis modeled linearly and E is modeled by a locally quadratic smooth term, specified by lo(E, 
degree • 2). 



276 CHAPTER 7. GENERALIZED ADDITNE MODELS 

The next question is whether an additive surface is sufficient. We fit a two. 
dimensional smooth surface, again using loess(): 

> eth3 <- gam(NOx ~ lo(C, E, 1/4, degree • 2)} 
> eth3 
Call: 
gam(formula • NOx ~ lo(C, E, 1/4, degree • 2)) 

Degrees of Freedom: 88 total; 62.19 Residual 
Residual Deviance: 1.74 

We use a span of 1/4, the square of the span used for the loess curve in the additive 
model fit. This ensures (approximately) that the marginal span for E is the same 
for both fits, and as a consequence that the models are approximately nested. The 
anova() function can be used to compare the models: 

> aov1<- anova(eth2, eth1, eth3, test '" "F") 
> aov1 
Analysis of Deviance Table 

Response: NOx 

Terms Resid. Df Resid. Dev 
1 lo(E, degree = 2) 81.12 9.138 
2 C + lo(E, degree = 2) 80.12 6.168 

Test Df 

+C 1.00 
3 lo(C, E, 1/4, degree = 2) 62.19 1.740 2 vs. 3 17.92 

Deviance F Value Pr(F) 
1 
2 3.970 141.9 O.OOOe+OO 
3 3.427 6.8 6.143e-09 

and the effect looks rather small. However, the residual deviance is also small, and 
the F-test shows that the interaction surface is strongly significant. 

Figure 7.12 is a perspective plot of the the bivariate smooth term in eth3, pro
duced by the expression plot (eth3). The surface in fact looks additive, and a similar 
plot of the additive surface defined by eth2 shows no perceptible difference. Perspec
tive plots have their limitations; in this particular case, the structure is dominated 
by the strong quadratic effect of E, and departures from additivity are not evident. 

There is a noticeable roughness in the perspective plot, an artifact due to the 
technique used to construct it. The default style for plotting gam objects is to plot 
the fitted values for each term against the corresponding predictors, using the data 
that were used to fit the object. In the case of surfaces such as the one here, 
these fitted values occur at irregularly placed (E, C) pairs in the plane. The S 
function interp() is used within gplot.matrix() (Section 7.3.5) to approximate the 
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Figure 7.12: A perspective plot of the bivariate surface smooth term in the model etb3, 

produced by the plot 0 method for gu objects. 

fitted values on a grid, the required form of input for perspO. The interpolation 
algorithm used by interpO introduces the roughness evident in the surface. A more 
sophisticated method for extracting fitted curves and surfaces on a grid of values, 
described in Section 7.3.3, does not produce these anomalies. 

Next we use the condition plot routine coplotO described in Chapter 8 to show 
the interaction structure remaining in the residuals from the additive model fit. The 
separate least-squares fits in each plot show that the slope of c changes with the 
level of E. Such behavior cannot be modeled simply using an additive model. The 
following sequence of expressions produces the coplot displayed in Figure 7.13: 

> to.do <- function(x, y){ 
points(x, y) 
abline(lsfit(x, y)) 

} 
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Figure 7.13: A coplotO shows the residuals from the additive model fit plotted against c, 
given three different overlapping intervals of the values of E. The interaction structure is 
evident. 

> E.int <- co.intervals(E, number • 3, overlap • 0.1) 
> coplot(residuals(ethl) ~ CIE, given • E.int, panel • to.do) 

These data are pursued in more detail in Chapter 8, where a conditionally para
metric model seems to fit the bill. The coplot 0 function is described there as 
well. 

Finally, to wrap up this example for the moment, let's proceed along more 
conventional lines. The following anovaO display compares two parametric linear 
models which address the interaction question: 
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Figure 7.14: A plot of the tenns in the parametric model glm(NO" - C + cut(E, 7)), with 
pointwise twice standard-error bands and partial residuals. The plot. gam() method rep
resents a categorical transformation of a quantitative predictor as a piecewise constant 
function. 

> anova(eth4, eth5, test • "F") 
Analysis of Variance Table 

Response: NOx 

Terms Resid. Df RSS Test Df Sum of Sq 
1 C + cut(E, 7) 80 12.68 
2 C • cut(E, 7) 74 8.21 +C:cut(E, 7) 6 4.472 

F Value Pr(F) 

1 
2 6.717 1.046e-06 

Here we have approximated the quadratic shape for the E effect by making seven cuts 
along the range of E. Once again the F-test rejects the no-interaction hypothesis, 
but we had to sacrifice a good deal of fit in the process. It is interesting to plot the 
additive fit eth4: 

> plot.gam(eth4, residuals • T, scale • 4, se • T, rug • F) 



280 CHAPTER 7. GENERALIZED ADDITIVE MODELS 

The results are shown in Figure 7.14, and we see the piecewise constant approxi
mation to the quadratic curve. 

A better approximation could have been achieved using piecewise linear or cubic 
functions rather than piecewise constant: 

> eth6 <- gam(formula e NOx rv C * bs(E, df ~ 6)) 
> eth6 
Call: 
gam(formula = NOx rv C * bs(E, df = 6)) 

Degrees of Freedom: 88 total; 74 Residual 
Residual Deviance: 2.3963 

Here we used the same degrees of freedom as in the model eth5 above, but achieved 
a much better fit. These last two models, eth5 and eth6, can be viewed as condi
tionally linear models; they serve as parametric counterparts for the nonparametric 
conditionally linear model proposed for these data in Chapter 8. Notice that we 
used gam() to fit the model eth6, although it is entirely parametric. No extra cost is 
incurred in doing this, and it facilitates making comparisons with the two preceding 
models: 

> anova(eth3,eth6,eth5,test="Cp") 
Analysis of Deviance Table 

Response: NOx 

Terms 
E, 1/4, degree = 2) 

C * bs(E, df = 6) 
C * cut(E, 7) 

Resid. Df Resid. Dev Test Df Deviance 
1 lo(C, 
2 
3 

Cp 
3.18 

2 3.18 
3 8.99 

62.2 1.74 
74.0 2.40 1 vs. 2 -11.8 -0.66 
74.0 8.21 2 vs. 3 0.0 -5.81 

We compare the models using the Cp statistic since they are not nested. The first 
two models are roughly equivalent in terms of Cp; the better fit of the non parametric 
model is offset by the extra degrees of freedom required to fit it. 

7.3 Specializing and Extending the Computations 

7.3.1 Stepwise Model Selection 

In Section 6.3.5, we describe an efficient stepwise model selection method step.glmO 
for selecting a GLM model. Here we describe a much more general but less compu-
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tationally efficient version that will also work on glm and 1m objects. 
The function step.gam() allows one to step through arbitrary models along a 

prespecified path. The syntax of the function is 

step.gam(object, scope, scale, direction, keep, steps, ... ) 

The argument scope= is a list, with each element corresponding to a term in 
the model. This is different from the scope= argument of step. glm(). Each of the 
elements of this list is a formula object that specifies an ordered regimen of candidate 
forms for the term. Each candidate model is constructed by pasting together a 
f~rmula consisting of a single element from each term formula, in conjunction with 
the formula used in the initial model object. Here are some examples of term 
formulas, the elements of the scope list: 

• ~1 + income: selecting the 1 for this term is the natural way for step.gam() 
to remove a term in income from the model. Otherwise income enters linearly 
or as a factor, depending on its class. 

• ~t + log(usage + 2) + s(log(usage + 2)): this allows the choice between no 
term, a log-linear term, or a smooth term in usage. 

• ~1 + age + poly(age, 2) + s(age) + s(age, 7): select the form of the non
linear effect from a class ordered in richness. 

• ~1 + education + income: education: this makes most sense if income is in the 
model by default. It checks whether education should enter, enter additively, 
or as an interaction with income. 

Suppose the four examples above were actually the four elements of the scope ar
gument to a call to step(); then an example of a valid formula within the scope of 
step() is 

. ~ 1 + log(usage + 2) + s(age) + education 

where the first term is represented by the 1 (and is effectively left out), the second 
term by log(usage + 2), and so on. The "." gets replaced by the response in 
object. 

We restrict the term formulas in scope to be ordered; this means that step.gamO 
will only look ahead or back one step each time from the current version of a term. 
If there are p terms with k choices each, this reduces the number of models that 
need to be tried for each term change from (k- l)p to at most 2p. The function 
ensures that it never visits a model more than once. 

The first argument object to step() is a gam object, which the function uses as 
its starting model. Each of the formulas in the scope argument must be represented 
in the formula of object; otherwise an error is reported. 
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Starting with object as the current model, a series of models is constructed and 
fitted by successively moving each term up or down in its scope formula. The argu
ment direction• to step.gam() determines whether steps are made in a "backward" 
or "forward" direction, or in the default direction, which is "both". Thus, if the 
example ·above was the starting model and direction="both", the first few trial 
models considered by step() would have formulas 

income + log(usage + 2) + s(age) + education 
~ 1 + s(log(usage + 2)) + s(age) + education 
~ 1 + 1 + s(age) + education 
~ income + log(usage + 2) + s(age) + education 
~ 1 + log(usage + 2) + s(age, 7) + education 

and so on. 
The model that results in the biggest decrease in AIC: 

AIC = D + 2df4> 

is then selected as the current model, and the updating is repeated. Here df is the 
effective degrees of freedom used in fitting object, and <Pis the dispersion parameter. 
The argument scale= to step.gamO is the cost (divided by 2) per df incurred by 
adding or dropping a term. It defaults to the dispersion parameter for the initial 
model, which is 1 for binomial or Poisson models, else the scaled Pearson chi-squared 
statlstic. If all the modified models cause AIC to increase, the function stops and 
returns the gam object of the best-fitting model visited (in the AIC sense). 

The object returned by step() has two additional components: 

• $anova is an anova object that summarizes the models selected along the path 
to the final model; 

• $keep is a list of the items created by the keep() function, an optional argument 
to step.gam(). This list is constructed by applying keep() to every model 
visited during the model search, and then repacking the results in a convenient 
form. By default nothing is kept. 

We illustrate the step() method on the marketing data described in Sections 2.1.3 
and 8.2.1. There are missing observations in these data, so we use the 759 observa
tions in market. clean for which complete data are available: 

> market.clean <- na.omit(market.survey) 

We deliberately do not use any of the alternative missing data strategies, since with 
model selection going on, it seems important to fit all the models to the same data. 
The response is the binary pick (An or occ), and all the predictors are either factors 
or ordered factors, with the exception of usage, which is quantitative (Section 7.2.1). 

Our initial model is simply additive in all the f8ftors, with a linear term in 
usage: 
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> mkt. start <- gam(pick ~ . , data = market. clean, 
+ family = binomial) 
> mltt.start 
Call: 
gam(pick ~ . , data = market. clean, family • binomial) 

Degrees of freedom: 759 total; 723 residual 
Residual Deviance: 942.2 
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We need to construct the scope argument. For this example, we will simply allow 
each of the factors to be in or out, and allow the term in usage to be in, out, or 
a smooth term s(usage). Although this could easily be done manually, it seems 
such a useful default scope argument that we provide the function gam.scope() for 
producing it as a default: 

> mkt.scope <- gam.scope(market.clean) 
> mltt.scope 
$income: 
~ 1 + income 

$moves: 
~ 1 +moves 

$age: 
"" 1 + age 

$education: 
~ 1 + education 

$employment: 
~ 1 + employment 

$usage: 
~ 1 + usage + s(usage) 

$nonpub: 
~ 1 + nonpub 

$reach.out: 
~ 1 + reach.out 

$card: 
~1+card 

We also write a function mkt.keepO to save particular components of the models 
visited: 

> mltt.keep <- function(object, AIC) 
+ list(df.resid = object$df.resid, deviance= object$deviance, 
+ term • as.character(object$formula)[3], AIC = AIC) 

The component "term" is a character version of the right side of the formula. We 
now execute step.gam() (and probably go for a cup of coffee; 50 models are visited 
in this example!) 
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> mkt.step <- step(mkt.start, mkt.scope, keep • mkt.keep) 
> mkt.step 
Call: 
gam(formula • pick ~ moves + s(usage) + nonpub + reach.out + 

card, family • binomial, data • market.clean) 

Degrees of Freedom: 769 total; 742.06 Residual 
Residual Deviance: 954.32 

The final model consists of five of the nine predictors, with the smooth term for 
usage selected. The deviance has increased by about 12 for an increase of 19 residual 
degrees of freedom. 
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Figure 7.15: An AIC plot of the models visited during the stepwise search by step.gam() 
for the (stepwise} optimal mkt.step. The best-fitting model is plotted using a black dot. 

The anova component of mkt. step summarizes the path taken to the final model: 

> mkt.step$anova 
Stepwise Model Path 
Analysis of Deviance Table 

Initial Model: 
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pick ~ income + moves + age + education + employment + usage + 
nonpub + reach.out + card 

Final Model: 
pick ~ moves + s{usage) + nonpub + reach.out + card 

Scale: 1 

From To Df Deviance Resid. Of Resid. Dev AIC 
723.0 942.2 1014 

2 income 6.000 6.45 729.0 947.6 1008 
3 employment 6.000 6.63 736.0 954.2 1002 
4 age 6.000 4.58 740.0 958.8 997 
5 usage s{usage) -2.941 -10.32 737.1 948.4 992 
6 education 5.001 5.88 742.1 954.3 988 
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Starting from the initial model, the table reports the changes in the order that they 
occurred. 

The keep component of mkt. step is a list with elements 

> names(mkt.step$keep) 
[1] "df.resid" "deviance" "term" "AIC" 

Each is a. vector of length 50, the number of models visited by step.gamO. Fig
ure 7.15 plots the AIC statistic against the residual deviance for each of the models 
visited, with the final model indicated. One might also use an S function such as 
identify() in conjunction with this plot to see what models are close to the best 
model. 

We end this section with a brief discussion of further differences between the 
model selection methods for GLMS and GAMs. The method step.glm() is based on 
the primitives drop10 and add10, which in turn are based on a quadratic approxi
mation to the likelihood for GLM models. With the more flexible scope= argument to 
step.gamO, drop10 and add10 are no longer applicable, because terms get changed 
rather than added or dropped. There are in fact no drop10 and add10 methods 
for gam objects, but since gam objects inherit from class "lm", these functions would 
produce results. We have deliberately not blocked this usage since the results can 
be interpreted with caution. Parametric terms in the model can be dropped or 
added, with the effect of freezing the nonlinear components of any nonparamet
ric terms present. The results provided for the nonparametric terms should be 
ignored. However, the summary{) method for gam objects fills the gap, and gives 
approximate "drop" information about the nonlinear parts of the nonparametric 
terms; Section 7.4.5 has more details. 
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7.3.2 Missing Data 

All the modeling functions have an na.actionz argument. An na.action() is a 
filter function that takes a data frame as input and returns a "clean" data frame. 
For example, in Section 7.2.2 we pass the function na.omitO as the na.action= 
argument in creating mkt.fit2. The action of na.omit() is to omit all rows from 
the data frame missing values on any of the variables. There are two ways of using 
na.omit(): 

• When na.omitO is passed as an argument to the fitting function, it gets 
applied to the model frame. This is the data frame created internally that 
consists of only those observations required to compute the fit. Consequently, 
only those variables will be checked for missing observations; in some cases, 
as in the construction of mkt. sm for Figure 7.4, no observations are omitted. 
In the case of mkt.fit2, 215 observations were omitted. 

• One can create a new data frame at the onset by applying na.omitO to the 
original data frame. For example, in Section 7.3.1 we create the new frame 

market.clean <- na.omit(market.survey) 

which we then use as the data in the stepwise model selection procedure. This 
is important in such applications, since one would like model comparisons to 
be based on the same sample sizes. 

The gam() function has a way of dealing with missing data in a reasonably 
natural way in conjunction with replacement na. action() functions. A replacement 
na.action() is onethat replaces missing observations rather then removing them. 
The simplest of these treat each of the variables in a data frame separately, and apply 
some replacement rule depending on the class of the variable. More complicated 
method<> would treat the data frame as a whole in order to impute values for the 
missing data. Which particular methods are best, if any, is an ongoing debatable 
subject, and consequently we have not recommended any particular na.replaceO 
function for general use with this software. Rather we outline a particular example, 
na.gam.replaceO, that blends nicely with additive models; another, similar choice 
suitable for tree-based models, na. tree. replace 0, is described in Chapter 9. 

The function na. gam. replace() operates on each of the variables in its argument 
frame separately, and replaces them in the following fashion: 

• Quantitative predictors have their missing observations replaced by the mean 
of the nonmissing observations. 

• Quantitative matrices are treated similarly, where a row is regarded as missing 
if any observation in any of the columns is missing for that row. 
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• Factors or ordered factors get endowed with a new level, labeled NA, that 
records all the missing observations. 

• If the data frame is a model frame, and in particular if the response can be 
identified, then all rows having missing response values are removed. 

So na.gam.replace() returns a clean data or model frame. This na.actionO is not 
specific to GAMs, and can be used in any other context, such as with GLMs or LMS 
in particular. 

Let's understand what happens when a linear model is fit to the variables in this 
filtered data frame. Factors have an extra effect estimated that isolates the missing 
data. The coefficient of a term linear in a quantitative predictor with missing 
observations is not directly influenced by them since they have all been replaced 
by the mean of the nonmissing values for that predictor. With a constant in the 
model, we can regard the predictors as centered (zero mean), in which case those 
recorded at exactly the mean have zero leverage. The fitted term values for those 
observations that are missing data for that particular term are therefore zero. 

The backfitting algorithm in gam() cycles around the smooth terms, updating 
them in an iterative fashion. At each stage the fitting operation involves a single 
term. The natural thing to do in gam(), when missing predictor values are encoun
tered, is mimic the behavior described above for linear models: 

• ignore the missing predictor values when computing the smooth term for a 
particular predictor, and 

• return zero as the fitted smooth values corresponding to the missing observa
tions for that term. 

This makes sense since fitted nonparametric terms in an additive model are centered 
to have average value zero, so the missing predictors get assigned the mean value 
of the curve. 

This all works because gam() and its associated functions are set up to anticipate 
the missing data. During the construction of the model frame, the functions loO 
and sO always detect missing observations, and if present, attach an "na" attribute 
to their output, recording the rows that are missing. After replacement functions 
such as na.gam.replace() have made their changes, these "na" attributes remain on 
the "smooth" terms, even though the values of the terms have been modified. The 
consequence of this is that the model matrix can be constructed on the replaced data 
frame, just as it would be for linear models; the model matrix is used to compute 
the parametric component of the fit. These "na" attributes are picked up again 
when gam() comes to compute a particular term for the nonparametric component; 
the missing observations are omitted from the smooth, and their fitted values are 
returned as zero. 
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This strategy will work for any replacement na. action 0, as long as it does not 
inadvertently strip off the "na" attribute of the variables during its replacement 
operation. If it were to do that, the function would still produce results, but they 
would not be as interpretable. 

7 .3.3 Prediction 

Often we wish to evaluate the fitted model at some new values of the predictors: 
for predictive purposes, for plotting, or for validation. There is a predict() method 
for gam objects, just as there is for other classes of objects. However, we will see 
that the method predict.gamO also serves as the "safe" method for predicting from 
new data for both glm and lm model objects. 

Just as for glm objects, the expression predict(gamob) is a simple but clean way 
of extracting the additive predictor from gamob-in other words, making predictions 
at the same predictor values that were used to fit gamob. Similarly, fitted(gamob) 
extracts the fitted values. Once again 

predict.gam(gamob, type = "response") 

is identical to 

fi tted(gamob) 

The other choice is type="terms", in which case a matrix of fitted terms is returned. 
The argument terms= is used in conjunction with the choice type="terms", and 
specifies a character vector of term labels for which predictions are desired; by 
default, all terms are predicted. The se . f i t=T argument causes a list to be returned 
that contains both fitted values and standard errorS. All these arguments are exactly 
the same as for predict.glmO, and are discussed in some detail in Section 6.3.6. 
The difference occurs when the nev.data= argument is used. 

In Sections 4.2.3 and 6.3.6 we draw attention to problems that can occur in 
using coefficients from a fitted 1m or glm object on new data. Both predict.lmO 
and predict. glmO compute a model matrix using the new data, which is then 
multiplied by the coefficients extracted from the original object. This will work 
as long as the expressions defining the terms in the formula do not depend on the 
entire data vector for their evaluation. The functions poly() and loO, for example, 
normalize their arguments to have length 1, an operation that depends on the 
entire vector of values. A term like bs(E, df "' 5) is an elegant way of specifying a 
B-spline with 5 degrees of freedom (excluding the intercept). This corresponds to 2 
interior knots, which bs() places at the 1/3 and 2/3 quantiles of E. This is a highly 
data-dependent operation, and as a consequence bs(E, df = 5) applied to a new 
verSion of E will result in different knots, and hence different basi~ functions. Any 
coefficients estimated for the former will make no sense when applied to the latter. 
In situations such as these and many others, the predictions are incoherent. Since 
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GAM objects tend to be made up of either nonparametric smooth terms or often 
somewhat complicated parametric terms, they are likely to face these prediction 
problems more frequently. 

As a consequence, the function predict.gam() operates quite differently from 
the other predict() methods, when presented with new data. On the negative side, 
it is slower since essentially it has to refit the model. On the brighter side, it ill a 
"safe" method of prediction that overcomes the problems described above. It <:an 
also handle glm and lm objects (with less work than gam objects), and so is the safe 
method of prediction for them as well. 

Here follows a brief outline of the steps that are taken in the execution of 
predict(gamob, nev.data, .•. ): 

1. A new data frame, both.data, is constructed by combining the data used to 
fit gamob, say, old.data with the data in new .data, retaining only the relevant 
predictor variables. 

2. The model frame and model matrix are constructed from the combined data 
frame both. data. The model matrix is then separated into the two pieces X 0 

and xn corresponding to the old and new data. 

3. The parametric part of the object gamob is refit using X 0 • In most situations, 
the fitted values should be identical to those in gamob. In some, such as in 
the case of bs() above, the fit will not be identical; the percentage difference 
between the old fit and the new fit is reported as a warning in cases such as 
this. 

4. The coefficients from this new fit are then applied to xn to obtain the new 
predictions. 

5. For gam objects with both parametric and nonparametric components, an 
additional step is taken to evaluate the fitted nonlinear functions at the new 
data values. In principle, most smoothers produce a fitted function that can 
be evaluated anywhere (at least in the domain of the original data). 

Details of steps 3 and 5 are discussed in Section 7 .4. 
To illustrate the use of predict(), let's first return to the model eth3 fitted to 

the ethanol data: 

> formula(eth3) 
NO:z: "' lo(C, E, 1/4, degree = 2) 

The perspective plot in Figure 7.12 on page 277 has some irregularities, introduced 
by the function interp(). We can predict the values of the surface exactly on a 
grid: 
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> attach(ethanol) 
> nev.eth <- expand.grid( 
+ C = seq(from = min(C), to= max(C), len= 40), 
+ E = seq(from = min(E), to= max(E), len= 40) 
+ ) 

> eth.grid <- predict(eth3, nev.eth) 

The function expand.gridO produces a data frame of points from a grid, with 
marginal values supplied as arguments. So nev.eth has 1600 rows and two columns. 
Figure 7.16 shows the fitted surface, which is much smoother than that of Fig-

Figure 7.16: The fitted surface corresponding to eth3, evaluated on a 40 x 40 grid of values 
of c and E using predict 0 . Compare with Figure 7.12. 

ure 7.12. A slight additional difference between the two is that Figure 7.12 is a 
display of the fitted term (excluding the intercept), while Figure 7.16 includes the 
intercept. Of course, we could have removed the intercept here as well. The model 
eth3 is not really additive, even though we are able to accommodate it within the 
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GAM framework. Rather, it is an example of a general multivariate smooth surface, 
and models Such as this are covered in much more detail in Chapter 8. In particular, 
a variety of plotting methods are described there for displaying such surfaces. 

Our next example is particular to additive models. By the nature of additive 
models, we need only evaluate the individual terms on a reasonable grid of predictor 
values to be able to reconstruct the entire multivariate additive surface everywhere. 
So suppose we construct a data frame nev.data, where each component has 40 
evenly spaced observations over a suitable range. Then 

predict.gam(gamob, nev.data, type = "terms") 

will return a 40Xlength(terms) matrix of fitted terms, from which we can construct 
the additive surface. 

We return to the kyphosis example to illustrate this feature, in particular to the 
model kyph. gam2: 

> formula(kyph.gam2) 
Kyphosis "' s(Age) + s(Start) 
> attach(kyphosis) 
> kyph.margin <- data.frame( 

Age • seq(from = min(Age), to= max(Age), len= 40), 
Start~ seq(from • min(Start), to= max(Start), len= 40) 
) 

> margin.fit <- predict(kyph.gam2, kyph.margin, type • "terms") 

The matrix margin. fit has two columns labeled "s(Age)" and "s(Start)." If we 
were to plot these two columns of margin. fit against the two columns of kyph. margin, 
we would see exactly the same function as in Figure 7.7 on page 263, except the 
abscissae would be at 40 evenly spaced values. 

The following sequence of expressions constructs the additive surface on a bi-
variate grid defined by the margins in kyph.margin: 

> kyph.surf <- outer(margin.fit[, 1], margin. fit[, 2], "+") 
> kyph.surf <- kyph.surf + attr(margin.fit, "constant") 
> kyph.surf <- binomial()$inverse(kyph.surf) 

The first line computes an outer sum, adding together the additive components at 
each of the 1600 elements of the 40 X 40 grid. The second line adds in the "constant" 
attribute ofmargin.fit, since the terms produced by predict() are centered to have 
weighted mean zero (Section 6.3.6). The third line converts the surface from the 
logit scale to the probability scale using the inverse link function. Of course, for a 
two predictor problem such as this, we could have simply produced the data frame 
with the 1600 points on the grid, as in the previous example, and predicted the fitted 
probabilities directly using type•"response". Often there are more terms, and then 
a procedure like the one described above is far more efficient for constructing the 
additive surface. 
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Figure 7.17: A contour plot of the fitted probability surface derived from the fitted additive 
model kyph.gam2. The black dots indicate cases with Kyphosis present, the circles, absent. 

Finally, in Figure 7.17 we produce a contour plot from the fitted prevalence 
surface: 

> plot(Age, Start, type m "n") 
> points(Age[Kyphosis cc "absent"], Start[Kyphosis ... "absent"]) 
> points(Age[Kyphosis •• "present"], Start[Kyphosis ... "present"], 
+ pch m 183) • for postscript() device-driver 
> contour(kyph.margin$Age, kyph.margin$Start, kyph.surf, 
+ add e T, V • c(O.l, 0.3, 0.5)) 

The contours appear to enclose the cases reasonably well (black dots), and the plot 
is a confirmation of the fit. 
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7.3.4 Smoothers in gam{) 

In all of our examples so far we have specified a smooth term in a forn111la using 
on.e of two smoothers: 

• sO: as in s(Age, df • 5). This implies that a smoothing spline will he used 
in the backfitting algorithm for fitting that term in the model, using 5 df a.'l 
the smoothing parameter. 

• lo(): as in lo(Age, f • 0.5), which uses the loess() smoother dr..,cribed 
in Chapter 8. The lo() smoother additionally allows smooth surfac"" to be 
included in the model, as in lo(vind, temp, 0.4). 

Remember that the functions sO and lo() do not actually smooth the datiL, but 
rather set things up for the backfitting algorithm used by guO to fit the model. 
These are both shrinking smoothers, in that their operation is not a projectirm but 
rather a shrunken fit onto a rich basis set. 

In this section, we outline the steps needed to add a smoother to the existing 
set, and in so doing give an idea how it all works. 

Adding a new smoother to guO is extremely simple if it is of the projection 
type, such as regression splines or polynomials. All that is required is that functions 
such as bs() or poly() be written that create a basis matrix for representing the 
projection space. These can then be used by any of the regression fitters, not only 
gu(). ' 

Suppose someone wishes to fit additive models using their own favorite shrink
ing smoother rather than using smoothing splines or locally weighted regression 
(prejudices do exist in the smoothing field!). They would need an S function (typ
ically interfaced with FORTRAN or c) that computes the smooth. Let's suppose 
their smoother is called kemelO. Three simple steps need to be taken in order to 
incorporate kemel() as a smoother to be used in fitting additive models in guO: 

• An interface function to kemel 0 is needed that takes as input arguments 
x, y, and weights (the names are not important), as well as any parameters 
that control the amount and type of smoothing. The function should return a 
residual vector called residuals, and optionally a vector of pointwise variances 
called var, and the nonlinear degrees of freedom called nl. df. We discuss these 
latter two items in more detail in Section 7.4. Let's assume that kemel() itself 
has all these features. The function gu.s(), for example, is the interface 
function for the smoothing spline s 0. 

• A shorter named function such as k() is needed for use in the model formula. 
Typically, k(x) will return its argument x, along with one or more attributes. 
One of the attributes is named "call", and gives the expression needed in the 
backfitting algorithm to update the residuals by smoothing against x. In the 
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case of both loO and sO, the data returned are exactly what is required for 
the parametric part of the fit. For example, the expression lo(x, degree • 

2) evaluates to a two-column matrix consisting of basis vectors for quadratic 
regression. This would be incorporated into the model matrix. The "call" 
attribute, on the other hand, would reference the first column as the smoothing 
variable. 

• The character vector gam. slist should be augmented with the character "k". 
This is used as an argument to the terms() function, which identifies all the 
special smooth terms in the formula. 

To illustrate, let's look at the output of sO: 

> pred <- 1:4 
> s(pred) 
[1] 1 2 3 4 
attr(, "spar"): 
[1] 0 
attr(, "df"): 
[1] 4 
attr(, "call"): 
gam.s(data[["s(pred)"]], z, v, spar= 0, df = 4) 
attr(, "class"): 
[1] "'smooth" 

The "call" component is an S expression (of mode "call"); it gets evaluated 
repeatedly inside the backfitting algorithm all.vamO when fitting the terms in the 
model. The name "vam" stands for weighted additive model, while "all" refers to 
the fact that it can mix in smoothers of all types. This is in contrast to s. vamO, 
which is a specialized backfitting algorithm only used if all the smooth terms are 
splines; similarly, lo. vamO is used if all the smooth terms are to be fitted using 
loess(). So the only knowledge all.vamO has of the smoother to be used for a 
particular term is this call it is given to evaluate. The arguments z, data, and v 
in the call are local to all.vam(), and in fact data[["s(pred)"]] refers to exactly 
that component of the model. frame created by the expression s (pred). The other 
attributes of s(pred) are needed for the more efficient backfitting algorithm s.vamO 
described in Section 7.4. 

Apart from allowing other regression smoothers, this modularity opens the door 
to other interesting generalizations. For example, included in this software is a 
function random() that is aimed at fitting a random effect factor term in an additive 
model. All it does is fit each level by a constant, but then shrinks all the constants 
toward the overall mean-another shrinking smoother. The function random() is 
used in the formula, and evaluates to its argument, which is a factor. It might be 
instructive for the reader to print the definition of random() or look at the detailed 
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documentation (?random), as well as its workhorse gam.random(), for further illus
tration. Ridge regression can be accommodated similarly; one could write a simple 
function ridge() that would perform a similar shrinking. 

In Section 7 .4, we show how users can provide their own backfitting algorithms 
for efficiency. This opens the door to even more adventurous generalizations. 

7 .3.5 More on Plotting 

The plot.gam() method has a modular construction, and consequently users can 
tailor-make their own plotting functions very straightforwardly. Before we describe 
the method plot. gam 0 itself, we first describe the preplot 0 method for gam objects. 

In order to produce a plot, a certain amount of computation is required. Typ
ically, there are many different choices to be made in representing a function or 
surface; in the case of GAMs, these choices involve rugplots, standard-error bands, 
residuals, vertical scales, and which terms to plot. With not much loss in efficiency, 
all the extra "data" needed to produce these plots can be computed once and for 
all, and stored away for future plotting. This is the idea behind the preplot() 
functions. 

In its standard usage, 

preplot(gamob) 

produces a list with class "preplot.gam", with an element for each term in the 
model. Each of these elements is named according to the particular term label. 
Let's examine the contents of one of these term elements in the context of a specific 
example, say the term "s(Age)" in kyph.gam2. The expression 

kyph.preplot <- preplot(kyph.gam2) 

evaluates to a two-element list, with names "s(Age)" and "s(Start)", and we shall 
dissect the first of these. It has components: 

• b, the values of the inner variable in the expression s(Age), in this case Age 
itself, to be used as abscissa in the plot. Had the expression been s(log(Age)), 
the x component would still have been Age. The values in Age are exactly those 
used to fit the model. 

• blab, which is the character name "Age" in this case. 

• $y, the fitted term to be used as the ordinate in the plot. It is exactly the 
term returned by predict(object, type "' "terms"). 

• $ylab, which is simply "s (Age)". 

• Sse . y is the vector of pointwise standard errors corresponding to the term, as 
returned when the se•T option is used with predict 0. 



296 CHAPTER 7. GENERALIZED ADDITIVE MODELS 

It should be clear that a major part of this work is done by predict. gam() in 
producing the fitted terms and their standard errors. This element "s(Age)" of 
kyph.preplot is also an object of class "preplot.gam", and it might seem to be 
ready for plotting as it is. Although true in this case, in general the x component 
can be more complex. It may be a factor or a category, or it may be a list of two or 
more variables. The preplot 0 method goes to some effort to identify these inner 
predictor(s}, and different plotting methods are appropriate depending on their data 
class. 

The function that actually performs the plot is named gplot 0, and it currently 
has four methods, corresponding to the data classes numeric, category, matrix, and 
list. The last of these can deal only with two-element lists, which it reshapes into 
a matrix and then calls gplot.matrix(). 

The expression plot(kyph.preplot) produces two plots, one after the other, for 
each of the two terms in kyph.preplot. One can use plot() on either the entire 
preplot .gam object, or else on any of the elements separately. Ultimately, the ap
propriate gplot 0 method is invoked. 

Some readers may wonder why we bothered to invent the generic gplot 0 instead 
of simply using plot 0. The reason is that we did not wish to claim the name 
plot.matrix, for example, for the very specific type of plots we have in mind here. 

The gplot 0 methods are quite straightforward, and produce t;he style of plots 
we have seen in this chapter and the last. It would be easy for users to create 
their own gplotO functions, either to modify the styles we have chosen, or else to 
accommodate other classes. Currently we do not provide plots for interaction termS, 
or for terms involving more than two variables. There will also be data classes for 
which we have no methods. Related to this, and as a caveat, we note that the 
concept of extracting the x variable is somewhat fragile. Although most of the time 
it should produce the desired results, there is no guarantee that what is extracted 
as x will be suitable as an abscissa for plotting. Indeed, it may not even have the 
correct length, or correspond in any way to an abscissa. Expressions in formulas 
are governed only by rules dictating the data class of the object they evaluate to, 
and can be built up in general from objects of any size, shape, etc. 

The plot() method for gam objects is built up in a straightforward way from 
the plot method for preplot.gam objects. In its simplest usage, it computes the 
preplot. gam object and plots it! If its x argument has a preplot component, it uses 
it instead. This suggests a convenient place to stash preplot objects, and in fact 
the usage 

kyph.gam2$preplot <- preplot(kyph.gam2) 

is quite standard. 
Further details on plot. gam() can be found in the detailed documentation in the 

appendix, as well as online (?plot. gam.) 
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Figure 7.18: The plot on the left shows the centered, fitted term for c in the model eth7, 

together with pointwise twice standard-error bands. The plot on the right is the uncentered 
version. 

We end this section with an explanation of why centering is important when 
computing fitted terms and their standard errors, as is done by the predict() meth
ods (Section 6.3.6, page 239). We require the fitted terms most often for plotting 
purposes, and wish to represent the composed polynomial, B-spline, smooth term, 
etc. as a function of their argument. The slope and shape of each term is impor
tant for this kind of examination, and not the level; rather, an overall level in the 
model is usually only interpretable if the nonconstant terms average zero. These 
are not compelling reasons, however, to go to the extra expense of centering since 
we could simply ignore the level when examining the plots. Centering becomes es
sential when we compute pointwise standard errors. We illustrate on the simplest of 
terms, namely a linear term involving a single coefficient, why this is the case. The 
pointwise standard errors for such a term, if it is centered, are given by the expres
sion ix1 - x;i u;;i these are zero at !f; and increase linearly for values away from 
Xj. If the term is not centered, the pointwise standard errors are simply ix; I u;;. 
To illustrate the difference, consider the linear model 

> eth7 <- lm{NOx ~ C + ns(E, 6), data= ethanol) 

Figure 7.18 shows the centered and uncentered versions of a plot for the fitted linear 
term in c, together with pointwise twice standard-error terms. The centered plot 
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is informative, since it shows us both the range of the effect of C, as well as an 
approximate 95% t interval for the variation in the slope (in units of this effect). 
The uncentered plot also shows us the same range of effect, but there is no such 
interpretation for the standard-error bands. 

7.4 Numerical and Computational Details 

This section gives some background to additive models, and further insight into 
this particular implementation of the algorithms needed to fit them. Generalized 
additive models are a fairly recent innovation, and the methodology will likely be 
unfamiliar. Fortunately, the way smooth terms appear additively in formulas is 
quite intuitive, and the fitted models look and feel just like GLM models, only more 
flexible. All we can hope to do in the following few pages is shed some insight into 
the technical background that supports the algorithms we use, and guide the reader 
to the references for a more detailed explanation. 

7.4.1 Scatterplot Smoothing 

A basic element of our additive model routines is the scatterplot smoother. We 
have favored two approaches to smoothing in constructing the GAM software: 

• lo: short for loess or locally weighted regression, is a direct method of smooth
ing, and extends naturally to dimensions higher than 1. 

• s: short for smoothing splines, is an indirect methods of smoothing, driven 
by penalized least squares. Although smoothing splines are also d!)fined in 
higher dimensions, the computational complexity increases dramatically. 

There are other types of smoothers, such as kernel smoothers, nonlinear smooth
ers (for example running medians), and trigonometric series smoothers, to name a 
few. All of these, and in fact any smoother, can be used as a building block for 
fitting additive models. 

For our purposes, it is easiest to motivate a smoother in terms of the simple 
model y; = l(x;) + Ei, where I is some unknown and arbitrary function of the 
predictor x and the e; represent zero mean independently distributed errors. Since 
E(yi I xi) = l(x;), any estimate of I can be viewed as an estimate of this condi
tional expectation. For simplicity, we assume xis univariate. However, we seldom 
have more than one observation at any given point x;, so we have to relax the 
definition in order to get a reasonable estimate. The typical assumption that is 
made toward this end is to assume that I is smooth in some sense, and then exploit 
this smoothness in defining the estimate. Smoothers differ chiefly in the way theY 
exploit the smoothness assumption. 
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A locally weighted regression smoother estimates f(t) at an arbitrary point t 
by computing a weighted average of all those values Y; in the sample that have 
predictors Xj close tot, and the weights depend smoothly on this closeness. 

We can represent it analytically as 

n 

/(t)·= LS>.(t,x;)y;, (7.2) 
j=l 

where { Xj, Yi}, j = 1, ... , n is the series of n data points, t is the target point, and 
S>. is a weight function parametrized by>.. Then x n matrix {S>.(x;,x;)} is often 
called the smoother matrix. All linear smoothers can be represented in the form 
(7.2); they differ chiefly in the construction of the weights: 

• The loess() smoother imposes a tricube weight function on the >. = span 
nearest neighbors in x to the target point t, and then computes the fit at t 
by a weighted linear (or optionally quadratic) regression. The span controls 
how much smoothing is performed: a large span results in smoother but less 
local fitted functions whereas a small span results in rougher (higher variance), 
more local fits. Locally weighted regression smoothers are discussed in depth 
in Chapter 8, so we do not dwell further on them here. 

• Smoothing splines exploit the smoothness from a different more explicit angle. 
A cubic smoothing spline fit to our data is that function f that minimizes 

PRSS = t(y;- f(x;)) 2 + >. /(f"(t)) 2dt 
i=l 

(7.3) 

over all functions with continuous first and integrable second derivatives. The 
solution is a function; it is a natural cubic spline with interior and boundary 
knots at the unique values of the x;. The smoothing parameter >. controls 
the tradeoff between fidelity to the data and smoothness. Smoothing splines 
are also linear smoothers, and so can be represented as in {7.2). The function 
smooth. spline(), which is the workhorse underlying s.vam() and gam. sO, fits 
a smoothing spline; see the detailed documentation for a description of its 
arguments {?smooth.spline.) 

Both smoothing methods have a smoothing parameter that needs to be speci
fied. In practice, it is common to use automatic techniques such as cross-validation 
for selecting the smoothing parameters. We prefer using fixed or user-specified 
smoothing parameters, since concepts such as cross-validation are very expensive 
to implement for generalized additive models. 

The span for loess() is rather intuitive and can be selected subjectively, while 
the >. parameter for smoothing splines is not easy to prespecify. Another parameter 
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useful for calibrating a smooth is the equivalent degrees of freedom, related, of 
course, to the span or >.. The simplest definition is df = tr(S), where S is the 
smoother matrix that produces the fit fl = Sy at each of the n data points x;. For 
smoothing splines, a convenient smoothing parameter is df = tr(S) itself, which 
implies a value of>.. 

7.4.2 Fitting Simple Additive Models 

We now use the scatterplot smoother as a building block for fitting simple nonpara
metric additive models of the form y; = I:;=1 /j(x;j) + c;. Consider the system of 
p (vector) equations: 

/1 S1(Y /2 /3 /-p) 
/2 = S2(Y /1 /3 !-p) 
/3 = S3(y II /2 /p) (7.4) 

= 
/-p = Sp(Y - /1 /2 /3 . ) 

where the dots in the equation are placeholders showing the term that is missing in 
each row. Here a vector of the form fi represents the function fi evaluated at the 
n observed values of Xj in the sample; Si represents the smoother operator matrix 
for smoothing against predictor Xj· The jth equation is reasonable for fitting I; if 
we pretend we know all the other functions appearing on the right side; since we 

don't, we plan to solve all the equations simultaneously. There are several more 
rigorous motivations for these equations than that just given. Fbr example, if all the 
smoothers are smoothing splines, then this system solves the penalized least-squares 
problem 

(7.5) 

The S; can represent any smoother; in particular, the choice Sj = Hj, the least
squares projection matrix, produces a linear fit for the term Xj- If all the smoothers 
are projections, system (7.4) reduces to the usual normal equations for least squares. 

One method for solving (7.4) uses the Gauss-Seidel iterative method, also known 
as backfitting. The algorithm cycles through the equations, each time substituting 
the most current versions of the functions in the right side. Let's look at the algo
rithm applied to some air-pollution data contained in the frame air. The response 
is ozone, and there are three predictors: radiation, wind speed, and temperature. 
We fit the model 
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> gam(ozone ~ s(radiation) + s(wind) + s(temperature), tracezT) 

WAH iter rss/n term 

Relative 

1 0.251 Parametric lm.wfit 
1 0.242 Nonparametric s(radiation) 
1 0.208 Nonparametric s(wind) 
1 0.183 Nonparametric s(temperature) 
change in functions: 0.089 

2 0.181 Parametric -- lm.wfit 
2 0.18 Nonparametric -- s(radiation) 
2 0.181 Nonparametric -- s(wind) 
2 0.18 Nonparametric -- s(temperature) 

Relative change in functions: 0.015 

3 0.18 Parametric lm.wfit 
3 0.18 Nonparametric -- s(radiation) 
3 0.18 Nonparametric -- s(wind) 
3 0.18 Nonparametric -- s(temperature) 

Relative change in functions: 0.003 

4 0.18 Parametric lm.wfit 
4 0.18 Nonparametric -- s(radiation) 
4 0.18 Nonparametric -- s(wind) 
4 0.18 Nonparametric s(temperature) 

Relative change in functions: 0.001 

GAM all.wam loop 1: deviance = 19.944 
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Figure 7.19 shows the additive model fitted above. Included in the figure are the 
univariate scatterplot smooths of ozone against each of the predictors separately. 
Due to correlations in the three predictors, we can see how backfitting had to adjust 
the smooth terms to achieve a joint fit. 

Although backfitting is an efficient method for solving (7.4), convergence can 
be slow if variables are correlated, as in this example. By arranging the iterations 
sensibly, we can eliminate most of the problems. Two important strategies are: 

• All the linear terms in a semiparametric fit are lumped together and treated 
as one term in the iterations. 

• Even the terms to be smoothed are separated into a parametric and nonpara
metric part: f;(x;) = f3;x; + g(x; ). The linear coefficient is fitted together 
with the linear parts of all other terms in the model. 
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Figure 7.19: The solid curves represent the additive model fit to ozone using three atmo
spheric variables. The points in the figures represent the partial residuals (fitted function 
+ overall residuals}. The ~roken curves show the functions obtained by smoothing the 
variables separately against ozone. 

The reason for this latter strategy is simple; a smoothing spline fit, for example, 
can be exactly decomposed into a component that is a projection onto the space of 
fits linear in its predictor, and a nonprojection component. The effect is that all the 
terms have one or more linear components, fitted jointly by least squares; some also 
have a nonparametric component. Splitting nonparametric terms up in this fashion 
avoids extended iterations in situations such as that above, where the overall slope 
of a function can change when fitted jointly. This strategy is generalized when 
fitting locally quadratic fits specified by loO; both the linear and quadratic part is 
a projection component and is fit parametrically. Similarly, generalizations occur 
for surfaces. 

7.4.3 Fitting Generalized Additive Models 

The algorithm for fitting a GAM is exactly an2.~ogous to the algorithm for GLMs. For 
simplicity, we use the binary logistic regre;.;sion model as an example. 

Suppose the current estimate of the additive predictor is 11f1d, and, via the inverse 
of the logit link, we get p,f1d = exp(1/f1d)/(1 + exp(1/f1d)). Then we 

• compute the working response: 
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• obtain Ttfew by fitting a weighted additive model to z;. This simply means 
that the smoothers in the backfitting algorithm incorporate the additional 
weights, and weighted least squares is used for the linear parts. 

These steps are repeated until the relative change in the fitted coefficients and 
functions is below a tolerance threshold (say 0.001). 

Apart from having intuitive appeal, this algorithm can also be justified on more 
rigorous grounds. For example, if an appropriate additive penalized likelihood is 
used as the criterion, the Newton-Raphson step for updating all the unknown func
tions simultaneously requires a system identical to 7.4 to be solved, with z instead 
of y, and weighted cubic spline smoothers for the Si. For other error models and 
link functions, all that changes is the formula for constructing the working response 
and the weights, just as in the GLM case. 

For additive and generalized additive models we can also compute approximate 
dfj for each of the terms, and hence perform crude likelihood-ratio tests in an 
informal way. Alternatively, we can use the fitted functions to suggest parametric 
transformations, and then use the linear model for inferences. 

7 .4.4 Standard Errors and Degrees of Freedom 

An entirely parametric GLM is computed by weighted least squares, and the usual 
weighted least-squares covariance matrix is the inverse of the estimated Fisher infor
mation matrix for GLMs. This is readily available from the output of summary. glmO. 
The standard-error curves for composite functions are constructed in the obvious 
way, since they are linear combinations of fitted coefficients that have a covariance 
matrix. Even for GLMS that have no scale parameter, we use the scaled chi-squared 
statistic to estimate a scale parameter and use it in the calculations. This gives 
protection against overdispersion, and. typically results in conservative standard 
errors. 

When smooth terms are present in the model, the procedure is far more com
plicated. An exact analysis requires the computation of an operator matrix Gi for 
each smooth term BJ, such that Bj = Giz. Here z is the working response from the 
last IRLS fit, which one can argue has an asymptotic Gaussian distribution. Then 
the covariance matrix of the fitted term is given by Gicov(z)G}, and is estimated 

by ¢ciw- 1 G~ where W is diagonal in the final IRLS weights. Since all of this 
is extremely expensive to obtain in general, and is asymptotic anyway, we have 
resorted to some even cruder approximations. 

First, we approximate ¢ciw-1G} by ¢ciw- 1• This is exact for weighted pro
jections, is usually conservative for nonprojection smoothers in that it is larger, and 
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can also be justified on Bayesian grounds for smoothing splines. One can orthogo
nally decompose Gi further into Gi =Hi+ N;, where H; produces the parametric 
part of Bj, and Ni the nonparametric part. Although we do have Hi, we do not have 
the latter, and so approximate it by Sj, the operator for the nonprojection part 
of the smoother itself. The diagonal of Si is all we need to compute the diagonal 
of Sj, and the former is usually available as part of the output of the smoothing 
operation. 

Thus, in summary, our standard-error curves for nonparametric curve estimates 
are derived from the sum of 2 variance curves. The variance curve for the parametric 
part of the function reflects the joint covariance behavior, whereas the variance for 
the nonparametric part reflects only marginal information. 

The procedure outlined above is admittedly ad hoc. Exact methods for com
puting the operators Gi exist, but the least expensive version we know takes O(n2 ) 

operations (with a large constant) to compute. The approximations described here 
have shown empirical success on a number of examples, as long as the pairwise 
correlations among the predictors are not too high. In practice one can always ap
proximate the non parametric term parametrically (and even conservatively) using 
functions such as bsO or nsO, and use the inexpensive parametric standard-error 
curves. 

The dfi in the case of nonparametric terms are computed as tr(Si)- 1; see the 
references for more details. 

7.4.5 Implementation Details 

In this section, we describe some of the implementational details. The style will 
tend to be somewhat narrative since the details can get complicated, and interested 
programmers will want to have a listing of some of the examples alongside. · 

First a general overview. The beginning of gam() is almost identical to that of 
glmO or even lm(). A slight difference is that when the terms() function is invoked, 
the vector gam.slist is passed as a specials., argument. At present, gam.slist 
consists of the three character strings "s", "lo", and "random", and all that happens 
is that terms 0 makes a note of which terms are special in this way. 

As we have seen, terms in sO and loO evaluate to vectors or matrices in the 
model frame, with certain attributes. In fact, whatever they evaluate to is included 
in the model matrix. So smoothing splines evaluate to their argument vector since 
this will comprise its projection part. A locally quadratic bivariate term specified 
by lo(C, E, 1/4, degree = 2), on the other hand, will evaluate to a five-column 
matrix consisting of terms of degree 2 or less. This is its projection part. All in 
all, a model matrix is constructed that one way or another represents all the terms 
in the model. The backfitting algorithms then cycle around, performing one large 
least-squares projection step, then one smooth for each of the nonparametric terms 
(to update the nonprojection parts). This is repeated until the relative change in 
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the functions is below the threshold bf .eps sul•l•lied by default by the function 
gam. control() . 

. The m~t general backfitting function is called ~ll.v~~mo. It performs the itera
tiOns descnbed above, and computes each smooth I'Y simply evaluating the "call" 
attri.bute of the corresponding term in the model lr llme. Rec:all the example from 
Sect10n 7.3.4: 

gam.s(data[["s(pred)"]), z, v, spar • 0, df • 4) 

This works because data is the local name in all.va.mO for the mo<l.,l frmne and z is 
the local name for the partial residual to be smoothed, and so on. B.v hiHis~ing that 
the result of the evaluation of this call have a component labeled reatduu, the term 
can be updated. In addition, the smoothers return a component c&.ll•!•l var. This 
is optional; if users provide their own smooth~rs witho.ut var, ~hey will Himply see 
less accurate standard-error curves. As descnbed earher, var IS approxiruat.ed by 
diag(SjW-1), where Sj is the (weighted) smoother operator with the (w•:ighted) 
projection part removed. The component nl.df is the approximate d~grees of free
dom used in computing this nonprojection part of the smoother; nl.df is giw!n by 
tr(Sj). 

This general backfitter all.va.mO is quite modular but computationally rather 
inefficient. Part of the reason why is that the smoothers gam. sO and ga.m.loO are 
both S functions (interfaced to FORTRAN), and in order to retain their simplicity 
and modularity we cannot take advantage of the fact that all that is changing during 
backfitting is the response. 

If all the smooth terms in the model use the same smoother, say s 0 , a vector 
ga.m.vlist is consulted (currently the same as gam.slist). Since "s" is present, the 
implication is that a specialized, more efficient backfitter s.va.mO exists and should 
be used. Some of the speedups are achieved in this case by: 

• precomputing all the information needed for sorting and condensing the pre
dictors prior to smoothing; 

• performing the least-squares part and all the smoothing iterations within one 
FORTRAN subroutine 

In fact, little of the work done by s. va.mO is done in S! Users wishing to hard wire 
their own backfitting algorithms in this fashion will have to print out s.va.mO or 
lo. va.m () for further details. 

In addition to the (inner) backfitting iterations, gam() performs the (outer) local 
scoring iterations; the backfitter is thus called repeatedly. 

The local-scoring update step and test for convergence is organized in a single 
expression that is evaluated at each iteration. This expression can even be evaluated 
from within the FORTRAN subroutine itself, so in fact s. va.mO and lo. va.mO are 
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invoked only once, but initiate a back-chat to gam() to get their updated response 
and weights. 

The anova table at the end of the summary produced by summary.gam() re
ports a type of score test for the effect of each nonparametric function. For each 
nonparametric term in the model, the nonlinear component is set to zero and the 
parametric part of the model is refit by weighted least squares, holding the other 
nonlinear components fixed. There are two levels of approximation here: 

• To refit the model completely, one should also adjust the nonlinear components 
of the other smooth terms; we only adjust their linear components, and hold 
the nonlinear parts fixed. 

• For generalized additive models, we are making the typical score test approxi
mation by using the weights and working response from the final local scoring 
iteration. 

The change in the Pearson chi-squared statistic is recorded for each term so dropped. 
These computations can be done simultaneously for all the smooth terms in an 
efficient way, using the QR decomposition of the final IRLS iteration. Readers 
interested in further details can print out the short function gam. nlchisq 0 to see 
the details. 

Finally, a few additional comments on predict .gam(). In order to produce fitted 
values at new observations, prAdict.gamO needs to produce both the parametric 
components and the nonparametric components of the predictions. For the para
metric components, it simply needs to refit the coefficients using the derived model 
matrix and the final IRLS information in the fitted gam object, as outlined in Sec
tion 7.3.3. Rather than using the working response derivable from the gam object, 
the values in the linear predictor are used instead. For gam objects, this is the 
additive predictor less the nonparametric smooth terms. For 1m objects the linear 
predictor is the vector of fitted values. When the model is refit to this response 
(using the final working weights), the residuals are expected to be zero. The situa
tions where thiK is not the case are a subset of the cases where "safe" prediction is 
necessary, and 'L warning message is issued reporting the percentage difference. 

To get the llrmparametric components, a bit of trickery is used. We modify the 
"call" attribut" of each smooth term in the model frame to include the argument 
"xevalz:mev". The smoothers gam.loO and gam.s() both respond differently if 
they have an xeval argument; instead of performing the smooth, and returning the 
residuals, varia111:es, etc., they return the fit evaluated at the new predictor points 
xnev. The predio:;t.() method simply cycles through each smooth term and sets up 
the local variableA appropriately. 
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Bibliographic Notes 

The topic of nonparametric smoothing and additive models has a long history, al
though most of the material treated here has appeared in the last 15 years. Two 
popular smoothers are implemented in this chapter. One is the locally weighted 
polynomial smoother of Cleveland (1979) and Cleveland and Devlin (1988). This is 
the loess() smoother of Chapter 8, referred to as lo() in GAM formulas. The 
lovess() smoother in ~ is the one-dimensional predecessor of loess(). The 
other smoother implemented here is the cubic smoothing spline, first introduced 
by Whittaker (1923). The monograph by Wahba {1990) is a comprehensive ac
count of the theory and applications of smoothing splines. The s () function in 
GAM formulas refers to a cubic smoothing spline term, and the stand-alone function 
smooth. spline() is also provided. Our underlying FORTRAN code is a modified ver
sion of the subroutine BART written by Finbarr O'Sullivan, known to some as the 
S function bart() . 

The ACE algorithm of Breiman and Friedman (1985) was the first fully non para
metric proposal for fitting additive models, allowing a non parametric transformation 
of the response as well as the predictors. The baclditting algorithm was proposed 
by Friedman and Stuetzle (1981) in the context of projection pursuit regression, 
and its convergence properties were studied by Breiman and Friedman (1985) and 
Buja et al. {1989). 

A full historic account of generalized additive models with ample references can 
be found in the research monograph by Hastie and Tibshirani (1990). The style 
of working with additive models as an extension of linear models, fixing smooth
ing parameters via degrees of freedom, and using approximate chi-squared tests to 
evaluate smooth terms was developed in this last reference. 





Chapter 8 

Local Regression Models 

WilliamS. Cleveland 
Eric Grosse 
William M. Shyu 

Local regression models provide methods for fitting regression functions, or regres
slon surfaces, to data. Two examples are shown in Figures 8.1 and 8.2 In the first 
figure, there is one predictor, and the fitted function is the curve. In the second 
figure, there are two predictors, and the fitted surface is shown by a contour plot. 
These two examples will be explained in detail later. 

Consider any point x in the space of the predictors. One basic specification 
in a local regression model is that there is a neighborhood containing x in which 
the regression surface is well approximated by a function from a specific parametric 
class; for the S implementation described in this chapter, there will be two classes
polynomials of degree 1 or 2. The specifications of local regression models lead 
to methods of fitting that consist of smoothing the response as a function of the 
predictors; thus the fitting methods are nonparametric regression procedures. 

Recall that in Chapters 4 to 6, responses are modeled as parametric functions 
of the predictors. Then, in Chapter 7, generalized additive models are introduced 
that lead to an element of nonparametric fitting. For such an additive model, a 
regression surface of two or more predictors is specified to be well approximated 
by additive functions of the predictors. In other words, the specification rules out 
certain interactions or rules out interactions altogether. But for local regression 
models, there is no explicit specification that rules out interactions. If a regression 
surface is additive, then the methods of Chapter 7 are appropriate since, in such a. 
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Figure 8.1: Local regression model with one predictor-fitted curve. 

case, they provide more parsimonious descriptions of the surface and have better 
estimation properties. However, if additive fits are unlikely to result in a good 
approximation of the surface, the methods in this chapter are appropriate; the 
surface in Figure 8.2 is one example. 

In Section 8.1.1, local regression models are defined; that is, the various specifi
cations are described. The specifications of a particular model determine the details 
of the method used to fit the model; the fitting method, which is called loess, is 
described in Section 8.1.2. 

In Section 8.2, we discuss the S functions and objects for local regression models 
by working through a number of examples. Our goal is to show how the data 
are analyzed in practice using S. This means we must discuss diagnostic methods. 
The specifications of a local regression model are impositions on the data, and these 
impositions need to be thoroughly checked if we are to have estimates and inferences 
with a demonstrated validity. Thus, diagnostic checking is an essential part of the 
practice of fitting local regression models, and, as with all model building, omitting 
it results in demonstrated validity being replaced simply by hope. 
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Figure 8.2: Local regression model with two predictors-contours of fitted surface. 
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8.1 Statistical Models and Fitting 

8.1.1 Definition of Local Regression Models 

Suppose, for each i from 1 to n, that y; is a measurement of the response and x; is 
a corresponding vector of measurements of p predictors. In a local regression model 
the response and predictors are related by 

Y; = g(x;) + £;, 

where g is the regression surface and the £; are random errors. If x is any point 
in the space of the predictors, g( x) is the value of the surface at x; for example, 
g(x;) is the expected value of y;. In the fitting of local regression models we specify 
properties of the regression surface and the errors; that is, we make assumptions 
about them. We will now discuss the specifications that are allowable using the S 
functions and objects that are described in Section 8.2. 

Specification of the Errors 

In all cases, we suppose that the £; are independent random variables with mean 
0. One of two families of probability distributions can be specified. The first is 
the Gaussian. The second is symmetric distributions, which allow for the common 
situation where the errors have a distribution with tails that are stretched out 
compared with the normal (leptokurtosi$), and which lead us to robust methods of 
estimation. 

We can specify properties of the variances of the £; in one of two ways. The 
first is simply that they are a constant, u 2 • The second is that a;£; has constant 
variance u2 , where the a priori weights, a;, are positive and known. 

Specification of the Surface 

Suppose, first, that all predictors are numeric; that is, none are factor variables. For 
each x in the space of the predictors, we suppose that in a certain neighborhood 
of x, the regression surface is well approximated by a function from a parametric 
class. The overall sizes of the neighborhoods are specified by a parameter, a, that is 
defined in Section 8.1.2. Size, of course, implies a metric, and we will use Euclidean 
distance. For two or more numeric predictors, the shapes of the neighborhoods are 
specified by deciding whether to normalize the scales of the numeric predictors. We 
will elaborate on this later. 

We will allow the specification of one of two general classes of parametric func
tions: linear and quadratic polynomials. For example, suppose there are two pre
dictors, u and v. If we specify linear, the class consists of three monomials: a 
constant, u, and v. If we specify quadratic, the class is made up of five monomials: 
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a constant, u, v, uv, u2, and v2 • We will let>.. be a parameter that describes the 
specification; if>.. = 1, the specificat.ion is linear, and if>.. = 2, the specification is 
quadratic. 

Suppose >.. = 2 and there are two or more numeric predictors. We can specify 
that any of the monomials that is a square be dropped from the class. For example, 
suppose again that the predictors are u and v. If we drop the square for u, then 
the class has four monomials: a constant, u, v, uv, and v2 . 

If there are two or more numeric predictors we can specify that the surface be 
conditionally parametric in any proper subset of the numeric predictors; this means 
that given the values of the predictors not in the subset, t.he surface is a member of a 
parametric class as a function of the subset. If we change the conditioning, or given 
values, the surface is still a function in the same class, although the parameters 
might change. For example, suppose tqe predictors are u and v. Suppose >.. = 1, 
and we specify the surface to be conditionally parametric in u. Then given v, the 
surface is linear in u; this means the general form of the surface is {30 (v) + {31(v)u. 
Suppose >.. = 2, and we specify the surface to be conditionally parametric in u. 
Then given v, the surface is quadratic in u; the general form of the surface in this 
case is f3o(v) + {31(v)u + f32(v)u2 • It makes sense to specify a regression surface to be 
conditionally parametric in one or more numeric variables if exploration of the data 
or a priori information suggests that the surface is globally a very smooth function 
of the variables. Making such a specification when it is valid can result in a more 
parsimonious description of the surface. 

Suppose now that there are factor predictors. A combined factor is formed by 
taking all combinations of levels of the predictors. For example, suppose there are 
two factor predictors with levels male and female for the first and black and white 
for the second. Then the combined factor has four levels: black female, black male, 
white female, and white male. In such a case, the above specifications for numeric 
predictors apply separately for each level of the combined factor; that is, we divide 
the data up into subsets according to the levels of the combined factor, and the 
specifications of the surface as a function of the numeric variables hold separately 
for each subset. 

Summary of the Choices 

Thus, the fitting of local regression models involves making the following choices 
about the specification of properties of the errors and the regression surface: 

• Gaussian or symmetric distribution; 

• constant variance or a priori weights; 

• locally linear or locally quadratic in numeric predictors; 

• neighborhood size; 
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• normalization of the scales; 

• dropping squares; 

• conditionally parametric subset. 

8.1.2 Loess: Fitting Local Regression Models 

The method we will use to fit local regression models is called loess, which is short 
for local regression, and was chosen as the name since a loess is a deposit of fine 
clay or silt along a river valley, and thus is a surface of sorts. The word comes from 
the German lOss, and is pronounced lois. 

Identically Distributed, Gaussian Errors: One Numeric Pre
dictor 

Let's begin with the classical case of Gaussian errors with constant variance q 2• 

Suppose there is just one numeric predictor. Let x be any value along the scale of 
measurement of the variable. The loess fitting procedure is a numerical algorithm 
that prescribes how g(x), the estimate of gat a specific value of x, is computed. 

Let Ai(x) = lx- xi I, let A(i)(x) be the values of these distances ordered from 
smallest to largest, and let 

T(u; t) = { 0(1- (u/t)3 ) 3 , for 0 S u < t 
for u ~ t 

be the tricube weight function. 
The smoothness of the loess fit depends on the specification of the neighborhood 

parameter, a > 0. As a increases, g becomes smoother. Suppose a S 1. Let q be 
equal to an truncated to an integer. We define a weight for (xi, Yi) by 

wi(x) = T(Ai(x);A(q)(x)). 

For a > 1, the Wi(x) are defined in the same manner, but A(q)(x) is replaced by 
A(n)(x)a. The wi(x), which we will call the neighborhood weights, decrease or stay 
constant as Xi increases in distance from x. 

If we have specified the surface to be locally well approximated by a linear 
polynomial-that is, if A is 1- then a linear polynomial is fitted to Yi using weighted 
least squares with the weights 111i(x); the value of this fitted polynomial at xis g(x). 
If A is 2, a quadratic is fitted. Note that as a -> oo, g(x) tends to a linear surface 
for locally linear fitting or a quudratic surface for locally quadratic fitting. 
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Identically Distributed, Gaussian Errors: Two or More Nu
meric Predictors 

We continue to suppose the errors are identically distributed and Gaussian. The 
one additional issue that needs to be addressed for p numeric predictors with p > 
1 is the notion of distance in the space of the predictors. Suppose x is a value in 
the space. To define neighborhood weights we need to define the distance, A;(x), 
from x to x;, the ith observation of the predictors. We will use Euclidean distance, 
but the x; do not have to be the raw measurements. Typically, it makes sense to 
take x; to be the raw measurements normalized in some way. We will normalize 
the predictors by dividing them by their 10% trimmed sample standard deviation, 
and call this the standard normalization. There are, however, situations where we 
might choose not to normalize-for example, if the predictors represent position in 
space. 

Armed with the A;(x), the loess fitting method for p > 1 is just an obvious 
generalization of the one-predictor method. For a < 1, neighborhood weights, 
w;(x), are defined using the same formulas used for one predictor; thus, if.>.= 1, we 
fit a linear polynomial in the predictors using weighted least squares, or, if.>. = 2, 
we fit a quadratic. For a > 1, the w;(x) are defined by the same formula except 
that A(q)(x) is replaced by A(n)(x)a11P. 

Dropping Squares and Conditionally Parametric Fitting for 
Two or More Predictors 

Suppose .>. has been specified to be 2. Suppose, in addition, that we have specified 
the squares of certain predictors to be dropped. Then those monomials are not used 
in the local fitting. 

Suppose a proper subset of the predictors has been specified to be conditionally 
parametric. Then we simply ignore these predictors in computing the Euclidean 
distances that are used in the definition of the neighborhood weights, w;(x). It is 
an easy exercise to show that this results in a conditionally parametric fit .. 

Symmetric Errors and Robust Fitting 

Suppose the E:; have been specified to have a symmetric distribution. Then we 
modify the loess fitting procedures to produce a robust estimate; the estimate is 
not adversely affected if the errors have a long-tailed distribution, but it has high 
efficiency in the Gaussian case. 

The loess robust estimate begins with the Gaussian-error estimate, g(x). Then 
the residuals 
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are computed. Let 
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for 0 :5 lui < b 
for lui ~ b 

be the bisquare weight function. Let 

m = median(! €; I) 

be the median absolute residual. The robustness weights are 

r; = B(€;; 6m). 

An updated estimate, g(x), is·computed using the local fitting method, but with 
the neighborhood weights, w;(x), replaced by r;w;(x); thus, points (x;, y;) with 
large residuals receive reduced weight. Then new residuals are computed and the 
procedure is repeated. The final robust estimate is the ~esult of updating the initial 
estimate several times. 

Factor Predictors 

We can include one or more factor predictors in the fitting by dividing the data 
into subsets, one for each combination of levels of the factor predictors, and then 
fitting loess surfaces to Yi as a function of the numeric predictors for each subset. 
This allows for very general interactions between the numeric and factor predictors 
but, of course, requires that there be a sufficient number of measurements of the 
numeric predictors for each combination of the levels of the factor predictors. If 
we have specified the errors to be Gaussian, the fits for the subsets are not related 
in any way; for example, neighborhoods are determined separately for each subset. 
However, if the error distribution has been specified to be symmetric, the various 
fits are pooled in forming the median absolute residual, m. 

Errors with Unequal Scales 

Suppose we specify that ai£i have constant variance u 2 . Then, for the Gaussian
error estimate, the neighborhood weight, w;(x), is replaced by a;w;(x), and for the 
robust estimate, the weight r;wi(x) is replaced by a;r;w;(x). 

8.2 S Functions and Objects 

This section describes the S functions for local regression modeling. In each subsec
tion we analyze a dataset, illustrating how S functions are used to explore the data, 
fit models, and then carry out graphical diagnostics to check the specifications of 
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the fitted models. Our goal is to show how the dala are aJuLlyzcd in practice using S, 
and how each dataset presents a different challenge. We bt~Kin, however, by rapidly 
running through the S functions for fitting and inference t.o give an overview; the 
reader need not understand details at this point. 

The basic modeling function is loess(), which returns an ohject of class "loess". 
Let's apply it to some concocted data in the data frame madeup, which has two 
numeric predictors: 

> names(madeup) 
[1] "response" "one" 
> attach(madeup) 

"two" 

We will fit a Gaussian model with the smoothing parameter, a, equal to 0.8 and 
the degree, A, of the locally-fitted polynomial equal to 1: 

> madeup.m <- loess(response ~ one * two, span = 0.5, degree = 2) 
> madeup.m 
Call: 
loess(formula z response ~ one • two, span = 0.5, degree = 2) 

Number of Observations: 100 
Equivalent Number of Parameters: 14.9 
Residual Standard Error: 0. 9693 
Multiple R-squared: 0.76 
Residuals: 

min 1st Q median 3rd Q max 
-2.289 -0.5064 0.1243 0.7359 2.357 

Notice that the printing shows the equivalent number of parameters, p.; this measure 
of the amount of smoothing, which is defined in Section 8.4, is analogous to the 
number of parameters in a parametric fit. Also shown is an estimate of u, the 
standard error of the residuals. Let's update the fit by dropping the square of the 
first predictor and making it conditionally parametric: 

> madeup.new <- update(madeup.m, drop.square = "one", 
+ parametric = "one") 
> madeup.new 
Call: 
loess(formula a response ~ one • two, span = 0.8, degree = 2, 

parametric= "one", drop.square ="one") 

Number of Observations: 100 
Equivalent Number of Parameters: 6.9 
Residual Standard Error: 1.48 
Multiple R-squared: 0.34 
Residuals: 
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min 1st Q median 3rd Q max 
-4.758 -0.6449 0.03682 0.9094 2.589 

Until now we have been fitting Gaussian models because the argument that con
trols this, family, defaults to "gaussian". Now let us fit a model with the error 
distribution specified to be symmetric: 

> madeup.nev <- update(madeup.nev, family • "symmetric") 
> madeup.nev 
Call: 
loess(formula = response ~ one • tvo, span = 0.8, degree 2 2, 

parametric = "one", drop.square = "one", family = "symmetric") 

Number of Observations: 100 
Equivalent Number of Parameters: 6.9 
Residual Scale Estimate: 1.089 
Residuals: 

min 1st Q median 3rd Q max 
-7.472 -0.726 -0.1287 0.6342 2.594 

Also, we have been using the standard normalization to normalize the scales of the 
two predictors; this is controlled by the argument normalize, whose default is TRUE. 

Let's now remove the normalization: 

> madeup.nev <- update(madeup.nev, normalize = FALSE) 

The function specs shows all of the aspects of the fit, both the specifications of 
the local regression model and the computational options: 

> specs(madeup.m) 

DATA 
formula: 
model: 

ERRORS 
family: 
weights: 

SURFACE 
span: 
degree: 
normalize: 
parametric: 
drop. square: 
enp: 

COMPUTING 
surface: 
statistics: 

response ~ one • tvo 
FALSE 

gaussian 

0.8 
2 
TRUE 

9.7 

interpolate 
approximate 
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cell: 
iterations: 
method: 

0.2 
4 
loess 
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In the above S expressions, we utilized the generic functions print 0 and update 0. 
The generic function predict() can be used to evaluate a fitted surface at a set of 
points in the space of the predictors: 

> range(one) 
[1) -2.809549 3.451000 
> range(two) 
[1] -1.885139 1.859246 
> newdata <- data.frame(one = c(-2.5, 0, 2.5,), two= rep(O, 3)) 
> newdata 

one two 
1 -2.5 0 
2 0.0 0 
3 2.5 0 
> predict(madeup.m, newdata) 
[1] 8.15678 14.49359 14.85414 

In this case, the second argument is a data frame, each of whose rows is a point in 
the space of the predictors, and the result is a vector of length equal to the number of 
rows. Its ith element is the evaluation at the ith row of newdata. Suppose, however, 
that the points over which we want to do the evaluation form a rectangular grid in 
the space of the predictors. For example, let us create the following: 

> marginal.grid <- list(one a c(-2.5, 0, 2.5), two= c(-1.5, 0, 1.5)) 
> newdata <- expand.grid(marginal.grid) 
> newdata 

one two 
1 -2.5 -1.5 
2 0.0 -1.5 
3 2.5 -1.5 
4 -2.5 0.0 
5 0.0 0.0 
6 2.5 0.0 
7 -2.5 1.5 
8 0.0 1.5 
9 2.5 1.5 

The two components of marginal. grid are marginal grid points. The function 
e:tpand.grid{) expands this marginal information into a data frame whose rows 
are the coordinates of the grid points. Let's see what happens when this data frame 
is given to predict(): 
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> predict(madeup.m, nevdata) 
tvo=-1.5 two~ 0.0 two= 1.5 

one•-2.5 5.072129 8.15678 -1.207997 
one• 0.0 14.111210 14.49359 14.112857 
one• 2.5 1.951178 14.85414 3.042429 

Thus, in this case, predict() produces an array shaped according to the marginal 
grid values. 

The function predict() can also be used to compute information about standard 
errors: 

> nevdata <- data.frame(one = c(-.5, .5), two= rep(0,2)) 
> nevdata 

one two 
1 -0.5 0 
2 0.5 0 
> madeup.se <- predict(madeup.m, nevdata, se.fit =TRUE) 
> madeup.se 
$fit: 
[1) 14.49181 14.38973 

$se.fit: 
[1] 0.2767463 0.2780086 

$residual.scale: 
[1) 0.9693021 

$df: 
[1) 81.23189 

The components are fit, the evaluated surface at nevdata; residual.scale, the 
estimate of the residual scale; df, the degrees of freedom of the t distribution upon 
which the confidence intervals are based; and se.fit, estimates of the standard 
errors of the fit. Now we can use pointwise 0 to compute upper and lower confidence 
intervals: 

> madeup.ci <- pointvise(madeup.se, coverage = .99) 
> madeup.ci 
$upper: 
[1] 15.22179 15.12303 

$fit: 
[1] 14.49181 14.38973 

$lover: 
[1] 13.76183 13.65642 
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The computations of predict() that produce the coefficient." in the m1 11 ponent 
8e.fit are much more costly than those that produce fit, so the number olpoints 
at which standard errors are computed should be modest ccnnpared to l.hu~~e at 
which we do evaluations; this is not a limitation for the practi~:o• of local ruP.••·HHion 
m.odeling since it makes statistical and graphical sense to co111pute intc~rvul11 11t a 
limited set of points. 

In our first model, madeup.m, we took span to be 1/2. Can we incre<lll•• it. and 
still get a good fit? The best way to check is to use graphical diagnostics, J.ut. the 
analysis of variance can also provide some guidance: 

> anova(update(madeup.m, span= .75), madeup.m) 
Model 1: 
loess(formula =response~ one • two, span= 0.75, degree • 2) 
Model 2: 
loess(formula = response ~ one • two, span = 0.5, degree = 2) 
Analysis of Variance Table 

1 
2 

ENP RSS Test 
10.1 93.219 
14.9 74.583 

1 vs 2 
F Value Pr(F) 

2.86 0.012145 

The results suggest that the increase in span has led to a distortion. 
The equivalent number of parameters, p., is related, albeit somewhat roughly, to 

the smoothing parameter, a, by the following formula: 

where T is the number of monomials used in the local fitting. (If factors are present 
in the model, then we must multiply the right side of the above approximation by 
the number of levels of the combined factor.) The function loess has an argument 
enp that can be used to specify a target value for p.. Then a is computed from this 
approximation. The actual equivalent number of parameters, which is what appears 
in the printing, will typically be somewhat different, as the following exalllple shows: 

> loess(response ~ one • two, enp.target = 15, degree = 2) 
Call: 
loess(formula = response ~ one • two, enp.target = 15, degree = 2) 

Number of Observations: 100 
Equivalent Number of Parameters: 15.4 
Residual Standard Error: 0. 9.68 
Multiple R-squared: 0. 76 
Residuals: 

min 1st Q median 3rd Q max 
-2.292 -0.512 0.09987 0.7253 2.355 
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For exploratory data analysis and diagnostic checking, we will employ S graph
ics functions extensively, including pairs(), panel. smooth(), scatter. smooth(), and 
coplotO, which are discussed in Chapter 3. In addition, the generic function plot{) 
takes loess objects and displays the fitted curve or surface. For the remainder of 
this chapter, we will set a graphics parameter and stick with it until we exit from 
the chapter: 

par(pty= "s") 

8.2.1 Gas Data 

The data frame gas has 22 observations of two variables from an industrial exper
iment that studied exhaust from an experimental one-cylinder engine (Brinkman, 
1981). The dependent variable, which will be denoted by NOx, is the concentration 
of nitric oxide, NO, plus the concentration of nitrogen dioxide, N02 , normalized 
by the amount of work of the engine. The units are fJ9 of NOx per joule. The 
predictor is the equivalence ratio, E, at which the engine was run. Eisa measure 
of the richness of the air and fuel mixture. Here is a summary: 

> summary(gas) 
NOx E 

Mean 3.546691 0.9249646 
Median 3.899600 0.9490000 

Min. 0.637000 0.6660000 
1st Qu. 2.118000 0.8070000 
3rd Qu. 4.937000 1.0210000 

Max. 5.344000 1.2240000 
NA 's 0 0 

Data Exploration 

We begin our analysis with an exploration of the data by the scatterplot of NOx 
against E in Figure 8.3: 

attach(gas) 
plot(E, NOx) 

The plot shows that there is substantial curvature as a function of E and that the 
errors have a small variance compared with the change in the level of NOx· 

Fitting a First Model 

Because of the substantial curvature in the overall pattern of the data, we will fit a 
local regression model using locally quadratic fitting. A reasonable starting point 
for the smoothing parameter is a= 2/3. Also, because variation about the overall 
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Figure 8.3: Gas data-NOx against E. 

pattern shows no unusual behavior, we begin with the hope that an assumption of 
Gaussian errors is reasonable: 

> gas.m <- loess(NOx "' E, span = 2/3, degree • 2) 
> gas.m 
Call: 
loess(formula "' NOx "' E, span • 2/3, degree 2) 

Number of Observations: 22 
Equivalent Number of Parameters: 6.6 
Residual Standard Error: 0.3404 
Multiple R-squared: 0.96 
Residuals: 

min 1st Q median 3rd Q max 
-0.6604 -0.213 -0.02611 0.1271 0.6234 

The equivalent number of parameters of the fit is 5.5. The estimate of the residual 
variance is 0.3404, but we should not take this estimate seriously before carrying 
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out the diagnostic procedures to come. 

Evaluation and Plotting the Curve 

Having fitted a model to gas, we can compute g(x) at values of the predictor, E: 

> gas.fit.x <- c(min(E), median(E), max(E)) 
> gas.fit.x 
[1] 1.1964144 6. 0687470 0. 6236823 
> predict(gas.m, gas.fit.x) 
[1] 1.1964144 6.0687470 0.6236823 

We could compute the fitted values, Yi = g(xi), by: 

predict(gas.m, E) 

However they, as well as the residuals, Yi - y;, are stored on the loess object and 
can be accessed by the expressions: 

fitted(gas.m) 
residuals(gas.m) 

If our goal is to evaluate the curve just to plot it, we can use plot() to both 
evaluate and graph: . 

plot(gas.m) 

The result is shown in Figure 8.4. For one predictor, the plot() method .for "loess" 
objects carries out an evaluation at equally spaced points from the minimum to the 
maximum value of the predictor, and makes the plot. An argument, evaluation, 
specifies the number of points at which the evaluation is carried out; the default is 
50, so in Figure 8.4 the curve is evaluated at 50 equally spaced points and graphed 
by connecting successive plotting locations by line segments. 

Diagnostic Checking 

We turn now to diagnostic checking to accept or reject the specifications of the 
model we have fitted. To check the properties of g(x) that are specified by the 
choice of a = 2/3 and >. = 2, we plot the residuals, ii, against E to look for lack of 
fit: 

scatter.smooth(E, residuals(gas.m), span~ 1, degree= 1) 
abline(h=O) 

The result is shown in Figure 8.5. The function scatter.smoothO makes a scatter
plot and adds a smooth curve using loess fitting. No effect appears to be present 
in the diagnostic plot, so a = 2/3 appears to have introduced no lack of fit. But is 
there surplus of fit, that is, can we get away with a larger a? To check this, we fit 
a new loess model with a= 1: 
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Figure 8.4: Gas data-local regression fit. 

gas.m.null <- update(gas.m, span ~ 1) 

The residual plot is shown in Figure 8.6. There is a strong signal in the residuals-a 
dependence of the level of the ii onE, so a= 1 is too large, which suggests that 
a = 2/3 is about as large as we can get away with. Thus, we have verified our 
specification of the form of g(x) since there appears to be no surplus or Jack of fit. 

Next, we check the distributional specifications for the error terms. To see if 
the scale of the residuals depends on the level of the surface, we plot JjiJ against 
the fitted values, Yi· Taking the square root tends to symmetrize the distribution 
of the absolute residuals. For our current example, with its small sample size of 22, 
we would not expect this method to reliably detect anything but a radical change 
in scale, but for illustrative purposes we show the plot in Figure 8.7: 

scatter.smooth(fitted(gas.m), sqrt(abs(residuals(gas.m))), span= 1, 
degree = 1) 

The graph does not show any convincing dependence. To check for dependence 
of the scale on E, a similar graph was made-but against E instead of the fitted 
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Figure 8.5: Residuals against E with a scatterplot smoothing-first fit to gas. 

values-and, again, no convincing dependence was found. To check the assumption 
of a Gaussian distribution of the errors, we will make a Gaussian probability plot 
of the residuals. In order to judge the straightness of the points on such plots, we 
will write a little function that draws a line through the lower and upper quartiles: 

> qqline 
function(x) 
{ 

data.quartiles <- quantile(x, c(0.26, 0.76)) 
norm.quartiles <- qnorm(c(0.26, 0.76)) 
b <- (data.quartiles[2] - data.quartiles[l])/ 

(norm.quartiles[2] - norm.quartiles[l]) 
a <- data.quartiles[l] - norm.quartiles[l] * b 
abline(a, b) 

Now we make the plot: 

qqnorm(residuals(gas.m)) 
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Figure 8.6: Residuals against E with a scatterplot smoothing-second fit to gas. 

qqline(residuals(gas.m)) 

The result, shown in Figure 8.8, suggests that the Gaussian specification is justified. 

Inference 

gas .m has passed the diagnostic tests, which allows us to carry out statistical in
ferences with an assurance of validity. First, we compute 99% pointwise confidence 
intervals for g(x) at seven values of E: 

> gas.limits.x <- seq(min(E), max(E), length= 7) 
> gas.se <- predict(gas.m, gas.limits.x, se.fit • TRUE) 
> pointwise(gas.se) 
$upper: 
[1] 1.986621 4.109807 6.480230 6.666610 3.527610 1.710617 
(7] 1. 472049 
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Figure 8. 7: Square-root absolute residuals against fitted values with a scatterplot smoothing. 

$fit: 
[1] 1.1964144 3.6794968 6.0567086 5.1362603 3.1436568 1.1969317 
[7] 0.6236823 

$lower: 
[1] 0.4072080 3.2491866 4.6311876 4.7040106 2.7597037 0.6832464 
[7] -0.4246841 

The function plot 0, which was earlier used to plot the curve, will compute and 
add confidence limits to the plot, as shown in Figure 8.9: 

plot(gas.m, confidence = 7) 

The limits are added at confidence equally spaced points from the minimum to 
the maximum of the values of the predictor. Thus, the limits that are plotted in 
Figure 8.9 are the same as those we just computed. 

We know from the diagnostic checking that gas.m.null does not fit the data. 
But for purposes of illustration we will carry out a statistical comparison of the two 
models: 
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Figure 8.8: Gaussian quantile plot of residuals with line passing through lower and upper 
quartiles. 

> gas.m 
Call: 
loess(formula = NOx ~ E, span = 2/3, degree ~ 2) 

Number of Observations: 22 
Equivalent-Number of Parameters: 5.5 
Residual Standard Error: 0.3404 
Multiple R-squared: 0.96 
Residuals: 

min 1st Q median 3rd Q max 
-0.5604 -0.213 -0.02511 0.1271 0.6234 

> gas.m.null 
Call: 
loess(formula • NOx ~ E, span • 1, degree = 2) 

Number of Observations: 22 
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Figure 8.9: Gas data-local regression fit with 99% pointwise confidence intervals. 

Equivalent Number of Parameters: 3.5 
Residual Standard Error: 0.5197 
Multiple R-squared: 0.9 
Residuals: 

min 1st Q median 3rd Q max 
-0.9644 -0.4536 -0.1019 0.2914 0.8133 

We can see that the increase in a for gas.m.null results in a drop in the equivalent 
number of parameters, buts, the estimate of u, increases by a factor of about 1.5. 
This is to be expected in view of the lack of fit. We can test gas .m against gas .m.null 
by an analysis of variance: 

> anova(gas.m.null, gas.m) 
Model 1: 
loess(formula g NOx ~ E, span • 1, degree • 2) 
Hodel 2: 
loess(formula • NOx ~ E, span • 2/3, degree • 2) 
Analysis of Variance Table 
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1 

2 

ENP RSS 
3.6 4.8489 
5.5 1. 7769 

Test 
1 vs 2 

F Value Pr(F) 
10.14 0.0008601 

The result, as expected, is highly significant. 

8.2.2 Ethanol Data 

331 

The experiment that produced the gas data that we just analyzed was also run with 
gasoline replaced by ethanol. There were 88 runs and two predictors: E, as before, 
and C, the compression ratio of the engine. The data are in ethanol: 

> summary(ethanol) 
NOx c E 

Mean 1.967376 12.03409 0.9264773 
Median 1.764600 12.00000 0.9320000 

Min. 0.370000 7.60000 0.6360000 
1st Qu. 0.944000 8.26000 0.7616000 
3rd Qu. 3.042000 16.00000 1.1116000 

Max. 4.028000 18.00000 1.2320000 
NA's 0 0 0 

These data were analyzed previously in Chapter 7. It was di,scovered that an addi
tive fit did not approximate the surface sufficiently well be~ause of an interaction 
between C and E. Thus, we will try fitting a local regression model. To make 
typing easier we will attach ethanol: 

attach(ethanol) 

Exploratory Data Display 

An exploratory plot useful for starting an analysis with two or more predictors is 
the scatterplot matrix, shown in Figure 8.10: 

pairs(ethanol) 

We will refer to panels in this and other multipanel displays by column and row, 
numbering as we would on a graph; thus, the lower left panel is (1,1) and the one 
to the right of it is (2,1). The (3,3) panel of the matrix, a scatterplot of NOx 
against E, shows a strong nonlinear dependence with a peak between 0.8 and 1.0. 
This makes it immediately clear that we need to use locally quadratic fitting. The 
(2,3) panel of the scatterplot matrix shows no apparent dependence of NOx on C; 
however, we should not at this point draw any firm conclusion since it is possible 
that a dependence is being masked by the strong effect of E. The (1,2) panel, 
which graphs the configuration of points in the space of the predictors, shows that 
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Figure 8.10: Ethanol data-scatterplot matrix ofNOx, C, and E. 
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the values of the two variables are nearly uncorrelated and that C takes on one of 
five values. 

Coplots, introduced in Chapter 3, are an essential tool in fitting local regression 
models. Figure 8.11 is a coplot of the ethanol data. Thus, the dependence panels 
are the 3 x 3 array, and the given panel is at the top. On each dependence panel, 
NOx is graphed against C for those observations whose values of E lie in an interval; 
on the panel, we are seeing how NOx depends on C forE held fixed to the interval. 
The intervals are shown on the given panel; as we move from left to right through 
these intervals, we move from left to right and then bottom to top through the 
dependence panels. 

To produce Figure 8.11, we begin by selecting the intervals: 

E.intervals <- co.intervals(E, number = 9, overlap • 1/4) 

The result is a 9 X 2 matrix that gives the left endpoints of the intervals in the left 
column and the right endpoints in the right column: 

> E. intervals 
[,1] [,2] 

[1,] 0.536 0.686 
[2,] 0.665 0.761 
[3,] 0.733 0.811 
[4,] 0.808 0.899 
[6,] 0.892 1.002 
[6,] 0.990 1.046 
[7 ,] 1.042 1.125 
[8,] 1.116 1.189 
[9,] 1.175 1.232 

The intervals produced by co. intervals have two properties: approximately the 
same number of observations lie in each interval and approximately the same number 
of observations lie in two successive intervals. The shared number is specified by 
the argument overlap as the fraction of points shared by the successive intervals. 
For example, if there are approximately 20 points in each interval and overlap is 
1/2, then successive intervals share about 10 points. Now we make the coplot: 

coplot(NOx "'C I E, given.values "E.intervals, 
panel = function(:.:, y) panel.smooth(x, y, degree = 1, span = 1)) 

The first argument specifies the response, the predictor, and the given variable by 
a formula; in the above expression, the formula is read, "Plot NOx against C, given 
E." The argument given. values specifies the conditioning values. For a numeric 
given predictor, the values can be a two-column matrix as in the example, or they 
can be a vector, in which case each element is both the left and right endpoint of 
an interval, so the intervals have length 0. We can also condition on the levels of a 
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Figure 8.11: Ethanol data-coplot ofNOx against C given E with scatterylot smoothingl. 
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factor; in this case the argument is a character vector. The argument panel takes a 
function with two arguments :r: and y that determine the method of plotting on each 
dependence panel; :r: refers to the abscissae on a panel andy refers to the ordinates. 
The default function is points(). In the above expression, the method of plotting 
is to create a scatterplot of the data for each panel and a scatterplot smoothing of 
the points. To do this, we used the function panel. smooth, which adds curves using 
loess smoothing. We defined a function on the fly that involves panel. smooth; this 
trick allows us to pass the arguments span and degree into coplot (). 

Figure 8.12 is a coplot of NOx against E given C. Since C takes on five values, 
we have simply conditioned on each of these five values: 

> C.points <- sort(unique(C)) 
> coplot(NO:r: ~ E I C, given.values = C.points, columns = 3, rows = 2, 
+ panel = function(:r:,y) panel.smooth(x, y, d~gree = 2, span= 2/3)) 

The arguments columns and rows have been used to specify the dependence panels 
to be arranged in an array with three columns and two rows. 

What have we learned from these coplots? First, NOx does in fact depend on C; 
for low values of E, NOx increases with C, and for medium and high values of E, 
NOx is constant as a function of C. Thus, there is an interaction between C and E. 
Second, over the range of values of E and C in the dataset, NOx undergoes more 
rapid change as a function of E for C held fixed than as a function of C for E held 
fixed. Finally, the plots show that the amount of noise-that is, the variance, u2 , 

of the ci-is small compared with the effect due toE, and is moderate compared 
with the effect due to C. 

Modeling the Ethanol Data 

It is quite clear from the exploratory plots that we must specify a locally-quadratic 
surface-that is, take -\ to be 2-because of the substantial curvature as a function 
of E. Also, we will specify a == 0.5 for the first fit: 

> ethanol.first <- loess(NO:r: ~ C • E, span= 1/2, degree = 2) 
> ethanol. first 
Call: 
loess(formula "' NO:r: ~ C • E, span • 1/2, degree = 2) 

Number of Observations: 88 
Equivalent Number of Parameters: 13 
Residual Standard Error: 0.2699 
Multiple R-squared: 0.96 
Residuals: 

min 1st Q median 3rd Q max 
-0.6017 -0.263 -0.06219 0.1333 0.43 
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We begin a search for lack of fit by plotting the residuals against each of the 
predictors: 

> scatter.smooth(C, residuals(ethanol.first), span= 1, degree • 2, 
+ ylab • "Residuals", main • "First Fit") 
> abline(h = 0) 
> scatter.smooth(E, residuals(ethanol.first), span= 1, degree • 2, 
+ ylab'" "Residuals", main= "First Fit") 
> abline(h = 0) 

The result is shown in the top two panels of Figure 8.13. Clearly there is lack of fit 
in the right panel. Thus, we drop span to 1/4: 

> ethanol.m <- update(ethanol.first, span a 1/4) 
> ethanol.m 
Call: 
loess(formula = NOx ~ C • E, span = 1/4, degree • 2) 

Number of Observations: 88 
Equivalent Number of Parameters: 21.6 
Residual Standard Error: 0.1761 
Multiple R-squared: 0.98 
Residuals: 

min 1st Q median 3rd Q max 
-0.3976 -0.09133 0.00862 0.06417 0.3382 

The residual plots, shown in the bottom two panels of Figure 8.13, look much 
better. To enhance the comparison of the two sets of residual plots, the values of 
the arguments span and degree of scatter. smooth() are the same for all four panels, 
as are the vertical scales. 

But we must check further; these marginal residual plots can, of course, hide 
local lack of fit in the (C,E) plane. We check this by the coplots in Figures 8.14 
and 8.15: 

> coplot(residuals(ethanol.m) ~ C I E, given.values = E.intervals, 
+ panel = function(x, y) 
+ panel.smooth(x, y, degree = 1, span = 1, zero.line = TRUE)) 
> coplot(residuals(ethanol.m) ~ E I C, given.values = C.points, 
+ panel c function(x, y) 
+ panel.smooth(x, y, columns = 3, rows = 2, degree = 1, span c 1, 
+ zero.line = TRUE)) 

There is some suspicious behavior on the (1,2) and (2,2) dependence panels of 
Figure 8.14; almost all of the residuals are positive. The detected effect is, however, 
quite minor, so we will ignore it. 

We can check the specifications of the error distribution by the same diagnostic 
methods used for the gas data-graph Vi€J against fj;, graph M against C and 
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E, and make a Gaussian probability plot of h This was done, and etha1101.m passed 
the tests. 

· Plotting the Surface 

For loess objects with two predictors, plot() displays the fitted surface l.y coplots: 

plot(ethanol.m, given • 16, evaluation= 60, confidence = 7, 
coverage • .99) 

The result is shown in Figures 8.16 and 8.17. Let g(C,E) be the fitt.•·•l surface. 
Consider a single panel of Figure 8.16. E has been set to a specific conditioning 
value, E = E*; then g( C, E*) has been evaluated for 50 equally spaced values of 
C ranging from the minimum value of C in the data to the maximum, and the 
surface values have been graphed on the panel against the equally spaced values of 
C. Also, 99% confidence intervals are drawn at seven equally spaced points from 
the minimum value of C in the data to the maximum. There are 16 equally spaced 
conditioning values of E ranging from the minimum value of E in the data to the 
maximum; the given panel in Figure 8.16 shows the 16 values. Similarly, Fignre 8.17 
shows the dependence of the fitted surface on E for 16 conditioning values of C. 

·Dropping Squares and Conditionally Parametric Surfaces 

The coplot in Figure 8.16 show that the ethanol fit has an undesirable property: 
the surface as a function of C for fixed E has unconvincing undulations, especially 
in the (1,1) dependence panel. Our skepticism comes from two sources. First, in 
the coplot of the data in Figure 8.11, NOx appears to be a very smooth function 
of C; in fact, the coplot suggests that given E, the dependence is actually linear in 
C. Second, the undulations in Figure 8.16 are small compared with the sizes of the 
confidence intervals. 

As we saw from the diagnostic checking, if we increase o and thereby get more 
smoothness as a function of C, we introduce lack of fit. Instead, we will cut back on 
the variation of the fit as a function of C by dropping C2 from the fitting variables; 
this leaves us with a constant, E, C, EC, and E 2 • In addition, we will specify the 
surface to be conditionally parametric inC; this will result in a fit that is linear in 
C given E: 

ethanol.cp <- update(ethanol.m, drop.square = "C", parametric '"' "C") 

Let's compare the old fit and the new: 

> ethanol.m 
Call: 
loess(formula • NOx 'V C • E, span • 1/4, degree • 2) 
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Figure 8.16: Ethanol data-coplot of the local regression fit with pointwise 99% confidenC8 
intervals. 
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Number of Observations: 88 
Equivalent Number of Parameters: 21.6 
Residual Standard Error: 0.1761 
Multiple R-squared: 0.98 
Residuals: 

min 1st Q median 3rd Q max 
-0.3975 -0.09133 0.00862 0.06417 0.3382 

> ethanol.cp 
Call: 
loess(formula : NOx ~ C • E, span : 1/4, degree = 2, 
parametric = "C", drop. square • "C") 

Number of Observations: 88 
Equivalent Number of Parameters: 18.2 
Residual Standard Error: 0.1808 
Kul tiple R-squared: 0. 98 
Residuals: 

min 1st Q median 3rd Q max 
-0.4388 -0.07436 -0.009093 0.06651 0.5485 

The equivalent number of parameters has dropped by about 15%, the residual 
standard error has increased insignificantly, and diagnostic plots, not shown here, 
indicated no lack of fit. But the big gain is that we can now increase span to 1/2 
without introducing lack of fit: 

> ethanol.cp <- update(ethanol.cp, span = 1/2) 
> ethanol.cp 
Call: 
loess(formula : NOx ~ C • E, span = 1/2, degree '" 2, 
parametric : "C", drop.square = "C") 

Number of Observations: 88 
Equivalent Number of Parameters: 9.2 
Residual Standard Error: 0.1842 
Multiple R-squared: 0.98 
Residuals: 

min 1st Q median 3rd Q max 
-0.5236 -0.0973 0.01386 0.07345 0.5584 

In so doing we have driven the equivalent number of parameters to less than half 
of what it was originally and kept the residual standard error about the same. The 
coplots in Figures 8.18 and 8.19 show the resulting fitted surface: 

plot(ethanol.cp, given= 16, evaluation • 50, confidence • 7, 
coverage = 0.99) 
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Computing the Fitted Surface and Confidence Intervals 

We turn now to a further discussion of how predict() is used to evaluate a fitted 
surface and to compute information for confidence intervals. As we saw at the 
beginning of this section, for two or more predictors there are two data structures 
that can be given to the second argument, newdata, which specifies the points in the 
space of the predictors at which the evaluation takes place. The first data structure 
is a plain old data frame: 

> newdata 
C E 

1 7.5 0.6 
2 9.0 0.8 
3 12.0 1.0 
4 15.0 0.8 
5 18.0 0.6 

The following evaluates the ethanol surface at points in the space of the predictors 
given by the rows of newdata: 

> predict(ethanol.m, newdata) 
[1] 0.2815825 2.5971411 3.0667178 3.2555778 1.0637788 

The result is a vector whose length is equal to the number of rows of the data 
structure. This is similar to our use of predict 0 for one predictor, but there is now 
one difference: the function must be able to match each column of newdata with 
a predictor specified by the formula of the loess object. The matching is done by 
looking at the column names of newdata and the names of the predictors in formula. 
In our example, the columns of newdata are C and E. 

A second data structure can be used when the evaluation points form a grid. 
For example, to show the curves in Figure 8.18, the function plot() used predict() 
to evaluate the ethanol surface on a 50 x 16 grid of 800 points in the (C, E) plane. 
We refer to the 800 points as the grid points and the equally spaced values of C and 
E that define the grid as the marginal grid points. Let's see how this evaluation is 
carried out. First we compute the marginal grid points and put them in a list: 

C.marginal <- seq(min(C), maz(C), length= 50) 
E.marginal <- seq(min(E), maz(E}, length= 16) 
CE.marginal· <- list(C = C.marginal, E • E.marginal} 

Then we use the function expand.gridO: 

CE.grid <- expand.grid(CE.marginal} 

This creates a data frame whose rows are the coordinates of the grid; attributes 
of the data frame provide the information that the data structure describes a grid. 
Now we do the evaluation: 



348 CHAPTER 8. LOCAL REGRESSION MODELs 

ethanol.fit <- predict(ethanol.cp, CE.grid) 

Matching is done in the same way as for the first data structure. The evaluation is 
carried out at the grid values, and the result is a numeric array whose dimension is 
equal to the number of predictors: 

> dim(ethanol.fit) 
[1] 50 16 
> names(dimnames(ethanol.fit)) 
[1] "C" "E" 

The (i,j)th element of the array ethanol. fit is the evaluation at the ith marginal 
grid point of C and the jth marginal grid point of E. 

As with one predictor, confidence-interval information can be computed at each 
point of nevdata by setting se.fit=TRUE, but again we point out that this increases 
the computational intensity substantially. To get the intervals shown in Figure 8.19, 
we do the following: 

C.marginal <- seq(min(C), max(C), length= 7) 
E.marginal <- seq(min(E), max(E), length= 16) 
CE.marginal <- list(C = C.marginal, E = E.marginal) 
CE.grid <- expand.grid(CE.marginal) 
ethanol.se <- predict(ethanol.cp, CE.grid) 
ethanol.ci <- pointvise(ethanol.se, coverage = .99) 

8.2.3 Air Data 

We turn now to an application with three predictors. The data frame air, which is 
used as an example in Chapter 7, contains four variables: 

> names(air) 
[1) "ozone" 
> dim(air) 
[1] 111 4 

"radiation" "temperature" "wind" 

These data are from an environmental study that analyzed how the air pollutant 
ozone depends on three meteorological variables: radiation, wind speed, and tem
perature. The data are daily measurements of the four variables for Ill days. 

For three or more predictors, carrying out fitting and inference for local regres
sion models in S is no more complicated than for two. What gets harder, of course, 
is graphing the data to explore and diagnose. The function coplot 0 can be used 
for three predictors since it allows plotting against one predictor, conditioning on 
two others. Thus, for three predictors, we can make three coplots, graphing against 
each predictor conditional on the other two. Figure 8.20 shows one of the three 
coplots for the air data: 
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attach(air) 
w.given <- co.intervals(wind, 4, 0.6) 
t.given <- co.intervals(temperature, 4, 0.6) 
coplot(ozone 'V radiation I temperature • wind, 

given • list(temperature • t.given, wind= w.given), 
panel • function(x,y) panel.smooth(x, y, span = 1, degree = 1)) 

349 

We have conditioned on wind and temperature. The dependence panels are the 
4 x 4 matrix of panels. The given panels, one for each conditioning predictor, are to 
the right and top. As we move up a column of dependence panels, the intervals of 
wind speed increase, and as we move from left to right across a row of dependence 
panels, the intervals of temperature increase. For example, the points on the (2,3) 
panel of the coplot are observations for which the temperature measurements are 
in the second interval and the wind speed measurements are in the third interval. 
We omit the two remaining coplots, but in the analysis of these data they were 
carefully studied. 

Let's fit a local regression model to the data: 

> air.m <- loess(ozone 'V radiation • temperature • wind, span = .8, 
+ degree .. 2) 
> air.m 
Call: 
loess(formula = ozone 'V radiation • temperature * wind, 

span = 0.8, degree = 2) 

Number of Observations: 111 
Equivalent Number of Parameters: 16.7 
Residual Standard Error: 0.4331 
Multiple R-squared: 0.81 
Residuals: 

min 1st Q median 3rd Q max 
-1.168 -0.2906 -0.06033 0.2229 0.8758 

Diagnostic plots revealed that the specifications of air.m were reasonable assump
tions. Let's now display the fitted surface: 

> air.ranges <- list(radiation = quantile(radiation, c(1/4, 3/4)), 
+ temperature=· qu~tile(temperature, c(1/4, 3/4)), wind= 
+ quantile(vind, c(1/4, 3/4))) 
> plot(air.m, given • 5, confidence= 7, which.plots = "radiation", 
+ ranges = air.ranges) 

The argument which.plots has selected just one of the three possible coplots to be 
graphed. The argument ranges has been used to specify the ranges of the evalua
tion points and given values to be the lower and upper quartiles of the predictor 
observations rather than the default, which is the minima and the maxima. The 
result is shown in Figure 8.21. 
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Figure 8.20: Air data-coplot of ozone perature with scatterplot smoothings. against solar radiation given wind speed and tem-
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8.2.4 Galaxy Velocities 

NGC7531 is a spiral galaxy in the Southern Hemisphere with a very bright inner 
ring. When looked at from the earth, the galaxy takes up a small area on the celestial 
sphere. Figure 8.22 shows measurements of the radial velocity of the galaxy at 323 
locations in this area (Buta, 1987}. The positions have been jittered slightly to 
reduce overplotting. The horizontal scale of the graph is the east-west coordinate 
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Figure 8.22: Galaxy data-locations of velocity measurements. 

and the vertical scale is the north-south coordinate. Note that north is up and east 
is to the left because we are looking at the celestial sphere from the inside. Each 
measurement lies along one of seven slits that nearly intersect at a single point near 
the origin, (0,0). 

The data are stored in a data frame galaxy: 

> names(galu:y) 
[1] "east.west" "north.south" "angle" 
[3] "radial.position" "velocity" 
> dim(galaxy) 
[1] 323 5 
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The first column contains the east-west positions of tht rneasurelllentll and the 
second contains the north-south positions. For each obserV<~tion, the Value in angle 
is the angle with the horizontal of the slit on which the o),q,,rvation lies· the units 
are degrees of counterclockwise rotation from horizontal: ' 

> attach(galaxy) 
> sort(unique(angle)) 
[1] 12.5 43.0 63.5 92.5 102.5 111.0 133.0 

radial. position contains signed distances from the origin to the measuu,1111,nt lo
cations; a distance is multiplied by -1 if the east-west coordinate is negativt, lllld by 
1 if it is positive: 

> range(radial.position) 
[1] -52.4 55.7 

Finally, velocity, whose units are km/sec, contains the velocity measurements: 

> summary(velocity) 
Plin 1Q Median 3Q Plax 

[1,] 1409 1522 1586 1669 1775 

Data Exploration 

Figure 8.22 was made by the following: 

attach(galaxy) 
ev.jittered <- jitter(east.vest, factor • 1/2) 
DS.jittered <- jitter(north.south, factor a 1/2) 
lim <- range(ev.jittered, ns.jittered) 
plot(ev.jittered, ns.jittered, xlim = lim, ylim m lim) 

xl~ and ylim were specified in plot 0 to keep the number of units per em the 
same on the vertical and horizontal scales. Figure 8.23 uses coplot 0 to explore the 
velocities by graphing velocity against radial position for each slit: 

coplot(velocity ~ radial.position I angle, given.values m 

sort(unique(angle)}, panel • function(x, y} panel.smooth(x, y, 
span• 1/2, degree•2)} 

The figure shows that it is sensible to approach modeling velocity dependence by 
an overall smooth pattern with random variation superimposed. 

Modeling 

The goal in the analysis of these data is to understand how galaxy velocity varies 
over the measurement region. Thus, velocity is a dependent variable and there are 
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Figure 8.23: Galaxy data-coplot of velocity against radial position given slit angle. 
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two predictors: east-west position and south-north position. In Figure 8.23 the 
curvature of the underlying pattern is substantial; thus we will specify a locally
quadratic surface. Since many points appear to deviate substantially from the 
overall pattern compared to the deviations of the majority of points, it seems pru
dent to specify symmetric errors. Finally, it makes sense to preserve the spatial 
metric of the predictors and not normalize the variation in their measurements: 

> galaxy.m <-loess(velocity ~ east.vest • north.south, degree = 2, 
+ span= 0.35, normalize= F, family= "symmetric") 
> galaxy.m 
Call: 
loess(formula = velocity ~ east.vest • north.south, span = 0.35, 

degree= 2, normalize= F, family= "symmetric") 

Number of Observations: 323 
Equivalent Number of Parameters: 19.6 
Residual Scale Estimate: 12.3 
Residuals: 

min 1st Q median 3rd Q max 
-57.23 -5.898 0.2501 9.417 53.52 

Let's evaluate the surface on a grid and then make a contour plot: 

> galaxy.marginal <- list(east.vest = seq(-29,29), 
+ north.south = seq(-49,49)) 
> galaxy.fit <- predict(galaxy.m, expand.grid(galaxy.marginal)) 
> contour(galaxy.marginal$east.vest, galaxy.marginal$north.south, 
+ galaxy.fit, v = seq(1435, 1755, by= 40), xlim = c(-50, 50), 
+ xlab = "EW", ylab = "NS") 
> contour(galaxy.marginal$east.west, galaxy.marginal$north.south, 
+ galaxy.fit, v = seq(1435, 1755, by= 20), labex=O, add=T) 

The result is shown in Figure 8.24. Recall that we studied the fits to ethanol and 
air by coplots, but in this application it makes sense to use a contour plot since 
we want to see the surface as a whole entity-finding peaks, troughs, ridges, steep 
terrain, and so forth-and are not interested in conditional dependence. 

Diagnostic Checking 

Of course, we must carry out diagnostic checking to make sure we have not plotted 
nonsense in Figure 8.24. First, in Figure 8.25, we make a coplot of the residuals, 
displaying them as we did the original data: 

coplot(residuals(galaxy.m) ~ radial.position I angle, 
given= sort(unique(angle)), panel • function(x, y) 
panel.smooth(x, y, span a 1, degree = 2, zero.line = TRUE)) 
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Figure 8.24: Galaxy data-contour plot of local regression fit. 
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Given : angle 
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Figure 8.25: Coplot of residuals with scatterplot smoothings. 
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The (1,2} dependence panel shows some clear lack of fit. At the left extreme, the 
distortion is as large as 40 kmfsec, which is more than we would like. But since 
the fraction of observations that are affected is small we push on, but noting that 
our results are somewhat tainted. Figure 8.26 is a normal probability plot of the 
residuals: 

qqnorm(residuals(galaxy.m)) 
qqline(residuals(galaxy.m)) 
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Figure 8.26: Gaussian quantile plot of residuals. 

The distribution of the residuals is symmetric and strikingly leptokurtic. The robust 
estimation is clearly justified, and we should feel quite smug at having guessed 
correctly from the exploratory coplot. 

Confidence Intervals 

Figun~ 8.24 shows that the velocity surface has a backbone of sorts. Consider 
the liut• in the plane of the predictors that goes through the origin and through 
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the position, (10, -37), where the maximum of the surface occurs. The surface is 
roughly symmetric in directions perpendicular to the line. Also, the line passes 
close to the minimum of the surface. Let's evaluate the surface along this line and 
compute confidence intervals at selected positions: 

ns <- seq(-49, 49, length • 100) 
ev <- ns/(-3.7) 
fit.nevdata <- data.frame(east.vest = ev, north.south = ns) 
spine.fit <- predict(galazy.m, fit.nevdata) 
ns <- seq(-49, 49, length = 15) 
ev <- ev/(-3.7) 
limits.nevdata <- data.frame(east.vest ~ ev, north.south = ns) 
spine.se <- predict(galaxy.m, limits.nevdata, se.fit = TRUE) 
spine.limits <- pointvise(spine.se, coverage = .99) 

Figure 8.27 plots the fit against north-south position, and shows the 99% confidence 
intervals: · 

ylim <- range(spine.fit, spine.limits$upper, spine.limits$lover) 
plot(fit.nevdata$east.vest, spine.fit, xlab = "North-South Coordinate", 

ylab = "Velocity", ylim • ylim, type= "1") 
segments(limits.nevdata$east.vest, spine.limits$lover, 

limits.nevdata$east.vest, spine.limits$upper) 

8.2.5 Fuel Comparison Data 

For the gas data in Section 8.2.1, the fuel used in the engine experiment was gas, 
and for the ethanol data Section 8.2.2, the fuel was ethanol. In the first case, the 
compression ratio, C, was equal to 7 .5, and in the second case, C took on five 
values, one of which was 7.5. To compare the two fuels we form a new data frame, 
fc, which consists of the 22 ethanol observations for which C = 7.5 and the 22 gas 
observations: 

> summary(fc) 
> summary(fc) 

NOx 
Min. :0.54 
1st Qu.:1.60 
Median :2.70 
Mean :2.80 
3rd Qu. :3.90 
Max. :5.30 

E 
Min. :0.63 
1st Qu. : 0. 78 
Median :0.90 
Mean :0.91 
3rd Qu.: 1.00 
Maz. :1.20 

Fuel 
ethanol:22 
gas :22 

Thus, the two predictors are E, which is numeric, and Fuel, which is a factor. 
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Figure 8.27: Galaxy data-local regression fit along the backbone with pointwise 99% con
fidence intervals. 

Exploratory Data Display 

The plotting function coplot 0 allows a given variable to be a factor, so we can use 
it to graph the fc data: 

coplot(NOx ~ E I Fuel, given.values = unique(Fuel), 
columns 2 2, rows = 1, data = fc) 

The result is shown in Figure 8.28. 

Modeling 

As with the gas data, we fit a locally-quadratic model with span equal to 2/3: 

> attach(fc) 
> fc.m <- loess(NOx ~ E • Fuel, span • 2/3, degree • 2) 
> fc.m 
Call: 
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Given: Fuel 
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Figure 8.28: Fuel comparison data-coplot of NOx against E given fuel type. 
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loess(formula = NOx ~ E • Fuel, span 2/3, degree = 2) 

Number of Observations: 44 
Equivalent Number of Parameters: 11.1 
Residual Standard Error: 0.2691 
Multiple R-squared: 0.98 
Residuals: 

min 1st Q median 3rd Q max 
-0.5604 -0.1283 -0.01978 0.06869 0.6234 

Diagnostic Checking 

Figure 8.29 is a coplot of the residuals: 

coplot(residuals(fc.m) ~ E I Fuel, given.values • unique(Fuel), 
panel = function(x, y) panel.smooth(x, y, span= 1, degree = 1), 
zero.line = TRUE, columns = 2, rows = 1) 

No lack of fit appears, but one serious problem does stand out glaringly in the 
figure; the gas residuals have a wider spread. That is, the specification of a constant 
variance, o-2 , appears incorrect. The estimate of a, which is pooled over both levels 
of Fuel, is s = 0.27. The estimate from the observations, where Fuel is equal to 
"ethanol", is shown by the following: 

> f c . ethanol. m 
Call: 
loess(formula = NOx "' E • Fuel, subset = Fuel 

span = 2/3, degree • 2) 

Number of Observations: 22 
Equivalent Number of Parameters: 5.6 
Residual Standard Error: 0.1696 
Multiple R-squared: 0.98 
Residuals: 

min 1st Q median 3rd Q max 
-0.2487 -0.1022 -0.0126 0.05354 0.3094 

"ethanol", 

The estimate with Fuel equal to "gas" is shown by the following: 

> fc.gas.m 
Call: 
loess(formula • NOx "' E • Fuel, subset = Fuel •= "gas", span = 2/3, 

degree • 2) 

Number of Observations: 22 
Equivalent Number ot Parameters: 5.5 
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Given: Fuel 
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Figure 8.29: Coplot of residuals with scatterplot smoothings. 
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Residual Standard Error: 0.~404 
Multiple R-squared: 0.96 
Residuals: 

min 1st Q median 3rd Q max 
-0.5604 -0.213 -0.02511 0.1271 0.6234 

Thus, the estimate of u for "gas" is about double that for "ethanol". We clearly 
need to rethink the model. 

A New Model 

One action we can take is to analyze the gas data and the ethanol data separately. 
(We have already fitted a satisfactory model, gas.m, to the gas data in Section 8.2.1.) 
Instead, let's cheat a bit. Suppose that u2 for "gas" is four times that for "ethanol", 
and that we knew this a priori. We will fit a model using a priori weights that gives 
weight 4 to the ethanol observations and weight 1 to the gas observations: 

> fc.weights <- c(1,4)[match(Fuel, c("gae","ethanol"))] 
> fc.new.m <- update(fc.m, weights = fc.weights) 
> fc.nev.m 
Call: 
loess(formula = NOx ~ E • Fuel, weights • fc.weights, span • 2/3, 

degree = 2) 

Number of Observations: 44 
Equivalent Number of Parameters: 11.1 
Residual Standard Error: 0. 3398 
Residuals: 

min 1st Q median 3rd Q max 
-0.5604 -0.1283 -0.01978 0.06869 0.6234 

Notice that the estimate of u is close to that obtained for the fit using just the 
gas data. The reason is that in our new weighted analysis we have defined the 
a priori weights to be 1 for "gas", so the error standard deviation for these runs is 
u. Figure 8.30 shows the fitted curves and 99% confidence intervals: 

plot(fc.new.m, confidence = 7, columns = 2, rows = 1) 

Notice that the intervals for ethanol are smaller than those for gas; the reason, of 
course, is the larger error variance for gas. 

Diagnostic Checking 

Consider carrying out diagnostics for fc.nev.m. First, the fit is the same as for fc.m 
because in the multiple-fit procedure for factors, curves are fitted separately and 
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Figure 8.30: Fuel comparison data-coplot of local regression fit with 99% confidence in
teroals. 



366 CHAPTER 8. LOCAL REGRESSION MODELS 

independently to the ethanol runs and to the gas runs. (N.B. This would not be 
true if we used a robust loess estimate, because m, the residual absolute deviation 
used in the robustness iterations, is based on all of the residuals.) Thus, Figure 8.29 
is also the diagnostic residual plot for fc.new.m. As we have already concluded, the 
fit appears satisfactory. To investigate the distributional assumptions, we use the 
standardized residuals, t;, which are computed by: 

residuals(fc.new.m)•sqrt(fc.weights) 

A normal probability plot of e; justified the assumption of normality, and a plot of 
JiT;I against Yi revealed no dependence of scale on the fitted values. Thus, all is 
well with fc. new .m, but in our elation we must not forget that the analysis is tainted 
by having used an estimated variance ratio as given a priori. 

8.3 Specializing and Extending the Computations 

8.3.1 Computation 

In the examples of Section 8.2, the function predict{) did not use the loess fit
ting method to compute surfaces directly at every evaluation point. Rather, to get 
very fast computation, a default algorithm was used that employs interpolation. 
In this algorithm, a set of points, typically small in number, is selected for direct 
computation using the loess fitting method, and a surface is evaluated using an in
terpolation method that is based on blending functions. The space of the predictors 
is divided into rectangular cells using an algorithm based on k-d trees. The loess fit 
is evaluated at the cell vertices, and then blending functions do the interpolation. 
The loess objects contain data structures that store the k-d trees and the fits at 
the vertices. This information is used by predict{) to carry out the interpolation. 
Of course, the resulting interpolated surface is not exactly the same as that of a 
surface computed directly, but the agreement is typically excellent. Even when it 
is not, the interpolation method is a perfectly logical smoothing method that has 
a number of desirable properties. This approach is what allows us, for example, to 
rapidly compute the surface of the galaxy data at a grid of 5841 values. Doing a 
direct loess evaluation at all of these points would be expensive. The interpolation 
method, however, results in one restriction: the surface cannot be evaluated outside 
the range of the data; that is, the value of each numeric variable for an evaluation 
point must lie within the range of the observations of that variable in the data. 
This is not the case for the direct computation method, so evaluation can be done 
anywhere. 

The local regression functions produce quantities that express in various ways 
information about degrees of freedom. loess() returns the equivalent number of pa
rameters, predict 0 returns the degrees of freedom oft-intervals, and anova returns 
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the numerator and denominator degrees of freedom of an F-test. In the examples 
of Section 8.2, these quantities, which are defined in Section 8.4, are computed by 
an approximation method that is described in Section 8.4. A supercomputer en
vironment (or a user with a great deal of patience) would be needed to routinely 
compute these statistical quantities exactly. 

Most users will not want to use direct computation of surfaces or exact compu
tation of the statistical quantities. However, those who want to explore the com
putational and statistical methods of loess fitting can change the computational 
methods using the argument control of loess 0. The argument is specified by the 
output of the function loess. control 0: 

my.control <- loess.control(surface ="direct", statistics"' "exact") 
gas.slover <- loess(NOx ~ E, data = gas, control = my.control) 

In these expressions we have used the argument surface to switch the computation 
of the surface from "interpolate" to "direct", and the computation of the statistical 
quantities from "approximate" to "exact". 

The function loess. control 0 can also be used to control two other computa
tional matters. When interpolation is used, an argument cell controls the cell size 
of the k-d tree. The maximum fraction of points allowed inside a cell is celhspan; 
in the algorithm, a cell is divided if the maximum is exceeded. Also, the argument 
iterations specifies the number of iterations of the loess robust estimat!'l. 

8.3.2 Inference 

We stressed in Section 8.2 that it is critical to carry out diagnostic methods to 
study, among other things, surplus and lack of fit. In some applications, however, 
a clearly identifiable lack of fit might be acceptable if the identified magnitude of 
the distortion is judged to be small for the purpose to which the fit is put. For 
example, we might want a distorted surface if it made communication simpler and 
the distortion did not interfere with the judgment of salient features. But one 
problem is that an estimate, s, of u based on a distorted fit would be biased, and 
thus a confidence interval based on this estimate would not have the stated coverage. 
There is a remedy. Suppose we have two loess fits, fit. biased and fit. unbiased, the 
first distorted and the second not. We can use the value of s from the undistorted fit 
to form confidence intervals for the distorted fit. We do this by changing fit. biased: 

fit.biased$inference <- fit.unbiased$inference 

Now giving fit.biased to predict() gives correct confidence intervals. It should 
be appreciated that the intervals are not for the true surface, but rather for the 
expected value of the distorted estimate. 
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8.3.3 Graphics 

In some cases, enough evaluation is done by plot() for loess objects that we want 
to save the fit and confidence intervals for future renderings of the graph. This 
can be done using the function preplotO, which saves the computations for future 
plotting by plot(): 

ethanol.plot <- preplot(ethanol.cp, confidence = 7) 
plot(ethanol.plot) 

8.4 Statistical and Computational Methods 

In this section we discuss computational and statistical methods in the fitting of 
local regression models. In Section 8.4.1, we discuss the methods of inference that 
arise from the loess fitting method. In SPction 8.4.2, we discuss computational 
methods that underlie loess fitting, and numerical problems that can arise. To 
keep the discussion from being cumbersome, we suppose that the predictors are 
all numeric. Extending the results to the case where factors are present is quite 
obvious. 

8.4.1 Statistical Inference 

Initially, we will suppose that the errors have been specified to be Gaussian and the 
variances have been specified to be constant. 

One important property of a Gaussian-error loess estimate, g(x), is that it is 
linear in y;-that is, 

n 

g(x) = ~);(x)y; 
i=l 

where the l;(x) do not depend on the Yi· This linearity results in distribution 
properties of the estimate that are very similar to those for classical parametric 
fitting. 

Suppose that the diagnostic methods have been applied and have revealed no 
lack of fit in g(x); we will take this to mean that Eg(x)- g(x) is small. Suppose 
further that diagnostic checking has verified the specifications of the error terms in 
the model. 

Estimation of a 

Since g(x) is linear in y;, the fitted value at x; can be written 

n 

y; = Lli(x;)yi. 
j=l 



8.4. STATISTICAL AND COMPUTATIONAL METHODS 

J.,et L be the matrix whose {i,j)th element is li(xi) and let 

L=I-L 

where I is the n x n identity matrix. For k = 1 and 2, let 

We estimate a by the scale estimate 

s= 

Confidence Intervals for g(x) 

Since 
n 

g(x) = :L>(x)y;, 
i=l 

the standard deviation of g(x) is 

n 

a(x) =a Lll(x). 
i=l 

We estimate a{x) by 
n 

s(x) = s Li1(x). 
i=l 

Let 

The distribution of 
g(x)- g(x) 

s(x) 

369 

is well approximated by a t distribution with p degrees of freedom; we can use this 
result to form confidence intervals for g(x) based on g(x). Notice that the value 81 

by which we divide the sum-of-squares of residuals is not the same as the value p 
used for the degrees of freedom of the t distribution. For classical parametric fitting, 
these two values are equal. For loess, they are typically close but not close enough 
to ignore the difference. We will refer to p as the look-up degrees of freedom since it 
is the degrees of freedom of the distribution that we look up to get the confidence 
interval. 
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Analysis of Variance for Nested Models 

We can use the analysis of variance to test a null local regression model against an 
alternative one. Let the parameters of the null model be a<n>, A(n), 8~n>, and 8~n>. 
Let the parameters of the alternative model be a, A, 81 , and 82 • For the test to 
make sense, the null model should be nested in the alternative; we will define this 
concept shortly. Let rss be the residual sum-of-squares of the alternative model, 
and let rss<n) be the residual sum-of-squares of the null model. 

The test statistic, which is analogous to that for the analysis of variance in the 
parametric case, is 

F = (rss<nl- rss)/(8~n)- 81 ) 

rss/8t 

F has a distribution that is well approximated by an F distribution with denomi
nator look-up degrees of freedom p, defined earlier, and numerator look-up degrees 
of freedom 

(8~n)- 8t)2 

v= 
8~n)- 82 

The concept of a null model being nested in the alternative expresses the idea 
that the alternative is capable of capturing any effect that the null can capture, but 
the definition is more precisely a specification of when it makes sense to use the 
analysis of variance to compare two models. The null is nested in the alternative if 
the following conditions hold: 

(1) a<nl ~a. 

(2) A(n) ~A. 

(3) If the square of a numeric predictor is dropped from the alternative model, 
then it must not be present in the null model; the converse need not be true. 

(4) The models must have the same numeric predictors with the following ex
ception: a conditionally parametric predictor in the alternative need not be 
present in the null; if present, though, it must also be conditionally parametric. 

Conditions (2) to (4) can be expressed in a different way. To explain, we need to 
differentiate neighborhood variables--the predictors used to determine the neigh· 
borhoods in the loess fitting-and fitting variables--the predictors that are fitted 
locally by weighted least squares. Let's take a specific example. Suppose there are 
three numeric predictors: u, v, and w. Suppose A = 2, u is taken to be conditionallY 
parametric, and the square of w is dropped. The neighborhood variables are v and 
w. The fitting variables are a constant, u, u2 , v, v2 , w, uv, and vw. Now we can 
reexpress (2} to (4) by the following: 
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(2)' The null and alternative models have the same neighborhood variables. 

(3)' The fitting variables of the null model are a subset of the fitting variables of 
the alternative model. 

The Equivalent Number of Parameters 

Let 
J.L = tr(L' L). 

If the f;; are the fitted values, then 

L~-l Variance(fl;) 
J.L = o-2 • 

We will call J.L the equivalent number of parameters since if the Yi were the fitted 
values for a linear model, the right side of the last equation would be the num
ber of estimated parameters. J.L is greater than or equal to T, the number of fitting 
variables, and approaches T as a tends to infinity. The equivalent number of param
eters is one measure of the amount of smoothing. (Chapter 7 has another.) Strictly 
speaking, J.L depends on ct, on the values of the predictors, and on the choices of the 
neighborhood and fitting variables. However, having selected all of these factors 
except ct, we can get, approximately, a desired value J.L by taking ct to be 1.2r J J.L, 
where T is the number of fitting variables. 

Symmetric Errors 

When the error distribution is specified to be symmetric, inferences are based on 
pseudo-values. Let the robustness weights and the median absolute residual used in 
the final update of the fit, g(x), be r; and m, respectively, and let 1/J(u; b) = uB(u; b). 
The pseudo-values are 

iii = iii + cr;€; 

where f;; are the fitted values, €; are the residuals, and 

n 
c= n . 

Li=ll/l'(€;; 6m) 

Inferences are carried out by applying the inference procedures of the Gaussian 
case but replacing the observations of the response Yi by the pseudo-values ji;. For 
example, suppose we want to compute a confidence interval for g( x) about the robust 
estimate, g(x). Using the pseudo-values as the response, we compute a Gaussian
error estimate, p, and s(x) as described above. The confidence interval for g(x) is 
the g(x) plus and minus s(x) times at value with p degrees of freedom. The true 
coverage using this procedure is well approximated by the nominal coverage. For 
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the analysis of variance, we proceed in a similar fashion using the pseudo-values 
from the alternative model and carrying out the Gaussian-error procedures. For 
small samples, the approximation is not as good as for confidence intervals and 
produces optimistic results, but work is under way to find methods for adjusting 
degrees of freedom that will improve the approximations. 

Errors with Unequal Scales 

Suppose we have specified that the random errors c; in the model have the property 
that a;e:; are identically distributed where the a priori weights, a;, are positive and 
known. Then various modifications are made to the methods of inference. 

For the Gaussian-error estimate, the operator matrix L is, of course, different 
from that in the equal-variance case, but 61 and 62 are defined in terms of L as 
before. The estimate of u becomes 

s= 

and the estimate of the standard deviation of g(x) becomes 

n 

s(x) = s Lq(x)ja;. 
i=l 

For the analysis of variance, all residual sum-of-squares are modified by adding the 
terms ai, as done above for s. 

For the robust estimate, the median absolute residual is defined using the stan
dardized residuals 

That is, 
m = median(liil). 

Similarly, the robustness weights are 

The pseudo-values are 

where c is now 
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8.4.2 Computational Methods 

Interpolation by k-d Trees and Blending 
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The k-d tree is a particular data structure for partitioning space by recursively cut
ting cells in half by a hyperplane orthogonal to one of the coordinate axes (Bentley, 
1975 ). For our application, the k in the name refers to the number of neighborhood 
variables, those predictors that are used to define the neighborhoods. 

Here is how the k-d tree is formed. Start with a rectangular cell just containing 
the values of the neighborhood variables. Pick the predictor whose spread is the 
greatest and divide the cell in half at the median along the axis of that predictor. 
Recursively apply the same division procedure to each subcell. If a cell contains 
fewer than {Jn points, where {J is a small fraction, do not refine it. Figure 8.31 shows 
a k-d tree for two predictors, n = 500, and {J = 0.05. 

Once the k-d tree is built, g(x) is directly computed at the vertices. By "vertex," 
we just mean a corner of a cell; "vertex" seems a better term than "corner" because a 
vertex of one cell typically lies in the middle of a side of an adjacent cell. In addition 
to computing g(x) at a vertex, a derivative of gat the vertex is approximated by 
the derivative of the locally-fitted surface. This derivative is a natural by-product 
of the least-squares computation and costs nothing extra to obtain. 

Typically, the number of vertices, v, will be much smaller than n. This is at 
least true asymptotically, because the number of cells needed to achieve a certain 
accuracy of approximation depends on the smoothness of g(x ), not n. In Figure 8.31 
there are 66 vertices, so we solve 66 least-squares problems instead of one problem 
per evaluation of g(x). (Recall that for the galaxy surface we carried out 5841 
evaluations to make a contour plot.) The amount of work in general to construct 
the k-d tree, including vertex coefficients, is O{v((1.5 + 07 )n + 7 3 )). After building 
the tree, each interpolation costs O(log v). Since 7 is fixed and v is asymptotically 
bounded, the total running time is linear in the size of the input and output. 

Let's turn now to the scheme used to build a piecewise polynomial approximation 
to g .. To simplify the discussion, we will suppose that there are two neighborhood 
variables. For our k-d tree, the boundary of each rectangular cell is cut into segments 
by vertices. (There are four sides, some of which will likely contain internal vertices, 
breaking them into more segments.) 'On each segment, the surface is interpolated 
using the unique cubic polynomial determined by the fits and derivatives at the 
vertices. To interpolate in the interior of the cell, we apply blending functions, also 
known as transfinite interpolants (Cavendish, 1975). This technique, well known 
in computer-aided design, takes a certain combination of univariate interpolants 
in each variable separately to build a surface. In effect, each cell is subdivided 
and on each piece a cubic polynomial in two variables is constructed although the 
computation is not actually done this way. 

For one and two neighborhood variables, the interpolation function is C1, but 
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Figure 8.31: A k-d tree. 
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for more variables, the present code does not use enough vertices to guarantee a 
consistent approximation across cell facets. Hence the overall approximation may 
not be C 1 or even CO. This defect will be removed in a future implementation. 

Computing 6i 

Three statistical quantities are described in Section 8.4.1 that provide information 
about degrees of freedom-p., p, and v. These three quantities are functions of 6t. 
62 , and n. Straightforward computation of the 6; is horrendously expensive, so we 
have developed methods of approximation. First, we generated a large number of 
datasets, each with a response and one or more predictors, and computed the 6; for 
each. We discovered, through substantial graphical analysis, that the 6; could be 
predicted to within a few percent by the following predictors: .X, n, T, and 

Jr/tr(L}- .;:;J1i ( = ..:!..-..:'--''--'-;;==---'----
1-fln 

The model that was fitted is semiparametric, involving both parametric functions 
and a local regression model. 

Error Messages from the Bowels of Loess 

Although loess fitting is based on sound numerical methods, some delicate situations 
can arise that require the judgment of the user. When problems are detected by 
the loess FOIITRAN routines, messages are transmitted up to the S user. 

One class of messages involves the smoothing parameter cr. In order for the 
least-squares problem in a direct computation of g(x} to be well posed, cr must 
be large enough that there are as many data points in the neighborhood as fitting 
variables, r, in the local regression. Moreover, since neighborhood weights drop to 0 
at the boundary, at least T of these points must be strictly inside the neighborhood. 
If cr is too small, the fix is to increase it or reduce r by lowering .X or dropping 
squares. 

The sample points must be sufficiently well distributed as well as sufficiently nu
merous. For example, consider locally quadratic fitting in one predictor. If, because 
of multiplicities, there are only two distinct sample locations inside a neighborhood, 
then a quadratic polynomial is not uniquely determined. 

When numerical problems arise because of poor conditioning of the design ma
trix of the local regression, small eigenvalues are set to zero and a pseudo-inverse 
message is sent. None of this means the fit has a problem, but a pseudo-inverse 
message is a caution that extra alertness must be used in examining the diagnostic 
displays. 

Mathematically, tr(L} is greater than or equal tor, the number of fitting vari
ables. Numerically, however, if eigenvalues are set to zero, tr(L} can drop below T, 



376 CHAPTER 8. LOCAL REGRESSION MODELs 

which causes the method of computing 0; approximately to abort. If this indicator 
of an eigenvalue meltdown occurs, the coded message "Chernobyl" is sent up to the 
S user. 

Finally, when the interpolation method is used, the FORTRAN code must allocate 
space based on a prediction from the number of observations, the number of numeric 
predictors, and the specification of the surface and errors. If this allocated space is 
too small, the k-d tree division is truncated and a warning message sent up. In some 
cases the problem is extreme enough that the fit is not carried out; this necessitates 
increasing the value of a. 

Bibliographic Notes 

Local regression models are treated in detail in a new book by Cleveland and Grosse 
(forthcoming). But methods of local fitting date back at least to the 1920s. Initial 
applications were to smooth a time series (Macauley, 1931). An early use of local 
fitting for the general regression problem was investigated by Watson (1964). The 
method amounted to fitting a constant locally-in other words, taking the polyno
mial degree ~ to be zero. This came to be known as kernel smoothing. It leads to 
very interesting theoretical work but is not of use in practice since it is hard to coax 
the method into following the patterns in most datasets. More serious attempts 
at local fitting were suggested by McLain (1974), who fitted quadratic polynomi
als, and Stone (1977), who fitted linear polynomials. The method of fitting used 
here was described by Cleveland (1979) for one predictor, and is the basis of the S 
function lovess, which has now been upgraded to the function scatter. smooth(). 
Cleveland and Devlin (1988) extended the method to two or more predictors and 
investigated the sampling properties in the Gaussian case. (Sampling properties 
in the symmetric case are still under development.) The computational methods 
described in Sections 8.3 and 8.4, which are crucial to local regression being useful 
in practice, are due to Cleveland and Grosse (1991). 



Chapter 9 

Tree-Based Models 

Linda A. Clark 
Daryl Pregibon 

This chapter describes S functions for tree-based modeling. Tree-based models pro
vide an alternative to linear and additive models for regression problems and to 
linear logistic and additive logistic models for classification problems. The models 
are fitted by binary recursive partitioning whereby a dataset is successively split 
into increasingly homogeneous subsets until it is infeasible to continue. The imple
mentation described in this chapter consists of a number of functions for growing, 
displaying, and interacting with tree-based models. This approach to tree-based 
models is consistent with the data-analytic approach to other models, and consists 
primarily of fits, residual analyses, and interactive graphical inspection. 

9.1 Tree-Based Models in Statistics 

Tree-based modeling is an exploratory technique for uncovering structure in data. 
Specifically, the technique is useful for classification and regression problems where 
one has a set of classification or predictor variables ( z) and a single-response variable 
(y). When y is a factor, decision or classification rules are determined from the 
data-for example, 

if (x1:::; 2.3) and (x3 E {A,B}) 
then y is most likely to be in level 5. 

When y is numeric, regression rules for description or prediction are of the form 
if (x2:::; 413) and (xg E {C,D,F}) and (xs:::; 3.5) 

then the predicted value of y is 4. 75. 
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A classification or regression tree is the collection of many such rules determined 
by a procedure known as recursive partitioning, which is discussed in detail in 
Section 9.4. This form of classification or prediction rule is very different from 
that given by more classical models, such as logistic and linear regression analyses, 
where linear combinations are the primary mode of expressing relationships between 
variables. Indeed, this difference is both the strength of the method and also its 
weakness. 

Statistical inference for tree-based models is in its infancy and far behind that 
for logistic and linear regression analyses. This is partly because a particular type 
of variable selection underlies tree-based models (e.g., each rule contains only a 
subset of the available classification or predictor variables, and some may not be 
used at all). Despite the lack of formal procedures for inference, the method is 
gaining widespread popularity as a means of devising prediction rules for rapid and 
repeated evaluation, as a screening method for variables, as a diagnostic technique to 
assess the adequacy of linear models, and simply for summarizing large multivariate 
datasets. Some possible reasons for its recent popularity are that: 

• in certain applications, especially where the set of predictors contains a mix 
of numeric variables and factors, tree-based models are sometimes easier to 
interpret and discuss than linear models; 

• tree-based models are invariant to monotone reexpressions of predictor vari
ables so that the precise form in which these appear in a model formula is 
irrelevant; 

• the treatment of missing values (N As) is more satisfactory for tree-based mod
els than for linear models; and 

• tree-based models are more adept at capturing nonadditive behavior; the stan
dard linear model does not allow interactions between variables unless they 
are prespecified and of a particular multiplicative form. 

Among the other models covered in this book, tree-based models provide the only 
means of analysis for factor response variables at more than two levels. 

Tree-based models are so-called because the primary method of displaying the 
fit is in the form of a binary tree. We now provide several examples to motivate 
the range of application of the methods. The examples are organized according to 
the type (numeric or factor) of the response variable (y) and the classification or 
predictor variables (x) involved. 

9.1.1 Numeric Response and a Single Numeric Predictor 

Figure 9.1 displays two views of a tree-based model relating mileage to weight of 
automobiles in the car. teat. frame data frame. The left panel of the figure is the 
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Figure 9.1: Displays of a tree-based model relating mileage to automobile weight. The plot 
in the left panel shows how a tree is typically displayed, whereby successive partitions of the 
data into homogeneous subsets are shown with the role labeling each split. The overplotting 
of labels is a common occurrence with this type of display. The plot in the right panel shows 
a function plot of the same tree together with the actual data values. This representation 
is only practical for at most two predictor variables. 

standard method of displaying a tree-based model. The idea is that in order to 
predict mileage from weight, one follows the path from the top node of the tree, 
called the root, to a terminal node, called a leaf, according to the rules, called splits, 
at the interior nodes. Automobiles are first split depending on whether they weigh 
less than 2567.5 pounds. If so, they are again split according to weight being less 
than 2280 pounds, with the lighter cars having predicted mileage of 34 miles/gallon 
and the heavier cars having slightly lower mileage of 28.9 miles/gallon. For those 
automobiles weighing more than 2567.5 pounds, six weight classes are ultimately 
formed, with predicted mileage varying from 25.6 miles/gallon to a gas-guzzling low 
of 18.7 miles/gallon. The relationship between mileage and weight seems to behave 
according to intuition, with heavier cars having poorer mileage than the lighter cars. 
It appears that doubling the weight of an automobile roughly halves its mileage. 

The right panel displays the tree-based model in a more specialized form and 
one that is more conventional for data of this sort. Here the data themselves and 
the fitted model are displayed together. As a function of automobile weight, the 
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fitted model is a step function. The height of each step corresponds to the average 
mileage for automobiles in the weight range under that step. There are a total of 
eight steps, one for each of the terminal nodes in the tree in the left panel. 

9.1.2 Factor Response and Numeric Predictors 

The data in this section are from the kyphosis data frame introduced in Chapter 6 
and analyzed further in Chapter 7. Recall that in those chapters linear and additive 
logistic models predict the probability of developing Kyphosis from the variables Age, 
Start, and Number. The resulting prediction equations are smooth functions of the 
first two predictors. By contrast, we now demonstrate tree-based prediction equa
tions that are not smooth but share the essential features of these more traditional 
analyses. 

~ T ~ 0 T 
I 0 

~ EJr .. 11: 
I jQ) I T 

=~ 

8? ' c .!! T T 0 !0 E8 ~CD :s ~~ .5,.... .2l i ., 
lilil 

E 
~" 81 "' I 

0 I 
0 

0 1 
"' 1 0 1 

absent present absent present absent present 

kyphosis kyphosis kyphosis 

Figure 9.2: Boxplots of the three numeric predictor variables in the kyphosis data frame. 
For each variable, the distribution of individuals with and without Kyphosis are displayed 
side by side. The predictor Start exhibits the greatest difference in these distributions since 
the lower quartile of those without Kyphosis is just below the upper quartile of those with 
Kyphosis. 

The distributions of the predictor variables are plotted as a function of Kyphosis 
in Figure 9.2. Of the three predictors, Start appears to be the best single predictor 
since there is a much greater propensity of Kyphosis for individuals having Start~ 
12 than those with Start> 12. The algorithm underlying tree-based prediction 
determines this cutoff more objectively (by optimization) as 12.5. Moreover, the 
method then applies the same principle separately to individuals with Start~ 12.5 
and those with Start> 12.5-namely, comparing the distributions of the predictors 
as functions of Kyphosis. The result of repeated application of this idea leads to 
the tree displayed in Table 9.1. This semigraphical representation is different from 
those used in Figure 9.1. It is most useful when the details of the fitting procedure 
are of interest. 
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node), split, n, deviance, yval, (yprob) 
• denotes terminal node 

1) root 81 83.234001 absent (0.790 0.2100) 
2) Start<12.5 35 47.804001 absent (0.571 0.4290) 

4) Age<34.5 10 6.5019999 absent (0.900 0.1000) • 
5) Age>34.5 25 34.296001 present (0.440 0.5600) 

10) Number<4.5 12 16.301001 absent (0.583 0.4170) 
20) Age<127.5 7 8.3760004 absent (0.714 0.2860) • 
21) Age>127.5 5 6.73 present (0.400 0.6000) • 

11) Number>4.5 13 16.048 present (0.308 0.6920) 
22) Start<8.5 8 6.0279999 present (0.125 0.8750) • 
23) Start>8.5 5 6.73 absent (0.600 0.4000) • 

3) Start>12.5 46 16.454 absent (0.957 0.0435) 
6) Start<14.5 17 12.315 absent (0.882 0.1180) 

12) Age<59 5 0 absent (1.000 0.0000) • 
13) Age>59 12 10.813 absent (0.833 0.1670) 

26) Age<157.5 7 8.3760004 absent (0.714 0.2860) • 
27) Age>157.5 50 absent (1.000 0.0000) • 

7) Start>14:5 29 0 absent (1.000 0.0000) • 
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Table 9.1: A tree-based model for predicting Kyphosis. The first number after the split is 
the number of obseroations. The second number is the deviance, which is the measure of 
node heterogeneity used in the tree-growing algorithm. A deviance of zero corresponds to 
a perfectly homogeneous node. This term is defined more precisely in Section 9.4. 

The split on Start partitions the 81 observations into groups of 35 and 46 individ
uals (nodes 2 and 3), with probability of Kyphosis of 0.429 and 0.0435, respectively. 
This first group is then partitioned into groups of 10 and 25 individuals (nodes 4 
and 5), depending on whether Age is less than 34.5 years or not. The former group, 
with probability of Kyphosis of 0.10, is not subdivided further. The latter group is 
subdivided into groups of 12 and 13 individuals (nodes 10 and 11), depending on 
whether or not Number is less than 4.5. The respective probabilities for these groups 
are 0.417 and 0.692. This procedure continues, yielding nine distinct probabilities 
of Kyphosis ranging from 0.0 to 0.875. Clearly, as the partitioning continues, our 
trust in the individual estimated probabilities decreases as they are based on less 
and less data. Many of the tools discussed in Section 9.2 are aimed at assessing the 
degree of over- or underfitting of a tree-based model. 
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9.1.3 Factor Response and Mixed Predictor Variables 

The data are from the market. survey data frame introduced in Chapter 3 _and sub
sequently analyzed in Chapters 6 and 7. Here we briefly review the available data, 
which were obtained from a survey of 1000 people; for now, we concentrate on 
the 759 individuals for whom complete data were obtained. The aim of the sur
vey was to identify segments of the residential long-distance market, where AT&T 
should concentrate its marketing efforts. The variables collected include household 
income (income), number of household moves in the past five years (moves), age of 
respondent (age), education level (education), employment category (employment}, 
average monthly usage (usage), whether the respondent has a nonpublished phone 
number (nonpub), whether the respondent participates in the Reach Out Amer
ica Plan (reach. out), whether the respondent holds a calling card (card), and the 
respondent's chosen long-distance carrier (pick). 

The tree in Figure 9.3 provides a particularly simple prediction rule for long
distance carrier. For average usage of more than $12.50 per month, the preferred 
choice is AT&T. For average usage of less than $12.50 per month, the choice depends 
on whether the respondent has a nonpublished directory listing. If so, then AT&T 
is again the preferred choice, but if the directory listing is published, then an "other 
common carrier" ( OCC) is preferred. (Evidently the OCC folks did some tele
marketing themselves!) 

9.2 S Functions and Objects 

Our approach is not to have a single function for tree-based modeling, but rather 
a collection of functions, which, together with existing S functions, form a basis for 
building and assessing this new class of models. Our implementation centers around 
the idea of a tree object. This object provides commonality among functions to 
grow, manipulate, and display trees. 

9.2.1 Growing a Tree 

There is a single function to grow a tree, named tree(). The expression 

> z.auto <- tree(Mileage ~ Weight, car.test.frame) 

grows a regression tree using the variables Mileage and Weight from the data frame 
car. test. frame and gives the name z. auto to the resulting tree object. Similarly, 
the expression 

> z.kyph <- tree(Kyphosis ~ Age + Number + Start, kyphosis) 
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Figure 9.3: A display of a tree fitted to the long-distance marketing data. This form of tree 
display is primarily for presentation purposes as it conceals the details of the tree-growing 
process. The edges connecting the nodes are labeled by the left and right splits. Interior 
nodes are denoted by ellipses and terminal nodes by rectangles, with the predicted value of 
the response variable centered in the node. The number under each terminal node is the 
misclassification error rote; for example, in the rightmost node, which is labeled ATT, 95 
out of the ~95 respondents in the node actually picked OCC. 

grows a classification tree using the variables from the data frame kyphosis and 
gives the name z.kyph to the resulting tree object. The function tree() automati
cally distinguishes between regression and classification trees according to whether 
the response variable is numeric or a factor. It implements a binary recursive parti
tioning algorithm described in Section 9.4. The only detail relevant to the present 
discussion is that the algorithm adds nodes until they are homogeneous or contain 
too few observations (:::;: 5, by default). 

The function tree() takes two arguments, a formula object and a data. frame, 
either of which can be missing. As with all modeling functions, a missing data. frame 
argument simply means that the functions expect the variables named in formula to 
be in the search list. If formula is missing, then it is constructed automatically from 



384 CHAPTER 9. TREE-BASED MODELS 

the data.frame using the first variable as the response. For example, an equivalent 
expression defining z.kyph is tree(kyphosis). Valid formulas for trees allow all 
standard manipulations of variables such as cut(), logO, I(), etc. These are 
seldom used on the right side of a formula since trees are invariant to monotone 
reexpressions of individual predictor variables. The only meaningful operator in a 
formula for trees is " + ," indicating which variables are to be included as predictors. 
This is so because trees capture interactions without explicit specification. Given 
these points, it may seem that formulas for trees are a gross overkill as a means 
of specifying the terms used in the model. Nonetheless, they provide a convenient 
means to specify reexpressions of the response variable and, more importantly, to 
facilitate applying quite different models to the same data. 

A tree object contains information regarding the partitioning of the predictor 
variables into homogeneous regions that is required by subsequent functions for 
manipulating and displaying trees. Predictably, a tree object has class "tree". 
Generic functions such as summary(), print(), plot(), residuals(), and predict() 
work as expected for objects of class "tree". A summary of a fitted tree-based model 
is available by the summary 0 function: 

> summary(z.auto) 

Regression tree: 
tree(formula • Mileage 
Number of terminal nodes: 
Residual mean deviance: 
Distribution of residuals: 

Weight, car.test.frame) 
8 

4.208 - 218.819 I 52 

Min. 1st Qu. Median Mean 3rd Qu. 
-3.889 -1.111 0.000 0.000 1.167 

Max. 
4.375 

> summary(z.kyph) 

Classification tree: 
tree(formula ~ Kyphosis ~ Age + Number + Start, kyphosis) 
Number of terminal nodes: 9 
Residual mean deviance: 0.594 = 42.742 I 72 
Misclassification error rate: 0.123 • 10 I 81 

Notice that there is some difference in the summary depending on whether the tree 
is a classification or a regression tree. 

A tree prints using indentation as a key to the underlying structure. Since 
print() is invoked upon typing the name of an object, a tree can be printed sim
ply by typing its name. The example given in Table 9.1 was constructed with the 
expression z.kyph. The amount of information displayed by print() relative to 
summary() might seem disproportionate for objects of class "tree", but the philoso
phy that printO should provide a quick look at the object is maintained, as it does 
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t little more than format the contents of a tree object. The summary() function on 
the other hand does involve computation that can result in less than instantaneous 
response. 

Subtrees 

A subtree of a tree object can be selected or deleted in a natural way through 
subscripting; for example, a positive subscript corresponds to selecting a subtree 
and a negative subscript corresponds to deleting a subtree. This implies that there 
is an ordering or index to tree objects that permits identification by number. Indeed, 
nodes of a tree object are numbered to succinctly capture the tree topology and 
to provide quick reference. An example of the numbering scheme is that given in 

- 'Th.ble 9.1 for the tree grown to the kyphosis data. Descendants of node number 3 
can be removed, or a new subtree can be rooted at node 3, as follows: 

> z.kyph[-3] 
node), split, n, deviance, yval, (yprob) 

• denotes terminal node 

1) root 81 83.234 absent (0.790 0.2100) 
2) Start<12.5 35 47.804 absent (0.571 0.4290) 

4) Age<34.5 10 6.502 absent (0.900 0.1000) • 
5) Age>34.5 25 34.296 present (0.440 0.5600) 
10) Number<4.5 12 16.301 absent (0.583 0.4170) 

20) Age<127.5 7 8.376 absent (0.714 0.2860) • 
21) Age>127.5 5 6.73 present (0.400 0.6000) • 

11) Number>4.5 13 16.048 present (0.308 0.6920) 
22) Start<8.5 8 6.028 present (0.125 0.8750) • 
23) Start>8.5 5 6.73 absent (0.600 0.4000) • 

3) Start>12.5 46 16.454 absent (0.957 0.0435) • 

> z.kyph[3] 
node), split, n, deviance, yval, (yprob) 

• denotes terminal node 

3) Start>12.5 46 16.454 absent (0.957 0.0435) 
6) Start<14.5 17 12.315 absent (0.882 0.1180) 

12) Age<59 5 0 absent (1.000 0.0000) • 
13) Age>59 12 10.813 absent (0.833 0.1670) 

26) Age<157.5 7 8.376 absent (0.714 0.2860) • 
27) Age>157.5 50 absent (1.000 0.0000) • 

7) Start>14.5 29 0 absent (1.000 0.0000) • 

Implicit in our discussion above is that a subtree of a tree object is itself a tree 
object. This allows a subtree to be printed with the same ease as the original tree. 
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The importance of tree subscripting becomes apparent as tree size gets larger. For 
example, consider growing a tree to the long-distance marketing data: 

> z.survey <- tree(market.survey, na.action ~ na.omit) 

The tree displayed earlier in Figure 9.3 is a particularly terse summary of this tree 
obtained with the expression z.survey[-c(4,5,3)]. The complete tree, z.survey, 

is displayed using the plot() function in Figure 9.4. The function displays a tree 
as an unlabeled dendrogram, rooted at the top of the figure. The plot. tree 0 
method takes an optional argument, type=, which controls node placement. The 
default is nonuniform spacing whereby the vertical position of a node pair is a 
function of the importance of the parent split. It is particularly appropriate during 
analysis where the primary consideration is often one of tree simplification. The 
alternate (type="u") behavior uses node depth to guide vertical placement of nodes. 
This results in a uniform layout that is useful for subsequent labeling. The tree 
displayed in the left panel of Figure 9.4 was obtained with the default node spacing, 
e.g., plot(z.survey), while that in the right panel was obtained by plot(z.survey, 
type = "u"). In the former plot, the importance of the first few splits is readily 
apparent. This insight is at the expense of reduced resolution at the leaves of the 
tree, where detail is arguably of lesser importance. · · 

Labeling a tree is distinct from plotting a tree. The size of the tree displayed 
in Figure 9.4 demonstrates why two separate functions are required; once the tree 
is plotted, labeling may or may not follow depending on its topology. The textO 
method for trees provides a means to label the dendrogram displayed by plotO. 
The user has control over what components of the tree object are used as labels at 
interior or leaf nodes. The tree displayed in the left panel of Figure 9.1 was labeled 
with text (z. auto). 

Tree-based modeling is similar in many ways to that discussed in previous chap
ters. An important similarity is the degree to which tools to diagnose model ade
quacy are applied. Figure 9.5 displays two commonly used plots for regression mod· 
els as applied to the automobile mileage example-namely, a scatterplot of residuals 
versus fitted values and a normal probability plot of residuals. The fitted values are 
obtained with the expression predict(z.auto). The residuals, observed-fitted, are 
obtained by subtracting the fitted values from the response variable, or directly with 
the expression residuals (z. auto). The normal probability plot does not suggest any 
unusual patterns, but the plot of residuals versus fitted values demonstrates het· 
eroscedasticity. This pattern, together with the moderate curvature demonstrated 
in Figure 9.1, suggests that a reexpression of the response variable, say from miles 
per gallon to gallons per mile, might be more appropriate. 
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Figure 9.4: Dendrograms of the tree z. survey groum to the long-distance marketing data. 
The dendrogram on the left uses the change in deviance to guide the vertical positioning of 
each pair of nodes. Resolution at the leaves of the tree is sacrificed to provide a visual cue 
of split importance. The dendrogram on the right uses node depth to guide the placement 
of each node. {The root has depth 0.) 

Pruning and Shrinking 

Another aspect of assessing a fitted tree-based model is the extent to which it can 
be simplified without sacrificing goodness-of-fit_ This is also an important consid
eration for prediction. Since tree size is intentionally not limited in the growing 
process, a certain degree of overfitting has occurred- There are two ways to ad
drP.Ss this problem; the one to choose depends upon whether the primary concern 
is parsimonious description or accurate prediction. 

Figure 9.6 displays three variations of z.kyph, the classification tree grown to the 
kyphosis data. The first panel is the dendrogram for the full tree with nine terminal 
nodes. The second panel is a pruned version with three terminal nodes- The third 
panel is a shrunken version with nine actual terminal nodes and about three effective 
terminal nodes. Note that the pruned tree shares the same estimated probabilities 
as the full tree but that apart from the root node, those of the shrunken tree are 
completely different. Summaries of the pruned and shrunken trees are: 
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Figure 9.5: Two standard diagnostic plots for regression data as applied to the fit described 
by z. auto. The plot in the left panel is that of residuals versus fitted values. The plot in 
the right panel is a nonnal probability plot of residuals. These plots suggest that there are 
no apparent outliers but that the variance seems to increase with level. 

> summary(zp.kyph) 

Classification tree: 
prune.tree(tree = z.kyph, k = 5) 
Variables actually used in tree construction: 
[1] "Age" "Start" 
Number of terminal nodes: 3 
Residual mean deviance: 0.734 = 57.252 I 78 
Misclassification error rate: 0.173 = 14 I 81 

> summary(zs.kyph) 

Classification tree: 
shrink.tree(tree = z.kyph, k = 0.25) 
Number of terminal nodes: 9 
Effective number of terminal nodes: 2.8 
Residual mean deviance: 0.739 = 57.754 I 78.2 
Misclassification error rate: 0.136 = 11 I 81 

Which tree is better? In one sense, the pruned tree, since it provides a much more 
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Figure 9.6: Three variations of the tree grown to the kyphosis data. All plots are on a 
common scale, and nonunifonn (vertical) spacing of nodes is used. The nodes are labeled 
with the estimated probability that Kyphosis==absent. The node labels have been rotated to 
improve readability. The first panel is the full tree z.kyph; it is a graphical representation 
of the tabular version presented in Table 9.1. The second panel is a pruned version of 
z.kyph, whereby the least important splits have been pruned off. Note that the estimated 
probabilities and node heights match those of the full tree. The third panel is a shrunken 
version ofz.kyph, whereby the estimated probabilities have been pulled back or shrunken 
toward the root. Apart from the root, neither the estimated probabilities nor the node heights 
match those of the full tree. The squashing of the dendrogram at the bottom indicates that 
these nodes have been shrunk completely to their parents. 

succinct description of the data (note that only two out of the three predictors 
remain). In another sense, the shrunken tree, since its misclassification error rate is 
lower than that of the pruned tree. Thus, there is no hard and fast rule on which is 
better; the choice depends on where your priorities lie (simplicity versus accuracy). 
We now proceed to describe these methods in more detail. 

The function prune.tree() takes a tree object as a required argument. If no 
additional arguments are supplied, it determines a nested sequence of subtrees of 
the supplied tree by recursively snipping off the least important splits. Importance 
is captured by the cost-complexity measure: 

DQ(T') = D(T') + asize(T') 
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where D(T') is the deviance of the subtree T', size(T') is the number of terminal 
nodes ofT', and a is the cost-complexity parameter. For any specified a, cost
complexity pruning determines the subtree T' that minimizes D0 (T') over all sub
trees ofT. The optimal subtree for a given a is obtained by supplying prune. tree() 
with the argument k=a. For example, the tree displayed in the second panel of 
Figure 9.6 was obtained by prune. tree(z.kyph, 5). If k•a is a vector, the sequence 
of subtrees that minimize the cost-complexity measure is returned rather than a 
tree object. 

The function shrink. tree() takes a tree object as a required argument. If no 
additional arguments are supplied, it determines a sequence of trees of the supplied 
tree that differ in their fitted values. A particular tree in the sequence is indexed 
by a, which defines shrunken fitted values according to the recursion: 

y(node) = ay(node) + (1- a)y(parent) 

where y(node) is the usual fitted value for a node, and y(parent) is the shrunken 
fitted value for the node's parent-that is, it was obtained by applying the same 
recursion. The function shrink. tree() uses a particular parametrization of a that 
optimally shrinks children nodes to their parent based on the magnitude of the 
difference between y(node) and y(parent). The sequence is anchored between the 
full tree (a= 1) and the root node tree (a= 0). A heuristic argument allows one to 
map a into the number of effective terminal nodes, thereby facilitating comparison 
with pruning. The tree for a given a is obtained by supplying shrink. tree() with 
the argument k=a. For example, the tree displayed in the third panel of Figure 9.6 
was obtained by shrink. tree (z.kyph, .25). If k•a is a vector, the sequence of trees 
that are determined by these shrinkage parameters is returned rather than a tree 
object. 

Figure 9.7 displays the sequences for pruning and shrinking z.survey. These 
are obtained by omitting the k• argument and plotting the resulting object. These 
objects have class "tree. sequence" for which a plot() method exists. Each panel 
displays the deviance versus size (the number of terminal nodes or the number 
of effective terminal nodes) for each tree in the sequence. An additional (upper) 
axis shows the mapping between size and k for each method. By construction, 
the deviance decreases as tree size increases, a common phenomenon in model
fitting (i.e., the fit improves as parameters are added to the model). This limits 
the usefulness of the plot except in those situations where a dramatic change in 
deviance occurs at a particular value of k. 

It should not be surprising that the sequences produced by these methods pro
vide little guidance on what size tree is adequate. The same data that were used 
to grow the tree are being asked to provide this additional information. But since 
the tree was optimized for the supplied data, the tree sequences have no possible 
alternative but to behave as observed. There are two ways out of this dilemma: 
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Figure 9.7: Plots of deviance versus size (number of terminal nodes) for sequences of 
subtrees of z. survey. The left panel is based on optimal shrinking while the right banel 
is based on cost-complexity pruning. The former is plotted as a continuous function to 
reinforce its continuous behavior. The latter is plotted as a step function because optimal 
subtrees remain constant between adjacent values of k. Each panel has an additional axis 
along the top indicating the values of k that correspond to the different sized subtrees in 
the sequence. 

one is to use new (independent) data to guide the selection of the right size tree, 
and the other is to reuse the existing data by the method of cross-tJalidation. In 
either case, the issue of tree-based prediction of new data arises. Let's pursue this 
diversion before returning and concluding our discussion of choosing the right size 
tree. 

Prediction 

An important use of tree-based models is predicting the value of a response variable 
for a known set of predictor variables. By prediction we mean to evaluate the splits 
describing a tree-based model for a set of predictor variables and defining the yval 
at the deepest node reached as the prediction. Normally this corresponds to a leaf 
node of the tree, but we adopt the convention that a prediction may reside in a 
nonterminal node if, in following along the path defined by the set of predictor 
variables for a new observation, a value of a predictor is encountered that has 
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never been seen at that node in the tree-growing process. The classic case of this 
is encountering a missing value (NA) when only complete observations were used 
to grow the tree. More generally and more subtly, this condition occurs for factor 
predictors whenever a split is encountered where the value goes neither left nor right 
(e.g., if x = B and the left and right splits at a node are, respectively, x E {A, C} 
and x E {D,E}). 

occ 
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32176 

Figure 9.8: !Tee representation of prediction from the classification tree zs.survey. The 
node labels are the predicted values of pick. The numbers displayed under each node rep
resent the misclassification error rate for the new data na.market.survey. The overall 
misclassification error rate is quite high (0.41}. Four of the respondents remain at the root 
node due to missing values in the predictor usage. 

We return to the long-distance marketing example where we illustrate prediction 
using an additional 241 survey respondents. These respondents were part of the 
initial survey but were omitted from the preliminary analysis because of missing 
values in the variables. The data are collected in the data frame na.market.survey. 
Predictions from the tree in Figure 9.3 are displayed in Figure 9.8. The figure shows 
the disposition of the 241 observations along the prediction paths of the tree. Of 
the 241 observations, 161 are directed to the left (OCC), 76 to the right (ATT), and 
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4 remain at the root node (due to missing values for usage). Of the 1111, 132 are 
directed to the left (OCC) and 29 to the right (ATT). The misclassifiLnt.ion error 
rate associated with these predictions is quite high (41%). This error htte varies 
from leaf node to leaf node, from 33% (leftmost leaf), to 66% (middh~ k•lf) to 42% 
(rightmOst leaf). ' 

The tree displayed in Figure 9.8 was obtained with the expressiou: 

zd.survey <- predict(zs.survey, na.market.survey, type ~ "tree"J 

The predict() method takes a tree object and a data frame. The tree obj., .. , is lik•·lv 
to be a simplified version of that provided by tree 0. The names of the v1uiahf1;,; 

in the data frame must include the predictors in the formula used to cou.,truct th•~ 
tree. The function returns the values predicted by the tree for the dnt.1t in th•~ 

data frame, either as a vector (the default) or as a tree object, type="tlDe". If a 
data frame is not supplied, predict() returns the fitted values for the dat11 used to 
construct the tree; we used this feature in our earlier discussion of residual plots. 

Cross-validation 

We now return to the topic of choosing the right size tree based on data not used 
to grow the tree. Test data can be supplied to the functions prune.tree() and 
shrink.treeO with the nevdata= argument. The functions return an object of class 
•tree. sequence" containing the sequence evaluated on the test data. Figure 9.9 
illustrates this functionality for the market survey data, where the new data consist 
of those held back due to missing values. These plots span a wide range of tree 
sizes, but the most promising are those with fewer than a dozen nodes. The range 
can be restricted by suitable specification of the argument k. Panel1 of Figure 9.10 
demonstrates such a restriction for k in the range 0.05 to 0.20 for the optimal 
shrinking sequence. Evidently, either a very small tree is called for or the data with 
NAs are not drawn from the same population as those without. 

The function cv.tree() can be used to address this ambiguity by applying a 
procedure described in Section 9.3 called cross-validation. The basic idea is to 
divide the original data into mutually exclusive sets. For each set, a tree is grown 
to the remaining sets and a subtree sequence obtained; the set held out is then used 
to evaluate the sequence. Deviances from each set are accumulated (as a function of 
k) and returned as an object of class "tree. sequence". A plot of the cross-validated 
deviance versus tree size is seldom monotone decreasing since data used to evaluate 
the sequences were not used to construct them. A common feature of the plot is a 
fairly flat minimum, and trees in this region are candidates for further consideration. 
The result of tenfold cross-validation of the tree z.survey is displayed in the right 
panel of Figure 9.10. The plot was obtained by the expressions 
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Figure 9.9: Plots of deviance versus size for sequences of subtrees ofz.aurvey evaluated on 
new data. The new data are from the data frame market. survey but were omitted from the 
fit due to missing values in some of the predictors. The na.trae.raplacaO function was 
used to replace NAs with an additional factor level. Since the original tree was constructed 
from data without missing values, this in effect means that when the new level "NA" is 
encountered, the deviance at that node is used. The left panel is based on optimal shrinking 
while the right panel is based on cost-complexity pruning. Comparison with Figure 9. 7 
highlights the differences in these sequences when based on training and independent test 
data. This figure suggests that either a very simple tree (at most three nodes} be used to 
summarize these data, or that the two datasets, those with and those without NAs, are 
qualitatively different. 

> k <- seq(.05, .20, length • 10) 
> cv.survey <- cv.tree(z.survey, r.survey, k • k) 
> plot(cv.survey, type • "b") 

The dataset r. survey contains a random permutation of the integers 1 to 10, of 
length length(pick), denoting the assignment of the observations into 10 mutually 
exclusive sets. The function cv. tree 0 will determine a permutation by default, but 
it is often useful to specify one, especially if comparison with another sequencing 
method is desired. The final argument, FUN•, specifies which sequencing function is 
to be used; the default is shrink. tree. 
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Figure 9.10: Plots of deviance versus size for sequences of shrunken trees of z. survey. The 
range of trees considered was restricted to values oft between 0.05 and 0.20, corresponding 
to trees with effective size from 1 to 12. The left panel is based on evaluating the sequence 
on new data while the right panel is based on cross-validation. The left panel provides 
sharp discrimination in tree size, strongly suggesting a three-node tree. The right panel is 
not so sharp and is typical of sequences computed by cross-validation. Even so, a modest 
seven-node tree is suggested. 

9.2.2 Functions for Diagnosis 

Residual analysis is important and not peculiar to a single class of models. In 
the cas~ of trees, it is natural to exploit the very representation that is used to 
capture and describe the fitted model-namely, the dendrogram-as the primary 
means of diagnosis. We now introduce functions that utilize the tree metaphor to 
facilitate and guide diagnosis. The functions divide themselves along the natural 
components of a tree-based model-namely, subtrees, nodes, splits, and leaves. Most 
of the methods involve interacting with trees, and by this we usually mean graphical 
interaction. We note parenthetically, and sometimes explicitly below, that all the 
functions can be used noninteractively (by including a list of node numbers as 
an argument), but their usefulness seems to be significantly enhanced when used 
interactively. 

In certain of the figures in this section, a (new} general mechanism to obtain 
multiple figures within the S graphics model is used. The split-screen mode is an 



396 CHAPTER 9. TREE-BASED MODELS 

alternative to par(mfrov) that allows arbitrary rectangular regions (called screens) 
to be specified for graphics input and output. We use this mechanism rather than 
the standard multifigure format not only to attain a more flexible layout style, but 
also because the order in which screens are accessed is under user control. It is 
able, for example, to arbitrarily receive graphics input from one screen and send 
graphics output to another. We have attempted to restrict our use of the split
screen mode to minimize the introduction of too much ancillary material. A single 
function tree. screens(), called without arguments, will set up a generic partition 
of the figure region used by the tree-specific functions that we provide. See the 
detailed documentation of split . screen 0 for further information. 

9.2.3 Examining Subtrees 

The function snip. tree 0 allows the analyst to snip off branches of a tree either 
through a specified list of nodes, or interactively by graphic input. For the former, 
the subset method for tree objects described earlier, "[.tree" 0, is a convenient 
shorthand. For example, the expression z.auto[-2] is equivalent to the expression 
snip. tree (z. auto, 2). This usage requires knowing the number of the node or 
nodes in question; the interactive approach obviates this need. It is most convenient 
when working at a high-resolution graphics terminal and provides a type of what-if 
analysis on the displayed tree. The graphical interface is such that a single click 
of the graphics input device (e.g., a mouse) informs the user of the change in tree 
deviance that would result if the subtree rooted at the selected node is snipped 
off; a second click on the same node actually does the snipping. By snipping, 
we mean that the tree object is modified to reflect the deleted subtree and also 
that the portion of the plotted dendrogram corresponding to the subtree rooted at 
the selected node is "erased." The process can be continued, and, on exit, what 
remains of the original tree is returned as a tree object. An example of the textual 
information displayed during this process is as follows: 

> zsnip.survey <- snip.tree(z.survey) 
node number: 4 

tree deviance = 562.518 
subtree deviance = 741.663 

node number: 10 
tree deviance • 741.663 
subtree deviance = 786.214 

node number: 7 
tree deviance • 786.214 
subtree deviance= 962.767 

Here we first selected and then reselected nodes 4, 10, and 7 of the tree z.survey. 
Note how the subtree deviance at one stage becomes the tree deviance at the next 
stage. The graphical result of this process is displayed in Figure 9.11. The second 
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Figure 9.11: An illustmtion of intemctive snipping of subtrees. The full tree z.survey is 
plotted in the first panel. Upon selection of a node, the change in deviance that would result 
by snipping off the subtree rooted at that node is displayed. If it is reselected, the subtree 
is snipped off, which has the side effect of emsing the subtree from the dendrogram. The 
second panel shows what remains of the tree after the subtrees rooted at nodes 4, 10, and 
7 are snipped off. The final panel replots and labels the snipped tree. , 

panel shows the result of snipping off the subtrees rooted at nodes 4, 10, and 7. 
The final panel replots the snipped tree zsnip.survey and labels it. This points 
out one reason for snipping-gaining resolution at the top of the tree so that it 
can be usefully labeled. The node numbers of the branches that were snipped off 
are collected together and pasted into the call component of the tree object to 
inform the user that the result was obtained by snipping nodes so-and-so from tree 
such-and-such. For example, the call component of zsnip.survey is 

> zsnip.survey$call 
snip.tree(tree = z.survey, nodes = c(4, 10, 7)) 

The function select.tree() is the dual of snip.tree(). It allows individual 
subtrees of a specified tree to be selected and assigned. For each node number 
supplied, the function returns a tree object rooted at that node. If no nodes are 
supplied, the function expects them to be selected by graphical interaction. When 
more than one node is specified or selected, the subtrees are organized as a list, 
with the node number naming the individual elements. One might reasonably call 
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Figure 9.12: An illustration of a stand of trees. The three panels contain the subtrees of 
z.survey that were snipped off in Figure 9.11. Each tree in the stand is amenable to all 
methods for tree objects, including plot methods. The pan~ls in the figure were obtained by 
applying the plot() method to the stand stand. survey. · 

such a list a stand (of trees). An interesting feature of stands results from the fact 
that the trees it contains are bona fide tree objects. Thus, they are amenable to 
any and all display and analysis functions for trees. A useful way to peruse a stand 
is by applying a function to it using apply(). For example, Figure 9.12 is obtained 
by the expression 

> stand.survey <- select.tree(z.survey, nodes = c(4, 10, 7)) 
> sapply(stand.survey, plot) 

Like snip.tree(), the subset method for tree objects, "[.tree"(), is a convenient 
shorthand for select.tree(). For example, z.survey[c(4, 10, 7)] is equivalent 
to the expression given above for stand.survey. Also like snip.treeO, the call 
component of a selected subtree is constructed to inform the user that the result 
was obtained by selecting subtree so-and-so from tree such-and-such. 

9.2.4 Examining Nodes 

Much information concerning a fitted tree resides in the nodes. It is important 
that this information be readily available, and yet, there is too much information to 
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usefully label a dendrogram with. We now introduce some tree-specific functions to 
encourage users to browse the nodes of a fitted tree-based model. Let's introduce a 
new example based on the data frame cu. summary described in Section 3.1.1. The 
data are summarized as follows: 

summary (cu. summary) 
Price 

Min. : 5866 USA 
1st Qu. : 10090 
Median :13150 

Country 
:49 

Mean :15740 

Japan :31 
Germany :11 
Japan/USA: 9 

3rd Qu.:19160 Sweden 
Max. :41990 Korea 

5 
5 
7 

Mileage 
Min. :18.00 
1st Qu. :21.00 
Median :23.00 
Mean :24.58 
3rd Qu. : 27. 00 
Max. :37.00 
NAs :57 

(Other) 

Type 
Compact:22 
Large : 7 
Medium :30 
Small :22 
Sporty :26 
Van :10 

Reliability 
Much worse : 18 
worse :12 
average :26 
better : 8 
Much better:21 
NAs :32 

The model we entertain addresses the relationship of automobile characteristics to 
automobile reliability. The fitted tree-based model is obtained by the expression 

> f.cu <- formula(Reliability ~Price +Country+ Mileage +Type) 
> z.cu <- tree(f.cu, cu.summary, na.action = na.tree.replace) 

and is plotted in Figure 9.13. Since this is a classification tree with a five-level 
response variable, much information has been suppressed in the labeled dendrogram. 
Node contents may be inspected with the browser() method for trees, which takes 
a tree object as a required argument and an optional list of nodes. If the latter 
is omitted, the function waits for the user to select nodes with the graphics input 
device. For example, clicking on the left-child of the root node of the tree z. cu 
yields: 

> browser(z.cu) 
node number: 2 
split: Country:Japan,Japan/USA 
n: 27 
dev: 36.9219 
yval: Much better 
Much worse worse average better Much better 

0 0 0.1111111 0.1111111 0.7777778 
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Figure 9.13: A display of a tree fitted to the automobile reliability data. The response 
variable has levels Kuch Worse, vorse, average, batter, Kuch Better. The predicted value 
of the response variable is centered in the node. The number under each terminal node 
is the misclassification error rate. The split at the root node suggests that Japanese cars, 
whether manufactured here or abroad, have much better perceived reliability than cars of 
other nationalities. 
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The identify() method also takes a tree object as a required argument and an 
optional list of nodes. If the latter is omitted, the function waits for the user to 
select nodes from the dendrogram. The function returns a list, with one component 
for each node selected, containing the names of the observations falling in the node. 
For example, clicking on the leftmost node of the tree z. cu yields: 

> identify{z.cu) 
node number: 4 

Acura Integra 4 
GEO Prizm 4 
Honda Civic 4 
Mazda Protege 4 
Nissan Sentra 4 
Subaru Loyale 4 
Toyota Corolla 4 
Toyota Tercel 4 
Honda Civic CRX Si 4 
Honda Accord 4 
Nissan Stanza 4 
Subaru Legacy 4 
Toyota Camry 4 

The "4" following each automobile name is actually part of the name (these are all 
four-cylinder cars) and has nothing to do with the fact that node 4 was selected. If 
the result of identify{) is assigned, these names can then be used as subscripts to 
examine data specific to individual nodes. The following expressions demonstrate 
how the predictor Price varies for observations in nodes 2 and 3: 

> node2.3 <- identify{z.cu, 2:3) 
> quantile (Price [node2. 3 [ ["2"]]]) 
[1] 6488.00 9730.50 12145.00 17145.25 24760.00 
> quantile{Price[node2.3[["3"]]]) 
[1] 5899.0 9995.0 13072.5 20225.0 39950.0 

Nodes 2 and 3 are the left and right children, respectively, of the root node. Given 
that the more reliable cars follow the left path rather than the right, apart from the 
least expensive automobiles, it appears that you pay more for more troublesome 
cars! 

The function path. tree() allows the user to obtain the path (sequence of splits) 
from the root to any node of a tree. It takes a tree object as a required argument and 
an optional list of nodes. If the latter is omitted, the function waits for the user to 
select nodes from the dendrogram. The function returns a list, with one component 
for each node specified or selected. The component contains the sequence of splits 
!'earling to that node. In interactive mode, the individual paths are (optionally) 
printed out as nodes are selected. The function is useful in those cases where tree. 
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size or label lengths are such that severe overplotting results if the tree is labeled 
indiscriminately. For example, selecting one of the deep nodes of the tree z. cu 
yields: 

> path.tree(z.cu) 
node number: 26 

root 
Country:Germany,Korea,Mexico,Sveden,USA 
Type:Compact,Small 
Country:Korea,Sveden,USA 
Mileage:23+ thru 27,27+ thru 37 

By examining the path, we can see that the automobiles in this node consist of 
those manufactured in Korea, Sweden, and USA, which are compact or small, and 
for which the reported mileage is between 23 and 37 mpg. 

9.2.5 Examining Splits 

The tree grown to the automobile reliability data suggests that Japanese cars, 
whether manufactured here or abroad, are more reliable than cars of other na
tionalities. Should we believe this? The answer in general is no; the recursive 
partitioning algorithm underlying the tree() function is just that: an algorithm. 
There may well be other variables, or even other partitions of the variable Country, 
that discriminate reliable from unreliable cars, but these just miss out being the 
"best" split among all possible. The function burl. tree 0 allows the user to select 
nodes and observe the competition for the best split at that node. For numeric 
predictors, a high density plot is used to show the goodness-of-split at each possible 
cut-point split. For factor predictors, a scatterplot plot displays goodness-of-split 
versus a decimal equivalent of the binary representation of each possible subset split; 
the plotting character is a string labeling the left split. Figure 9.14 provides an ex
ample for the tree z. cu. The plots under the dendrogram show a clear preference 
for splits involving the variable Country. Figure 9.15 is an enlargement of the scat
terplot for Country. We see that the candidate splits divide into two groups, one of 
which (top) discriminates better than the other (bottom). Among those in the top 
portion, that labeled ef=Japan, Japan/USA is the best; moreover, it is the common 
intersection of all the candidate splits in the top portion. Given this information, 
we are more likely to believe that this split is meaningful. 

The function hist. tree() also focuses on splits at specified or interactively se
lected nodes by displaying side-by-side histograms of supplied variables. Specifi· 
cally, the histogram on the left displays the distribution of the observations on that 
variable following the left split, while the histogram on the right displays the distri· 
bution of the observations following the right split. It is similar to burl. treeO in 
that it displays a variable's discriminating ability, but is different in that it alloWS 
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worse average average average 

Price Counlry Mileage 

Figure 9.14: An illustration of burling a tree-based model. The top panel displays the labeled 
dendrogram of z. cu; initially, the lower portion is empty. Upon selection of the root node, 
the plots in the lower four panels are displayed. These show, for each predictor in the 
model formula, the goodness-of-split criterion for each possible split. The goodness-of-split 
criterion is the difference in deviance between the parent (in this case the root node) and its 
children (defined by the tentative split}; large deviance differences correspond to important 
splits. For numeric predictors, a high-density plot conveys the importance of each possible 
cut-point split. For factor predictors, an arbitrary ordering is used along the abscissa (x-
03:is) to separate different subset splits; the left split is used as a plotting character. The 
ordinate (y-axis} of all plots is identical. These plots show that, at the root node, Country 
i8 the best discriminator of automobile reliability. It also shows that there are many good 
subset splits on Country, the "best" being the one labeled ef in the upper left. Upon selection 
of another node in the dendrogram, the lower portion of the screen is erased and refreshed 
With four new panels displaying the splits relevant at that node. 
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Figure 9.15: A scatteTplot of the competing subset splits on Country at the root node of 
the tree z.cu. The plotted character strings are the left splits; none contain j since it 
is the last level of Country and, by construction, resides in right splits only. No subsets 
contain abc since automobiles from these countries were omitted due to missing values of 
the response variable Reliability; this occurred silently by na.tree.replaceO when z.cu 
was grown. There are no singleton splits ford, g, h, or 1' since these countries have fewer 
than five automobiles in the model frame and the algorithm has a minimum subset size of 
five. The splits seem to divide into two groups: those having good discriminating power 
(upper portion), and those having mediocre to poor power (lower portion). The former all 
contain ef, supporting its selection as the best discriminating subset. 

variables other than predictors to be displayed. Figure 9.16 provides an example 
for the tree z. cu fitted to the automobile reliability data. This example resulted 
from the expression: 

> hist.tree(z.cu, Reliability, Price, Mileage, nodes = 1) 

At a glance we see the complete distribution of the response variable Reliability 
for nodes 2 and 3 (the children nodes of the root). It is interesting that not a single 
Much Better car follows the right split. The second panel (Price) graphically conveys 
what our earlier analysis using identify() suggested: that the most reliable cars are 
not the most expensive ones. It appears that status and reliability are incompatible 
in these data. 
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Price 

worse average average average 
Mileage 

405 

Figure 9.16: A illustration of the function hist.tree() at the root node of the automo
bile reliability tree z.cu. The upper portion of the plot contains the labeled dendrogram. 
The lower portion displays a side-by-side histogram for each of the variables Reliability, 
Price, and Mileage. The left-side histogram summarizes the obseroations following the left 
split, and similarly for the right. The figure shows that Japanese cars manufactured here 
or abroad tend to be more reliable, less expensive, and more fuel efficient than others. 

9.2.6 Examining Leaves 

Often it is useful to observe the distribution of a variable over the leaves of a 
tree. Two related (noninteractive) functions encourage this functionality. They are 
noninteractive since they do not depend on user selection of a particular node; their 
intended effect is across all terminal nodes. The function tile. tree 0 augments 
the bottom of a dendrogram with a plot that shows the distribution of a specified 
factor for observations in each leaf. These distributions are encoded into the widths 
of tiles that are lined up with each leaf. If numeric variables are supplied, they are 
automatically quantized. One use of this function is for displaying class probabilities 
across the leaves of a tree. An example is displayed in Figure 9.17. A related 
function rug. tree() augments the bottom of a dendrogram with a (high-density) 
plot that shows the average value of the specified variable for observations in each 
leaf. These averages are encoded into lengths of line segments that are lined up with 
each leaf. The function takes an optional argument, FUN=, so that summaries other 
than simple averages (e.g., trimmed means) can be obtained. Figure 9.18 displays 
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Figure 9.17: The dendrogram of the automobile reliability tree z.cu enhanced with a tiling 
of the variable Reliability. The distribution of Reliability over the leaves of the tree 
is readily discerned. Successive calls to tile. tree 0 with other variables is encouraged by 
not replotting the dendrogram-only the new tiling is plotted after the bottom screen is 
"erased". 

the distribution of the variable usage for the tree grown to the market survey data. 
Recalling that the split at the root node was usage ~ 12.5, the general shape of the 
rug is as expected: lower on the left and higher on the right. Somewhat unexpected 
is the fact that the heavier users are, by and large, much heavier users. 

9.3 Specializing the Computations 

As described in the preceding section, the tree object is a repository for a number of 
by-products of the tree-growing algorithm. The named components of a tree object 
are 

> names(z.survey) 
[1) "frame" "where" "terms.. 11 Call'' 

The frame component is a data frame, one row for each node in the tree. The 
row labels, row.names(frame), are node numbers defining the topology of the tree. 
Nodes of a (full) binary tree are laid out in a regular pattern: 
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........ dt.l ,,,, ......... 1.11 ..••.• 1. ......... ldilllilllllliillldll,,,lllllliillil 
Figure 9.18: The dendrogram of the long-distance marketing tree z.survey enhanced with 
a rug of the variable usage. The distribution of this variable over the leaves of the tree is 
readily discerned. Successive calls to rug. tree() with other variables is encouraged by not 
replotting the dendrogram-only the new rug is plotted after the bottom screen is erased. 

1 
2 3 

4 5 6 7 

More generally; nodes at depth d axe integers n, 2d ~ n < 2d+1. Of course, any 
specific tree is not full and consists of a subset of all possible nodes. The ordering 
of the nodes in the frame corresponds to a depth-first traversal of the tree according 
to this numbering scheme. 

The elements (columns) of frame contain the following node-specific information: 

• the variable used in the split at that node ( var) 

• the number of observations in the node (n) 

• a measure of node heterogeneity ( dev) 

• the fitted value of the node (yval) 

• the matrix of left and right split values (splits). 

Routine application of the functions in this chapter does not require users to mar 
nipulate this object directly, but for concreteness we display the 21 row z.cu$frame 
here: 
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var n dev yval splits.left splits.right 
1 Country 85 260.997544 average :ef :dghij 
2 Price 27 36.921901 Much better <12197 >12197 
4 <leaf> 14 0.000000 Much better 
5 Type 13 26.262594 Much better :ae :cf 

10 <leaf> 8 17.315128 better 
11 <leaf> 5 5.004024 Much better 
3 Type 58 146.993133 average :ad :beef 
6 Country 22 59.455690 vorse :dh :gij 

12 <leaf> 5 6. 730117 average 
13 Mileage 17 42.603572 vorse :cd :be 
26 <leaf> 7 15.105891 better 
27 <leaf> 10 19.005411 vorse 

7 Type 36 68.976020 average :e :bcf 
14 <leaf> 9 9.534712 Much vorse 
15 Type 27 50.919255 average :c :bf 
30 Mileage 16 33.271065 average :ab :e 
60 <leaf> 7 14.059395 vorse 
61 <leaf> 9 16.863990 average 
31 Price 11 12.890958 average <15770 >15770 
62 <leaf> 5 6.730117 average 
63 <leaf> 6 5.406735 average 

This example illustrates a. labeling convention specific to trees whereby levels 
of factor predictors are assigned successive lower-case letters. Thus, the first right 
'Split, :dghij (on Country), is shorthand for :Germany ,Korea,Mexico,Sveden,USA. Such 
a. convention is necessary in order to provide meaningful information about splits 
in a. limited amount of space. The problem is particularly acute for labeling plotted 
dendrograms but is also important in tabular displays such as that resulting from 
print{). The labels{) method for trees allows full control over which style of labels 
is desired; it is usually invoked by printing and plotting functions rather than called 
directly by the user. 

In the case of classification trees, a.n additional component of the frame object 
is the matrix (yprob) containing the class probability vectors of the nodes labeled 
by the levels of the response variable. We omitted this in the above display of 
z. cu$frame in order to conserve space. 

The vhere component of a. tree object is a. vector containing the row number 
(in frame) of the terminal node that each observation falls into. It has a names 
attribute that corresponds to the rov. names of the model frame used to grow or 
otherwise define the tree. Like the frame component, it is heavily used in many 
of the functions that manipulate trees. For example, the vector of fitted values is 
obtained as z$frame[z$vhere, "yval"]. The remaining components, "terms" and 
"call", are identical to those described in previous chapters. 
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We emphasize that for the most part you will not have to look directly at the 
values of these components. However, in order to modify the behavior of any of 
the supplied functions, or to construct new ones, you should first feel comfortable 
JDailipulating these components. For example, consider the following function (pro
vided in the library): 

meanvar.tree() <- function(tree, xlab = "ave(y)", 
ylab = "ave(deviance)", ... ) { 

if{!inherits(tree, "tree")) 

} 

stop("Not legitimate tree") 
if (!is. null (attr(tree, "ylevels"))) 

stop("Plot not useful for probability trees") 
frame <- tree$frame 
frame <- frame [frame$var == "<leaf>", 
x <- frame$yval 
y <- frame$dev/frame$n 
label <- rov.names(frame) 
plot(x, y, xlab = xlab, ylab = ylab, type= "n", ... ) 
text(x, y, label) 
invisible(list(x = x, y = y, label = label)) 

This function uses only the frame component to produce a plot of the within-node 
variance (dev/n) versus the within-node average (yval) for numeric responses. The 
node number is used as the plotting character. This plot is useful for assessing the 
assumption of constant variability throughout predictor space. If trend is apparent 
in the plot, a reexpression of the response variable y is recommended for proper 
trees to be grown. 

The functions we provide are intended to make the task of modeling data with 
binary trees more pleasant and at the same time more powerful. The examples in 
the previous sections showed how the user might directly use these functions during 
an analysis. Of course, the functions can also be called by other functions and thus 
form the building blocks for more specialized functions or even more complicated 
manipulations of tree-based models. 

The single best example illustrating the power of using the functions as prim
itives in a more complicated function is given by the technique known as cross
validation. Specifically, consider the problem of selecting the optimal tree in a 
pruning or shrinking sequence. The general idea is that the deviances, used as 
a measure of predictive ability, for any of the trees in the sequence are far too 
optimistic-that is, too small-as they are based on the same data used to construct 
the tree. It would be better-that is, less biased-to use an independent sample 
with which to assess the predictive ability of any specific tree. Cross-validation 
is an attempt to do just this where the original dataset is carved into K mutually 
exclusive subsets, each of which will serve as an independent test set for trees grown 
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on learning sets composed of the union of the K - 1 remaining subsets. For each 
of the learning sets, a tree must be grown and a pruning or shrinking sequence 
determined. The corresponding test set must then be dropped down the trees in 
the sequence and some measure of goodness computed (e.g., misclassification error 
rate or deviance--we use the latter). These are then summed over the induced 
replications and displayed. An implementation is as follows: 

cv.tree <- function(tree, rand, FUN= shrink.tree, ... ) 
{ 

} 

if(!inherits(object, "tree")) 
stop("Not legitimate tree") 

m <- model.frame(object) 
p <- FUN(object, ... ) 
if(missing(rand)) 

rand<- sample(10, length(m[[1]]), replace= T) 

which <- unique(rand) 
cvdev <- 0 
for(i in which) { 

} 

tlearn <- tree(model = m[rand != i, ]) 
plearn <- FUN(tlearn, newdata = m[rand == i, ], p$k, ... ) 
cvdev <- cvdev + plearn$dev 

p$dev <- cvdev 
p 

Apart from some initialization steps, the function first sequences the original tree 
and assigns the result to p. In the for loop, we use two different high-level tree 
manipulation functions. We first use tree() to grow a tree to the learning model, 
m [rand ! = i, J . This is followed by a call to the sequencing function, shrink. tree () 
by default, to produce the sequence for the learning tree and to evaluate the sequence 
for the model containing the test data, m [rand == i, J . Finally, the deviances are 
summed across samples and returned for subsequent plotting. 

Other functions for tree-based modeling are included in the library that have 
not been explicitly mentioned in the text. Some are low-level utility functions that 
are called by the high-level functions accessed directly by the user. Others are high
level functions that are specialized for certain numerical or graphical purposes. The 
function basis. tree 0 is an example of the former whereby an orthogonal basis for a 
fitted tree is computed. There is one basis vector for each split and one for the root 
{th<! unit vector). A linear model fitted to this basis yields fitted values identical to 
tho~<! from the tree. This linear model representation of a fitted tree-based model is 
somPI.irnes useful for suggesting new methods for understanding trees (e.g., shrink
age <:Htimation.) The functions post.tree() and partition.tree() are examples 
of HP<•c:ial purpose graphics functions. The function post. tree 0 does not require 
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Figure 9.19: A display ofz.kyph[-c(5, 6)], a subtree ofz.kyph depending on the variables 
Age and Start. The plot was obtained with the expression partition.tree(z.kyph[-c(5, 

6)], label m "absent"). The data values appear on the plot as the plotting characters 
"-" and "+." These were added with the expression text (Age, Start, if else (Kyphosis 

=~ "absent'', "-", "+")). Three of the four regions are quite homogeneous; no apparent 
structure is discernible in the remaining one. 

activation of a graphics device, but rather that the user has access to a printer 
compatible with the PostScript page-description language. The trees displayed in 
Figures 9.3, 9.8, and 9.13 were produced by post.tree(). This "pretty printed" 
display of a tree uses uniform vertical spacing of nodes and is more appropriate for 
presentation than for diagnosis. 

The function partition. tree() is peculiar to trees that depend on at most two 
predictor variables. For a single predictor, partition.treeO displays the tree as 
a step function, each step corresponding to a terminal node of the tree. This 
display sacrifices the information in the tree object concerning the sequence of splits 
leading to the leaf nodes, but gains familiarity of expression when one regards y 
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as a function of x. The example in the right panel of Figure 9.1 was created with 
partition. tree(). For two predictors, partition. tree() displays the partition of 
the plane into homogeneous regions, each rectangular region corresponding to a 
terminal node of the tree. In certain cases it is possible to reconstruct the sequence 
of splits giving rise to the partition from the display, although this is not the primary 
intended purpose. An optional argument, label, allows the user to specify the 
labels associated with the partition, the default being the fitted value yval. For 
classification trees, a specific level of the response factor can be specified. Figure 9.19 
demonstrates a two-variable example based on the subtree z. kyph [ -c (5, 6)]. 

Certain enhancements to the display functions are desirable so that more in
formation can be displayed subject to the constraint of minimal overplotting. For 
example, the text() method for trees introduced in Section 9.2 allows an argument, 
FUN=, to encourage users to explore interactive labeling. Suppose a user had a func
tion, say brush(), which allowed one to paint on labels (say with button 1) as well 
as erase them (say with button 2). By paint we mean that buttons are depressed 
and held rather than simply clicked. Then one could selectively label a plotted den
drogram in those cases where unrestricted labeling would conceal the dendrogram 
itself. 

A somewhat different specific proposal that we considered was displaying a his
togram or a boxplot of the distribution of y at each node of the tree. This would 
allow comparison of scale and shape changes as nodes are split in addition to loca
tion differences, as is currently done. A function zoom. tree 0 might then be written 
so that selecting a node might zoom in or otherwise provide an enlargement of the 
histogram. This would necessitate some device-specific graphics functions, which 
we have attempted to avoid. 

9.4 Numerical and Statistical Methods 

Tree-based models are defined most precisely by the algorithm used to fit them. 
The algorithm attempts to partition the space of predictor variables (X) into ho
mogeneous regions, such that within each region the conditional distribution of y 
given a:, f(yix), does not depend on a:. We first present the algorithm and then 
discuss the three essential components as regards our implementation. 

Initialize: current node = root = { y; , i = 1, ... , n} 
stack= NULL 

Recurse: for current node =/= NULL 

Loop: for each xi partition x into two sets XLEFT and XRIGHT such that 
f(yiXLEFT) and f(yiX RIGHT) are most different 
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Split node: split current node into YLEFT and YRIGHT according to the x 1 
and the associated split that is best among all x's 

Test: if ok to split YnwHT 

push YRIGHT onto stack 

if ok to split YLEFT 

current node= YLEFT 

else pop stack 

Partitioning the Predictors 

Predictor variables appropriate for tree-based models can be of several types: fac
tors, ordered factors, and numeric. Partitions are governed solely by variable type 
and therefore do not require explicit specification by the user. 

If x is a factor, with say k levels, then the class of splits consists of all possible 
ways to assign the k levels into two subsets. In general, there are 2k-1-l possibilities 
(order is unimportant and the empty set is not allowed). So, for example, if x has 
three levels (a, b, c), the possible splits consist of albc, able, and blac. 

If x is an ordered factor with k ordered levels, or if x is numeric with k distinct 
values, then the class of splits consists of the k - 1 ways to divide the levels/values 
into two contiguous, nonoverlapping sets. These splits can be indexed by the mid
points of adjacent levels/values, which we call cutpoints. By convention, we implic
itly extend the range beyond the •observed data, so that at the left-most cutpoint, 
CL defines the split -co < x ~ cL, and similarly for the right-most cutpoint. Note 
that the values of a numeric predictor are not used in defining splits, only their 
ronks. Indeed, it is this aspect of tree-based models for numeric predictors that 
render them invariant under monotone transformations of x. 

Comparing Distributions at a Node 

We depart slightly from most previous authors on recursive partitioning methods 
in that our view is more closely akin to classical models and methods for regression 
and classification data. Our view is that we are estimating a step function r(x) 
that is simply related to a primary parameter in the conditional distribution of 
ylx. The likelihood function provides the basis for choosing partitions. Specifically, 
we use the deviance (likelihood ratio statistic) to determine which partition of a 
node is "most likely" given the data. The implementation is such that the type of 
the response variable is the sole determinant of whether a classification tree (factor 
response y) or a regression tree (numeric y) is grown. The current impl!lmentation 
ignores any possible ordering of an ordered factor response variable; arguably, this 
should be exploited in the fitting. 
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The model we use for classification is based on the multinomial distribution 
where we use the notation, for example, 

y = (0, 0, 1, 0) 

to denote the response y falling into the third level out of four possible. The vector 
J.L = (pl,P2,P3,P4), such that :EPk = 1, denotes the probability that y falls into 
each of the possible levels. In the terminology of Chapter 6, the model consists of 
the stochastic component, 

Y;"'M(J.L;), i = l, ... ,N 

and the structural component 
J.L; = r(:z:;). 

The deviance function for an observation is defined as minus twice the log-likelihood, 

K 

D(J.Lii y;) = -2 LYik log(p;k). 
k=l 

The model we use for regression is based on the normal (Gaussian) distribution, 
consisting of the stochastic component, 

Y;"'N(J.L;, 0"2 ), i = 1, ... , N 

and the structural component 
f:J.; = r(:z:;). 

The deviance function for an observation is defined as 

D(tJ.;iY;) = (y;- J.L;) 2 , 

which is minus twice the log-likelihood scaled by 0"2, which is assumed constant for 
all i. 

At a given node, the mean parameter J.L is constant for all observations. The 
maximum-likelihood estimate of fJ., or equivalently the minimum-deviance estimate, 
is given by the node proportions (classification) or the node average (regression). 

The deviance of a node is defined as the sum of the deviances of all observations 
in the node D(P,; y) = L D(P,; y;). The deviance is identically zero if all the y's are 
the same (i.e., the node is pure), and increases as the y's deviate from this ideal. 
Splitting proceeds by comparing this deviance to that of candidate children nodes 
that allow for separate means in the left and right splits, 

D(P,L, P,n; y) = L D(ii-L; y;) + L D(P,n; y;) 
L R 

The split that maximizes the change in deviance (goodness-of-split) 

AD = D(P,; y) - D(P,L, P,n; y) 

is the split chosen at a given node. 
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Limiting Node Expansion 

The above discussion implies that nodes become more and more pure as splitting 
progresses. In the limit a tree can have as many terminal nodes as there are obser
vations. In practice this is far too many, and some reasonable constraints should be 
applied to reduce the number. We use two different criteria for deciding if a node 
is suitable for splitting. Do not split: 

• if the node deviance is less than some small fraction of the root node deviance 
(say I%}; and 

• if the node is smaller than some absolute minimum size (say 10}. 

These limits are implemented through the arguments mindev and minsize, respec
tively, in the function tree. control (). The current defaults ar-e given above in 
parentheses. 

The default is quite liberal and will still result in an overly large tree with roughly 
N /10 terminal nodes. This is intentional and mimics "best current practice" in 
recursive partitioning methods. Indeed, the major problem of early tree-building 
algorithms was deciding when to stop expanding nodes. It was indeed critical as the 
tree was built in a forward stepwise manner, and once the final node was expanded, 
modeling was complete. The approach we adopt is not to limit node expansion in 
the tree-growing process. Instead, an overly large tree is grown, and one must decide 
which branches to prune off or find some other way account for overfitting (e.g., 
recursive shrinking). The difference in the approaches is similar to that between 
forward and backward stepwise selection of variables in linear models. Forward 
methods can be fooled when the best early split does not meet the criterion of 
splitting and tree growth is halted-when in fact this split is necessary to clear the 
field for very important succeeding splits. The example of looking for interactions 
in linear model residuals provides an illustration. 

The design of our functions had this concept in mind from its inception, pro
viding a simple interface to growing a large tree, while providing a collection of 
interactive functions to inspect nodes, identify observations, snip branches, select 
subtrees, etc. Our recommended approach to tree building is far less automatic 
than that provided by other software for the same purpose, as the unbundling of 
procedures for growing, displaying, and challenging trees requires user initiation in 
all phases. We now turn to another issue that also requires the user to get involved 
in the modeling process. 

9.4.1 Handling Missing Values 

Tree-based models are well suited to handling missing values and several possibili
ties exist for building trees and predicting from them in the face of NAs. For tree 
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building itself, the current implementation of tree() only permits NAs in predictor& 
and only if requested by the special na.actionO for trees, na.tree.replace(). Th~ 
effect of this function is to add a new level named "NA" to any predictor with 
missing values; numeric predictors are first quantized. The net effect of using 
na.tree.replace() is that the new variable is treated like any other factor as re
gards determination of the optimal split. If x has three levels (a, b, c), the candidate 
splits accommodating missing values are NAiabc, NAalbc, NAablc, NAblac, NAclab, 
NAbcla, and NAac!b. Other possible ways to adapt tree() to allow missing val
ues in ordinal and numeric variables would likely require changes in the underlying 
algorithm. 

As described earlier on page 392, the approach we adopt for prediction is that 
once anNA is detected while dropping a (new) observation down a fitted tree, the 
observation "stops" at that point where the missing value is required to continue 
the path down the tree. This is equivalent to sending the observation down both 
sides of any split requiring the missing value and taking the weighted average of 
the vector of predictions in the resulting set of terminal nodes. We chose this 
method over that based on so-called surrogate splits because we believe it to be 
less affected by nonresponse bia.'l. A surrogate split at a given node is a split on 
a variable other than the optimal one that best predicts the optimal split. If a 
new observation is being predicted that has a missing value on the split-defining 
variable, then prediction continues down the tree so long as there is data on the 
variable given by the surrogate split. 

We note in passing another function concerned with missing values., The function 
na.patternO enumerates the distinct pattern of missing values in a data frame, 
together with the number of occurrences. For example, 

> na.pattern(market.survey) 
0000000000 0000000011 0000000100 0000100000 0001000000 0010000000 

759 16 4 3 2 1 

0100000000 0100000011 0100010000 0100100000 0100110000 0101000000 
168 2 5 4 10 

0101100000 0101110000 0110000000 0110100000 0111110000 
8 2 2 12 

indicates that all but 241 observations were complete, and of these 168 had informa
tion missing on the second variable (income!) alone. The remaining 73 observations 
have a variety of patterns of missing values; of these, all but 26 have income among 
the missing fields. 
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9.4.2 Some Computational Issues 

It should be clear that a fair amount of computation is required to select the best 
split at a given node. The algorithm underlying tree-based models is computation
ally intensive. Although it is possible to implement it entirely in the S language, we 
chose instead to write several of the underlying routines in c. Most have to do with 
the actual tree-growing process (grov.c, splitvar.c, and vsplit.c), others are for 
sequencing (prune.c and shrink.c), another for efficient prediction (pred.c), and, 
finally, others for character manipulation (btoa.c) and printing labels (prlab.c). 
Most users will not have to deal with this underlying code, but there are cases 
where it is unavoidable and even desirable to modify code at this level for some 
desired effect. Ultimately, such changes need to be compiled and loaded into S. 

Our implementation is efficient in the sense that excessive computation is avoided 
by updating, whereby the assessment of split optimality (dD) is done incrementally 
after it has been done once for a particular split. FUrther computational improve
mentis possible for splits of factor predictors (where it is needed most!) provided 
that y is numeric or has at most two levels. If this is the case, then the average 
value of y in each level of the factor can be used to order the levels so that the 
best split is among the k - 1 contiguous splits after reordering. This fails for factor 
responses with more than two levels since it is unclear how a reordering is to be 
effected. 

9.4.3 Extending the Computations 

Tree-based models can be extended to response variables from the exponential fam
ily of distributions f(y; J.L) described in Chapter 6. This results in the class of gen
eralized tree-based models (GTMs), whereby the stochastic component of a response 
is assumed to be an exponential family member and the structural component is 
described by a tree structure. Thus, for exponential family distributions, there is 
a logic&~ progression of models of the structural component afforded by linear pre
dictors (GLMs, Chapter 6), additive predictors (GAMs, Chapter 7), and tree-based 
predictors ( GTMS). In principle, the extension is quite straightforward as the only 
change to the existing software is in the form of the deviance function. Note in 
particular that specification of a link function is not necessary since the estimate of 
J.L in each node is the within-node average for all exponential family distributions. 
However, link specification would be necessary in the event that an offset is used. 
More importantly, an offset induces iteration in the calculation of the within-node 
fitted value. For computational efficiency, one would determine splitting rules using 
an approximation to the deviance, say the score function, and only iterate to con
vergence once a candidate variable and splitting rule have been determined. This 
would increase the amount of computation by only a trivial amount relative to the 
current implementation for classification and regression. 
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Another possible generalization is the enlargement of the class of splitting rules 
allowed by our tree-growing algorithm. Specific possibilities include linear combi
nation splits for selected sets of numeric predictors, as well as boolean combinations 
whereby splits on individual factor predictors are ANDed and ORed to form a sin
gle split at a node. A convenient user interface is obtained by allowing a matrix 
data type in the formula expression supplied to tree(), such that columns of the 
matrix represent the individual variables to be combined: a matrix of numeric vari
ables for linear combination splits, and a logical matrix for boolean combination 
splits. Thus, splits for these variable types are defined implicitly just as they are 
for numeric predictors and factors. The computational complexity of such splitting 
is unwieldy, and only suboptimal selections using heuristics are likely to be feasible. 

Another interesting possibility is to consider hierarchical or conditional variables 
that are typical of surveys. For example, depending on whether or not a person is 
head of household, certain sections of a survey are not completed by the respondent. 
For others, the values for the entries in these sections are missing, not at random, but 
because of the structure ofthe instrument. Tree-based models are particularly adept 
at capturing these types of data since by decomposing the sample into homogeneous 
subgroups, the responses to the conditional part of these questions are appropriate 
once the primary variable has been used in a split. It would seem that a useful way 
to implement such variables is through an activation bit, which is on for all primary 
variables, but gets turned on for the secondary ones only when their primary variable 
is used in a split. 

Bibliographic Notes 

The introduction of tree-based models in statistics, particularly statistics for the 
social sciences, is due to Sonquist and Morgan (1964). An implementation of their 
ideas was realized in the computer program AID (Automatic Interaction Detection), 
which served to stimulate much subsequent research, such as THAID (Morgan and 
Messenger, 1973) and CHAID (Kass, 1980). These methods differed primarily in the 
stopping rules used to halt tree growth. 

The inclusion of a chapter on tree-based modeling in this book is due to the 
influence of the work on classification and regression trees by Breiman et al. (1984). 
Besides masterfully presenting the material to the mainstream statistical audience, 
they are responsible for several important pioneering ideas that have redefined the 
state-of-the-art of tree-based methods. The primary innovation was not to limit 
node expansion "in the tree-growing process. They recommended growing an overly 
large tree and spending one's effort deciding which branches to prune off. Their 
method of determining a pruning sequence, based on the concept of minimal cost 
complexity, forms the basis for the function prune. tree 0. Subsequent work by 
Chou et al. (1989) generalizes this concept to other tree functionals besides tree 
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size. Their other important innovation was the introduction of surrogate splits to 
provide a mechanism to grow trees and make predictions in the presence of NAs 
and also to provide a measure of variable importance. 

Our methodology parallels that of Ciampi et al. (1987) in the use of the like
lihood function as the basis for choosing partitions. This is a departure from that 
of Breiman et al. who use a variety of measures for tree growing and subsequent 
pruning. The precise definition of the shrinkage scheme discussed in Section 9.2 is 
also based on the likelihood (deviance) function. Recursive shrinking of tree-based 
models is a relatively new application of shrinkage estimators due to Hastie and 
Pregibon (1990). It has not been used as extensively as cost-complexity pruning 
nor have extensive comparisons been performed with it. 

The computational shortcut for' enumerating subset splits for factors and nu
meric responses dates back to Fisher (1958). This shortcut extends to binary re
sponses but not to factor responses with more than two levels. Chou (1988) suggests 
a heuristic that restricts search to a (possibly) nonoptimal set of partitions. The 
split produced by the heuristic gets closer to the optimal split as the number of the 
levels of the factor increase-exactly the case where exhaustive search is infeasible. 
The current implementation of tree() does not incorporate this heuristic. 





Chapter 10 

Nonlinear Models 

Douglas M. Bates 
John M. Chambers 

This chapter discusses the analysis of data using nonlinear models such as nonlinear 
regression, general likelihood models, or Bayesian estimation. 

Throughout this book, statistical models have been defined by a three-part 
paradigm: 

• a formula that specified the structural form of the models; 

• data that corresponded to the variables in the formula; 

• further specifications, such as probabilistic assumptions, that completed the 
definition of the model sufficiently to allow fitting. 

We first introduced the paradigm in Chapter 2, in a specialized form. For linear 
models, the formula could use a shorthand that omitted explicit mention of the 
parameters to be estimated and used special interpretations of some S operators 
to allow compact specification of commonly occurring models. The formula rep
resented an additive prediction from one or more terms. Further, the expressions 
for the terms, when evaluated using the data supplied, always produced vectors or 
matrices with elements or rows corresponding to the same set of observations. Use 
of data frame objects went along with this specialization of models. Subsequent 
chapters dealt with a variety of models more general than ordinary linear models, 
but which could still use the specialized version of the paradigm, along with some 
additional specifications. 

421 
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We now must use a more general interpretation of formulas, to deal with the 
more general models considered in this chapter. These model formulas contain the 
parameters of the model explicitly, no restrictions are put on the data, and the 
criteria for fitting the models are essentially unlimited. However, model formulas 
are often quite similar to the special cases, and data frames can still be used, often 
in an extended form. 

This generality does mean that the user needs to supply more information. 
In many examples, the computations will also be more difficult, and successful 
numerical solution to the estimation problem will not be guaranteed. So nonlinear 
models come with a cautionary warning that getting answers out may not be as 
easy as before. What one buys with the extra difficulty is a completely unrestricted 
range of models. While models of specialized types might be more convenient or 
numerically easier, if they conflict either with the data or with the subject-matter 
understanding of the problem, you should try to fit a model you believe to be more 
appropriate. Here are the techniques that may make that possible. 

The estimation techniques for nonlinear models differ from those in many other 
chapters in that the techniques to determine parameter estimates are explicitly it
erative. The desired parameter estimates are required to optimize some objective 
function, such as the sum of squared residuals or the likelihood function. The ad
vantage of using S for nonlinear model applications is that expressions and functions 
can be described easily in S. The basic paradigm remains: model formulas are S 
expressions, data are organized into data frames, and the functions of this chapter 
organize the information to set up and carry out the iterative fitting required. 

The primary S functions described in this chapter provide an interface to non
linear optimization routines and to nonlinear regression. We describe the use of 
these functions for some common types of nonlinear models, summaries of these 
models, and methods for studying the variability in the estimates. Some special 
cases, such as partially linear models, will be discussed. As in earlier chapters, the 
S functions and underlying software can be used for more advanced or specialized 
applications. The statistical summaries and diagnostics in this chapter are more 
rudimentary than in most earlier chapters, partly because the range of nonlinear 
models is so large that little statistical theory can be assumed. Applications with 
a more limited range of models may be able to design specialized summaries based 
on more specific assumptions. 

10.1 Statistical Methods 

The statistical models to be mnsidered use various general fitting criteria. In prac
tice, two kinds of criteria oceur most frequently: minimizing sums of contributions 
from observation::;, and the specialization of this to the case of nonlinear regression 
by least squares. Thenl arc plenty of other criteria, and the numerical techniques 



10.1. STATISTICAL METHODS 423 

of the chapter can be adapted to them, but these two organize the statistical in
formation from the model in a form that facilitates summaries and diagnostics. 
They also retain many of the concepts developed in earlier chapters, in extended or 
approximate form. 

Typical minimum-sum fitting criteria arise from probability models, in which 
parameters are estimated by maximizing the likelihood or by some other com
putationally similar criterion. A model in which n independent observations are 
distributed with probability densities p;(IJ) for some vector of parameters (} leads 
to maximum-likelihood estimation framed in terms of minimizing the negative log
likelihood: 

n 

1!(0) = ~) -log(p;(O))) 
i=l 

The individual probabilities generally depend, of course, on the data. 
As an example, consider some data on the results of table tennis matches. The 

United States Table Tennis Association assigns each of its members a numerical 
rating, based on the member's performance in tournaments. Winning a match 
boosts the winner's rating and lowers the loser's rating by some number of points, 
depending on their current ratings. The intuitive notion is that players with a 
higher rating should tend to win over players with a lower rating, and the greater the 
difference in rating, the more likely the higher-rated player is to win. Colin Mallows 
fitted a probability model to the results of 3017 matches to study the relation 
between rating and chance of winning. The model assumes a logistic distribution in 
which log(p/(1- p)) was proportional to the difference in rating between the winner 
and loser: 

eD;a 

Pi = 1 + eD;a (10.1) 

where D; = W; - L;, the difference between the ratings of the winner and loser of 
the ith match. This is about the simplest nontrivial model. It has one parameter, 
o, representing the effect of a unit difference in the ratings. The point of main 
interest was whether in fact this effect was the same for all levels of play, whatever 
the average rating of the two players. We can add this into the model with a second 
parameter. Letting R; = .5(W; + L;), 

eD;a+R;(J 

Pi = 1 + eD;a+R;(J 

To fit the model, we minimize the negative log-likelihood, 

(10.2) 

in the case of one parameter. This model is, in fact, treatable as a generalized linear 
model, as in Chapter 6. However, it is a very simple model presented as is, and will 
help to illustrate a number of techniques. 
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As a second example, consider the data presented in Chapter 1 on visible skips 
in an industrial experiment on wave soldering. We have already analyzed these data 
by a variety of models, but in fact only in this chapter can we tackle directly models 
that fully reflect the physical intuition and the observed behavior of the data, as we 
hinted at the end of Chapter 1. 

Physical theory and intuition suggest a model in which the process is in either 
a "perfect" or "imperfect" state. In the perfect state, no defects will occur. In 
the imperfect state, there may or may not be defects, manifesting themselves as 
skips in the soldering. Both the probability of being in the imperfect state and the 
distribution of skips in that state depend on the factors in the experiment. One 
form of the model can be described by postulating that some "stress" depending on 
the factor levels induces the process to be in the imperfect state and also increases 
the tendency to generate skips when in the imperfect state. 

For the ith experimental run, the corresponding factor levels determine a stress, 
say S;. The stress is itself a parametric function of the levels of the factors chosen 
for inclusion in the model, exactly as in Chapter 5. The stress is a linear function, 

p 

S; = Ex;;.B; 
i=l 

where .B is the vector of parameters resulting from some suitable coding of qual
itative factors (and possibly their interactions). The probability of being in the 
imperfect state is monotonically related to the stress by a logistic distribution: 

1 
1 + e-TS; 

As the stress increases, this probability approaches 1. Given that the process is in 
the imperfect state, the probability of k; skips is modeled by the Poisson distribution 
with mean, say~;: 

-.>.-~/· e •--
k;! 

For y; = 0, the probability that y = y; is the probability of the perfect state plus 
the probability of being in the imperfect state and having 0 skips. For y; > 0, it is 
the probability of being in the imperfect state and having y; skips: 

{ 
e-~s, e->.; 

p b( _ ·) _ l+e-~s, + l+e-~s, ro y - y, - 1 -.>.. ~ 
l+e-~s, e • A:;! 

if y; = 0 

if y; > 0 

The mean skips in the imperfect state is always positive and modeled in terms of 
the stress by 
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Since the stress is an arbitrarily-scaled linear function, we only need one scale! 
parameter, r, which we can apply to either the logistic or the Poisson part of the 
model. We can now proceed to estimate {3 and r by maximizing the likelihood, or 
equivalently by minimizing the negative log-likelihood. As in the previous example, 
we can write a formula for this in terms of the data and the parameters, from the 
probability specified above. The ith element of the negative log-likelihood can be 
written 

if Yi = 0 
if y; > 0 

(10.3) 

omitting expressions that do not involve the parameters of the model. This model 
does not reduce to any of the techniques of earlier chapters. Fitting it with sizable 
quantities of data is a challenging task. We will study it in the following sections; 
for a full discussion, see Lambert (1991). 

As a third example, consider a nonlinear regression model. Data from a biochem
ical experiment where the initial velocity of a reaction was measured for different 
concentrations of the substrate are given in the data frame Puromycin. The data 
came from two runs, one on cells treated with the drug Puromycin and one on cells 
without the drug. The three variables in the data frame are the concentration of 
the substrate, the initial velocity of the reaction, and an indicator of treated or 
untreated. The experimenters expected a Michaelis-Menten relationship between 
the reaction velocity and the concentration, modeled by 

V VmaxC =--+c
K+c 

(10.4) 

where V is the velocity, cis the enzyme concentration, Vmax is a parameter repre
senting the asymptotic velocity as c -+ oo, K is the Michaelis parameter and E is 
experimental error. Furthermore, they expected that the treatment with the drug 
would change Vmax but would not change K appreciably. 

By plotting velocity against concentration separately for the two levels of treat
ment, we can see the general pattern directly (Figure 10.1). The plot can be made 
as follows: 

> attach(Puromycin) 
> plot(conc, vel, type"'"n") 
> text(conc, vel, ifelse(state == "treated", "T", "U")) 

There does indeed seem to be a change in the asymptotic velocity for the two 
different runs. It is a little more difficult to tell about the Michaelis parameter, K, 
since it determines the shape of the curve. This parameter is the concentration at 
which the velocity becomes half the asymptotic velocity. 
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Figure 10.1: Initial velocity of the enzymatic reaction versus the concentration of the sub
strate. Treated and untreated runs are plotted as "T" and "U". 

By analogy with the linear model {Chapter 4), the parameter estimates Vmax 
and k can be chosen to minimize the sum-of-squares of the residuals: 

The parameter K enters the expression for the fit nonlinearly. The sum-of-squares 
criterion can be derived as a special case of a sum of contributions to the negative 
log-likelihood if we assume E in {10.4) is Gaussian with constant variance. Since the 
plot indicates that the variability for replicate observations is reasonably constant 
across the range of the data, the use of nonlinear least squares appears warranted. 
As with a linear model, nonlinear least squares estimates are often useful even when 
the error term is not assumed to be Gaussian with constant variance. 

Unlike the linear model, nonlinear regression needs starting estimates for the 
parameters. These can be obtained from the plot which suggests that Vmax is near 
200 for the treated cells and near 160 for the untreated cells. Since the value of K 
is the concentration at which V reaches Vmax/2, we expect this to be near 0.1 for 
both runs. 
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Examples such as these lead us to formulate models to be estimated either by 
minimizing a function (typically the negative log-likelihood) or by formulating a 
nonlinear least-squares criterion. As with linear models, maximum likelihood and 
nonlinear regression produce estimates for the parameter. In addition, the com
putations lead to a description of the objective function or the model surface in 
the neighborhood of the parameter estimates. Such descriptions can sometimes be 
used to give approximations to quantities such as the standard errors or correla
tions of the parameter estimates, as in earlier chapters. The theory supporting 
these approximations is weaker than for ordinary linear models, however. The ap
proximation used in nonlinear regression is to replace the nonlinear model by its 
linear Taylor series approximation at the parameter estimates and to use methods 
for linear statistical models on the approximation. These results are called the 
linear approximation results. For likelihood models, the distributional results are 
asymptotic; namely, maximum-likelihood estimates tend, for large samples, toward 
a normal distribution with mean equal to the true parameter and variance matrix 
given by the inverse of the information matrix, the negative of the matrix of second 
derivatives of the log-likelihood, given suitable regularity assumptions about the 
model. It is not possible to make any precise distributional statement in general 
about finite-sample distributions in either case. Statistical assumptions underlying 
any model need always to be questioned and tested; for nonlinear models, extra 
caution is called for. 

Nonlinear regression models are obviously special cases of the general minimum
sum fitting criteria, so one might think of them as redundant. The specialization 
is worthwhile, however, both because the numerical fitting in this case is often 
more efficient and because the direct use of the linearized approximation helps in 
summarizing the model. 

10.2 S Functions 

Now we proceed to describe and illustrate the software for fitting and summarizing 
nonlinear models. Section 10.2.1 presents the functions that fit the models; this 
section needs some careful reading, even if you are familiar with earlier chapters, 
because of the more general form of nonlinear models. Section 10.2.2 covers the 
summary and diagnostic functions. Section 10.2.3 discusses a topic specific to this 
chapter: the computation of derivatives for nonlinear models. Section 10.2.4 extends 
the summary techniques to profiling, refitting the model with some parameters held 
fixed, to show the variability of the parameter estimates more directly. Finally, 
Section 10.2.5 covers an important special case of nonlinear regression, in which 
some of the parameters enter linearly. 
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10.2.1 Fitting the Models 

This chapter has two fitting functions, one for general minimization models and one 
for nonlinear regression. In typical use, they both have three arguments, specifying 
the model, the data, and starting estimates for the parameters. 

ms(formula, data, start) 
nls(formula, data, start) 

As usual, these functions return objects describing the fitted model. The formula 
argument gives the structural form of the model. If provided, data is a frame 
containing the data referenced in the model. The optional argument start specifies 
starting values for the parameters to be estimated. The object returned has class 
"ms" or "nls". Each of the three arguments involves some new ideas, so let's consider 
them in turn. 

Formula 

The formula in nonlinear models is an expression in S, involving data, parameters 
in the model, and any other relevant quantities. As in earlier chapters, the operator 
""marks off the prediction and, for nonlinear regression, the response. For instance, 
the nonlinear regression model (10.4) on page 425 can be written: 

vel "" Vm•conc/ (K + cone) 

As usual, we read this as: "Model vel as ... ". Also as usual, the left and right sides 
of the ""represent response and predictor. The key difference, however, is that the 
expression on the right includes all the parameters as well as the data. The formula 
contains both variables like vel and cone, and parameters like Vm and K. This must 
be so since we no longer assume a linear or additive model that would define the 
coefficients implicitly. When operators like + or I appear in nonlinear formulas, 
they mean just what they mean in ordinary S expressions; they do not imply the 
special shorthand used in formulas in earlier chapters. 

Minimization models have no explicit response. Instead, the formula is written 
with the"" symbol at the left. In the table tennis example, equation (10.2) on page 
423 corresponds to a model formula 

"" - D • alpha + log( 1 + exp( D • alpha) ) 

where D is a variable in the data and alpha is the parameter to fit. This can be read 
the same way as the previous formula: "Model as -D • alpha ... ". 

What specifically do these formulas compute? The nonlinear least-squares for
mula defines the response as the left operand of "' and the prediction as the right 
operand. These must evaluate to numeric objects of the same length. The nlsO 
function tries to estimate parameters to minimize the sum of squared differences 
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between response and prediction. The function nla 0 can also handle formulas 
where only the right side of the ~ operator is supplied. In this case the formula is 
interpreted as the residual vector. See St!(:f.ion 10.3.3 fol' nn example. 

The minimization formula computes some numeric v•wlor, and 1118 () estimates 
parameters to minimize the sum of this vector. The •~oncept here is linked to 
maximum-likelihood models, with the formula defined to eompute the vector of 
elements of the negative log-likelihood, as t.he examples will illustrate. The com
putational form, however, does not depend on this concept.. The elements can be 
anything and there need not be more than one of them, so that any optimization 
problem can be presented toms(). The advantage of having individual elements 
is only that they may be convenient for purposes of summaries and diagnostics, if 
they help to point out the contribution of individual observations. 

The evaluated model formulas can include derivatives with respect to the param
eters. The derivatives are supplied as attributes to the vector that results when the 
right operand of ~ is evaluated. The derivative values are used by the fitting algo
rithms. When explicit derivatives are not supplied, the algorithms will use numeric 
approximations. These approximations usually increase the amount of computation 
needed and sometimes may introduce numeric problems. Accurate derivatives are 
sometimes crucial to success in numerical estimation for nonlinear models. However, 
expressions for derivatives are often difficult to get right. If you can try out some 
initial examples without computing derivatives, you will get a feeling for nonlinear 
models more easily. Section 10.2.3 explains how to supply derivatives and provides 
some tools to help construct the necessary expressions. 

Data; Parametrized Data Frames 

In most nonlinear modeling, the relevant data include not only variables similar 
to those encountered earlier, but also other quantities such as initial estimates for 
parameters or fixed values occurring in the model formula. These should usually go 
along with the data but they are not columns of the data frame. For this purpose 
parametrized data frames are convenient. These were introduced in Section 3.3.4. 
The function parameters() can be used to extract or to set the parameter attributes 
of a data frame to any list of named values. Setting parameters automatically pro
motes the data frame to be a pframe object. Attaching such an object automatically 
makes the parameters, as well as the variables, available for computation by name. 

Parameters of a data frame can appear anywhere in a model formula. Unlike 
variables, however, parameters can have any length or mode, and no checking or 
coercion is done. For example, the table tennis model needed to estimate alpha and 
p. If some computations have produced aO and p0 as initial values that we would 
like to carry along with the pingpong data frame, they will be set as follows: 

> parameters(pingpong) <- liat(alpha = aO, p = pO) 
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This assignment turns pingpong into a pframe object. Another, perhaps more typi
cal, approach to introducing starting estimates as parameters is shown on page 431. 
Throughout this chapter, when we refer to a data frame we expect that in fact this 
will be a parametrized data frame. 

Starting Values; Identifying Parameters 

The fitting functions nlsO and msO have to know which names in the formula 
correspond to parameters to be estimated. Starting values must be supplied for 
these parameters. The functions apply the following two rules: 

1. If the argument start is supplied, its names are the names of the parameters 
to be estimated, and the values are the corresponding starting estimates. The 
object can be either numeric or a list; in the latter case, more than one value 
can be associated with each name. 

2. If start is missing, the parameters attribute of the data argument defines the 
parameter names and values. 

We recommend using an explicit start argument to name and initialize parameters, 
for most applications. You can easily see what starting values were supplied and, 
as we will show, you can arrange to keep particular parameters constant when 
that makes sense. Keeping the starting values with the data frame is sometimes 
convenient and acceptable as an alternative. 

Examples 

A nonlinear regression corresponding to (10.4) can be fitted to the treated data in 
the Puromycin frame as follows: 

>Treated<- Puromycin[Puromycin$state == "treated", 
> Purfitl <- nls(vel ~ Vm•conc/(K +cone), Treated, 
+ list(Vm = 200, K = 0.1)) 

Treated is a new data frame with only the treated observations from Puromycin, 
and the start argument is a list with two elements for the two parameters to be 
estimated. 

Let's look at a sec.ond example, and illustrate typical calculations to come up 
with starting estimates. To fit the model for the table tennis data, we need an 
initial estimate for alpha. A very crude estimate would come from replacing all the 
differences in ratings by ±cl, where cl is the mean difference, say. Then for each 
match, the probability from the model that the winner had a higher rating always 
satisfies 

d• Q = log(p/(1 - p)) 
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We can solve this for an initial estimate of o if we replace p by the observed frequency 
with which the player with the higher rating wins. 

The difference in the ratings, say D, will be required every time we evaluate 
the likelihood, so it pays to precompute it and save it in the data frame. Initially, 
the frame contains only the ratings of the winner and loser, along with a category 
identifying the matches. The following calculations turn it into a parametrized data 
frame with an additional variable and two parameters. 

> param(pingpong, "p") <- 0 
> attach(pingpong, 1) 
> D <- winner - loser 
> p <- sum(vinner>loser)/length(winner) 
> p 
[1) 0.8223401 
> alpha <- log(p/(1-p))/mean(D) 
> alpha 
[1] 0.007660995 
> detach(1, save = "pingpong") 

The first assignment just converts the data frame into a pframe, if it wasn't before. 
Now we attach it as the working data and do some calculations to create D, alpha, 
and p to provide the new variable and the initial values for the fitting. Detaching 
and saving will convert the latt_er two to parameters, since they are of the wrong 
length to be variables. Saving back on top of the original data frame is rather bold, 
and we don't recommend it as a general practice. We can now proceed to fitting 
with ms(), omitting the start argument, since we arranged for the parameters to 
be in the data frame. 

Where a nonlinear model is at all complicated, you should organize it as a simple 
expression involving one or more S functions that do all the hard work. Even in 
this simple example, a little preliminary work will be worthwhile. Notice that 
the expression D * alpha appears twice in the formula on page 428. We can write a 
general function for the log-likelihood in any similar model in terms of this quantity. 

lprob <- function(lp)log(1 + exp(lp)) - lp 

If you have read the chapter on generalized linear models, you may recognize D * 
alpha as the linear predictor. If we added more terms and more parameters to our 
model, the argument to lprobO would be expanded accordingly, but lprob() would 
not change. 

Isolating the nontrivial computations in a separate function is slightly more 
efficient in most cases, but more importantly it lets us concentrate on those compu
tations and see where some care needs to be taken. Even in this model, some care 
is indeed needed, as we will note later. For the moment, however, we can plunge in: 

> fit.alpha <- ms( ~ lprob(D *alpha), pingpong) 
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> fit.alpha 
value: 1127.635 
parameters: 

alpha 
0.0111425 

formula: "' lprob(D * alpha) 
3017 observations 
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call: ms(formula ="' lprob(D *alpha), data= pingpong) 

We will come back to look in more detail at this fit in Section 10.2.3. 

10.2.2 Summaries 

As with fitted model objects in previous chapters, there is a special printing method 
for ms and nls objects that prints out the information in the object suitable for 
looking at directly. The output from printing the fit was illustrated above. There 
are also summary() methods for both classes of objects. 

Fitting the treated data from the Puromycin data frame produced the model 
PurfitL Suppose Purfit2 is the result of fitting the same model to the untreated 
data from the same source. The two summaries for these models are: 

> summary(Purfit1) 
Formula: vel "' (Vm * conc)/(K + cone) 
Parameters: 

Value Std. Error t value 
Vm 212.6830000 6.94709000 30.~1460 
K 0.0641194 0.00828075 7.74319 

Residual standard error: 10.9337 on 10 degrees of freedom 
Correlation of Parameter Estimates: 

Vm 
K 0.765 
> summary(Purfit2) 
Formula: vel "' (Vm * conc)/(K + cone) 
Parameters: 

Value Std. Error t value 
Vm 160.2770000 6.48000000 24.73400 
K 0.0477027 0.00778116 6.13054 

Residual standard error: 9.773 on 9 degrees of freedom 
Correlation of Parameter Estimates: 

Vm 
K 0.777 
> (0.0641194 - 0.0477027)/sqrt(0.00828075h2 + 0.00778116A2) 
[1] 1. 444753 

The last calculation shows that the difference in the fitted values of K is about 1.5 
times its standard error, so the experimenters' feeling that treatment with the drug 
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should not change K may be warranted. We should check this by actually fitting 
data from both runs using a common K, as follows: 

> Purboth <- nls(vel ~ (Vm + delV•(state=="treated"))•conc/ 
+ (K +cone), Puromycin, list(Vm=160, delV=40, Ke0.05)) 
> summary(Purbotb) 
Formula: vel~ ((Vm + delV•(state=="treated"))•conc}/(K + cone) 
Parameters: 

Value Std. Error t value 
Vm 166.6030000 5.80737000 28.68820 

delV 42.0254000 6.27209000 6.70038 
K 0.0579696 0.00590999 9.80875 

Residual standard error: 10.5851 on 20 degrees of freedom 
Correlation of Parameter Estimates: 

Vm delV 
delV -0.5410 

K 0.6110 0.0644 
> combinedSS <- sum(Purfit1$resA2) + sum(Purfit2$resA2) 
> Fval <- (sum(Purboth$resA2) - combinedSS)/(combinedSS/19) 
> 1-pf(Fval, 1, 19) 
[1] 0. 2055524 

A detailed explanation of the statistical evaluation of whether the Ks could be equal 
is beyond the scope of this book. Briefly, we can say that the last three calculations 
are to determine the p value for an F-test of identical Ks versus different Ks. Since 
the p value is 20%, the identical Ks appear reasonable. 

Further study of nonlinear models often involves calculations specific to the 
particular model. General statistical techniques such as Monte-Carlo sampling, re
sampling, and cross-validation are particularly valuable for nonlinear models. The 
technique of profiling--refitting holding all but one of the parameters constant-is 
another important mechanism. Its application to nonlinear regression is described 
in Section 10.2.4. These techniques differ from the asymptotic summaries in the 
important sense that they can provide some direct, although approximate, infor
mation about the behavior of the model in finite samples. The price is that these 
techniques nearly always require much more computation. 

10;2.3 Derivatives 

Numerical methods for fitting nonlinear models typically can make use of the deriva
tives of the objective function (in optimization) or of the predictor (in nonlinear 
least-squares) with respect to the parameters to be estimated. While the algo
rithms can proceed by using numerical estimates of these derivatives instead, these 
numerical estimates typically require more computation. Particularly in the case of 
models with many parameters, figuring out the derivatives analytically often speeds 
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up the computation. Even if efficiency is not a concern, numerical accuracy may 
still suffer when the derivatives are estimated numerically. Some examples fail to 
converge numerically if the derivatives are not computed analytically. So providing 
analytical derivatives may be necessary: it is also a frequent source of aggravation 
and human error. Fortunately, some computing tools are available that make the 
work somewhat easier and the errors somewhat less likely. 

Let's go back to the negative log-likelihood for the table tennis example, in its 
simplest form: 

L log( I + eD'o:) - Dio 

The corresponding S formula was 

~ log( 1 + exp( D • alpha) ) - D • alpha 

Differentiating with respect to o and simplifying a little gives 

and the corresponding S expression would be: 

-D I ( 1 + exp( D • alpha) ) 

This model has only one parameter; usually, there would be derivatives for each of 
the parameters in the model. Keep in mind that evaluating the' formula in a data 
frame with n observations produces the vector of n values, whose sum is the negative 
log-likelihood. Similarly, evaluating the derivative expression gives n values for each 
parameter. The gradient expression for a model with p parameters should evaluate 
to an n by p matrix. This is the same shape as a matrix corresponding to p numeric 
x variables in a linear model. In fact, the gradient matrix in a nonlinear model 
plays the role of a "local" linear model in many respects, as we will see. 

The gradient is supplied to the nonlinear fitting functions as an attribute. The 
attribute can be attached directly to the formula; for example, 

> fg.alpha <- ~ log( 1 + exp( D • alpha) 
> attr(fg.alpha, "gradient") <- ~ -D I ( 
> fg.alpha 
~ log(1 + exp(D • alpha)) - D • alpha 

Gradient: -01(1 + exp(D • alpha)) 

- D • alpha 
1 + exp( D • alpha) 

The object fg.alpha has class "formula" and can be supplied to msO as the formula 
in fitting our table tennis model. The presence of the gradient attribute tells msO 
to use derivatives. 

Most models are too complicated to write out the expression for the values and 
the gradient explicitly. In this case, as we illustrated before, one writes a function 
that captures the computations for the model, often in a more general form so the 
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same computations can be used in other, similar models. Gradients follow along in 
this case in just the same way: the function should return a value for the model 
as before, but attach to it an attribute containing the gradient matrix. Consider 
our function lprob() on page 431. We can arrange for it to compute the derivative 
with respect to alpha as well. By observing the expression for the gradient, we note 
that it can be computed from the quantities used in the previous version, plus the 
same quantity that appeared as the multiplier of alpha. This leads to the following 
function: 

lprob2 <- function(lp, X){ 
elp <- exp(lp) 
z <- 1 + elp 
value <- log(z)-lp 
attr(value, "gradient") <- -X/z 
value 

Here lp is again the linear predictor and X is, in general, the data in· that linear 
predictor. In our one-parameter example, it reduces to D. Notice that z was used 
for both the value and the gradient. Such gains in efficiency are common, and 
are one reason to prefer computing derivatives where possible. With the gradient 
computations carried out inside lprob2 0, we will not be giving a separate gradient 
expression in the explicit formula. Instead, the model-fitting functions will look 
at the evaluated model for a gradient attribute and behave appropriately. Given p 
parameters and n observations, the gradient needs to be an n by p matrix-not a 
problem in this case, since the corresponding X will be a matrix of that dimension. 
Generally, gradient computations need to take some care to get dimensionality 
correct. 

The fitting algorithm for minimization can use second derivatives of the model 
as well. The procedure is entirely analogous: in this case, an attribute "hessian" 
is provided as well as the "gradient" argument. The hessian expression should 
produce an n by p by p array of computed second derivatives. Here's how it works: 

lprob3 <- function(lp, X){ 
elp <- exp(lp) 
z <- 1 + elp 
value <- log(z) - lp 
attr(value, "gradient") <- -X/z 
if(length(dx <- dim(X))==2) { 

n <- dx[1]; p <-dx[2] 
} 
else { n <- length(X); p <- 1} 
xx <- array(x, c(n, p, p)) 
attr(value, "hessian") <- xx • aperm(xx, c(1, 3, 2)) • elp/z"2 
value 
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Need we add that all the cautions about checking the computations apply to com. 
puting second derivatives as well, only more so? 

The mathematics required to compute the gradient in most models encountered 
in practice will be a good deal harder than it was in these examples. Computing 
tools should be used to assist in this chore, even though they cannot take over com
pletely. Two kinds of assistance are available: symbolic differentiation of S expres
sions and routines to approximate derivatives numerically. Symbolic differentiation 
does not work on all expressions and the results nearly always need to be examined 
to see potentially faster computations, but it can be a useful starting point that 
saves human error. Comparing numerical approximations to the evaluated versions 
of the exact gradient expression will catch most remaining errors. 

A symbolic differentiation function, DO, was defined in an example in ~ (page 
298). It returns an expression representing the derivative of its first argument with 
respect to the name or names specified in its second argument. Let's see what it 
can do with our formula: 

> D( substitute(log(l+exp(D*alpha)) - D*alpha), "alpha") 
(exp(D * alpha) * D)/(1 + exp(D * alpha)) - D 

Not too bad, but as is typical, this is the expression without "simplifying a little". 
For nonlinear models, we provide a somewhat more sophisticated version of sym

bolic differentiation via the function deriv(). This does some of the elimination of 
common expressions in the formula and its gradient. It also produces an expression 
in the form expected for nonlinear models. 

> formula! <- ~ log(1+exp(D*alpha))-D*alpha 
> deriv(formulal, "alpha") 
expression({ 

} 
) 

.exprl <- D * alpha 

.expr2 <- exp(.exprl) 

.expr3 <- 1 + .expr2 

.value<- (log(.expr3)) - .exprl 

.grad<- array(O, c(length(.value), 1), list(NULL, "alpha")) 

.grad[. "alpha"] <- ((.expr2 * D)/.expr3) - D 
attr(.value, "gradient") <- .grad 
.value 

The value of derivO is an S expression object. Evaluating this expression will 
produce both the formula value and its gradient, with most of the common subex
pressions evaluated only once. Alternatively, derivO will create a function object 
that, when called, produces the appropriate values and gradients. To do this, give 
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derivO a third argument that identifies the names of the arguments to the func
tion you want to create. In our example, let's produce a function lprobg(), with 
arguments D and alpha, to evaluate formula1 and its derivative: 

> lprobg <- deriv( formula!, "alpha", c("D", "alpha")) 
> lprobg 
function(D, alpha) 
{ 

} 

.expr1 <- D * alpha 

.expr2 <- exp(.exprl) 

.expr3 <- 1 + .expr2 

.value <- (log(.expr3)) - .expr1 

.grad<- array(O, c(length(.value), 1), list(NULL, "alpha")) 

.grad[, "alpha") <- ((.expr2 * D)/.expr3) - D 
attr(. value, "gradient") <- . grad 
.value 

The third argument could also have been a function definition. This acts as a 
dummy version of the function to be returned, and is useful if we want to give 
default values to the arguments. For example, 

deriv(formulal, "alpha", function(D=1, alpha=O)NULL) 

will produce a function with the default values as shown. The body of the function 
in the argument is irrelevant. Comparing lprobg() to lprob2() above shows that, in 
this example, the mechanical derivatives do nearly as well as the hand-coded ones 
(and without the errors humans tend to produce). The expressions generated by 
derivO use names beginning with "." to avoid conflicting with names chosen by 
the user. For more complicated problems, it is sometimes possible to do a better 
job of coding the derivatives "by hand" but the expressions from derivO provide a 
good starting point for determining the derivatives yourself. 

The second argument to derivO can be a vector of parameter names: 

> deriv(vel "' Vm * (conc/(K + cone)), c("Vm", "K")) 
expression({ 

}> 

.exprl <- K + cone 

.expr2 <- conc/.expr1 

.value <- Vm * .expr2 

.grad<- array(O, c(length(.value), 2), list(NULL, c("Vm", "K"))) 

.grad[, "Vm"] <- .expr2 

.grad[. "K") <- - (Vm * (conc/(.expr1"2))) 
attr(.value, "gradient") <- .grad 
.value 
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The symbolic differentiation interprets each parameter name as a scalar. F\mc
tions such as lprob2() on page 435 cannot be produced directly from derivO; the 
generalization from a scalar to a vector parameter must be done by hand. 

Use of parentheses can help derivO to isolate relevant subexpressions. This is 
desirable if you know that the subexpression will appear as part of the gradient. 
In our example, we put a redundant set of parentheses around conc/(K + cone), 
forcing this to be a single expression, since this expression is the derivative with 
respect to Vm. 

10.2.4 Profiling the Objective Function 

The methods presented in Section 10.2.2 for assessing the uncertainty in the parame
ter estimates were based on a local quadratic approximation to the log-likelihood, or 
a local linear approximation to the nonlinear least-squares predictor. In both these 
cases, the approximation results in a local quadratic approximation to the objective 
function, which is either the negative log-likelihood or the residual sum-of-squares. 

A more accurate picture of the uncertainty in the parameter estimates can be 
obtained by examining the objective function directly. When there are only two 
parameters, contours of the objective function can be plotted by generating a grid 
of values and using the contour function in S. When there are more than two pa
rameters, direct examination of the objective function becomes much more difficult. 
Fixing, all but two of the parameters at their estimated value and creating a grid 
of the objective function by varying the remaining two gives a "slice" through the 
higher-dimensional contour. However, this is not the appropriate computation. 
When assessing the uncertainty in the parameter estimates we usually want to see 
the projections of the higher-dimensional contour instead of such slices. 

Although getting two-dimensional or three-dimensional projections of the ob
jective function contours would often be too time consuming, in most cases it is 
feasible to look at one-dimensional projections or profiles of the objective func
tion. These 1:an be used to reconstruct some of the important features of the two
or three-dimc~nsional projections; in particular, the extent of the cqntours can be 
determined. 

To profile l.he objective function, we choose a parameter, say delV in the last 
example of S•dion 10.2.2, and fix it at a value different from the estimate, say 40 
instead of 42 1125. We then optimize the objective with respect to the remaining 
parameters: 

> Pur.pro •- Puromycin 
> parametbrA(Pur.pro) <- list(delV = 40) 
> Pur .40 < nls(vel ~ (Vm +delV•(statezoa"treated")) •conc/(K + cone), 
+ Pur.pro, list(Vm • 160, K ,. 0.05)) 
> sum(Pur.4ueres"2) 
[1] 2252.661 
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The minimum residual sum-of-squares with de 1 V = 40 is greater than at the least
squares estimate, as it should be: 

> sum(Purboth$resA2) 
[1] 2240.891 

By repeating the procedure of fixing del Vat a value and minimizing the objective 
function with respect to the other parameters, we could build up the table 

delV profile.SS 
[1,] 36.00000 2344.253 
[2,] 38.00000 2286.983 
[3,] 40.00000 2252.551 
[4,] 42.02542 2240.891 
[5,] 44.00000 2251.934 
[6,] 46.00000 2285.585 

Plotting these values shows that the profile sum-of-squares is very close to quadratic 
over this range. 

Since it is easier to evaluate deviations from straight line behavior than to evalu
ate deviations from quadratic behavior, the profiled objective function is converted 
to the "signed square-root" scale. If we write the profiled objective as S and the 
parameter as (}, the converted profile is 

sign((}- o)..j s- s (10.5) 

When the objective is quadratic in the parameters, this quantity will be linear in 0. 
For the special case of the linear regression model, scaling (10.5) by 1/s produces 

the t statistic for the parameter 0. By analogy, when S is the residual sum-of-
squares, we use 

T = (sign((}- O)..j 8- S) js 

as the nonlinear t statistic. If S is the negative log-likelihood, then 

(=sign((}- O)V S ~ S 

would be the analogue of the z statistic for 0. Even if neither of these statistical 
interpretations holds, (10.5) provides a way of visually assessing the validity of the 
quadratic approximation. In addition, it provides an empirical transformation of 0, 
say by fitting a spline to the (0, () pairs, under which the objective function is much 
closer to being quadratic. This can be useful for Monte-Carlo techniques such as 
importance sampling. 

The function profile is used to automate the process of creating the profiles. 
The arguments are: 
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• the object returned by msO or nls(); 

• the index of the parameter or parameters to be profiled; 

• a vector of initial step sizes; 

• a cut-off value on the scale of ( for an ms object or T for an nls object to 
indicate the magnitude at which the profiling should be terminated. 

This function returns a list of data frames corresponding to the parameters being 
profiled. Each data frame contains a variable for the ( (or r) values and a ma
trix variable containing the parameter values. The values of the parameters being 
optimized are called the profile traces. These provide additional valuable informa
tion about the behavior of the objective function and can be used to reconstruct 
two-dimensional projections of contours of the objective (Bates and Watts, 1988, 
Appendix 6). 

When the object from the nonlinear fit contains enough information to construct 
a quadratic approximation to the objective function, defaults are available for the 
step sizes and the cutoff. The indices always default to selecting all the parameters. 
The default profile for the Purboth fit is as follows: 

> Pur.pro <- profile(Purboth) 
> names(Pur.pro) 
[1] "Vm" "delV" "K" 
> plot(Pur.pro) 

The plot produced by the plotting method for profiles is shown in Figure 10.2. For 
each parameter being profiled, the method plots the r or ( value for each fit against 
the corresponding parameter value, using a smooth curve through the fitted points. 

10.2.5 Partially Linear Models 

We have said that all the parameters in a model must be given initial estimates, 
either through the start argument or within the data frame. This is not always the 
case in nonlinear least squares. There is an alternate form of the nlsO function 
for partially linear regression models where some of the parameters appear linearly 
in the predictor. When values for the other parameters are chosen, the conditional 
least squares estimates for these linear parameters can be easily calculated using 
linear least squares. This is done automatically for the starting values and at every 
other stage in the iterations. 

The Michaelis-Menten model is an example of a partially linear model since 
the parameter Vmax behaves as a linear parameter. We can refit the model to the 
treated enzyme data as shown on page 430: 
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Figure 10.2: The profile of the three-parameter fit Purboth shoum on page 433. Each of 
the three panels shows the fit, on the square-root scale (r }, when the parameter on the 
:&-axis ranges over the values shown, and the other two parameters are optimized. Over 
this range, the model appears linear in delV, nearly so in Vm, and slightly less so inK. The 
cross (+) shows the global fit. 

>Treated<- Puromycin[Puromycin$state == "treated", 
> Purfit.pl <- nls(vel ~ conc/(K +cone), Treated, 
+ list(K = 0.1), alg = "plinear") 
> Purfit.pl 
Residual s~-of-squares : 1195.449 
parameters: 

K .linl 
0.06411777 212.6815 

formula: vel ~ conc/(K + cone) 
12 observations 

Although it appears that K is the only parameter being varied, the current optimal 
value of Vmax is being used at each iteration and is available after convergence. 
Since this parameter is an implicit parameter, it is given the name .linl. More 
details on the actual algorithm are given in Section 10.4. 

The formula is interpreted slightly differently for partially linear models. The 
expression on the right of the ....., must evaluate to a vector or a matrix. If it is a 
vector, it is implicitly converted to a matrix with as many rows as the length of the 
response on the left. 

Another example may make this clearer. The data frame Lubricant contains 
the logarithm of the viscosity of a lubricant at various temperatures and pressures 
(Bates and Watts, 1988, Appendix Al.8), as shown in Figure 10.3: 

> attach(Lubricant) 
> unique(tempC) 
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[1] 0.00000 25.00000 37.77778 98.88889 
> plot(pressure, viscos, type = "n") 
> text(pressure, viscos, match(tempC, unique(tempC))) 
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Figure 10.3: Logarithm of the viscosity of a lubricant versus pressure for different temper
atures. 

The experimenters proposed a model of 

where v is the log viscosity, p is the pressure, and T is the temperature (Celsius). 
Six of the parameters ( 81. 93 , 84 , ••• , 87 ) behave linearly. Since the expression for 
the model is more complicated than we would want to type in a call to nls 0, we 
define a function that returns a vector of the multipliers of these parameters: 

Lub.mod <- function(temp, press, t2, t8, t9) 
{ 

efac <- press • exp(( - temp)/(t8 + t9 • pressA2)) 
c(1/(t2 +temp), press, pressA2, pressA3, efac, efac • pressA2) 
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There are 53 observations of the viscosity. The value returned by this function has 
length 318 = 53 x 6, giving a 53 by 6 model matrix for the 6 linear parameters. 

To fit this model we only need initial estimates for the nonlinear parameters 02 , 

Os, and (}g. Even guessing just these three could be difficult, however, and we have 
to make some coarse approximations. Roughly we could say that 02 must be of the 
same order of magnitude as the temperature to have any effect. Very small values 
of 02 will be dominated by T in {}z + T. Very large values of 02 will dominate T 
and change the model to a different form. Using this reasoning, we could start (}2 

at 100. Similar reasoning would give a value around 100 for (}8 • Turning to (}9 , it 
is not even clear if this parameter should be positive or negative. We may start it 
out at 0 and see what happens. Adding these as parameters to the data frame, we 
can try to fit the model: 

> parameters(Lubricant) <- list(t2 = 100, tS = 100, t9 = 0) 
> Lubfit <- nls(viscos ~ Lub.mod(tempC,pressure,t2,t8,t9), 
+ Lubricant, alg -= "plinear") 
Error in call to "nls": singular gradient matrix 
Dumped 

This failed to converge. If we repeat the call to nls with tracing enabled (see 
Section 10.3.1), we find that even though the sum-of-squares is being reduced, the 
parameter tS is taking on unreaso~able values. Eventually, the gradient matrix 
becomes singular. · 

Our coarse starting estimates are inadequate and must be refined. We can use 
nlsO to help up do this by keeping some of the parameters fixed while refining the 
values of the others. For example, we could see if 100 is actually a good estimate 
for (}2 in the lubricant data when Os = 100 and (}9 = 0. Since the parameters listed 
in the start argument override the parameters in the data frame, we do not need 
to modify the data frame; we simply list the parameters that we want to be varied 
in the start argument. The others will retain their values from the data frame. For 
example, 

> Lubfit <- nls(viscos ~ Lub.mod(tempC,pressure,t2,t8,t9), 
+ Lubricant, list(t:.! = 100), alg = "plinear") 
> Lubfit$parameters 

t2 .. . 
218.979 .. . 

It appears that the value of (}2 should be closer to 200 than to 100. Next we optimize 
over both 02 and (}8 , then finally over all three nonlinear parameters: 

> Lubfit <- nls(viscos ~ Lub.mod(tempC,pressure,t2,t8,t9), 
+ Lubricant, list(t2•219, t8•100), alg = "plinear") 
> Lubfit$parameters 

t2 t8 ... 
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209.514 47.7296 ... 
> Lubfit <- nls(viscos ~ Lub.mod(tempC,pressure,t2,t8,t9), 
+ Lubricant, list(t2=210, t8=48, t9=0), alg = "plinear") 
> Lubfit 
Residual sum-of-squares 0.08702405 
parameters: 

t2 t8 t9 .lin1 .lin2 
206.5461 57.40411 -4.766996e-07 1054.542 0.001460311 

.lin3 .lin4 .lin5 .lin6 
-2.596517e-07 2.257323e-11 0.0004013854 3.528393e-11 

formula: viscos ~ Lub.mod(tempC, pressure, t2, t8, t9) 
53 observations 

Now we have estimates for all nine parameters in the model. 
The general approach of building from simpler models to more complex models, 

as in this example, is very useful in fitting nonlinear models. The ability to keep 
some parameters fixed while optimizing over others can be used to simplify the 
model temporarily. 

10.3 Some Details 

This section covers some additional details and special cases in nonlinear fitting. 
Section 10.3.1 summarizes some of the special settings that can be used to control 
the iterative fitting. Section 10.3.2 looks at an example of the detailed numerical 
examination sometimes needed in nonlinear models. Section 10.3.3 considers the 
use of weighted nonlinear least-squares fitting. 

10.3.1 Controlling the Fitting 

Both ms() and nls() use several values to control characteristics of their optimiza
tion algorithms. The argument control is used to specify a list of control values 
to these functions. Any control parameters not specified are computed at default 
values by the fitting function. So, for example, to set the maximum number of 
iterations to 10 but leave all other control values at their defaults, we use: 

myfit <- nls(myformula, control = list(maxiter=10)) 

The same mechanism works for either nlsO or ms(). 
To see all the possible controls, do ?nls. control or ?ms. control. Here are the 

three most common controls; they are supplied the same way for both fitting func
tions: 

maxiter: the maximum number of steps in the iteration (default 50); 
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tolerance: the tolerance for convergence of the iteration (the default 
depends on the function); 

trace: control of trace printing during the iteration (default FALSE). 
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Either a logical value or a function can be given for trace. The trace, if done, is 
also stored in the component trace of the output structure. When trace is false, 
no summary of the iterations is printed or saved. Advanced users can define their 
own function to generate the trace in the form they wish to see it-the function 
trace.msO illustrates how a trace function is called. 

By default, the maximum number of iterations is 50. This limit is not often 
reached since the algorithm convergences quickly or reaches a point where the it
erations cannot proceed. On rare occasions, the iterations may still appear to be 
progressing toward an optimum slowly but steadily when the limit is reached. You 
can try to restart the optimization with this limit increased. You can also decrease 
this limit if you believe the estimates must be reached sooner, or if you just can't 
afford 50 iterations. . 

Convergence is declared when the convergence criterion becomes less than the 
tolerance level. The default value is based on the relative precision of computations 
and is about 0.001 on typical current machines. Smaller values will require more 
iterations while larger values will result in convergence being declared earlier. The 
form of the convergence criterion differs between the two fitting functions. The nls() 
uses a relative offset criterion (Bates and Watts, 1988, Section 2.2) that measures 
the numerical imprecision in the parameter estimates compared to the statistical 
variability. The ms () algorithm will exit when any of several measures of progress in 
the optimization drop below chosen values. The tolerance value is u8ed to set each 
of these to comparable values. You can also set the tolerances individually-see 
the detailed documentation for ms. control 0. It would be advisable to leave these 
tolerances at their default settings until you see some undesirable behavior. 

One more control variable, minscale, is common to both ms() and nls(). As 
described in Section 10.4, both a step size and a step direction are determined 
at each iteration. Since the approximation used to determine this step may not be 
valid over the entire extent of the step, a minimum step size is incorporated. Having 
determined a direction in which to look for an optimum, the algorithms try to make 
some improvement by taking a step in that direction. If the initial step does not 
produce a reduction in the fitting criterion, the algorithm reduces the scale of the 
step and tries again. 

If the scale of the step becomes very small without the objective function de
creasing, the model is probably incorrectly defined or poorly behaved. Typically, 
either the derivatives are not correct, with the result that the computed direction 
is not really pointing downhill, or there are some discontinuities in the function or 
its derivatives in this region. The algorithms will stop if the mmimum scale factor 
is reached, and will indicate an error condition. The default value of the minimum 
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;cale factor is 0.001. 

L0.3.2 Examining the Model 

:1:very chapter of this book has emphasized the importance of looking at the data 
md at the fitted model. The advice applies with special emphasis for nonlinear 
.nodels. In earlier chapters, we supplied the data portion of the model, but the 
~xplicit combination of data with parameters was handled by the fitting software. 
We could reasonably hope that the evaluation of the model would produce correct 
·:esults. 

Now, however, the scope of models is much greater. The formula we supply 
:s explicitly the computation to be used to combine parameters and data. Some 
;areful examination of that formula often prevents frustrating problems during the 
:1tting. Both empirical examination, often using plots, and mathematical thinking 
may be needed. Some questions to ask are: 

• Can the model be expressed in terms of some intermediate functions that will 
make its behavior clearer? 

• What will happen to the computations as particular elements take on extreme 
values (e.g., tending to ±oo)? 

• Should the computations be reexpressed to avoid numerical problems or to 
speed up the computations? 

In thinking about these questions, the origin of the model often helps. For example, 
many general nonlinear models arise when we need to generalize a model that could 
be handled by simpler methods (e.g., a linear model). The quantities arising in the 
simpler model are often important in understanding the generalized one. 

Our first example was so simple that we might not expect any problems to arise. 
No such luck: the naive expression for the model can easily cause problems. We can 
begin by noting again that the likelihood only depends on the parameters through 
a linear predictor, via a function that we define on page 431: 

lprob <- function(lp)log(1 + exp(lp)) - lp 

where lp was D • alpha in our example. The computations depend on the trivial
looking univariate function whose graph is shown in Figure 10.4. Some of its math
ematical properties are: 

f(x) log(l+e"') 

x + f(-x) 

-> XasX->00 

-> 0 as x -> -oo 
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Figure 10.4: Behavior of the function log(l + e"), which determines the log-likelihood in 
ov.r table tennis example. 

This apparently mild-mannered function can easily cause problems if we compute 
it directly from its definition. With finite precision arithmetic, e"' will overflow while 
f(x) is still moderate for positive x. The alternative form, x + j(-x), allow us to 
restrict the exponential computations to the range x < 0. A second problem arises 
when x becomes large and negative: finite-precision computation of 1 + e"' will be 
exactly 1 when e"' is less than the relative precision of computations. The computed 
value for f(x) will be zero before it should. Notice that the limit as x -> -oo is 
more precisely stated as 

f(x)fe"' -> 1 

so that f(x) should behave like e"' for large negative x. 
What is needed to avoid these problems is an explicit function to compute 

log( I+ e"') accurately, by mapping all positive arguments onto negative ones, and 
by using an asymptotic computation in terms of e"' for large negative x. First, here 
is an S function to compute log(1 + exp(x)) for x < 0: 

logexp.neg <- function(x) { 
y <- exp(x) 
small <- y < 4 * .Machine$double.eps 



448 CHAPTER 10. NONLINEAR MODELS 

y[small] <- y[small] • (1 - 0.5 • y[small]) 
y[!small] <- log(1 + y[!small]) 
y 

Where exp(x) is at or near the relative precision of the machine, we used two terms 
from an expansion of log(l +y) for small y. Using logexp.neg(), we can now handle 
any arguments: 

logexp <- function(x) 
y <- X 

pos <- x > 0 
y[pos] <- x[pos] + logexp.neg( -x[pos]) 
y[!pos] <- logexp.neg(x[!pos]) 
y 

We have not tried to be particularly efficient about this calculation; in practice, one 
might implement this as an algorithm in c or FORTRAN. The model on page 431 
can now use the function 

lprob <- function(x)logexp(x) - x 

for safer computations. 
When derivatives of models involving logexp are required, they typically enter in 

terms of the linear predictor; that is, the argument to logexp(x) comes from matrix 
multiplication of, say, X by a vector of parameters, beta. If X is supplied as an 
argument, the corresponding matrix of gradients can be returned. The derivative 
of log(1 + exp(x)) is 

e:r /(1 + e:r) = 1/(1 + e-:r) 

with the left expression preferable for negative x and the right for positive x. This 
can be turned into an S function for the linear predictor: 

glogexp <- function(x, X) { 
neg <- x < 0; pos <- !neg 
x <- exp( ifelse(neg, x, -x) 
x[neg] <- x[neg]/(1+x[neg]) 
x[pos] <- 1/(1 + x[pos]) 
x•X 

Notice that we arranged that the argumentto expO would always be negative, to 
avoid possible overflow. Now we can provide gradients for our table tennis example: 

lprob <- function(lp, X){ 
value <- logexp(lp) - lp 
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} 

attr(value, "gradient") <- glogexp(lp,X) - X 
value 
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The analogous changes to computing second derivatives we leave as an exercise. 
To see similar reasoning in a more realistically complicated situation, we return 

to the model (10.3) on page 425 for the soldering experiment. The contribution to 
the negative log-likelihood for observations with y; = 0 included a term 

S S· 
log(e-r ' + e-e ') 

This can be rewritten as 

With this substitution, equation (10.3) can be rewritten in a computationally more 
convenient form: 

f. ({3 ) -l ( S) { es, -logexp(es, - rS;) if y; = 0 
; , T - ogexp -r ; + ~ S· 'f > 0 y;o;- e • 1 Yi 

using the logexp function defined above. The second use of this function particularly 
needs numerical care, since the argument to our favorite function now itself contains 
an exponentiation. We can rewrite the above as an S function: 

zip <- function(y, X, beta, tau) { 
S <- X y,,.y, beta 
tS <- tau "' S 
eS <- exp(S) 
zero <- y < 0.5; pos <- !zero 
lkh <- logexp(-tS) 
lkh[pos] <- lkh[pos] + y[pos] • S[pos] -es[pos] 
lkh[zero] <- lkh[zero] + es[zero] - logexp(es[zero] - tS[zero]) 
lkh 

In terms of this function, the model formula given to ms 0 is 

~ zip(defects, X, beta, tau) 

assuming that the appropriate matrix of predictor variables is in X and that defects 
is the vector of defect counts. 

Next, consider calculating derivatives as well. With a little bit of effort, you can 
verify that the derivatives of f.; with respect to the elements of {3 satisfy 
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where g stands for the derivative of the logexp function. The derivatives with 
respect to T can be written: 

if y; = 0 
if Yi > 0 

Remember that, as always, the gradient computation should return a matrix with n 
rows and one column for each parameter. A function to compute both the likelihood 
and the gradient starts off just like zip above, and then implements the gradient 
calculations. Here is one implementation: 

zip2 <- function(y, X, beta, tau) { 
S <- X Y.•Y. beta 
tS <- tau • S 
eS <- exp(S) 
zero <- y < 0.5; pes <- !zero 
lkh <- logexp(-tS) 
lkh[pos] <- lkh[pos] + y[pos] * S[pos] -es[pos] 
lkh[zero] <- lkh[zero] + es[zero] - logexp(es[zero] - tS[zero]) 

# now the gradients. First the derivatives for beta 
g <- X #make g the right size 
g[pos,] <- y[pos] - es[pos] 
gO <- glogexp(es[zero] - tS[zero]) 
g [zero',] <- es [zero] - gO 
g <- (g + tau * glogexp(-tS)) * X 

# now derivatives for tau 
gtau <- - S * glogexp(tS) 
gtau[zero] <- gtau[zero] + S[zero] * gO 

# bind them together, as an attribute to lkh 
attr(lkh, "gradient") <- cbind(g,gtau) 
lkh 

Similar work will produce expressions for the second derivatives. 

10.3.3 Weighted Nonlinear Regression 

As in linear regression, the sum-of-squares criterion in nonlinear regression can 
include weights. In linear regression, an optional argument supplies the weights. 
There is no need for a separate argument for nonlinear weighted regression because 
t.he form of the model is sufficiently general to include the weights. This generality 
is necessary if, as often occurs, the weights depend on the values of the parameters 
••r the value of the predictor. 

To use weights, the model is written without a response and with the "predictor" 
l•cing the square root of the contribution to the weighted sum-of-squares. Suppose 
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we wanted estimates for the Michaelis-Menten model applied to the treated enzyme 
data, with weights inversely proportional to the prediction. We could construct a 
function weighted.MM and use it as 

> weighted.HM 
function(resp, cone, Vm, K) 
{ 

pred <- (Vm • conc)/(K + cone) 
(resp - pred)/sqrt(pred) 

> Pur.wt <- nls(~ weighted.MM(vel, cone, Vm, K), Treated, 
+ list(Vm = 200, K = 0.05)) 
> Pur .lit 
Residual sum-of-squares : 14.5969 
parameters: 

Vm K 
206.8338 0.05461018 

formula: ~ weighted.MM(vel, cone, Vm, K) 
12 observations 

We have used numerical derivatives here. Obtaining analytic derivatives would be 
delicate, even for this simple example. 

As described in Carroll and Ruppert (1988}, a weighted nonlinear regression 
with the weights given by a power of the predictor is very similar to taking a power 
transformation of both the predictor and the response. This "transform both sides" 
approach uses the Box-Cox form of power transformations 

(A) _ { (yA - 1)/ A if A# 0 
Y - log y if >. = 0 

and is implemented in the function TBS. For example, to fit the logarithm of the 
velocity to the logarithm of the predictor for the treated enzyme data we would use 

> Pur.TBS <- nls(~ TBS(vel, Vm•conc/(K+conc), 0), Treated, 
+ list(Vm=200, Kc0.05)) 
> Pur. TBS 
Residual sum-of-squares : 0.1676924 
parameters: 

Vm K 
203.5726 0.05284299 

formula: ~ TBS(vel, (Vm • conc)/(K +cone), 0) 
12 observations 

As can be seen, this produces results very similar to those from the weighted re
gression. 
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One advantage of the "transform both sides" approach is that the log-likelihood 
for the transformation parameter >. can be evaluated and used to choose the trans. 
formation. See Carroll and Ruppert (1988) for details. 

10.4 Programming Details 

Numerical methods for general optimization and for nonlinear least-squares have 
been the subject of much research. As we have been saying throughout the chapter, 
the problems are harder and more likely to produce numerical difficulties than 
those in any other chapter of the book. The numerical algorithms used here are, 
we believe, representative of the current state of the art. In this section, we give 
some information that may help users to get the most from the methods. As is the 
general philosophy in the book, informed users are encouraged to go beyond what 
we provide, to extend or replace the methods by others that may be more suited to 
their particular needs. In the case of nonlinear models, a warning label needs to be 
shown, however. These are indeed difficult numerical problems, and fiddling with 
the underlying algorithms is not recommended if you are not sure of what you are 
doing. If other numerical algorithms are to be used, they need to produce objects 
containing the information used by the summary and printing methods. 

10.4.1 Optimization Algorithm 

Like most methods for general optimization, the algorithm used here is based on a 
quadratic approximation to the objective function. When the model formula pro
vides both first and second derivatives, this approximation is a local one using these 
derivatives (i.e., the algorithm is a version of Newton's method). When no deriva
tives or only first derivatives are supplied, the algorithm approximates the second 
derivative information, but in a method designed specifically for minimization, since 
the quadratic approxirpation is not a goal in itself. There are many such methods, 
the one used here being taken from the PORT subroutine library, and evolved from 
the published algorithm by Gay (1983). 

Two distinctive numerical features of the algorithm are the particular method 
used to develop a quadratic approximation when second derivatives are absent and 
a "trust region," a running estimate of the size of the region around the current 
estimate in which a quadratic approximation to the objective function is likely to 
be trustworthy. These are discussed in the reference above and in the PORT library 
documentation, but are unlikely to affect S users. 

The algorithm is capable of working with user models that return 0, 1, or 2 
orders of derivatives. As discussed in Section 10.2.3, improvements in numerical 
accuracy and in efficiency often come when users supply analytical derivatives. 
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10.4.2 Nonlinear Least-Squares Algorithm 

There are many algorithms for the problem of nonlinear least squares, even though 
it is clearly more specialized than general optimization. The nls 0 function uses 
a relatively simple approach-the Gauss-Newton algorithm with a step factor to 
ensure that the sum of squares decreases at each iteration. In this algorithm the 
residuals and the gradient are calculated at the current parameter values then a 
linear least-squares fit of the residual on the gradient gives the parameter increment. 
If applying the full parameter increment increases the sum-of-squares rather than 
decreasing it, the length of the increment is halved. The step factor is retained 
between iterations and started at twice the value that was successful on the last 
iteration except that it is not allowed to become greater than unity. In other words, 
if the last iteration required the increment to be reduced to one quarter of its original 
length before the sum of squares decreased, the next iteration starts at one half of 
the calculated increment. 

If the gradient is not returned with the value of the formula, it is calculated 
using finite differences with forward differencing. 

For partially linear models, the increment is calculated using the Golub-Pereyra 
method (Golub and Pereyra, 1973) as implemented by Bates and Lindstrom {1986). 

The convergence criterion for both algorithms is the relative offset criterion 
described in Section 10.3.1. 

Bibliographic Notes 

The books by Bates and Watts {1988) and by Seber and Wild {1989) discuss non
linear regression, including nonlinear least squares but also with some general treat
ment of likelihood and Bayesian inference. Both books give a discussion of com
puting algorithms; the method described in Bates and Watts {1988) is the basis for 
that used by nls (). 

For statistical theory for general nonlinear modeling, we are unaware of any 
single comprehensive treatment. What is needed is a set of general results relating 
the statistical model, based on likelihood function, Bayesian inference, or other 
models, to the data-based results that can be computed by an algorithm such as 
that used by ms 0. The basic statistical results, due to Fisher and others, are 
classical, but applying them in practice and with due regard for issues of curvature, 
small-sample behavior, and many other questions, is decidedly difficult. With the 
much greater accessibility of computational methods, a good general statistical 
treatment would be a major contribution to the community. Meanwhile, books on 
general statistical inference provide some basic results; for example, Chapters 9-11 
of Kalbfleisch {1979) or various results in Cox and Hinkley {1974), Lehmann {1986), 
or various other classic references. Unfortunately, these discussions are not usually 
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from the viewpoint of actually fitting a model to data. The books on nonlinear 
regression, and even McCullagh and Nelder (1989) on generalized linear models, 
will have some relevant results, if the reader can make the necessary generalizations 
from the special cases discussed. 

Computational issues for nonlinear models are discussed from a statistical view
point in Chapter 6 of Chambers (1977). More detail regarding optimization is given 
by a number of authors; for example, see Dennis and Schnabel (1983). 



Appendix A 

Classes and Methods: 
Object-oriented 
Programming in S 

John M. Chambers 

The version of S used in this book extends that described in [SJ in several ways, 
the most important being the use of methods. Throughout this book a phrase such 
as "the summary method for objects of class "lm"" means that, if fuel.fit is an 
object of this class, typing 

> summary(fuel.fit) 

invokes a function specially designed to carry out the computations of summary() on 
1m objects. You didn't call that function explicitly or give summary() an argument 
to tell it that fuel. fit was an 1m object. Instead, a mechanism in the S evaluator 
figured out which method for summary() should be applied to fuel. fit, and arranged 
to call that method. This mechanism causes S evaluation to be data driven (another 
way of describing object-oriented programming). 

From the view of the user who is taking the functions as they stand, the method 
mechanism should be invisible. Functions, operators, and assignments should adapt 
to the classes of objects introduced in this book, without explicit user action. If you 
don't expect to do much programming to specialize the functions we provide, then 
you don't need to read any further in this appendix. However, if you want tore
design some of the methods or to design new classes of objects for new applications, 
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you will need to know something about the mechanism. This appendix will describe 
how methods are organized, how classes of objects and their associated methods 
can be designed, and how the S evaluator arranges for data-driven computations to 
work. The description is far from the whole story but is intended to give enough 
information so that you can use classes and methods effectively in extending the 
modeling software. 

A.l Motivation 

The scope of a programming language can be viewed at a fundamental level in 
terms of the computations that can be performed and the kinds of data on which 
they can act-in S terminology, the functions available and the classes of objects 
to which the functions can be applied. A language that hopes to grow and adapt to 
new applications faces the fundamental challenge of helping the designer to create 
the· new software while preserving a simple view of the language for the user. The 
class/method mechanism is the core of our response to that challenge in S. 

The challenge can be seen more clearly if we begin with the "primitive" view 
of the language, in terms of the functions and data classes that map directly onto 
the underlying implementation. For example, primitive objects in S are essentially 
atomic vectors of a few prescribed modes (numeric, logical, complex, and character 
string), plus recursive (list-like) objects made up from other objects used as elements 
and attributes. Most of the functions in IS are defined for such objects. The 
concern addressed by the classjmethod mechanism is to allow the language to deal 
with new classes of objects (and new functions as well) while preserving a simple 
and natural view of the language for ordinary users. 

Even as simple a data structure as the category (IS, page 136) illustrates the 
challenge. Conceptually, categories represent repeated values, each of which comes 
from a finite set of levels-for example, "Male" and "Female", or "Lov", "Medium", and 
"High". While the values could be represented as character strings, it is essential 
that there is some known set of possible levels, so representing the category as a 
character vector would be misleading. Categories in S code the values as integers, 
and retain the levels as an attribute. This implementation does not correspond to 
the concept as well as it should. Numeric operations are meaningless conceptually 
for categories, but numeric expressions involving categories in S will produce a 
result. Sometimes, as in the second example, we would like to include the notion 
that the levels are ordered, but not explicitly numeric, while continuing to inherit 
the other properties of categories. Working with just the primitive objects, there is 
no simple way to add the concept of ordered categories to the software. 

In this book we talk about factor objects, rather than categories. Factors are 
a class of objects that implement the same notion as categories, only often in a 
better way, because of the classjmethod mechanism. Section 3.2.1 discusses factors 



A.2. BACKGROUND 457 

and outlines their properties. We will use factors as an example throughout this 
appendix. 

Our goal is to incorporate new classes of objects into the language in a seamless 
way, with functions such as printing, plotting, and subsetting behaving "correctly" 
on the new objects, without any explicit action on the user's part. At the same 
time, the job of the applications programmer should be made as simple as possible 
when designing new classes of objects and providing software to use them. Object
oriented programming systems pursue this goal by allowing programmers to define 
methods that replace generic functions when the argument to the function belongs 
to a particular class of objects. This is the kind of mechanism presented here: 
designers of new classes of objects will implement methods for some of the generic 
functions in S to handle the new class. Users will continue to see only the generic 
functions, so their view of the language will not be made more complicated. At the 
same time, the designer does not need to rewrite the generic functions or to worry 
about ensuring that the new methods will be invoked. In addition, the notion of 
inheritance-that new classes can automatically inherit methods written for existing 
classes-further reduces the amount of programming for the designer. 

A.2 Background 

This section is addressed to those interested in programming languages in general or 
to those familiar with S who would like to see a general defense of adding methods 
and classes to the language. Others can skip ahead to Section A.3. 

The mechanism for classes and methods in S has much in common with other 
object-oriented languages, but differs in a number ofrespects related to the nature of 
S. The S language follows, in an informal way, three main programming paradigms: 

1. object-oriented programming; 

2. functional languages; 

3. interfaces. 

The first of these paradigms is the topic of this appendix, but a few words about 
the other two will clarify the context. 

FUnctional programming languages use a model in which the central activity is 
the evaluation of a function call (to use S terminology-"expansion" rather than 
evaluation is the common term). The language operates by reading the user's 
function calls and evaluating them. The result of the evaluation is to present the 
user with some computations (printed, or often in the case of S, plotted). Languages 
based on this paradigm aim for a simplicity and clarity that makes programming in 
them more straightforward and less error-prone than with "conventional" languages 
such as FORTRAN or C. 
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The paradigm of interfaces appears less frequently and less explicitly in computer 
science, but it is key to S and is also part of the background philosophy of many 
approaches to modern computing systems. A language like S wants to make use 
of a wide variety of computational techniques {numerical methods, text processing, 
symbolic computations, etc.). Good implementations of all of these within the 
language itself would be prohibitively difficult. Instead, we try wherever possible to 
define an interface to some other language or system in order to incorporate some 
of that system's abilities into S. An interface, as used in S, is a communication 
model that defines some simplified version of what the other system can do and a 
mapping from S expressions and objects into that model. For example, most text 
manipulation in S is handled by an interface to the UNIX shell. The model and the 
mapping in this case are based on the model that UNIX commands only read and 
write streams of bytes, possibly broken up into lines by newline characters. 

These two paradigms influence the class/method mechanism in S. The func
tional language paradigm focuses our attention on generic functions and on the 
evaluation process as the center of the mechanism. The use of interfaces provided 
a strong incentive to adopt the class/method mechanism and continues to test out 
the strength of the mechanism. 

Object-oriented programming replaces the idea of executing a program, in the 
traditional sense of a single set of machine instructions, with actions that take 
place as the result of passing messages between objects. The messages c~ be 
thought of as requests to the object-for example, that the object print itself. The 
action occurring in response to the message typically depends on the class to which 
an object belongs. The definition of the class determines for which messages the 
ohjt_'Ct has a method. A method implements, in some programming language, the 
ddinition of what should happen in response to the message. S shares an emphasis 
Oil p;eneral objects, and allows users to define classes of objects. Classes as discussed 
in Is), Chapter 8, are informal. A convention on the essential data structure for 
tlu, elMs (in terms of what components or attributes are expected) is shared among 
a ''"llection of functions written to create and use objects from the class. 

While this informal approach was adequate for many applications, it has some 
diH~tdvantages. The user had to be conscious of the class structure in order to call 
tlu• 11pecific functions for that class. For example, to print a summary of an object 
of dui!K "lsfit" one called a function for that class, ls.summary(). For a different 
cllum, there would be a different function. The only alternative was to write a single 
furwl.ion that understood all the relevant classes of objects. This happened to some 
ext. .. ul. with the function print(), but no general summary() function existed. 

lu t.he class/method paradigm, there is a generic summary() function, which 
will 1,., •:ailed by the user regardless of what class of object is to be summarized. 
The Jl;ltfleric function, however, does hardly anything itself. Instead, it invokes a 
mechnuiHrn that: 
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• finds the class, if any, of the relevant argument to summary(); 

• finds a special summary method for that class, if one exists; 

• evaluates the method in place of the call to the generic. 

The user need only remember how the generic function is called. Applying the 
function to different classes of objects will produce the results designed for those 
objects, automatically. 

This is the mechanism provided now in S. Some of the features are: 

• Users of generic functions can expect the functions to adapt to new classes of 
objects without any action on the user's part. 

• Designers of new classes of objects can redefine generic functions by writing 
a method: a new function with the same arguments as the generic function. 

• Classes and methods can use a general form of inheritance, the ability of 
one class of objects to inherit methods from one or more other classes. The 
designer of a new class supplies only methods that need to be different from 
those inherited. 

• Methods can invoke inherited methods in a simple, general way, simplifying 
the modification of methods to new classes. 

• Groups of genericS functions (e.g., operators like arithmetic) often map into 
an interface to one c routine. If all these functions adapt in essentially the 
same way to a new class of objects, a single group method can be written for 
all of them. 

• Methods for operators are invoked when either or both of the operands un
ambiguously identify a method. 

• Methods can be written for some key operations in the language that are not 
precisely functions (e.g., replacement and permanent assignment). 

• Methods in S are functions that can be called explicitly. In particular, a user 
can override the standard method for an object and force it to be treated as 
an object from another class. 

The use of methods allows programming in S to have much more of the style of 
object-oriented programming systems. However, methods inS differ from such sys
tems in some interesting ways, partly from the influence of the other two paradigms. 
The last feature above is an example. Because all functions in S are objects and 
because function calls are the central, essentially the only, activity in an S session, 
methods are not restricted to automatic invocation, but can be used like any other 
function. 
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A.3 The Mechanism 

Two conventions define the mechanism for methods in S. First, objects in S can 
have a special attribute, "class". The class of an object can be extracted or set by 
the function class(): 

> class(myobject) <- "factor" 
> class(myobject) 

[1] "factor" 

For the moment, we think of the class as either a single character string or NULL; 
this will be extended when we talk about classes that inherit methods from other 
classes. 

Second, a mechanism in the S evaluator will automatically find an appropriate 
method and evaluate a call to it. The special function UseMethod() invokes this 
mechanism: 

UseMethod("print", x) 

with the following effect. The evaluator looks for an S function object to act as a 
method for the generic function print 0 for the object x. If x has class "factor", 

a function named print. factor will be used as the method. The function call 
currently being evaluated is replaced by the corresponding call to print.factor(). 

The second argument to UseMethodO is normally omitted, in which case it is taken 
to be the first argument in the definition of the current function. More detail of 
how this mechanism works is covered in Section A.6. 

The class/method mechanism in S is uniform and general, but not obligatory. 
Functions that look for methods are called generic, in the sense that they define only 
generically what their effect should be, leaving further specifications to be done by 
methods. Generic functions perform some standard computation, which we expect 
to be adapted to different classes of objects by other functions, the methods. The 
body of a standard generic function typically consists of a call to UseHethod 0: 

print<- function(x, ... ) 
UseMethod("print") 

The first argument to print() is the object that determines the method. The" ... " 
argument is there so that methods may have additional arguments, specific to the 
particular method. Generics are perfectly free to have other arguments as well. It 
might make sense to do so if we asserted that any method for this generic must deal 
with the argument. In practice, nearly all generic functions look like the above. 

In the case of basic S functions, for which we want to make the default com
putations particularly efficient, the interface to the method mechanism will be in
voked directly from c code, and the body of the generic function will be a call to 
the .Internal() interface. Although these functions do not call UseHethodO, they 
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mostly make use of the same mechanism. The main exceptions are the operators 
(arithmetic, comparison, or logical), which allow either or both operands to define 
the method, provided they do so consistently (see Section A.7). 

There is a second special function, NextMethod(), which uses the method mech
anism to simplify handling inherited methods. Section A.5 describes inheritance. 
We will discuss some important special cases, such as operators, subsets, and a.~
signments, in Sections A.7 and A.8. Section A.lO lists those internal functions that 
take methods. 

All objects implicitly inherit from class "default". Corresponding to the generic: 
function print() will be a default method, print.default(). Objects without a 
specific class or with a class inheriting no other print method will be printed us
ing print.default(). For generic functions invoking methods via the .Internal() 

interface, the default method is also contained in the internal code. 

A.4 An Example of Designing a Class 

The essential programming exercise involving the method mechanism is to design or 
refine the behavior of a class of objects. How should users think about the objects 
in the class? How should generic functions behave for them? 

As an example, we will consider the implementation of the class "factor". The 
class/method mechanism allows a more consistent and natural implementation of 
such objects. What would otherwise be a very substantial job of reprogramming 
many S functions can be done quite simply by writing some appropriate methods 
so factors behave sensibly when used with common generic functions. 

Designers of a class of objects need to consider the internal or private structure 
for the objects that will best implement the conceptual or public view. In the case 
of factors, we give the object an attribute, levels, that represents the set of possible 
values. The object itself then consists of a vector of integer values between 1 and 
length(levels(x)). We also allow elements of the object to be missing (NA). This 
implementation defines the private view of factors. As designers of the class, and 
implementers of the most basic methods for them, we work with this view. General 
users, however, should see only the public view-the view of factors as repeated 
values from the set of levels. Even designers of new methods later on may be able 
to work entirely or largely with the public view. In any case, methods must be 
written with a clear understanding of which view is being used. We will illustrate 
the important practical consequences of the public/private distinction later on. 

Besides methods, a generator function must exist to generate objects from the 
new class. The function factor() will do this: 

factor<- function(x, levels= sort(unique(x)), 
labels = as.character(levels)) { 

y <- match(x, levels) 
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} 

names(y) <- names(x) 
levels(y) <- labels 
class(y) <- "factor" 
y 

APPENDIX A. CLASSES AND METHODS 

In ~,Section 8.1, a convention was set out that each class should also have func
tions to test membership in the class and to coerce to that class. For factors, these 
functions would be is.factorO and as.factorO. Such functions are still useful, 
but the method mechanism makes them less important. Methods are designed to 
produce suitable results without explicitly coercing objects to a particular class, and 
the inheritance mechanism to be described later generalizes the notion of testing 
membership. The function inherits() replaces the testing functions for all classes 
in most applications. 

inherits(x, "factor") 

returns TRUE if the class of x includes "factor". 
For our first method, let's arrange to print the objeet. The method will be a 

function object named print. factor. Its first argument will be the object to be 
printed. 

What should a printing method for factors do? We want users to think of the 
data as values from •the levels set, and a natural way to do that is to print the 
vector computed as 

levels(x)[x] 

This is a vector whose elements are the levels of the corresponding elements of x. It 
is a character vector, but to emphasize the levels as a set, we will print it without 
quotes, using the quote=F argument to print 0. One more detail: We allow NA in 
the data, so before printing we should turn any NA's into an additional level. Adding 
some code to achieve this, we get our method: 

print.factor <- function(x, ... ) { 
class(x) <- NULL 
1 <- levels(x) 
if(any(is.na(x))) { 

1 <- c(l, "NA") 
x[is.na(x)] <- length(l) 

x <- l[x] 
print(x, quote z F) 
invisible(x) 
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The class of the object was set to NULL at the beginning of the method because this 
is a private method. The print.factor() definition depends on the implementation 
of factors. When it applies functions such as levels 0 and " [" 0 to x, these are 
intended to be the default methods, regardless of whether the object x might have 
inherited some method for those functions. In contrast, public code in a method 
expects most of the computations to be done by another method, with just a little 
pre- or post-processing. The other method may be for the same class or for an 
inherited class, but the public method does not take explicit control of which method 
is used. 

We'll improve print. factor() a little in later discussion, but the above is quite 
respectable. As an example of its use, 

> sex<- factor( sample(c("Male","Female"), 25, T)) 
> sex 

[1] Male Female Female Male Female Female Female Female Male 
[10] Male Female Male Female Male Female Male Female Male 
[19] Female Male Male Female Female Female Male 

In later sections, we will show methods for other generic functions, but first we look 
at a new class, ordered factors, as an example of inheritance. 

A.5 Inheritance 

A powerful tool in object-oriented programming is the ability of objects to inherit 
methods from one or more other classes. This greatly simplifies defining new classes 
that are adapted from existing classes. Only methods related to the new features 
need be written. In S, inheritance is easily incorporated. The class attribute of an 
object can be of any length. When it is of length greater than 1, the object can 
inherit methods from any of the classes included. For example, 

> class(x) 
[1) "ordered" "factor" 

says that methods for either class "ordered" or class "factor" can be used for object 
x. The search for methods will proceed sequentially through all the elements of the 
class attribute. In this sense, "ordered" can be thought of as the principal class of 
x, and often we will speak of such an object as belonging to class "ordered" even 
though it inherits from other classes as well. All classes implicitly inherit from the 
class "default", which need not appear in the class attribute. 

Let's define the class of ordered factors to be just like factors, except that the 
levels are now assumed to be ordered increasingly as given. A function to generate 
objects from this class could be as follows: 
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ordered<- function(x, levels • sort(unique(x)), 
labels z as.character(levels)){ 
x <- factor(x, levels, labels) 
class(x) <- c("ordered", class(x)) 
X 

Generic functions applied to ordered factors will look first for methods for class 
"ordered", then for class "factor", and finally for "default". 

As an example, consider a character vector, say rating. text, containing charac
ter strings "Lov", "Medium", and "High", which we will convert to an ordered factor: 

> rating.text 
[1) "Medium" "High" "Lov" "High" "Medium" "Medium" "High" "Lov" 
[9] "Lov" "High" "Medium" "High" "High" "High" ''Medium" 11Lov11 

[17] "High" "Lov" "High" "Lov" 
>ratings<- ordered(rating.text, levels= c("Lov","Medium","High")) 
> ratings 

[1] Medium High Lov High Medium Medium High Lov 
[11] Medium High High High Medium Lov High Lov 

Lov 
High 

High 
Lov 

The levels argument is needed in the call to ordered() to establish the correct 
ordering. Because of inheritance, print(ratings) uses the method print.factor() 
if the method print. ordered() is not found. 

The function NextMethod(), which exploits inheritance, is a key tool in writing 
methods. The call 

NextMethod("print") 

looks for an inherited method for the generic function "print"; that is, it searches for 
a function whose name is "print. " concatenated with one of the classes following the 
current class, "ordered", in the class attribute of the object. It calls this function 
and returns the value as the value of NextMethod(). All classes implicitly inherit 
from the class "default", so that NextMethod() invokes the default method if no 
other inherited method is found. Section A.6 gives a more precise definition of the 
inheritance mechanism. 

Suppose we decided to show the ordering of the levels after printing the data for 
our new class. The essential printing is done by the inherited method, after which 
print.ordered() adds a line at the end to show the levels: 

print.ordered<- function(x, ... ) { 
NextMethod("print") 
cat("\n", paste(levels(x) ,collapse=" < "), "\n") 
invisible(x) 
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Our previous example now prints as follows: 

> ratings 
[1) Medium High 

[11] Medium High 
Low 
High 

Low < Medium < High 

High 
High 

Medium Medium High 
Medium Low High 

Low 
Low 

Low 
High 
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High 
Low 

The function NextMethod() is useful even in cases not involving inheritance, as 
a way of invoking the default method for the generic function. For example, we 
should write a method for extracting subsets from factor objects, to ensure that 
the extracted object continues to belong to class "factor". The generic function 
named "[" extracts subsets. Its definition is 

"[" <- function(x, ... , drop = T) 
.Internal(x[ ... , drop"' drop]. "S_extract", T, 1) 

If there were no method " [.factor" 0, the behavior would be as follows: 

> sex[1:5] 
[1) 2 1 1 2 1 
attr(, "levels"): 
[1) "Female" "Hale" 

The internal calculations remove the class of the object. Clearly we need a method, 
although only a simple one: 

"[.factor" <- function(x, i){ 
y <- NextHethod("[") 
class(y) <- class(x) 
y 

} 

Now subsets of factors retain their class nature: 

> sex[1:5] 
[1] Male Female Female Hale Female 

The style of " [.factor"() is a common way of writing methods: use the inherited 
method and then set some attributes of the result {here just the class), before 
returning it. The use of NextHethod () is crucial. Recursive use of the generic function 
directly can cause an infinite loop-the object in question is still a factor, so the 
generic function will invoke the method once again, and so on, until S complains 
when the maximum level of nesting of expressions is reached. In more complicated 
computations, the method may need to construct a new object, rather than counting 
on the inherited method for the current object (the method Ops.factor() on page 
473 is an example). 
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The definition of " [.factor" 0 illustrates one other point: the argument lists 
for methods. When UseMethod() has found a method, it re-matches the actual call 
to the generic with the definition of the method. Similarly, NextHethodO matches 
arguments with the same order and names as the call to the generic. Methods 
do not need to have the same arguments as the generic. In most examples, the 
method should allow optional, named arguments to be passed down, if it plans to 
call NextHethod 0. This means that most such methods should have " ... " as an 
argument. In the case of "[.factor"(), however, we took the opposite approach. 
We decided that only one subscript argument made sense for factors, although 
other objects might meaningfully have more arguments. The definition here then 
produces a clean error message if an extra argument is included: 

> sex[1,5] 
Error in call to [.factor(): Argument number 3 in call not matched 

whereas, if the second argument were " ... " rather than "i", the message is: 

> sex[1,5] 
Error in x[ .. l, .. 2]: No dim attribute for array subset 

which is less helpful. This is a tradeoff between allowing m9re general use of the 
method and providing informative error messages; the relative importance of each 
should be examined case-by-case. 

The object determining the choice of method is not modified when the methods 
are invoked, either directly or through inheritance. When print. factor() is called 
in printing ratings, for example, the class of x will be c("ordered", "factor"). This 
is why "[.factor" 0 sets the class by 

class(y) <- class(x) 

rather than just setting it to "factor". The distinction is essential if other classes 
are to inherit the method " [.factor" 0 and retain their own class attribute. Special 
objects introduced into the frame provide full information on the actual methods 
and classes used-see Section A.6. 

A related point applies to the design of classes. Asserting that one class inherits 
from another asserts that an inherited method will work; for example, the objects of 
class "ordered" must have all the information used to print objects of class "factor" 
if the NextHethodO call is to work in the definition of print. ordered(). So while S 
does not enforce any rules about which classes can inherit from which other classes, 
the designer needs to ensure that inheriting classes really do make sense when viewed 
by the inherited methods as objects of another class. 

The distinction between public and private views of Classes applies to these ex
amples: print. factor() was a private method, depending on the levels attribute; 
print. ordered() was a public method, just invoking the inherited method and mod
ifying its value. Similarly, " [.factor" 0 is a public method: its only assertion is 
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that a subset of the factor object should still be considered a factor. Public methods 
have the advantage of being less dependent on implementation details, and are usu
ally simpler to understand. Private methods tend to be more efficient, if carefully 
designed; in any case, some private methods will be necessary. Private methods 
should set the class of the object to NULL, as we did in print.factor(), to prevent 
accidental infinite loops and, more generally, to ensure that computations are done 
by the default methods. 

The distinction is sometimes subtle and not always clear-cut. For example, 
another possible implementation of "[.factor" 0 would be: 

"[.factor" <- function(x, i){ 
oldclass <- class(x) 
class(x) <- NULL 

} 

y <- x(i] 
class(y) <- oldclass 
y 

This is somewhere between a public and private view. It does not use any explicit 
attributes of the factor object, but notice that, since it sets the class to NULL, the 
default method will always be used for x [i]. Therefore, this implementation would 
prevent anyone from defining a class from which factor inherits, with a method for 
"[" 0. Generally, the previous implementation is. more flexible, although for factors 
the distinction makes little practical difference. · 

A.6 The Frames for Methods 

Methods invoked through UseMethodO or through a .Internal() interface behave 
as if the call to the generic had, instead, been a call to the method. When an 
inherited method is invoked by a call to NextMethodO, it behaves as if called from 
the previous method, with that method's arguments. The specific way this works 
will be described below. The evaluator also arranges for some special objects to be 
inserted in the frame of the method; these define precisely the class, method, etc., 
being used. See page 470. 

Arguments to Methods 

When UseM!lthodO is called, the frame in the evaluator for the call to the generic 
function becomes the frame for the call to the method: 

• The arguments in the call to the generic are re-matched to the formal argu
ments of the method, using the standard S rules for argument matching ( IJ, 
page 354). The method will see argument matches as it would if the user's 
call had been directly to the method. 
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• Any other objects in the frame remain the same. In particular, the first 
argument, which defined the choice of method, will have been evaluated. 

• The special objects defined on page 470 will be in the frame. 

Most generic functions will have only two arguments, the object itself and " ... ", 
as illustrated on page 460. Methods can have other arguments to control aspects 
of the computation peculiar to them. As an example, consider the print method 
for data frames. Basically, the method just turns the data frame into a matrix and 
prints the result. Here is a slightly simplified version: 

print.data.frame <- function(x, ... , quote z F, right= T) 
{ 

} 

print(as.matrix(x), ... , quote= quote, right= right) 
invisible(x) 

The method has arguments quote= and right= not found in the generic. These 
control whether quotes should be put around strings and whether character columns 
should be right-justified. They are also arguments to the print.defaultO method, 
which will eventually do the actual printing of the matrix. Having the arguments 
in this method allows their default values to be set differently from the defaults in 
other print methods, while still allowing the user to set the arguments explicitly: 

> print(catalyst, quote=T) 
Temp Cone Cat Yield 

1 "160" "20" "A" 116011 

2 "180" "20" ''A" 1172" 
3 "160" "40" "A" 11 54" 
4 "180" "40" "A" "68" 
5 "160" "20" "B'' "52" 
6 "180" "20" "B" 11 83" 
7 "160" "40" "B" "45" 
8 "180" "40" "B" "80" 

The existence of " ... " in the generic and in the methods means that other ar
guments can be passed down that may be meaningful to later, inherited methods. 
For example, the argument digits= is meaningful to print.defaultO and other 
methods, but not to print.data.frame(). Constructing the methods as above will 
allow users to pass this argument down to the methods that understand it. The 
extra arguments to the method above came after the " ... ", forcing the arguments 
to be named in the call. This is a reasonable strategy; the natural order of such 
arguments is unclear, given that the user may combine optional arguments from 
more than one method. 

Turning now to methods invoked as a result of a call to NextMethodO, these 
behave as if they had been called from the previous method with a special call. The 
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arguments in the call to the inherited method are the same in number, order, and 
actual argument names as those in the call to the current method (and, therefore, in 
the call to the generic). The expressions for the arguments, however, are the names 
of the corresponding formal arguments of the current method. Suppose, for example, 
that the expression print (ratings} has invoked the method print . ordered (). When 
this method invokes NextMethodO, this is equivalent to a call to print. factor(} of 
the form 

print.factor(x) 

where x is here the x in the frame of print. ordered 0. If several arguments match the 
formal argument " ... ", those arguments are represented in the call to the inherited 
method by special names " .. 1", " .. 2", etc. The evaluator recognizes these names 
and treats them appropriately (see page 476 for an example). 

This rather subtle definition exists to ensure that the semantics of function calls 
inS carry over as cleanly as possible to the use of methods (compare lj, page 354). 
In particular: 

• Arguments are passed down from the current method to the inherited method 
with their current values at the time NextMethod() is called. 

• Lazy evaluation continues in effect; unevaluated arguments stay unevaluated. 

• Missing arguments remain missing in the inherited method. 

• Arguments passed through the " ... " formal argument arrive with the correct 
argument name. 

• Objects in the frame that do not correspond to actual arguments in the call 
will not be passed to the inherited method. 

The inheritance process is essentially transparent so far as the arguments go. 
If the object driving the choice of method, x in the case of print(}, has been 

modified, the modified version is the one seen by inherited methods. However, 
modifying this object does not alter the choice of which method is invoked next. 
The object .Class always determines the choice of method. If the method wants 
to change x and use the class of the new version to control inheritance, it should 
invoke the generic function, just as print. data. frame 0 did in the above example. 
It is possible to make changes to .Class instead, but this is not recommended unless 
you understand the inheritance mechanism thoroughly. 

The rules above describe how NextMethodO constructs the new call, by default. 
If the current method wants to alter this call, the changes are provided as additional 
arguments to NextMethod (}. Consider print . factor(} again. It called print(} rather 
than NextMethodO in order to change the default value of the quote"' argument. 
Another approach would be to insert the argument into a call to NextMethod(): 



470 APPENDIX A. CLASSES AND METHODS 

NextMethod("print", quote= quote) 

replacing the call to print 0. In this case there is no particular difference, but if 
x still retained its original class, the call to print() would have caused an infinite 
loop. Any arguments can be given in this way, including the object itself. Named 
arguments override any correspondingly named arguments in the inherited call, and 
unnamed arguments are inserted at the beginning of the call. Generally, unnamed 
arguments should be used only to replace the object itself, but remember that doing 
so does not affect the choice of the next method. 

Special Objects in the Frame 

The method mechanism adds to the evaluation frame a complete picture of the 
current situation, in four special objects: 

.Class: The class attribute corresponding to the current method. NextMethod() 
adds the current . Class to the inheriting . Class as the attribute previous. 
See the example below . 

. Generic: The name of the generic function . 

. Method: The name of the method being used, as a character vector. This object 
has a special form when methods are defined for operators: see the discussion 
in Section A.7 below. ' 

.Group: The name of the group, in the case that the interface to methods comes 
through one of the internal interfaces in Table A. I on page 472. 

These objects are maintained and used by the S evaluator, but they can be used 
also in writing methods. To illustrate, suppose we trace print.factorO with the 
browser: 

> trace(print.factor,brovser) 
> sex 
browser: print.factor(sex) 
b> ? 
1: .Class 
2: .Method 
3: .Generic 
4: .Group 
5: X 

b> .Class 
(1] "factor" 
b> .Method 
[1] "print.factor" 
b> .Generic 
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[1] "print" 
b> .Group 
[1] "" 

Similarly, suppose we also trace print.ordered(), and then print ratings: 

> trace(print.ordered,browser) 
> ratings 
browser: print.ordered(ratings) 
b> .Class 
[1] "ordered" "factor" 
b> .Method 
[1] "print.ordered" 
b> 0 
browser: print.factor(x) 
b> .Class 
(1] "factor" 
attr(, "previous"): 
[1] "ordered" "factor" 
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Typing 0 returns from the browser() trace in print. ordered(). NextMethod() is then 
called. It constructs a call to print. factor(), which we are also tracing. We print 
Class again. The class is "factor", as when we were printing sex, but now with an 

attribute "previous", containing the same object that was in .Class in the previous 
method, print. ordered(). 

Each time NextMethod() moves down through the inheritance pattern, it shifts 
the .Class along to the inherited class, and attaches the previous value as the 
"previous" attribute of the new one. This extra information in .Class provides a 
mechanism for working back through the entire network of methods involved in the 
current computation, should we want to do so. 

A.7 Group Methods; Methods for Operators 

Functions using the . Internal 0 interface generate calls to c routines; for example, 

> exp 
function(x) 
. Internal(exp(x), "do_math", T, 108) 

calls the c routine do..math. Usually one routine handles a number of related S 
functions; for example, there is one internal interface for all the usual operators 
(arithmetic, comparison, logical), either in binary or unary form, and one for all 
the "mathematical" functions that transform objects element by element, including 
functions such as exp 0, as well as less obviously mathematical functions, such as 
round(). Table A.l shows the functions in this group and in various other groups 
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Group Functions 
Hath atan(x, y); cumsum(x); abs(x); acos(x); 

acosh(x); asin(x); asinh(x); atanh(x); 
ceiling(x); cos(x); cosh(x); exp(x); 
floor(x); log(x); loglO(x); 
round(x, digits); signif(x, digits); 
sin(x); sinh(x); tan(x); tanh(x); 
gamma(x); lgamma(x); trunc(x) 

Summary all(x); any(x); max(x); min(x); prod(x); 
range(x); sum(x) 

Ops el+e2; e1-e2; el•e2; elI e2; el" e2; 
el < e2; el > e2; el <=e2; el>=e2; el != e2; 
el ==e2; el %%e2; el%/%e2; eU:e2; 
ell e2; -e1; !x 

Table A.l: The groups of functions for which methods can be written 

of functions. Methods often will be identical, or nearly so, for all the functions in 
a group. One can take advantage of this by writing one group method, rather than 
a separate method for each function in the group. All the functions in the group 
will obey the method for objects from the new class, with only one piece of code to 
be written, saving substantially on work and clutter when implementing a method 
for all the 26 functions in the Hath group, for example. The catch, of course, is 
that the new method must work correctly for all the functions in the group. The 
NextHethod() function and the .Generic object are the key tools in writing such 
methods. 

Group methods are functions whose name consists of the group name, not the 
name of the individual function, followed by ". ", followed by the name of the class. 
The function Math.factor(), then, provides the method for all the functions in the 
Math group applied to factors. Since we want to discourage the user from thinking 
of the levels as numbers, the definition of this method is simple: 

Math.factor <- function(x, ... ) 
stop("A factor is not a numeric object") 

Trivial? Yes, but it prevents returning a meaningless (indeed, wrong) answer that 
would have resulted if the generic definition had been used. · 

It is possible to have methods for individual functions included in the group as 
well. The individual method is always chosen in preference to the group method. 
Group methods that can treat all the included generic functions the same way are 
the most. convenient, but the method is free to do something special depending on 
the particular function. The value of the special object ".Generic" gives the name 
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of the generic function. This could be an argument to the switch() function to 
enumerate special cases. 

Methods for the Math group and the Summary group tend to be simple, if they 
are needed at all. The generic functions are meaningful only for numeric or, oc
casionally, logical data. If a method is needed at all, it will typically just produce 
an error message or do some simple conversion of the object to the appropriate 
mode. Writing methods for the Ops group tends to be more challenging. This group 
includes all the arithmetic, comparison, and logical operators. One is fairly likely 
to want a method for this group, so that operators will work when the operands are 
one object from a special class and one plain object, or when the two operands are 
compatible objects from the same special class. 

Notice that S already supplies methods, implicitly, for arrays and time-series. A 
matrix and a vector can be operands to an operator, with the result being a matrix. 
Two matrices can be operands if their dimensions match. Similar but more liberal 
definitions apply to time series ( 1§1, page 296). New classes of objects ought to 
have similar methods where they make sense. 

An interesting feature here is that the traditional object-oriented view is rather 
clumsy, because the two operands ought to be treated equally in deciding what 
should happen. Taken literally this suggests having to define a new class of ob
jects for each pair of original classes. Then a method would be defined for the 
various operator "messages" for each class pair, either explicitly or by inheritance. 
Implementing such a scheme, however, would be very clumsy and in practice a sym
metric, pure approach seems never to be taken. The focus in S on the function as 
the primary arbiter of what method to be used seems in this situation to be natural. 

For the Ops group of functions in Table A.l, the internal interface invokes a 
special method if the two operands, taken together, suggest a single method
specifically, if one operand corresponds to a method that dominates that of the 
other operand, or if they both correspond to the same method. Otherwise, the 
default definition of the operator is used. Either a group definition or an individual 
definition of a method dominates if the other operand has no corresponding method, 
and an individual definition dominates a group definition. 

With the factor class of objects, if a group method, Ops. factor() has been 
defined (we will define one below), then any operation involving two factors will be 
handed over to this method. So will any operation in which either the left ·or the 
right operand is a factor, and the other operand either has no class attribute or else 
is a class for which no special method is defined. Notice that the special method 
is responsible for doing some further analysis to determine which operand is the 
factor and to check that two factor operands are compatible: 

Ops.factor ~- function(el, e2) { 
ok <- svitch(.Generic, "="'"=, "!=" = T, F) 
if (! ok) stop(paste ( 1 " 1 ,. Generic, 
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'" not meaningful for factors', sep="")) 
nas <- is.na(el) I is.na(e2) 
if(nchar(.Method[l])) { 

11 <- levels(el) 
el <- ll[el] 

} 
if(nchar(.Method[2))) { 

12 <- levels(e2) 
e2 <- 12[e2) 

} 
if(all(nchar(.Method)) tt (length(ll) != length(l2) II 

!all(sort(l2) == sort(ll)))) 
stop("Level sets of factors are different") 

value <- NextMethod(.Generic) 
value[nas] <- NA 
value 

This method works by converting each factor operand to the corresponding char
acter vector, as defined by the levels. The call to switch() at the beginning of 
the method checks that the operator is meaningful, by examining .Generic. Only 
equality comparisons are allowed. If this check was omitted, arithmetic operators 
would be caught automatically, but comparisons, such as>, would be interprf"t.eQ on 
the levels as character strings. This does not make sense-the levels set is exphc1dy 
unordered-so we catch it here. 

The Method object (page 470) shows which operands are factors. The first and 
second elements of . Method will be non-empty strings if the corresponding operand 
inherited from class "factor". In the case that both operands inherited, we im
plement a check that the two objects are compatible, in the sense that they use 
the same level set. The particular test there ignores, as it should, the order of 
appearance of the levels in the level set. When Ops.factor() is called on one factor 
operand and one character vector, the factor operand is converted to a character 
vector. Comparisons will be in this form: 

> ratings•s"Low" 
[1) F F T F F F F T T F F F F F F T F T F T 

Without the special method, this would have ended up comparing the numbers used 
to code the levels with the string "Low". 

Note the use of .Generic in the call to NextMethodO to avoid explicit mention of 
the individual function. If it was necessary to invoke the generic function directly, 
the simplest approach would be: 

get(.Generic, mode = "function")(el, e2) 
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An example of this is the method Ops. ordered 0. It does not want to invoke the 
next method, which would be Ops.factorO, since that method is incompatible. 
Instead, it constructs some objects without any class and explicitly invokes the 
generic function on those. 

Factors, unlike character vectors, can contain missing values, so the definition 
of Ops.factor() allows for them according to the standardS rule that an element 
of the result is NA wherever either operand is NA. The missing values are computed 
at the beginning of the function by the expression 

nas <- is.na(e1) I is.na(e2) 

and inserted into the result at the end by 

value[nas] <- NA 

Print Ops. ordered, the corresponding method for ordered factors, to see a similar 
general style, using the numeric code, however, rather than the levels. This method 
implements operations that are meaningful for ordered, but non-numeric, values. 

A.8 Replacement Methods 

Many S functions can appear on the left side .of an assignment arrow, indicating 
replacement of some subset or attribute of the object that is the first argument of 
the function. These too are good candidates for special methods. S already provides 
a mechanism by which users can write their own replacement functions ( ~~ page 
217). Replacements of the form 

f(x) <- value 

are evaluated by S as the expression 

x <- "f<-"(x, value) 

so that the user need only define the function "f<-" (). This mechanism combined 
with our mechanism for methods allows methods to be generated for replacement 
operations. To create a replacement method for function f 0 for objects inheriting, 
say, from class "factor", we write a method function "f<-.factor"O. Parentheti
cally, the S evaluator actually intercepts replacements using "[" 0, " [ [" 0, "$" 0, 
dimO, dimnamesO, levels(), and tsp() without calling a function. Nevertheless, 
replacement methods can be written for these, just as if a replacement function 
were being called, and definitions for " [ <-" 0, etc. are provided for reference. 

To show an example of replacement methods, and a somewhat more ambitious 
example of methods, we consider a method for replacements using [] for data 
frames. We can write a replacement method for data frames, by defining a function 
"[<-.data. frame" 0. The goal is to replace data as if the object were a matrix: 
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mydata(6, 1:2] <- 0 

sets the first two variables of the sixth observation to o. Here is a simplified version, 
ignoring NA's, matrix-like variables, character subscripts, and various possible errors. 
It illustrates some useful points, nevertheless: 

" (<-.data. frame"<
function(x, ... ,value) 
{ 

} 

cl <- class(x); class(x) <-NULL 
rovs <- attr(x, "rov.names") 
has.t <- !missing( .. 1); has.2 <- !missing( .. 2) 
if(!has.l) { 

} 

nrovs <- length(rovs) 
if(length(value) < nrows) 

value<- value(rep(l:length(value), length a nrovs)] 
if(has.2) 

x[ .. 2] <- list(value) 
else x[] <- list(value) 
class(x) <- cl 
return(x) 

iseq <- seq(along a rovs)[ .. t] 
if(has.2) jseq <- seq(along m x)[ .. 2] 
else jseq <- seq(along = x) 
n <- length(iseq); p <- length(jseq) 
m <- length(value) 
if(m < p) value <- value[rep(l:m, length = p)] 
for(j in l:p) { 

jj <- jseq(j] 
x[[jj]] [iseq] <- value[[j]] 

} 
class(x) <- cl 
X 

The first if 0 disposes of the special case that only columns are being replaced, 
since this reduces to an ordinary replacement in a list. The remainder of the code 
goes through all the columns selected, replacing the appropriate elements or rows. 
The for loop applies the replacement to each variable in turn. Finally, the class 
attribute is replaced and the entire data frame returned as the value of the function 
call. Any replacement method, like any user-defined replacement function, should 
return the new value for the entire object. 
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A.9 Assignment Methods 

One other piece of S evaluation, in addition to function calls, may be relevant in 
designing new classes of data. The process of assignment associates a name with an 
S object, either in one of the frames active during the S session or as a permanent 
S object. Currently, methods are accepted for permanent assignment, by writing a 
method for the generic function "«-" 0. Methods for temporary assignments could 
have been allowed as well, but our feeling is that the overhead would be excessive. 

To redefine permanent assignment, create a function "«-. ", followed by the 
name of the class. This method will be called just before a permanent assignment 
is committed ( 1§1, page 121}. The arguments to the method are x (the name) 
and value (the S object to be assigned that name). As an example, we consider 
briefly a class of objects designed to support large amounts of data. Suppose we had 
defined a class "extern" to allow S to refer indirectly to objects, perhaps stored in 
a different format. The public view of external objects hides this indirect reference. 
Methods allow access to the data and other operations on it without reading the 
entire object into memory, as would happen for ordinary S objects. The private 
view of the object is defined by two attributes: the class attribute, with value 
"extern", and the where attribute, whose value is a character string identifying the 
external data, say as a file name. 

We will not try to describe how external objects would be handled in detail, 
but will use them to illustrate assignment methods. This class needs a method 
for assignment because the appropriate permanent file must be created when the 
assignment of an external object is to be committed. The other methods defined for 
extern objects will create new objects as the result of functions such as arithmetic 
operators. These objects will have special where names, referring to files that will 
be removed automatically at the end of the expression. Suppose permanent files 
for extern objects reside in the .Ext subdirectory of the working directory, in which 
they have the same name as the extern object that refers to them. The method for 
permanent assignment sets up the appropriate file and returns an extern object for 
assignment with the correct where attribute: 

"«-.extern" <- function(x, value) { 

} 

perm. file <- paste(search() [1), ".Ext", x, sep•"/") 
cur.file <- attr(value, "vhere") 
if(is.pe:rm(cur.file)) { 

if(cur.file !• pe:rm.file) 
unix( paste("cp", cur.file, perm. file)) 

} else unix( paste("mv", cur.file, pe:rm.file) 
attr(value, "where") <- pe:rm.file 
NextMethod() 

The method essentially does two things: it puts the vhere file in the right place, 
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by using either the mv or cp command; and it sets the where attribute in the object 
to the correct file name. Calling NextMethod () completes the standard assignment 
with the modified object. 

External objects are related to a number of interesting applications of the 
classes/methods mechanism, including interfaces between Sand database manage
ment software and the definition of classes of S databases. These applications are 
outside the scope of the present book, however, and we will not pursue them any 
further here. 

A.lO Generic Functions 

Generic functions that call UseMetho!fO are easy to recognize, of course, and new 
generic functions can be written in this form at any time. A new generic function, 
say precis(), usually looks like this: 

precis <- function(x, ... ) 
UseMethod("precis") 

The inclusion of the name of the generic in the call to UseMethodO ensures that 
the generic function will be self-defining, so that the function object can be used 
anywhere in S without losing the identity of the related class. 

For most generic functions, a default method will also be written: 

precis.default <- function(x, ... ) { 
if(is.null(class(x))) cat("Mode:", mode(x), 

"Length:", length(x), "\n") 
else cat("Class:", class(x),"\n") 

It is not obligatory that the body of the generic consist only of the call to UseMethod 0, 
although the keep-it-simple motto encourages it. The effect of UseMethodO is to 
replace the body of the generic function with the body of the method, after re
matching the arguments. See page 460. 

The inclusion of " ... " in the generic is recommended so methods can include 
optional arguments not meaningful to the generic. When UseMethodO invokes the 
method, the actual arguments to the generic are re-matched to the arguments of 
the method. 

Generic functions working through the . Internal interface can't be recognized 
by looking at the definition of the generic. Table A.2 lists all the functions using 
the . Internal 0 interface for which methods can be written. There must not be a 
default method for these functions. The default is provided by the internal code. 
The list in Table A.2 is larger than that in Table A.l because group methods are 
not allowed in all cases. The decision, somewhat arbitrary. was that some internal 
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x[. .. , drop] x([ ... , drop)] x$name e1 XY. e2 
e1 Y./Y. e2 e1 • e2 e1 + e2 e1 - e2 
e1 I e2 e1 "e2 e1 < e2 e1 <• e2 
el •= e2 el > e2 el >= e2 el .a: e2 
e1 1:1: e2 e1 I e2 e1 II e2 -el !•e2 
-e1 !x 
abs(x) acos(x) acosh(x) all(x) 
any(x) as. anything(x) as.vector(x, mode) asin(x) 
asinh(x) atan(x,y) atanh(x) attr(x, vhich) 
attributes(x) ceiling(x) cos(x) cosh(x) 
cumsum(x) dim(x) dimnames (x) exp(x) 
floor(x) gamma(x) lgamma(x) length(x) 
levels(x) log(x) match(x) max(x) 
min(x) mode(x) names(x) prod(x) 
range(x) round(x, digits) signif (x, digits) sin(x) 
sinh(x) storage.mode(x) sum(x) tan(x) 
tanh(x) trunc(x) tsp(x) 

Table A.2: Functions in S for which internal code will detect special methods. 

interface routines handled a group of functions too diverse or too unlikely to be 
candidates for methods to justify the extra overhead in checking each time for a 
group method. 

A.ll Comment 

Methods provide a powerful tool for extending S to handle novel classes of objects. 
We have concentrated here on illustrating the technique and have kept the methods 
as simple as possible. In practical applications, designing the methods should be the 
most carefully thought-out part of the project. The best strategy to make methods 
correspond to the meaning of a class of objects in serious applications can be chal
lenging and not entirely unambiguous. These strategic questions, although requiring 
care and sometimes introducing subtle issues, are not disadvantages. Rather, they 
illustrate the substantive needs that can be addressed directly with a rich software 
environment. 

Having now persevered to the end, you may be interested to look back at some 
of the methods that have arisen throughout the book. They should illustrate the 
concepts behind the design of the various classes of objects, and in particular how 
those classes are interconnected to form our overall approach to statistical models. 
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Bibliographic Notes 

There is an enormous literature on programming languages, and a very large one 
even on the subtopic of object-oriented programming. None of it is directly needed 
to use the facilities described here, since the approach in S is not directly derived 
from any one other approach. The styles of Lisp-based object-oriented programming 
and that of C++ represent two divergent approaches, described respectively in the 
books by Keene (1989) and Stroustrup (1986). Our approach is closer in some 
respects to the former, although, as noted, the other properties of S tend to produce 
a different use of methods and classes. A statistical system built directly on Lisp and 
having its own approach to object-oriented programming is LISP-STAT, described in 
Tierney (1990). 

Functional programming is also widely discussed. A thorough treatment is given 
by Reade (1989). The book by Gelernter and Jagannathan (1990) discusses a wide 
range of programming languages, including both object-oriented and functional, 
attempting to model them all in a consistent way. 
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S Functions and Classes 

This appendix contains detailed documentation for a selected subset of the func
tions, methods and classes of objects used in the book. Online documentation is 
available for these, and for all the other functions discussed in the book, by using 
the "?" operator. Wbere a generic function implies most of the information needed 
(e.g., deviance), documentation for the methods is omitted here. Conversely, if one 
method'dominates the use in all models (e.g., addl.lm, alias.lm), only that method 
is included here. Finally, several methods are included if they are important and 
substantially different (e.g, plot.factor, plot.gam, and others for plot). If you 
want online documentation, you should not have to worry about such distinctions. 
Typing 

?plot(myfit) 

for example, shows you the methods for plot() applicable to the object myfit. To 
see all the platO methods for any object whatever, do 

?methods(plot) 

The online documentation will be up to date with your version of S; therefore, it 
may reflect changes since this book was published. 
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... · On•line Information on FUnctions, Objects, and Calls 

? 
?name 
?object 
?name(object, ... ) 
?methods(name) 

ARGUMENTS 

name: a name or a character string giving the name of a function or operator. If 
omitted, documentation on? is given (this documentation). 

object: the name of an S object. Documentation will be offered on all the classes 
of objects from which the object inherits. 

name(object, ... ) : a proposed call, typically to a generic function, with the first 
argument being some (existing) S object. Documentation will be offered 
on the function name itself and on all methods for name that might be used 
when the call is actually evaluated. However, the call is not evaluated: 
this use of? is usually to decide what would happen if some proposed 
computation were done. 

methods(name): all possible methods for function name will be presented, based on 
the functions available on the current search list. 

In the cases where documentation is offered on all classes or methods, 
the options are presented to the user via the menu() function. All the 
possibilities (as a character vector) are returned (invisibly) as the value of 
?. Not all the proposed documentation need exist: ? does not check for 
the existence of the documentation when it constructs the menu. 

SEE ALSO 
help, menu 

EXAMPLE 

?plot # help on plot function 
?myfit # documentation for all the classes of object myfit 
?"+" # addition (and other arithmetic) Note the need for quotes 
?plot(myfit) # tell me about the plot methods for myfit 
?">"(obj, 0) # tell me about the ">" methods for obj 
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· .. ··•·· _ .. c~~pute··~····~ove.O~J~~~~r~d~g-~\i'~t;;·?r:·~~:~ 
0;" 

addl.lm(object, scope, scale, keep, x) 

ARGUMENTS 

object: an lm object, or any object that inherits from class lm. In particular, a 
glm object is also appropriate for a chi-squared analysis based on the 
score-test. 

scope: a formula object describing the terms to be added. This argument is 
required, and is parsed to produce a set of terms that may be added 
to the model on their own without breaking the hierarchy rules. The 
scope can also be a character vector of term labels. Any "." in scope is 
interpreted relative to the formula implied by the object argument. 

scale: the multiplier of the df term in the Cp statistic. If not supplied, scale is 
estimated by the residual variance of object, or else in the case of a glm 
object the dispersion parameter. 

keep: a character vector of names of components that should be saved for each 
augmented modeL Only names from the set coefficients, fitted. values, 
residuals, x.residuals, effects, Rare allowed. keep=T implies the com
plete set. x.residuals for a given term is the X matrix corresponding to 
that term, adjusted for all the terms in the model object. The other com
ponents are as in object. The default behavior is not to keep anything. 

x: a model matrix that includes all the terms in object as well as all those to 
be added. This is an optional argument, used, for example, by step.glmO, 
and saves recomputing the model matrix every time. 

VALUE 
Using the "R" component of object, as well as the corresponding qr ob
ject, each of the superset models corresponding to object plus a term as 
specified in scope are fitted. An anova object is constructed, consisting of 
the term labels, the degrees of freedom, the residual sum of squares, and 
the Cp statistic for each superset model. If keep is missing, this is what is 
returned. If keep is present, a list with components "anova" and "keep" is 
returned. In this case, the "keep" component is a matrix of mode "list", 
with a column for each superset model, and a row for each component 
kept. 
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addl 0 handles weighted lm objects, in particular glm objects. The weighted 
residual sum of squares is a Pearson chi-square statistic based on the 
weights of the model object, and a one-step iteration towards the super
set model. This results in a score test for the inclusion of each term. The 
function addl() is used as a primitive in step.glmO. 

This function is a method for the generic function add1 0 for class "1m". It 
can be invoked by calling add1 (x) for an object x of the appropriate class, 
or directly by calling add1.lm0, regardless of the class of the object. 

SEE ALSO 
dropl, anova, step, step.glm, step.gam 

EXAMPLE 

addl(lm.object, - ."2) 
I consider all interactions of terms in lm.object for inclusion 

addl(glm.ob, - . -Age + poly(Age,2) + log(Age) + sqrt(Age)) 
I try some candidate transformations for Age. 

alias.lm(object, complete=T, partial=T, pattern=T, ... ) 

ARGUMENTS 

object: a fitted model, inheriting from 1m. 

complete: 

partial: flags indicating whether information for complete and partial aliasing 
should be included in the result. 

pattern: should the resulting alias matrices be simplified by calling the pattern() 
function. 

VALUE 
a list potentially containing components for complete aliasing and for par
tial aliasing; each is included only if both requested and found to exist in 
the model. The component for complete aliasing is a matrix with columns 
corresponding to effects that are linearly dependent on the rows (i.e., ef
fects that are completely aliased with the estimable effects). Partial alias
ing is essentially the correlation of the estimable effects, with the diagonal 
elements set to zero. 
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This function is a method for the generic function alias(} for class "1m". 
It can be invoked by calling alias(x) for an object x of the appropriate 
class, or directly by calling alias .lmO, regardless of the class of the object. 

anova(object, 
anova(object) 

test • "none") 

ARGUMENTS 

object: a model object, such as those produced by lm(), glmO, aov(), loess(), 
etc. 

optional additional model objects; anovaO will behave differently if addi
tional models are provided. 

test: the type of test statistic to be included in the table. The default is "none", 
and other choices depend on the method. Typical choices are "F", "Chi", 

VALUE 

or "Cp". 

an anova object. This class of objects inherits from the class "data frame", 
and consequently suitable methods exist for printing, subsetting, etc. An 
additional "heading" attribute is a character vector that is printed at the 
top of the table. 

If called with a single object as an argument, anova produces a table with 
rows corresponding to each of the terms in the object, plus an additional 
row for the residuals. The method for aov objects is similar to summary(). 

When two or more objects are used in the call, a similar table is pro
duced showing the effects of the pairwise differences between the models, 
considered sequentially from first to last. 

SEE ALSO 
anova.lm, anova.glm, anova.gam, anova.aov, anova.loess 

EXAMPLE 

> anova(glm.object) 
Analysis of Deviance Table 
Binomial model 
Response: Kypho-sis 
Terms added sequentially (first to last) 
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Df Deviance Resid. Df Resid. Dev 
NULL 80 83. 23 

bs(Start, 5) 5 
Number 1 

23.49 
1. 73 

anova(gas.null, gas.alternative) 

75 
74 

59.75 
58.02 

Hodel 1: loess(formula c NOx - E, span = 1) 

Hodel 2: loess(formula = NOx - E, span = 2/3) 
Analysis of Variance Table 
Hodel Enp RSS Test 
1 3.5 0.5197 1 vs. 2 
2 5.5 0.3404 

F Value 
10.14 

Pr(F) 
0.0009 

Fit ~ Analysis ofVanance Model· .. 

aov(formula, data, projections= F, ... ) 

ARGUMENTS 

formula: the formula for the model. 

data: if supplied, a data frame in which the variables named in the formula are 
to be found. If d~ta is omitted, the current search list is used; for example, 
a data frame may have been attached or variables may be objects in the 
working database. 

projections: if TRUE, the fitted model will include a matrix of the projections onto 
the terms in the model. This matrix will be the component "projections" 
of the returned fit, or of the fits for the error strata in the case of multiple 
error strata. See proj 0 for the description of the projections. This adds 
substantially to the size of the returned object (the matrix has as many 
rows as observations and as many columns as terms), but if you plan to 
use the projections, it is more efficient to compute them during the fit 
rather than by calling pro j 0 later. 

VALUE 

other arguments can be supplied that are meaningful to lm(). In particu
lar, weights, subsetting of the data frame and treatment; of missing values 
can be supplied. See lm. 

an object describing the fit. There are two cases: if there is no Error term 
in the model, the object is of class "aov". This class inherits from the class 
of linear models (class "lm"). See aov. object and lm. object. The formula 
may optionally specify special blocking or error structure if it includes a 
term that calls the special function Error(). For example, 



S FUNCTIONS AND CLASSES aov .genyates 487 

aov(response "' time • concentration + Error(blocks) 

specifies that factor blocks defines an error stratum. The resulting model 
will include two error strata, blocks and Within. In the case of multiple 
error strata, aov fits a separate model for each stratum. Specifically, the 
response is projected onto each term in the error model, and these pro
jections are then used to fit separate models. The object returned by aov 
has class aovlist and is a list of aov objects of the form above, one for 
each stratum. In addition, the "aov.list" object has an attribute "call" 
containing the call. 

EXAMPLE 

gunaov <- aov(Rounds "' Method + Physique/Team, gun) 

· aov.genyates I 
aov.genyates(formula, data, onedf=F) 

ARGUMENTS 

formula: the formula for the model. The formula must not include an Error term. 

data: if supplied, a data frame in which the objects named in the formula are 
to be found. If data is omitted, the current search list is used; frequently, 
a data frame will have been attached. 

onedf: logical expression of length 1. When onedf==T, the function returns single 
degree of freedom projections in component proj. When onedf==F (the 
default), the function collapses the single degree of freedom projections 
into multi-degree of freedom projections. Each column of the collapsed 
result represents one term of the analysis of variance table. The sum of 
squares of each column is the sum of squares for the corresponding term 
in the model. 

VALUE 
an object describing the fit. It will be of class aov. In addition, the fit 
contains the projection matrix: 

proj: an orthogonal matrix, identical to the result of the proj .1m function ap
plied to the aov structure. Thus the two expressions: 

proj.lm(aov(formula, data, qr•T, onedf~F)) 
aov.genyates(formula, data, onedf=F)$proj 
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yield the same result. 

SEE ALSO 
proj, proj.lm, aov 

EXAMPLE 

> aov.genyates(Yield ~ Temp • Cone • Cat, catalyst) 

An~ysis of Variance (aov)l)I>Ject aov~obJect 

This class of objects is returned from aov() and other functions to rep
resent an analysis of variance. Class aov inherits from class lm. With a 
matrix response, the object inherits from c("maov", "aov") so that meth
ods can use the matrix nature of the response, fitted values, etc. Ob
jects of this class have methods for the functions print(), summary(), and 
predict 0 functions, among others. In addition, any function that can be 
used on an lm object can be used on an aov object. The components of a 
legitimate aov object are those of an 1m object. See 1m. object for the list. 
The residuals, fitted values, coefficients, and effects should be extracted by 
the generic functions of the same name, rather than by the "$" operator. 

For a multivariate response, the coefficients, effects, fitted values and resid
uals are all matrices whose columns correspond to the response variables. 

If the model formula contained an Error specification for fitting in strata, 
the object is of class aovlist, and each component of the list is an aov 
object. The first component of the list is for the degenerate "intercept" 
stratum. The object in this case also has attributes describing the overall 
model; in particular, the call and the terms object correspond to the 
components of the same name in an lm object. 

' . , See facto~ · · <·: ··. ' · ..• ,_-.··.·· ..• •.· ...•. :.•·.•.·.·····.··· .. :·.·.·.·.· .. ~ .•..• ·····:··.·.·.·.-_·:_ •. ··.:.·.:.•·.ra_ ...•• ·.··.:·;··.~.··.·.·.·.·.·.·.~.·.·.o.· .• ·····.·.r.· .. ·l ··.,:.:··(~'.:' . ·'····· · . ..... ;·:. :.~·::· .. ·:·~\1:';·/~· ... .-.i_'j}) ,·.-.:·~.~.\:· . . . 
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1 btnoOllal ·. see r11111y· · 

I browser Browae Interactively On Objects browilerl 

brovser(object, ... ) 

ARGUMENTS 

object: Some S object. 

VALUE 
typically the value in a return() expression typed to the browser. 

The methods for this function are used for the interaction provided in 
looking at S objects. Nearly always, the objects will be list-like or in some 
sense composed of components that are themselves useful to be examined. 
The various methods amount, generally, to constructing a suitable list 
object which then becomes the argument to brovser.default(). 

This is a generic function. Functions with names beginning in "brovser." 
will be methods for this function. 

SEE ALSO 
trace, restart, debugger, traceback 

EXAMPLE 

brovser(treeobject) #examine a tree-based fitted model 
brovser() • examine the current evaluation frame 



490 browser.default APPENDIX B 

. . 

broW&el"•d~fault. ~rowse In~ractively.jn, $ ~tioP,'tJ Frame bro~.d~fault 
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browser.default(frame=, catch=TRUE, parent•, message=, 
prompt="b> ", readonly .. F) 

ARGUMENTS 

frame: either a list or a number, the latter meaning the corresponding frame in the 
evaluator. This is particularly useful when using the browser interactively: 
traceback() returns the active frame numbers, and one of these can be 
given to browser to examine data in another frame. By default the frame 
of the function calling browser is used. Therefore in its usual use, adding 
the expression browser() to a function allows you to see what the function 
has done so far. If frame is a list, 'new.frame() is called to make an 
evaluation-frame copy of it. 

catch: logical; should errors and interrupts be caught in the browser? If TRUE, 
then the browser will be restarted after such errors, but see the quit signal 
comment below. If FALSE, any errors will return to the S prompt level. 

parent: optional frame to be used as the parent frame of frame. Defaults to 
sys.parent(2) if frame is missing and to sys.parent(l) if frame is specified. 

message: optional text to be printed instead of the standard browser message. 

prompt: character string to be printed to prompt for input. This allows changing 
the prompt to distinguish between several versions of browser that may 
be in effect at the same time. If frame is specified numerically, the default 
prompt includes the frame number, e.g. "b(5)> ". 

readonly: optional flag. If FALSE, and if frame is missing or numeric, assignments 
will cause changes in the corresponding evaluation frame that persist after 
the return from browser(). 

VALUE 
the value returned in a return expression typed by the user; if you return 
by giving a response o to the prompt, the value is NULL. 

When the browser is invoked, you will be prompted for input. The input 
can be any expression; this will be evaluated in the frame. Three kinds 
of expressions are special. The response ? will get you a list of menu
selectable items (the elements of the frame). A numeric response is taken 
to be such a selection. A rettirn expression returns from the browser 
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with this value. The expression substitute(x) is useful to see the actual 
argument that was given, corresponding to the formal argument x. 

The quit signal (usually the character control-backslash) will exit from 
the browser, and from the whole expression that generated the call to 
the browser, returning to the S prompt level. (Don't type two control
backslash characters, or one if catchsFALSE; either action will terminate 
your session with S!) 

This function is a method for the generic function browser() for class 
"default". It can be invoked by calling browser(x) for an object x of the 
appropriate class, or directly by calling browser. default 0 , regardless of 
the class of the object. 

SEE ALSO 
trace, restart, debugger, traceback 

EXAMPLE 

trace(foo, browser) #call browser on entering foo() 
options(interrupt=browser) #invoke browser upon interrupts 
myfun <- function(x, y) { 

# lots of computing 
browser() #now check things just before the moment of truth 
.C("myroutine", x, y, w) 

bs(x, df, knots, degreea3, intercept=FALSE) 

ARGUMENTS 

x: the predictor variable. 

df: degrees of freedom; one can specify df rather than knots; bs() then chooses 
df-degree-1 knots at suitable quantiles of x. 

knots: the internal breakpoints that define the spline; the range of the data 
provide the boundary knots. The default is NULL, which results in a basis 
for ordinary polynomial regression. Typical values are the mean or median 
for one knot, quantiles for more knots. 

degree: degree of the piecewise polynomial-default is 3 for cubic splines. 

intercept: if TRUE, an intercept is included in the basis; default is FALSE. 
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VALUE 
a matrix of dimension length(x) • df, where either df was supplied or if 
knots were supplied, df "' length(knots} + 3 + intercept. 

bs() is based on the function spline.desO written by Douglas Bates. It 
generates a basis matrix for representing the family of piecewise polyno
mials with the specified interior knots and degree, evaluated at the values 
of x. A primary use is in modeling formulas to directly specify a piecewise 
polynomial term in a model. 

SEE ALSO 
ns, poly, lo, s, smooth.spline 

EXAMPLE 

lm(y -v bs(age, 4) + bs(income, 4)) # an additive model 

JJiu-i.t~ .. , · ... ,-'":View all SplitHo;.N6d~ of a:~ Object 
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burl.tree(tree, nodes, ... ) 

ARGUMENTS 

tree: fitted model object of class tree. This is assumed to be the result of some 
function that produces an object with the same named components as 
that returned by the tree() function. 

nodes: an integer vector containing indices {node numbers) of all nodes to be 
examined. If missing, users select nodes as described below. 

VALUE 
the primary purpose of bur 1. tree 0 is its graphical side effect: for each 
node selected or specified, a plot of the change in deviance at each pos
sible split, on each available predictor. For continuous predictors, a high 
density plot displays the change in deviance for each cut-point. For factor 
predictors, a scatterplot displays the change in deviance against an encod
ing of the subset split; the plotting symbol is the left-hand split. For the 
last node specified or selected, burl. tree 0 returns a named {by predictor 
variable) list containing the following details of the competition for the 
best split at that node. 

ARGUMENTS 

x: vector of cutpoints or sequence numbers (subset splits). 
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y: vector of deviance change if node is split at x. 

cut left: character vector of left-hand splits. 

cut right: character vector of right-hand splits. 

numl: the number of observations in the left-hand split at each x. 

GRAPHICAL INTERACTION 
This function checks that the user is in split-screen mode. A dendrogram of 
tree is expected to be visible on the current screen, and a graphics input 
device (e.g., a mouse) is required. Clicking (the selection button) on a 
node results in the additional screens being filled with the information 
described above. This process may be repeated any number of times. 
Warnings result from selecting leaf nodes. Clicking the exit button will 
stop the hurling process and return the list described above for the last 
node selected. See .Device and split.screen for specific details on graphic 
input and split-screen mode. 

Graphical parameters (see par()) may also be supplied as arguments to 
this function. In addition, the high-level graphics control arguments de
scribed under plot.defaultO and the arguments to title() may be sup
plied to this function. 

EXAMPLE 

z <- tree(Hileage~Weight + Type) 
tree. screens() 
plot(z) 
burl.tree(z) 
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lc . __ .. -__ ,·. Factor with Chosen Contrasts 

C(object, contr, hov.many) 

ARGUMENTS 

object: a factor or ordered factor. 

contr: what contrasts to use. May be one of four standard names (helmert, poly, 
treatment, or sum), a function, or a matrix with as many rows as there are 
levels to the factor. 

hov.many: optionally, the number of contrasts to be assigned to the factor, if fewer 
than k-1, where k is the number of levels. Note that setting this in a 
model formula is an assertion that the coefficients for the remaining factors 
are either known to be negligible or else should be aliased with other 
coefficients. 

VALUE 
a factor, with the contrasts attribute set as above. May be used inline in 
a model formula or to create a new factor. 

EXAMPLE 

# use treatment contrasts for factor Cat 
aov(Yield ~ Cont• C(Cat, treatment), catalyst) 
# only fit linear and quadratic effects 
aov(Defects ~ C(Reliability, poly, 2) • Type • Plant) 
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:···.·, 

coefficients(object) 
residuals(object) 
fitted.values(object) 

ARGUMENTS 

object: any object representing a fitted model, or, by default any object with a 
component named by the name of the extractor function. 

VALUE 

NOTE 

the coefficients, residuals, or fitted values defined by the model in object. 
While for some models this will be identical to the component of the object 
with the same name, you are encouraged to use the extractor functions, 
since these will call the appropriate method for this class of object. For 
example, residuals from generalized linear models come in four flavors, 
and the typically most useful one is not the component. 

As a special inducement to use the extractor function rather than the 
component, three abbreviated versions of these functions exist; namely, 
coef(), resid(), and fitted(). 

SEE ALSO 
predict, effects 

EXAMPLE 

residuals(kyph.fit) 
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The Contrast MatrixJor a Factor < .. 

contrasts(x) 

ARGUMENTS 

x: a factor or ordered factor. 

VALUE 
a matrix, with as many rows as there are levels for x, say k, and at most 
k-1 columns. When xis used in a model, such as through lm() or aovO, 
the portion of the model matrix assigned to x will be the result of matrix
multiplying the dummy matrix for the levels of x by contrasts (x). If x 
has an attribute "contrasts", this is the value of contrasts(x); otherwise, 
the standard contrasts are computed and returned. These are given by 
calling one of two functions, as named by options("contrast"). The first 
function is the default for factor objects and the second the default for 
ordered factor objects. 

EXAMPLE 

contrasts(£) <- contrasts(f)[,1:3] #only the first 3 contrasts 

coplot(formula, data, given.values, panel = points, rows, columns, 
show.given • TRUE, add= FALSE, xlab, ylab, xlim, ylim, ... ) 

ARGUMENTS 

formula: formula defining the response and the predictors involved in the plotting. 
This is an S expression of the form: 

y ~X I g1 

or 

y ~X I g1 • g2 

where y is the response, xis the predictor against which y is plotted on the 
dependence panels, and g1 and g2 are given predictors. These variables 
may specify numeric vectors or factors. The formula may be given literally, 
or it may be an expression that evaluates to a formula. 
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data: data frame in which the formula will be evaluatfltl. If missing, evaluation 
will take place as if the formula were evaluated in I. he frame of the function 
calling coplot. 

given.values: a numeric vector, character vector, or two-ctr(umn matrix that spec
ifies· the given values when there is one given pr~>dictor, or a list of two 
such objects when there are two. If missing, reastrnable things happen. 

panel: a user-supplied function of x and y that determineH t.he method of plotting 
on the dependence panels. 

rows: for the case of one given predictor, the number of rows of the matrix of 
dependence panels. If missing, the following is the default: let k be the 
number of given values; if columns is missing, then 

rows <- ceiling(sqrt(k)) 

else 

rows <- ceiling(k/columns) 

This argument is not used if there are two given predictors. 

columns: for the case of one given predictor, the number of columns of the matrix 
of dependence panels. If missing, the following is the default: let k be the 
number of given values; if rows is missing, 

columns <- ceiling(k/ceiling(sqrt(k))) 

else 

columns <- ceiling(k/rows) 

This argument is not used if there are two given predictors. 

show. given: if FALSE, given panels are not included. 

add: if TRUE, add to the current plot. 

Graphical parameters (see par()) may also be supplied as arguments to 
this function. Graphical parameters (see par) may also be supplied as 
arguments to this function. The arguments xlab and ylab are as for other 
graphics functions, except that the former is a character vector of labels for 
predictors. If the elements have names, they are matched to the names in 
formula; if not, the elements are assigned, in order, according to the order 
in which they appear in formula. If missing, the names of the predictors 
in formula are used. The arguments xlim and ylim are axis limits as in 
other graphics functions. 

For an example of the output of coplot 0, see Figure 3.8 on page 78. 
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SEE ALSO 
co. intervals, panel.smooth 

EXAMPLE 

# the following makes a coplot of NOx against C given E 
# with smoothings of the scatterplots on the dependence panels: 
E.intervals <- co.intervals(ethanol$E, 16, 0.25) 
coplot(NOx- C I E, given.values = E.intervals, data= ethanol, 

panel • function(x, y) panel.smooth(x, y, span = 1, 
degree = 1)) 

data.frame( ... , row.names, check.rows = F, check.names = T) 
as.data.frame(object) 

ARGUMENTS 

objects to be included in the data frame. These can be vectors (numeric, 
character, or logical), factors, numeric matrices, lists, or other data frames. 
Matrices, lists, and data frames provide as many variables to the new data 
frame as they have columns, elements, or variables, respectively. Numeric 
vectors and factors are included as is, and non-numeric vectors are coerced 
to be factors, whose levels are the unique values appearing in the vector. 
Making any ofthe above the argument in a call to the function I 0 prevents 
the expansion or conversion. 

row. names: optional argument to provide the row. names attribute. If included, can 
either provide an explicit set of row names or indicate that one of the vari
ables should be used as the row names. In the latter case, row. names can 
either be a numeric index for the variable or the name that the variable 
would have in the data frame. The indicated variable will be dropped as 
a variable and used for the row names. By default, data.frame tries to 
construct the row names from the dimnames attribute of a matrix argu
ment, from the row . names argument of a previous data frame, or, if none 
of these produces row names, by using the row numbers. However the 
row names are constructed, they are required to be unique. Note that 
arguments row.names, check.rows, and check.names, if supplied, must be 
given by name. 

check. rows: flag; if TRUE, the rows are checked for consistency. If several arguments 
imply row names, the function will check that these names are consistent. 
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Generally only useful in computations thr.t claim to have selected the same 
rows from several parallel sources of data. 

check.names: flag; if TRUE, the variable names will be made into legal S object 
names, by replacing illegal characters, like blanks, parentheses, or commas 
by "." (type ?make. name for details). 

object: an object to be coerced to be a data frame. If not a data frame already, 
this object is likely to be a matrix or a list. 

VALUE 
a data frame, consisting of all the variables supplied in the arguments. The 
variables are required to have the same number of observations. All the 
variables should have names; in the case of list arguments this is required, 
and in other cases data. frame will construct default names but issue a 
warning. The elements of the data frame are the variables. In addition, 
the data frame will always have an attribute "row.names" containing the 
row names. 

EXAMPLE 

# two lists, taking one component as row names 
data.frame(car.specs, car.report[-1], row.names ="Model") 

Data frames are objects that combine the behavior of data, in the sense 
that they can be addressed by rows (meaning observations) and columns 
(meaning variables), with the behavior of lists or frames inS, in the sense 
that the variables can be used like individual objects-for example, by 
attaching the object to the search list, by setting it up as a frame in the 
evaluator or the browser, or by passing it to a model-fitting function along 
with a formula using the variable names in the data frame. 

Many matrix-like computations are defined as methods for data frames, 
notably, subsets and the dim and dimnames attributes. However, data 
frames are not matrices; most importantly, any object can become a vari
able in the data frame, so long as it is addressable by the observations. In 
practice, this means that the variables should be one of vectors, matrices, 
or some other class of objects that can itself be treated as either a vector 
or matrix (in particular, can be subset like a vector or matrix). If the 
variable is vector-like, it should have length equal to the number of rows; 
if matrix-like, it should have the same number of rows as the data frame. 
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The definition of the dimension and the dimnames of a data frame is done 
differently from that of a matrix. Every data frame is required to have an 
attribute "row.names" whose length is, by definition, the number of rows 
of the data frame. The number of columns is by definition the number of 
variables; that is, the length of the data frame as a list. The dimnames 
list is equivalent to 

list{rov.names(x), names(x)) 

Both the row names and the names are required to be there and to have 
no duplicate values. 

ATTRIBUTES 
The following attributes must be included and behave as follows. 

rov.names: a vector of length equal to the number of observations {and therefore 
equal to either the length or the number of rows of every variable). There 
must be no duplicate values. Where no explicit row names are supplied 
in creating the data frame, 1: nrovs (x) will be used. 

names: the names must exist, be of full length, and be unique. 

SEE ALSO 
data.frame, design, design.object, pframe.object 

data.matrix(frame) 

ARGUMENTS 

frame: a data frame, or else a frame that inherits from class "data. frame" (design 
or model frame). 

VALUE 
a numeric matrix containing the numeric information in frame. The matrix 
has a column for each numeric vector, a set of columns for each matrix, 
and a column for each factor in frame. Factors are first transformed to 
numeric values using codes(). If factors are present in frame, the matrix 
returned has an attribute called "column.levels", a list with an element 
for each column of the matrix. The elements of this list are either NULL or 
else contain the levels of the factors prior to conversion by codes 0. 

SEE ALSO 
codes, as.matrix, model.matrix 
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lde~v. Symbolic Partial Derivatives of.Elcpressions deriv\ 

deriv(expr, namevec, function.arg, tag=".expr") 

ARGUMENTS 

expr: expression to be differentiated, typically a formula, in which case the 
expression returned computes the right side of the "' and its derivatives. 

namevec: character vector of names of parameters. 

function.arg: optional argument vector or prototype for a function. If present, 
the returned value is in the form of a function instead of a multiple state
ment expression. When function. arg is given as a function prototype, the 
function arguments can have defaults. 

tag: base of the names to be given to intermediate results. Default ".expr". 

VALUE 
a multiple-statement expression or a function definition. When evaluated, 
these statements return the value of the original expression along with an 
attribute called "gradient". This is the gradient matrix of the expression 
value with respect to the named parameters. 

If function. arg is a character vector, the result is a function with the 
arguments named in function. arg. If function. arg is a function, the 
result is a function with the same arguments and default values. 

While generating this sequence of expressions, the function attempts to 
eliminate repeated calculation of common subexpressions. Sometimes user 
assistance is needed, as in the example below. To improve readability, ex
pressions that are used only once are folded back into the expression where 
they are used. Since parentheses are always added when such expressions 
are folded in, there may be redundant parentheses in the final expressions. 

The symbolic differentiation and the simplification of the result are highly 
recursive. Even for relatively simple expressions, S can reach its limit on 
the number of nested expressions and give an error message. The remedy 
is to increase the value of the option expressions when th~s happens. 
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EXAMPLE 

# value and gradient of the Michaelis-Menten model 
> deriv(~ Vm•conc/(K+conc) ,c("Vm" ,"K")) 
expression({ 

.exprl <- Vm • cone 

.expr2 <- K + cone 

.value <- .expr1/.expr2 

.grad<- array(O, c(length(.value), 2), 
list(NULL, c("Vm", "K"))) 

. grad [, "Vm"] <- cone/. expr2 

.grad[, "K"] <- - (.expr1/{.expr2"2)) 
attr(. value, "gradient") <- .grad 
.value 

# to obtain a function as the result 
> deriv(~ Vm•conc/(K+conc) ,c("Vm","K"), 
+ function(Vm, K, cone = 1:10) NULL) 
function(Vm, K, cone = 1:10) 
{ 

} 

.expr1 <- vm • cone 

.expr2 <- K + cone 

.value<- .expr1/.expr2 

.grad<- array(O, c{length{.value), 2), 
list(NULL, c("Vm", "K"))) 

.grad[, "Vm"] <- cone/ .expr2 

.grad[, "K"] <- - (.expr1/(.expr2"2)) 
attr(.value, "gradient") <- .grad 
.value 

APPENDIXB 
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design( ... , factor.names) 

ARGUMENTS 

objects that can be interpreted as factors in a design: vectors, data frames, 
matrices, or factors themselves. Each object Qr column of a data frame or 
matrix will be considered as a template for a factor. Numeric vectors and 
matrices will be converted to factors, with the unique values of the vector 
or the column of the matrix defining the levels. 

factor.names: optional vector of names for the factors. If omitted, names will be 
constructed. In the case that the argument(s) are matrices with dimnames 
for the columns, these dimnames will be used. Otherwise, the standard 
factor names are used. 

VALUE 
an object of class design, inheriting from the class data. frame. This func
tion should be compared and contrasted with data.,frameO, which does 
not force all variables to be factors, and with data.matrixO, which in a 
sense performs the inverse operation to design(), by converting factors to 
numeric variables. 

SEE ALSO 
fac.design, oa.design 

EXAMPLE 

# dmat is a numeric matrix vith appropriate levels in the 
# rovs; myfac is a factor defined on the same observations. 
mydesign <- design(dmat, myfac) 
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Designs inherit from data frames. By virtue of having class "design", 
they are treated differently by some generic functions, notably plot o. 
The assumption is that a design object starts life as a data frame, all of 
whose variables are factors. Then, one or more quantitative variables are 
added. Unless told otherwise, methods for designs tend to assume that 
the first quantitative variable found in the design should be the response. 

ATTRIBUTES 
Designs need have no attributes other than those for data frames. They 
may have special information indicating that they were produced as frac
tional factorial designs or as orthogonal array designs (see fac.design() 
or oa.designO). The important function factor.names() returns or sets 
the names for the factors and for their levels. It does not use an explicit 
attribute of this name, however. Instead, it uses the names of the design 
object and the levels of each factor variable. 

SEE ALSO 
data.frame.object, data. frame, design, fac.design, oa.design 

·-·.·'·:_;~_. _., ... ·,-·_,,_/-;i·'. ,,-~::· ~.--::.~·-·) -:'' ... -:'':'-: 
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design.table(design, response) 

ARGUMENTS 

design: a data frame representing a design, perhaps with a response included. 

response: a response variable. If omitted, the first non-factor included in the design 
is used. 

VALUE 
a multiway array, whose elements are formed from the response. Suppose 
d is a numeric vector whose elements are the number of levels in each of 
the factors in the design. Then the dimension attribute of the array is d if 
there are no replicated values in the design, or c(nrep, d) otherwise, where 
nrep is the maximum number of replications. The dimnames attribute of 
the array is the factor names of design, with an initial element of 1 :nrep 
if there are replications. 
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Note that rearranging the response as a multi way array makes more sense 
for complete designs. The function will work fine for fractional designs, 
but the resulting array will be mostly HAs, and hard to look at. Such 
designs are usually easier to look at just by printing them, but if you 
have some functions that work on multiway arrays with NAs, the value of 
design. table can be used whether the design is complete or not . 

. . .. ExtraCt the Deviance from a Fitted Model Object deviance 

deviance(object) 

ARGUMENTS 

object: a fitted model object, typically of class glm or gam, although others are 
possible. 

VALUE 
the deviance of the fitted model is returned. For glm, gam, and tree models, 
the "deviance" is a component of object, in which case deviance() is 
a simple extractor function. For other models, the gaussian family is 
assumed and the weighted residual sum of squares is returned. 

dropl(object, scope, scale, keep) 

ARGUMENTS 

object: an lm object, or any object that inherits from class 1m. In particular, a glm 
object is also appropriate for a chi-squared analysis based on the score 
test. 

scope: an optional formula object describing the terms to be dropped. Typically 
this argument is omitted, in which case all possible terms are dropped 
(without breaking hierarchy rules). The scope can also be a character 
vector of term labels. If the argument is supplied as a formula, any "." is 
interpreted relative to the formula implied by the object argument. 

scale: the multiplier of the df term in the Cp statistic. If not supplied, scale is 
estimated by the residual variance of object, or else in the case of a glm 
object the dispersion parameter. 
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keep: a character vector of names of components that should be saved for each 
subset model. Only names from the set coefficients, fitted.values, 
residuals, x.residuals, effects, Rare allowed. keep=T implies the com
plete set. x. residuals for a given term is the X matrix corresponding to 
that term, adjusted for all the other terms in the model object. The 
other components are as in object. The default behavior is not to keep 
anything. 

VALUE 
using the "R" component of object, each of the subset models correspond
ing to the terms specified in scope is computed. An anova object is con
structed, consisting of the term labels, the degrees of freedom, the residual 
sum of squares, and the Cp statistic for each subset model. If keep is miss
ing, this is what is returned. If keep is present, a list with components 
"anova" and "keep" is returned. In this case, the "keep" component is a 
matrix of mode "list", with a column for each subset model, and a row 
for each component kept. 

droplO handles weighted lm objects, including glm objects. The weighted 
residual sum of squares is a Pearson chi-square statistic based on the 
weights of the full model, and a one-step iteration towards the subset 
model. This results in a score test for the removal of each term. The 
function droplO is used as a primitive in step.glm(). 

This function is a method for the generic function dropl() for class "lm". 
It can be invoked by calling dropl (x) for an object x of the appropriate 
class, or directly by calling dropl.lmO, regardless of the class of the object. 

SEE ALSO 
addl, step, step.glm, step.gam 

EXAMPLE 

dropl(lm.ob) 
dropl(lm.ob, ~ . - Age) # drop all terms except Age 
dropl(lm.ob, keep=T) 
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fac.design(levels, factor.names, replications 1, 
rov.names, fraction) 

ARGUMENTS 

levels: vector of the number of levels for each factor in the design. 

factor.names: optional factor names attribute. This may be a character vector, 
giving the names of the factors, or a list. If it is a list, the names 
attribute of the list is the names of the factors, and the elements of 
the list (which need not be of mode character) give the levels of the 
corresponding factor. If factor names are not given, they default to 
std.factor.names(length(levels)); namely, "A", "B", etc. If a factor's 
levels are not named, the levels are set to the factor name (possibly ab
breviated) followed by level numbers. 

replications: the number of times the complete design should be replicated. 

ro~.names: optional names to use for the rows of the design. Defaults to l:nrovs. 

fraction: optional definition for the fraction desired in a fractional factorial design. 

VALUE 

This may either be a numerical fraction (e.g, 1/4 for a quarter replicate), 
or a model formula giving one or more defining contrasts, as in the example 
below. See fractionate() for details. Fractional factorials are provided 
only for two-level factors. 

a design corresponding to the factors specified. The design object is a data 
frame, with variables in the frame corresponding to each of the factors 
requested in the design. 

SEE ALSO 
design, oa. design, fractionate. 

EXAMPLE 

# a 1/4 replicate of a 2A5 design, 
> fac.design(rep(2,5), names a fnames, 
+ fraction= "' A:C:D + A:B:E) 

react acidcon acidamt reactim reactem 
1 4mod dil 2mol 2 lov 
2 Smol dil 2.5mol 2 lov 
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3 5mol con 2mol 
4 4mod COD 2.5mol 
5 5mol COD 2mol 
6 4mod COD 2.5mol 
7 4mod dil 2mol 
8 5mol dil 2.5mol 
Fraction: y. "' A:B:C + B:D:E 

factor(x, levels, labels) 
is.factor(x) 
as.factor(x) 

APPENDIX B 

4 lov 
4 lov 
2 high 
2 high 
4 high 
4 high 

facto~ 

ARGUMENTS 

x: data, to be thought of as taking values on a finite set (the levels). Missing 
values (NAs) are allowed. 

levels: optional vector of levels for the factor. Any data value that does not 
match a value in levels will be NA in the factor. 

labels : optional vector 'lf values to use as labels for the levels of the factor, in 
place of the levels set. 

VALUE 
object of class "factor", representing values taken from the finite set given 
by levels(). It is important that this object is not numeric; in partic
ular, comparisons and other operations behave as if they operated on 
values from the levels set, which is always of mode character. NA can ap
pear, indicating that the corresponding value is undefined. The expression 
na. include(f) returns a factor like f, but with NAs made into a level. 

is. factor returns TRUE if x is a factor object, FALSE otherwise. 

as.factor returns x, if xis a factor, factor(x) otherwise. 

SEE ALSO 
ordered, na. include. 
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EXAMPLE 

factor(occupation) #"doctor", "lawyer", etc. 
# make readable labels 
occ <- factor(occupation,level•c("d","l"), 

label=c("Doctor","Lavyer")) 
# turn factor into character vector 
as.vector(factor) 
colors<- factor(color,c("red","green","blue")) 
table(colors) #table counting occurrences of colors 

factor.names(design) 
factor.names(design) <- values 

ARGUMENTS 

design: a design, typically to be used with the analysis of variance and/or other 
functions for designed experiments. 

values: either a list, similar to the returned value of factor.names(), or a vector, 
to be used as the names of the factors. In the second case, the factor levels 
will default as below. 

VALUE 
factor.names() returns a list, whose names attribute contains the names 
of the factors in the design, and whose elements are the levels for the 
corresponding factors. Defaults will be produced wherever necessary: the 
factor names default to "A", "'B", etc., and the levels to abbreviated factor 
names, with "1", etc. pasted on. 

When used Oil the left side of an assignment, factor. names takes values 
and coerces them to the form just described, using the default rules. 

EXAMPLE 

> factor.names(design.1) 
$Temperature: 
[1] 160 180 
$Concentration: 
[1] 20 40 
$Catalyst: 
[1] "cat A" "c.at B 
> factor.names(design2) <- c("Glass","Phosphor") 
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> factor.names(design2) 
$Glass: 
[1] "G1" "G2" "G3" 
$Phosphor: 
[1) "Pl" "P2" 

family(object) 
binomial(link = logit) 
gaussian() 
Gamma(link = inverse) 
inverse.gaussian() 
poisson(link = log) 
quasi(link = identity, variance constant) 

ARGUMENTS 

APPENDIX B 

link: the choices of link functions are logit, probit, cloglog, identity, inverse, 
log, "1/mu"2", and sqrt. Not all links are suitable for all families. The 
following table summarizes the suitable pairings: 

logit 
probit 

cloglog 
identity 
inverse 

log 
1/mu"2 

sqrt 

binomial gaussian Gamma inverse.gaussian poisson quasi 

• • 
• • 
• • 

• • • • 
• • 
• • • 

• • 
• • 

The function poverO can also be used to generate a power link function 
object for use with quasi(); poverO takes an argument lambda. 

variance: the choices of variance functions are constant, mu(1-mu), mu, mu"2, and 
mu"3. This argument may be used only with quasi(); each of the other 
families implies a variance function. 

object: any object from which a family object can be extracted. Typically a fitted 
model object, with a default of gaussian. 
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VALUE 

a family object, which is a list of functions and expressions used by glm() 
and gam() in their iteratively reweighted least-squares algorithms. Each 
of the names, except for quasi and the family extractor function family(), 
are associated with a member of the exponential family of distributions. 
As such, they have a fixed variance function. There is typically a choice 
of link functions, with the default corresponding to the canonical link for 
that family. The quasi name represents Quasi-likelihood and need not 
correspond to any particular distribution; rather quasi 0 can be used to 
combine any available link and variance function. 

Users can construct their own families, as long as they have compatible 
components having the same names as those, for example, of binomial (). 
The easiest way is to use quasi() with home-made link and variance 
objects; otherwise ma.k.e.familyO can be used, or else direct construction 
of the family object. When passed as an argument to glmO or gam() with 
the default link, the empty parentheses 0 can be omitted. There is a 
print method for the class "family". 

SEE ALSO 
family. object, glm, gam, robust, power 

EXAMPLE 

binomial(link = probit) # generate binomial family with probit link 
glm(formula, family = binomial) 
robust(gaussian} # create a robust version of the binomial family 
gam(formula, family • robust(quasi(link = power(2}}}) # the works! 
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I famUy.obj~ , .. :: 

·. :~:.-:·, . 

APPENDIXB 

This class of objects is returned by one of the family functions. See 
family for the choices. It is a list of functions and expressions that define 
the IRLS iterations for fitting glm and gam models. These family objects 
allow a great deal of flexibility in the use of glm() and gam(). In particular, 
they allow construction of robust fitting algorithms and composite link 
functions. There is a print() method for family objects, that produces a 
simple summary without any details; use unclass(family.object) to see 
the contents. 

COMPONENTS 
The following components, with a corresponding functionality, are re
quired for a family object. 

family: a character vector giving the family name, and the names of the link and 
variance functions. 

link: a function with argument mu that transforms from the scale of the mean 
to the scale of the linear or additive predictor eta. 

inverse: a function with argument eta, the inverse of the link. 

deriv: a function with argument mu, the derivative of the link function. 

initialize: an expression to initialize the values of the fitted values mu in the 
body of glm() or gam(). Other values can also be initialized, such as the 
prior weights w, or the maximum number of iterations ma:xit, to name 
two. Modifying these expressions should be done with some care, and is 
only recommended for experienced users. Other variables local to glmO or 
gam() can be initialized as well; see binomial0$initialize for an example. 
The initialize expression can also be used to transform a response variable 
having specialized structure into the required vector response y. Once 
again the binomial serves as an example. 

variance: a function with argument mu, the variance function. 

deviance: the deviance function has four argup1ents: 

deviance(mu, y, w, residuals = F) 

and returns the deviance, a quantity similar to the residual sum of squares 
for a Gaussian least squares model. If residuals•T, deviance() returns a 
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vector of deviance residuals, whose weighted sum of squares is the de
viance. 

veight: an expression for updating the iterative weights. For the binomial family, 
this expression is v•mu•<t - mu), for the gaussian it is v, where v are the 
prior weights. 

h:_A_;_._·_-.~~.-.:.-_:_?,-_-_•~--)w--_ .. :··.··_-.-~'_:._~_:·.·•~.-~_:_·~·-::_:::,:.~:_s_:; __ · .. > :···· ,.., , · .. :. ,;~:~o~11iciats · ·.-
t~-: ' ····.· .... ~-: .·~. . ·. '-. ·:·· ,:::·~---\<'.'•: , ,: '"'"• ,· ·'·,--"',< ·:·· .. .- .. _,_,· .. 

formula(object) 

ARGUMENTS 

object: either a formula expression (a call to the "' operator), or an object that 
defines such an expression, such as a fitted model or a terms object. 

VALUE 
an object of class "formula", essentially just the call to"'· 

This is a generic function. Functions with names beginning in "formula." 
will be methods for this function. 

SEE ALSO 
formula.object 

EXAMPLE 

sqrt(skips) "' . #or, equivalently 
formula(sqrt(skips) "' . ) 
formula(fuel.fit) # find the formula 
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.. ', .. ·' 

This class of objects represents the structural models in all model-fitting 
functions, and is used also in a number of other functions, particularly for 
plots. Formulas are their own value; that is, they represent an expression 
calling the operator "'• but evaluating this expression just returns the ex
pression itself. The purpose of formula objects is to supply the essential 
information to fit models, produce plots, etc., in a readable form that can 
be passed around, stored in other objects, and manipulated to determine 
the terms and response of a model. Names in the formula will eventually 
be interpreted as objects, often as variables in a data frame. This inter
pretation, however, only takes place when the related subexpressions have 
been removed from the formula object. 

Useful generic functions for formulas include: terms(), update(), and 
plot(). 

fractionate(design, fraction) 

ARGUMENTS 

design: a design object; that is, a data frame containing factors. 

fraction: the fraction desired. This is either a numeric fraction (e.g., 1/2, 1/4), or a 
formula containing the terms to be used as defining contrasts. If numeric, 
fractionate () will choose a fraction according to a set of defining contrasts 
representing an attempt to allow estimation of as many low-order effects 
as possible. (The fractions are in the object dimdc .list if you want to 
look at them.) If a formula is supplied, its terms should generally be 
simple high-order interactions-that is, factor names linked by ":". Each 
such term defines one interaction (combination of factors). The design 
will be divided in half according to whether the corresponding contrast 
variable has value +1 or -1. The term can appear in the formula with 
sign either "+" or "-", and the positive or negative half will be chosen 
accordingly. Notice that negative and positive terms do not cancel in this 
use of formulas. 
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VALUE 

a new design object, containing the rows of the original design specified 
by fraction. The function only works for 211k designs. Defining fractions 
for factors with three or more levels is more complicated, and we have not 
attempted to do so. The design has an attribute "fraction" containing 
the defining contrast(s). 

EXAMPLE 

# a 1/4 replicate from the full 211 5 design in full.design 
# specifying the -1 fraction for the first contrast 
> davies.design <- fractionate(full.design, 
+ fraction = "' -A:C:D + A:B:E) 

gam(formula, family = gaussian, data, veights, subset, na.action, 
start, control, trace=F, model=F; x=F, y=T, ... ) 

ARGUMENTS 

formula: a formula expression as for other regression models, of the form response 
"' predictors. See the documentation of lm() and formula for details. 
Non parametric smoothing terms are indicated by s () for smoothing splines 
or lo() for loess smooth terms. See the documentation for sand lo for 
their arguments. Additional smoothers can be added by creating the ap
propriate interface. Interactions with nonparametric smooth terms are 
not fully supported, but will not produce errors; they will simply produce 
the usual parametric interaction. 

family: a family object-a list of functions and expressions for defining the link 
and variance functions, initialization, and iterative weights. Families 
supported are gaussian, binomial, poisson, Gamma, inverse.gaussian and 
quasi. Functions such as binomial() produce a family object, but can be 
given without the parentheses. Family functions can take arguments, as 
in binomial(link=probit). 

data: an optional data frame in which to interpret the variables occurring in the 
formula. 

veights, subset, na.action: the optional weights for the fitting criterion, subset 
of the observations to be used in the fit, and function to be used to handle 
any NAs in the data. These are interpreted as in the lmO function. 
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start: an optional vector of initial values on the scale of. the additive predictor. 

control: a list of iteration and algorithmic constants. See gam. control 0 for their 
names and default values. These can also be set as arguments to gam() 
itself. 

VALUE 

all the optional arguments to lmO can be given to gam(), including veights, 
subset and na. action. 

an object of class gam is returned, which inherits from both glm and lm. Can 
be examined by print 0, summary(), plot(), and anova 0. Components can 
be extracted using extractor functions predict(), fitted(), residuals{), 
deviance(), formula(), and family(). Can be modified using update(). It 
has all the components of a glm object, with a few more. Other generic 
functions that have methods for gam objects are step() and preplot{). 
Use gam.'object for more details. 

The model is fit using the local scoring algorithm, which iteratively fits 
weighted additive models by backfitting. The backfitting algorithm is a 
Gauss-Seidel method for fitting additive models, by iteratively smooth
ing partial residuals. The algorithm separates the parametric from the 
nonparametric part of the fit, and fits the parametric part using weighted 
linear least squares within the backfitting algorithm. Although nonpara
metric smooth terms loO and sO can be mixed in a formula, it is more 
efficient computationally to use a single smoothing method for all the 
smooth terms in an additive model. In this case the entire local scoring 
algorithm is performed in FORTRAN. 

SEE ALSO 
gam.object, glm, family 

EXAMPLE 

gam(kyphosis ~ s(age,4} + Number, family = binomial} 
gam(ozoneA(l/3) ~ lo(rad) + lo(vind, temp)) 
gam(kyphosis ~ poly(Age,2} + s(Start), data=kyph.data, 

subset = Number>lO) 
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la-rD~ob~··.·. G~ .A<ic1ltiveModel Object gam.object I 
This class of objects is returned by the gam() function to represent a fitted 
generalized additive model. Class gam inherits from class glm, since the 
parametric part a gam. object is fit by weighted least-squares; the object 
returned has all the components of a glm. Objects of this class have 
methods for the functions print(), plot(), summary(), anova(), predict(), 
fitted(), and step(), among others. 

COMPONENTS 
The following components must be included in a legitimate gam object. 
The residuals, fitted values, coefficients and effects should be extracted by 
the generic functions of the same name, rather than by the "$" operator. 
The family() function returns the entire family object used in the fitting, 
and deviance() can be used to extract the deviance of the fit. 

coefficients: the coefficients of the parametric part of the additive.predictors, 
which multiply the columns of the model matrix. The names of the coef
ficients are the names of the single-degree-of-freedom effects (the columns 
of the model matrix). If the model is overdetermined there will be missing 
values in the coefficients corresponding to inestimable coefficients. 

additive.predictors: the additive fit, given by the product of the model matrix 
and the coefficients, plus the columns of the "smooth" component. 

fitted.values: the fitted mean values, obtained by transforming the component 
additive.predictors using the inverse link function. 

smooth, nl. df, nl. chisq, var: these four characterize the non parametric aspect of 
the fit. smooth is a matrix of smooth terms, with a column corresponding 
to each smooth term in the model; if no smooth terms are in the gam 
model, all these components will be missing. Each column corresponds to 
the strictly nonparametric part of the term, while the parametric part is 
obtained from the model matrix. nl. df is a vector giving the approximate 
degrees of freedom for each column of smooth. For smoothing splines 
specified by s(Jt}, the approximate df will be the trace of the implicit 
smoother matrix minus 2. nl. chisq is a vector containing a type of score 
test for the removal of each of the columns of smooth. var is a matrix like 
smooth, containing the approximate pointwise variances for the columns 
of smooth. 



518 glm APPENDIX B 

residuals: the residuals from the final weighted additive fit; also known as working 
residuals, these are typically not interpretable without rescaling by the 
weights. 

deviance: up to a constant, minus twice the maximized log-likelihood. Similar to 
the residual sum of squares. 

null. deviance: the deviance corresponding to the model with no predictors. 

iter: the number of local scoring iterations used to compute the estimates. 

family: a three-element character vector giving the name of the family, the link, 
and the variance function; mainly for printing purposes. 

veights: the iterative weights from the final IRLS fit 

The object will also have the components of an 1m object: coefficients, 
residuals, fitted. values, call, terms and some others involving the nu
merical fit. See 1m. object. 

glm(formula, family = gaussian, data, weights, subset, na.action, 
start, control, trace=F, model=F, xsF, y=T, ... ) 

ARGUMENTS 

formula: a formula expression as for other regression models, of the form response 
"' predictors. See the documentation of lm() and formula for details. 

family: a family object-a list of functions and expressions for defining the link 
and variance functions, initialization, and iterative weights. Families 
supported are gaussian, binomial, poisson, Gamma, inverse. gaussian, and 
quasi. Functions such as binomial() produce a family object, but can be 
given without the parentheses. Family functions can take arguments, as 
in binomial(link-probit). See family. 
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data: an optional data frame in which to interpret the variables occurring in the 
formula. 

weights, subset, na. action: the optional weights for the fitting criterion, subset 
of the observations to be used in the fit, and function to be used to handle 
any NAs in the data. These are interpreted as in the lmO function. 

start: a vector of initial values on the scale of the linear predictor. 

control: a list of iteration and algorithmic constants. See glm. control() for their 
names and default values. These can also be set as arguments to glmO 
itself. 

trace: if TRUE, details of the iterations are printed. Can also be set in the control 
argument. 

model: if TRUE, the model. frame is returned. If this argument is itself a model. frame, 
then the formula and data arguments are ignored, and model is used to 
define the model. 

x: if TRUE, the model. matrix is returned. 

y: if TRUE, the response variable is returned (default is TRUE). 

qr: if TRUE, the QR decomposition of the model.matrix is returned. 

VALUE 

all the optional arguments to lmO can be provided to glmO, including 
weights, subset, and na.action. Note that weights refers to original prior 
weights, not the iterative weights used in fitting. See 1m for documentation 
of these arguments. 

an object of class glm is returned, which inherits from lm. Can be ex
amined by printO, summary{), plot(), and anova{). Components can be 
extracted using predict(), fitted(), residuals(), deviance(), formula(), 
and family(). Can be modified using update(). It has all the compo
nents of an 1m object, with a few more. Other generic functions that have 
methods for glm objects are droplO, addl(), step(), and preplot(). See 
glm.object for further details. 

The model is fit using iterative reweighted least squares (IRLS). The 
working response and iterative weights are computed using the functions 
contained in the family object. glm models can also be fit using the 
function gamO. The workhorse of glm() -is the function gl.Di.fitO, which 
expects an x and y argument rather than a formula. 

SEE ALSO 
glm.object, gam, family, glm.fit 
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EXAMPLE 

glm(Count ,.... . , data • solder, family "' poisson) 
glm(Kyphosis ,.... poly(Age, 2) + (number > lO)•Start, 

family = binomial) 

APPENDIX B 

glm(ozoneA(l/3) ~ bs(rad, 5) + poly(vind, temp, degree • 2)) 

This class of objects is returned by the glm() function to represent a 
fitted generalized linear model. Class glm inherits from class 1m, since it 
is fit by iterative reweighted least squares; the object returned has all the 
components of a weighted least squares object. The class of gam objects, on 
the other hand, inherit from class glm. Objects of class glm have methods 
for the functions print(), plot(), summary(), anovaO, predict(), fitted(), 
dropl 0, add1 0, and step(), among others. 

COMPONENTS 
The following components must be included in a legitimate glm object. 
The residuals, fitted values, coefficients and effects should be extracted by 
the generic functions of the same name, rather than by the "$" operator. 
The family() function returns the entire family object used in the fitting, 
and deviance() can be used to extract the deviance of the fit. 

coefficients: the coefficients of the linear .predictors, which multiply the columns 
of the model matrix. The names of the coefficients are the names of the 
single-degree-of-freedom effects (the columns of the model matrix). If the 
model is overdetermined, there will be missing values in the coefficients 
corresponding to inestimable coefficients. 

linear.predictors: the linear fit, given by the product of the model matrix and the 
coefficients; also the fitted. values from the final weighted least-squares 
fit. 

fitted. values: the fitted mean values, obtaine4 by transforming linear. predictors 
using the inverse link function. 

residuals: the residuals from the final weighted least-squares fit; also known as 
working residuals, these are typically not interpretable without rescaling 
by the weights. 

deviance: up to a constant, minus twice the maximized log-likelihood. Similar to 
the residual sum of squares. 
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null.deviance: the deviance corresponding to the model with no predictors. 

iter: the number of IRLS iterations used to compute the estim1~tes. 

family: a three-element character vector giving the name of the fumily, the link, 
and the variance function; mainly for printing purposes. 

veights: the iterative weights from the final IRLS fit. 

The object will also have the components of an lm object: coefficients, 
residuals, fitted. values, call, terms, and some others involving the nu
merical fit. See 1m. object. 

inherits(x, vhat, vhich=F) 

ARGUMENTS 

x: any object, possibly but not necessarily having a class attribute. 

vhat : a character vector of possible classes. 

vhfch: option; if TRUE, the returned value specifies which classes matched the 
object; otherwise, the value is a single logical, suitable for use in an if 

expression test. 

VALUE 
TRUE if any of the classes in the class attribute of x match (exactly) any of 
the strings in vhat. 

EXAMPLE 

# the definition of as.factor() 
function(x) if(inherits(x,"factor")) x else factor(x) 



522 interaction APPENDIXB 

interaction(design, drop a F) 
interaction( ... , drop a F) 

ARGUMENTS 

design: 

the arguments to interaction can be either a data frame containing all 
the factors to be used or all the individual factors. It will not understand 
a combination of factors and designs as arguments; you have to pick one 
form or the other. 

drop: if TRUE the levels of the new factor not represented in the data are dropped. 

VALUE 
a new factor, whose levels are all possible combinations of the factors 
supplied as ·arguments. If drop " T, only the levels represented in the new 
factor are retained. 

EXAMPLE 

> attach(catalyst) 
> Temp 
[1] 160 180 160 180 160 180 160 180 
> Cone 
[1] 20 20 40 40 20 20 40 40 
> interaction(Temp, Cone) 
[1] 160.20 180.20 160.40 180.40 160.20 180.20 160.40 180.40 
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interaction.plot(x.factor, trace.factor, response, •.. , fun • mean, 
trace.label • deparse(substitute(trace.factor))) 

ARGUMENTS 

x.factor: factor to be plotted on the :z;.axis It may be a factor in a design object. 

trace. factor: factor whose levels will be separate traces. It may be a factor in a 
design object. 

response: vector containing the response. It may be contained in a data frame. 

optional specification of graphical parameters, including parameters for 
matplot, to be applied before doing the plot (and reset after the plot is 
finished). 

fun: a function or the name of a function. It should be a summary function 
returning one number on each call. 

trace .label : heading given to factor plotted as traces. 

VALUE 
a plot will be created showing the requested function of responses for each 
level of the x.factor at each level of the trace.factor. By default, lines 
for each value of the trace. factor are drawn in different styles so· that 
they may be more easily distinguished. Note: Ignore warning messages: 
missing values generated coercing to double. 

For an example of the output of interaction.plotO, see Figure 5.5 on 
page 168. 

EXAMPLE 

> attach(catalyst) 
> interaction.plot(x.factor ~ Cone, trace.factor • Cat, Yield) 
> detach() 
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lm(formula, data, weights, subset, 
na.action, method="qr", model•F, x•F, y•F, ... ) 

ARGUMENTS 

formula: a formula object, with the response on the left of a"' operator, and the 
terms, separated by "+" operators, on the right. This argument is passed 
around unevaluated; that is, the variables mentioned in the formula will 
be defined when the model frame is computed, not when lm() is initially 
called. In particular, if data is given, all these names should generally be 
defined as variables in that data frame. 

data: an optional data. frame in which to interpret the variables named in the 
formula, or in the subset and the weights argument. 

weights: optional weights; if supplied, the algorithm fits to minimize the sum of 
the weights multiplied into the squared residuals. The weights must be 
nonnegative and it is strongly recommended that they be strictly positive, 
since zero weights are ambiguous, compared to use of the subset argument. 

subset: optional expression saying that only a subset of the rows of the data should 
be used in the fit. This argument, like the terms in formula, is evaluated 
in the context of the data frame, if present. The specific action of the 
argument is as follows: the model frame, including weights and subset, is 
computed on all the rows, and then the appropriate subset is extracted. 
A variety of special cases make such an interpretation desirable (e.g., the 
use of lag() or other functions that may need more than the data used in 
the fit to be fully defined). On the other hand, if you meant the subset 
to avoid computing undefined values or to escape warning messages, you 
may be surprised. For example, 

lm(y"' log(x), mydata, subset= x > 0) 

will still generate warnings from logO. If this is a problem, do the sub
setting on the data frame directly: 

lm(y "' log(x), mydata[,mydata$x > O]) 

na.action: a missing-data filter function, applied to the model.frame, after any 
subset argument has been used. 
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method: the least-squares fitting method to be used; the default is "qr". The 
method "modal. frame" simply returns the model frame. 

model, x, y, qr: flags to control what is returned. If these are TRUE, then the model 
frame, the model matrix, the response, and/or the QR decomposition will 
be returned as components of the fitted model, with the same names as 
the flag arguments. 

VALUE 

additional arguments for the fitting routines. The most likely one is 
singular. okcT, which instructs the fitting to continue in the presence of 
over-determined models (the default method recognizes this, but if new 
fitting methods are written, they don't have to do so). 

an object representing the fit. Generic functions such as print 0 and 
summary() have methods to show the results of the fit. See 1m. object for 
the components of the fit, but the functions residuals(), coefficients(), 
and effects() should be used rather than extracting the components di
rectly, since these functions take correct account of special circumstances, 
such as overdetermined models. The response may be a single numeric 
variable or a matrix. In the latter case, coefficients, residuals, and effects 
will also be matrices, with columns corresponding to the response vari
ables. In either case, the object inherits from class "1m". For multivariate 
response, the first element of the class is "mlm". 

EXAMPLE 

lm(Fuel "' . , fuel. frame) 
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This class of objects is returned from the lm() function to represent a 
fitted linear model. Class lm is also inherited by other fitted models, 
when the fitting computation is based eventually on linear least-squares. 
Examples include aov, glm, and gam objects. If the response variable is a 
matrix, the class of the object is c("mlm", "lm") so that methods can use 
the matrix nature of the response, fitted values, etc. Objects of this class 
have methods for the functions print(), plot(), summary(), and predict(), 
among others. In addition, the function kappa() can be used to estimate 
how ill-determined the model was, and the function qqnormO applied to 
the residuals is a good test of the distributional assumptions. 

COMPONENTS 
The following components must be included in a legitimate 1m object. The 
residuals, fitted values, coefficients, and effects should be extracted by the 
generic functions of the same name, rather than by the "$" operator. For 
pure 1m objects this is less critical than for some of the inheritor classes. 

coefficients: the coefficients of the least-squares fit of the response to the columns 
of the model matrix. The names of the coefficients are the names of the 
single-degree-of-freedom effects (the columns of the model matrix). If the 
model was overdetermined and singular. ok was true, there will be missing 
values in the coefficients corresponding to inestimable coefficients. 

residuals, fitted. values: the residuals and fitted values from the fit. 

effects: orthogonal, single-degree-of-freedom effects. Using the "qr" method, there 
will be as many of these as observations. The first rank of them correspond 
to degrees of freedom in the model and are named accordingly. 

R: the triangular factor of the decomposition. For method•qr, this is deter
mined by the orthogonal decomposition of the model matrix. For other 
methods, it may be computed by other calculations, but note that sum
mary methods for lm objects assume the existence of this component. If 
it is not computed, the methods will fail. 

rank: the computed rank (number of linearly independent columns in the model 
matrix). If the rank is less than the dimension of R, columns of R will have 
been pivoted, and missing values inserted in the coefficients. The upper
left rank rows and columns of Rare the nonsingular part of the fit, and 
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the remaining columns of the first rank rows give the aliasing information 
(see alias()). 

assign: the list of assignments of coefficients (and effects) to the terms in the 
model. The names of this list are the names of the terms. The ith 
element of the list is the vector saying which coefficients correspond to 
the ith term. It may be of length 0 if there were no estimable effects for 
the term. 

terms: an object of mode expression and class term summarizing the formula. 
Used by various methods, but typically not of direct relevance to users. 

call: an image of the call that produced the object, but with the arguments all 
named and with the actual formula included as the formula argument. 

df. residual: the number of degrees of freedom for residuals. 

qr: optionally, the qr decomposition object. See qr for its structure. Depends 
on using method "qr". 

model: optionally the model frame, if model=T. 

x: optionally the model matrix, if x=T. 

y: optionally the response, if y=T. 

For a multivariate response, the object returned has class "mlm", and the 
coefficients, effects, fitted values, and residuals are all matrices whose 
columns correspond to the response variables. 
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lo( •.. , span•0.5, degree•1) 

ARGUMENTS 

the unspecified . . . can be a comma-separated list of numeric vectors, 
numeric matrix, or expressions that evaluate to either of these. If it is a 
list of vectors, they must all have the same length. 

span: the number of observations in a neighborhood. This is the smoothing 
parameter for a loess fit. 

degree: the degree of local polynomial to be fit; can be 1 or 2. 

VALUE 
a numeric matrix is returned. The simplest case is when there is a single 
argument to loO and degree~1; a one-column matrix is returned, con
sisting of a normalized version of the vector. H degree•2 in this case, 
a two-column matrix is returned, consisting of a 2d-degree orthogonal
polynomial basis. Similarly, if there are two arguments, or the single ar
gument is a two-column matrix, either a two-column matrix is returned if 
degreezl, or a five-column matrix consisting of powers and products up to 
degree 2. Any dimensional argument is allowed, but typically one or two 
vectors are used in practice. The matrix is endowed with a number of at
tributes; the matrix itself is used in the construction of the model matrix, 
while the attributes are needed for the backfitting algorithms all. vamO 
or lo. vamO (weighted ·additive model).· Local-linear curve or surface fits 
reproduce linear responses, while local-quadratic fits reproduce quadratic 
curves or surfaces. These parts of the loess() fit are computed exactly 
together with the other parametric linear parts of the model. 

Note that loO itself does no smoothing; it simply sets things up for gam(). 

SEE ALSO 
s, bs, ns, poly, loess 

EXAMPLE 

y ~ Age + lo(Start, span=.5) 
t fit Start using a loess smooth vith a span of 0.5. 

y ~ lo(Age) + lo(Start, Number) 
y ~ lo(Age, 0.5) t the argument name for span is not needed. 
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· : F'i~ a LOCal ~on Model 
. . ' ' . ' . :· . ~ .. ' ' . . . . · · · ', >: •····.1oerni I 

loess(formula, data, subset, na.action, model ~ FALSE, veights, 
family • c("gaussian", "symmetric"), norm11lize • TRUE, 

ARGUMENTS 

span = 3/4, enp.target, degree = 2, drop.11quare, parametric, 
control= loess.control(), ... ) 

formula: a formula object, with the response on the left of n ~operator, and the 
terms, separated by "•" operators, on the right. ThiH argument is passed 
around unevaluated, that is, the variai'>1 o~ mentioned in the formula will be 
defined when the model frame is,. .• put, l, not when loess() is initially 
called. In particular, if data is given, all these names should generally be 
defined as variables in that data frame, and in no case should you expect 
that names of local variables in the function calling loess 0 can appear 
in the formula and be matched to those local variables. 

data: an optional data.frame in which to interpret the variables named in the 
formula, the subset and the veights argument. 

subset: optional expression saying that only a subset of the rows of the data should 
be used in the fit. This argument, like the terms in formula, is evaluated in 
the context of the data frame, and should typically only involve variabies 
in that frame. The specific action of the argument is as follows: the model 
frame, including weights and subset, is computed on all the rows, and 
then the appropriate subset is extracted. There are a variety of special 
cases that make such an interpretation desirable (e.g, the use of lag() 

or other functions that may need more than the data used in the fit to 
be fully defined). On the other hand, if you meant the subset to avoid 
computing undefined values or to escape warning messages, you may be 
surprised. For example, 

loess(y ~ log(x), mydata, subset = x > 0) 

will still generate warnings from logO. If this is a problem, do the sub
setting on the data frame directly: 

loess (y ~ log (x) • mydata [,mydata$x > 0)) 

na.action: a missing-data filter function, applied to the model.frame, after any 
subset argument has been used. 

model: if TRUE, the model frame is returned. 
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weights: optional expression for weights to be given to individual observations in 
the sum of squared residuals that forms the local fitting criterion. By · 
default, an unweighted fit is carried out. If supplied, weights is treated 
as an expression to be evaluated in the same data frame as the model 
formula. It should evaluate to a non-negative numeric vector. If the 
different observations have nonequal variances, weights should be inversely 
proportional to the variances. 

family: the assumed distribution of the errors. The values are "gaussian" or 
"symmetric". The first value is the default. If the second value is specified, 
a robust fitting procedure is used. 

normalize: logical that determines if numeric predictors should be normalized. If 
TRUE, the standard normalization is used. If FALSE, no normalization is 
carried out. 

span: smoothing parameter. 

enp. target: another way to specify the amount of smoothing. An approximation is 
used to compute a value of span that will yield approximately enp.target 
equivalent number of parameters. 

degree: overall degree of locally-fitted polynomial. 1 is local-linear fitting and 2 is 
local-quadratic fitting. 

drop. square: for cases with degree equal to 2 and with two or more numeric pre
dictors, this argument specifies those numeric predictors whose squares 
should be dropped from the set of fitting variables. The argument can be 
a character vector of the predictor names given in formula, or a numeric 
vector of indices that gives positions as determined by the order of spec
ification of the predictor names in formula, or a logical vector of length 
equal to the number of predictor names in formula. 

parametric: for two or more numeric predictors, this argument specifies those vari
ables that should be conditionally parametric. The method of specification 
is the same as for drop. square. 

control: a list that controls the methods of computation in the loess fitting. The 
list can be created by the function loess. control(), whose documentation 
describes the computational options. 

arguments of the function loess. control 0 can also be specified directly 
in the call to loess without using the argument control. 
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VALUE 

an object of class "loess" representing the fitted model. See the docu
mentation for loess. object for more information on the components. 

SEE ALSO 
specs. loess, pointvise, loess. control. 

EXAMPLE 

> attach(ethanol) 
> loess(NOx ~ C * E, span= 1/2, degree= 2, parametric "C", 
+ drop.square = "C") 
Call: 
loess(formula = NOx ~ C * E, span = 1/2, degree 2, 

parametric = "C", drop.square = "C") 

Number of Observations: 88 
Equivalent Number of Parameters: 9.2 
Residual Standard Error: 0.1842 
Multiple R-squared: 0.98 
Residuals: 

min 1st Q median 3rd Q max 
-0.5236 -0.0973 0.01386 0.07345 0.5584 

This class of objects is returned from the loess 0 function to represent a 
fitted local regression model. Objects of this class have methods for the 
functions print(), plot(), preplotO, predict(), and anovaO functions, 
among others. 

COMPONENTS 

fitted. values: surface evaluated at the observed values of the predictors. 

residuals: response minus fitted values. 

terms: an object of mode expression and class term summarizing the formula. 
Used by various methods, but typically not of direct relevance to users. 

call: an image of the call that produced the object, but with the arguments all 
named and with the actual formula included as the formula argument. 
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model: the model frame, which is present only if the argument model is TRUE. 
The model frame contains the data-after transformation, subsetting, and 
treating missing values-to which the local regression model is fitted. 

The remaining components of the loess object are lists: surface, errors, 
control, inference, and predictors. The first two contain all of the infor
mation about the specification of the local regression model, apart from 
the selection of the data used in the fit. The third contains the computa
tional options. The contents of these three components can be inspected 
by using specs .loess. The component inference contains information 
that is used by other local regression functions to carry out inferences. 
The component predictors contains information about the predictors. 

SEE ALSO 
loess, predict .loess, plot .loess, pointwise, anova .loess, specs .loess, 
preplot.loess, loess.control 

.. _.: ~- ' milov.object I 
. · mlm.object I 

'·.·.·.: :l' ·;; ----,:--;--:.).; • .. ·.'. ·:~-; 

.. Q6Dlitrilc::t a~:M6del Fraine · · 
.. - .. -.. :~ ._:. 

model.frame I 
model.frame(formula, data, ... ) 

ARGUMENTS 

formula: the formula or other object defining what terms should be included in the 
model frame. Besides being a formula object, this can be a fitted model of 
various kinds, in which case the formula used in fitting the model defines 
the terms. 

data: optional data frame from which the model frame is to be constructed. 

other arguments to the model fitting functions, such as weights"', subset"', 
na.action"' are passed on to 'model.frame(). 

Typically, model. frame 0 is called less often by users than by functions 
that are either fitting a model or summarizing one. The default method 
for model. frame 0 constructs the model frame from the terms (usually 
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VALUE 

NOTE 

inferred from the formula), the data if any, and any special expressions 
such as subsets, weights, or whatever l.lte particular fitting method needs. 

a data frame representing all the termH in the model (precisely, all those 
terms of order 1; i.e., main effects), pluH t.he response if any, and any spe
cial extra variables (such as weight arguments to fitting functions). One 
such argument is handled specially-namely, subset•. If t.hiH argument is 
present, it is used to compute a subset of the rows of the dat.a. It is this 
subset that is returned. The returned data frame has an at.t.rihute terms 
containing the terms object defined by the formula. The response and 
any extra variables other than subset are stored in the data frame. They 
should be retrieved from the frame by using 

model.extract(fr, response) t for response 
model.extract(fr, weights) t for weights= 

and so on for whatever names were used in the arguments to model. frame (). 
Other than subset, the names of such extras are arbitrary; they only need 
to evaluate to a legitimate variable for the data frame (e.g., a numeric vec
tor, matrix, or factor). The names of such variables are specially coded 
in the model frame so as not to conflict with variable names occurring 
in the terms. You should always use model. extract(), which shares the 
knowledge of the coded names with model. frame(), rather than assuming 
a specific coding. 

Model frames are more typically produced as a side-effect of fitting a model 
rather than directly by calling model. frame(). Functions like lmO take an 
option model=T, that produces the model frame as a component of the fit. 

EXAMPLE 

model.frame(fuel.fit) 
model.frame(sqrt(skips) ~ . , solder) 
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ms(formula, data, start, control, trace) 

ARGUMENTS 

formula: the nonlinear model formula. There will be no left side to the ~ expres
sion. Unlike formulas for linear models, nonlinear formulas include the 
parameters to be estimated. The right side of the formula is essentially 
an arbitrary S expression. When evaluated, it should return values to be 
minimized. 

data: a data frame in which to do the computations. In addition to the usual 
data variables, the data frame may contain parameters (set, typically, by 
using the paramO assignment for objects of class "pframe") that establjsh 
initial values for the fit, or are used for any other purpose. 

start: optional starting values for the iteration. If start is omitted, the model
fitting will look for starting values as ordinary objects with the names of 
the parameters. Note that whenever the names of the parameters are not 
supplied explicitly, the assumption is that any names occurring in formula 
that are not variables in the data frame are parameters. 

If start is supplied, it can be either a list or a numeric vector. The list 
is the most general and is recommended for unambiguous specification 
of the parameters. In either case, names(start) gives the names of the 
parameters. Notice that the list form allows the individual parameter 
names to refer to subsets of the parameters of arbitrary length. If a 
numeric starting vector is supplied the named parameters must each be 
of length 1. 

control: optional list of control values to be used in the iteration. Seems. control 0 
for the possible control parameters and their default settings. 

trace: should a trace function be called after each step of the iteration? Default 
FALSE. Otherwise, trace can be either TRUE or the name of a function to use 
as a tracer. The standard tracer function is trace. ms 0. Also available, 
by trace="brovser.ms", is an invocation of the interactive browser, in a 
frame containing all the fitting information. See the definition of these 
functions for the calling sequence to any do-it-yourself tracer function. 
The use of special trace functions with msO should be distinguished from 
the standard S tracing. The latter is simpler and usually the best way to 
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VALUE 

track the modeling. Tracing through ms () allows access in S to the internal 
flags of the FORTRAN minimization algorithm. If you don't need to look 
at that information, you can usually trace a function you have written to 
compute the model information. Often tracing on exit, for example, 

trace(mymodel, exit = browser) 

is a good way to look at your function mymodel() just before it returns the 
next model values. 

an object of class "ms" with the the final parameters, function and deriva
tive values, and some internal information !!-bout the fit .. See ms. object. 

SEE ALSO 
ms. control, nls 

EXAMPLE 

fit.alpha <- ms( ~ lprob(D • alpha), pingpong) 

This object is returned by the function msO to represent the result of 
fitting a nonlinear model by general minimization. 

COMPONENTS 
The object contains the final parameter values, corresponding function 
and gradient values, and final values for the flags generated internally 
in the minimization algorithm. If the model was defined in terms of n 
contributions from n observations, as in the case of minimizing the negative 
log-likelihood, the function value and derivatives will also be returned on 
a per-observation form for use in plots, etc. 

parameters: the final values of the parameters in the estimation. 

formula: the formula used for the estimation. 

call: an image of the call toms(), but with all the arguments explicitly named, 
so that the data component of the call will always give the data argument, 
and so on. 
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pieces, slopes, curves: these are the contributions of the N observations to, re
spectively, the value, the gradients and the hessian of the objective func
tion. The first is a vector of length N, the other two are matrices with N 
rows. The slopes component is only returned if derivatives are computed 
and the curves component only if second derivatives are computed. 

scale: the scaling vector used by the optimization algorithm. 

opt. parameters, flags: these are the floating point and integer parameters used 
and generated by the underlying FORTRAN algorithm. You hope you don't 
need to know about them, but if you do, see the documentation for the 
algorithm dmnf in the Port library. 

SEE ALSO 
nls.object 

lois Nonlbiear Least Squares .. 

nls(formula, data, start, control, algorithm) 

ARGUMENTS 

formula: the nonlinear regression model as a formula. 

data: a data frame in which to do the computations. In addition to the usual 
data variables, the data frame may contain parameters (set, typically, by 
using the paramO assignment for objects of class "pframe") that establish 
initial values for the fit, or are used for any other purpose. 

start: optional starting values for the iteration. If start is omitted, the model
fitting will look for starting values as ordinary objects with the names of 
the parameters. Note that whenever the names of the parameters are not 
supplied explicitly, the assumption is that any names occurring in formula 
that are not variables in the data frame are parameters. On the whole, 
setting up the parameters in the data frame is often simpler, particularly 
if you want to experiment interactively with different starting values. 

If start is supplied, it can be either a list or a numeric vector. The list 
is the most general and is recommended for unambiguous specification 
of the parameters. In either case, names(start) gives the names of the 
parameters. Notice that the list form allows the individual parameter 
names to refer to subsets of the parameters of arbitrary length. If a 
numeric starting vector is supplied the named parameters must each be 
of length 1. 
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control: optional list of control values to be used in the iteration, including the 
maximum number of iterations, tolerance for convergence, possible trac
ing, and scaling factors. For the complete list of the available control 
options and their default settings, see the documentation for nls. control. 

algorithm: which algorithm to use. The default algorithm is a Gauss-Newton algo
rithm. If algorithm is "plinear" the Golub-Pereyra algorithm for partially 
linear least-squares models is used. 

VALUE 

For the default algorithm the left side of formula is the response to be 
fitted. The right side should evaluate to a numeric vector of the same 
length as the response. If the value of the right side has an attribute 
called "gradient" this should be a matrix with the number of rows equal 
to the length of the response and one column for each of the parameters. 
The skelton of functions to provide this can be formed using nl.deriv. 
When there are linear parameters in the model as well as nonlinear pa
rameters, the "plinear" algorithm can be used. The right side of the 
formula should evaluate to the derivative matrix for the linear parame
ters, conditional on the nonlinear parameters. This matrix can be given 
instead as a vector whose length is a multiple of the length of the left side. 
If the "gradient" attribute is included, it should be an array of dimension 
the number of observations by number of linear parameters by number of 
nonlinear parameters. 

an object inheriting from class "nls", containing the parameters, residuals, 
fitted values, and derivatives of the model at the end of the iteration. 

EXAMPLE 

# fitting Michaelis and Menten's original data 
> cone <- c(0.3330, 0.1670, 0.0833, 0.0416, 
+ 0.0208, 0.0104, 0.0052) 
> vel <- c(3.636, 3.636, 3.236, 2.666, 2.114, 1.466, 0.866) 
> Micmen <- data.frame(conc=conc, vel=vel) 
> param(Micmen,"K") <- 0.02; param(Micmen,"Vm") <- 3.7 
>fit<- nls(vel~Vm•conc/(K+conc),Micmen) 
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This is an object inheriting from class "nls" with the following compo
nents: 

parameters: the final value of the parameters in the estimation. 

formula: the formula used for the estimation. 

call: an image of the call to nls 0, but with all the arguments explicitly named, 
so that the data component of the call will always give the data argument, 
and so on. 

pnames: parameter names 

residuals: the final value of the residuals. 

fitted.values: the final value of the right side of formula. 

data: a copy of the data argument with the final value of the parameters. 

R: the upper-triangular R matrix from a QR decomposition of the gradient 
matrix at the final value of the parameters. 

ns(x, df, knots, intercept~F) 

ARGUMENTS 

x: the predictor variable. 

df: degrees of freedom. One can supply df rather than knots; ns 0 then 
chooses df-1-intercept knots at suitably chosen quantiles of x. 

knots: breakpoints that define the spline. The default is no knots; together with 
the natural boundary conditions this results in a basis for linear regression 
on x. Typical values are the mean or median for one knot, quantiles for 
more knots. 

intercept: if TRUE, an intercept is included in the basis; default is FALSE. 
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VALUE 

a matrix of dimension length(x) * df where either df was supplied or if 
knots were supplied, df = length(lmots) + 1 + intercept. 

bs() is based on the function spline.desO written by Douglas Bates. It 
generates a basis matrix for representing the family of piecewise-cubic 
splines with the specified sequence of interior knots, and the natural 
boundary conditions. These enforce the constraint that the function is 
linear beyond the boundary knots, which are taken to be at the extremes 
of the data. A primary use is in modeling formula to directly specify a 
natural spline term in a model. 

SEE ALSO 
bs, poly, lo, s 

EXAMPLE 

lsfit(ns(x,5),y) 
lm(y ~ ns(age, 4) + ns(income, 4)) # an additive model 

oa.design(levels, factor.names, min.resid.df=O) 

ARGUMENTS 

levels: vector of the number of levels for each factor in the desired design. Cur
rently only two or three levels are allowed. 

factor.names: optional factor names attribute. This may be a character vector, 
giving the names of the factors, or a list. If it is a list, the names 
attribute of the list is the names of the factors, and the elements of 
the list (which need not be of mode character) give the levels of the 
corresponding factor. If factor names are not given, they default to 
std.factor.names(length(levels))-namely, "A", "8", etc. If a factor's 
levels are not named, the levels are set to the factor name (possibly ab
breviated) followed by level numbers. 

min.resid.df: minimum residual degrees of freedom requested for a main-effects
only model. 

VALUE 
a design for the factors specified, generated by selecting some of the 
columns from one of a stored catalog of orthogonal array designs. The 
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design object is a data frame, with variables in the frame corresponding 
to each of the factors requested in the design. Three additional attributes 
are special to orthogonal array designs: "generating. oa" gives the name of 
the object that contains the complete orthogonal array design from which 
the result was generated; "selected.columns" says which columns of this 
object were used to produce the result; "residual.df" gives the number 
of residual degrees of freedom in the design, when only the main effects 
are fitted (you may want to check this value to see how many more resid
ual degrees of freedom than are needed in your application are available). 
oa. design may not be able to find a design as requested. If so, an error 
stop is made. 

SEE ALSO 
fac.design, design, fractionate. 

EXAMPLE 

oa <- oa.design(c(2,3,3,3,3,3)) 
tproduces an 18 run design with 6 degrees of freedom 
#for error assuming only main effects are fit. 

ordered(x, levels, labels) 
ordered(x) <- levels 

ARGUMENTS 

x: data to be made into an ordered factor. 

levels: optional vector of levels for the factor. Any data value that does not 
match a value in levels is coded in the output vector as NA. The levels 
will be assumed ordered (low to high) in the order given. If omitted, the 
sorted unique values of x will be used. 

labels: optional vector of values to use as labels for the levels of the factor. 

VALUE 
an ordered factor, i.e., an object of class c("ordered", "factor"). 

When ordered() is used on the left of an assignment, the levels of x will 
. be taken to be ordered according to the argument on the right side of the 
assignment. Typically, levels in this case will consist of some permutation 
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of the current levels of x. If values in levels(x) arc missing from levels, 
any corresponding data values in z will become NA. 

The assignment can also be applied to a data frame, in which case th" 
right side is taken to apply to each of the variables iu the data frame. Tht' 
right side should be either a logical vector of length equal to the number 
of variables, or else a list of the same length. In the case of a list, eacl1 
element acts like the right side of an assignment of the ordered attribut1: 
of the corresponding variable. 

SEE ALSO 
factor, design, data.frame 

EXAMPLE 

ratings<- ordered( ratings.tezt, c("Lov","Med","High") 
# reverse the ordering 
ordered(ratings) <- c("High", "Med", "Low") 

pairs(x, labels e names(x), panel= points, ... ) 

ARGUMENTS 

x: matrix-like object; pairs of columns will be plotted. 

labels : optional character vector for labeling the variables in the plots. The 
strings labels [1], labels (2], etc. are the labels for the 1st, 2nd, etc., 
panel in the diagonal panels. If supplied, the label vector must have 
length equal to ncol(x). 

panel: a user-supplied function of x and y that determines the method of plotting 
on the panels. 

Graphical parameters (see par()) may also be supplied as arguments to 
this function. 

This is a generic function. Functions with names beginning in "pairs." 
will be methods for this function. 

For an example of the output of pairs(), see Figure 3.7 on page 77. 

EXAMPLE 

pairs(ethanol) 
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panel.smooth(x, y, span~ 2/3, degree= 1, family= c("symmetric", 
"gaussian"}, zero.line =FALSE, evaluation= 50, ... ) 

ARGUMENTS 

x: refers to abscissas of points on a panel. 

y : refers to ordinates of points on a panel. 

span: smoothing parameter. 

degree: overall degree of locally fitted polynomial. 1 is locally linear fitting and 2 
is locally quadratic fitting. 

family: the values are "gaussian" or "symmetric". In the first case, local fitting 
methods are used. In the second case, the default, local fitting is used 
together with a robustness feature that guards against distortion by out
liers. 

zero .line: if TRUE, the line y .. 0 is drawn on the panel. 

evaluation: number of values at which the loess curve is evaluated. 

This function adds smooth curves to the scatterplots on multipanel dis
plays made by graphical functions such as pairs() and coplot 0. The 
smoothing method used is loess(). The fit is evaluated at evaluation 
equally spaced points from min(x) to max(x) and then graphed by con
necting the successive plotting locations by line segments. 

Graphical parameters (see par()) may also be supplied as arguments to 
this function. 

SEE ALSO 
coplot, loess 

EXAMPLE 

E.intervals <- co.intervals(E, 16, 0.25) 
coplot(NOx ~ C I E, given = E.intervals, data = ethanol, 

panel = function(x, y) panel.smooth(x, y, span = 1, degree 1)) 
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.~~~!t!·;if ·i :f~~~is~in_·::e.·P:~aifi~n~t-D~t~ ~.,: 
:",.· ' ··.·.· :· ' :_-;.~_,., ... '.> ··?. 

parameters(x) 
parameters(x) <- value 
param(x, vhat) 
param(x, vhat) <- value 

ARGUMENTS 

x: a data frame, specifically one inheriting from class "pframe". 

vhat: character string, the name of the parameter. Parameters must be ad
dressed by name, like attributes, which they very much resemble. 

value: the value for the assignment. If assigning all the parameters, this should 
be a list. 

VALUE 
parameters 0 returns or sets all the parameters. par am() returns or sets the 
specific parameter named in vhat. The parameters are arbitrary named 
quantities. When a pframe object is attached or is the data argument to a 
model-fitting function, the parameters become available for computations 
just like the variables (i.e., the components) of the data frame. However, 
they are otherwise unrestricted; in particular, they do not need to corre
spond to the set of observations (the rows) of the data frame. The names 
of the parameters must be unique and must not conflict with the names 
of the variables in the data frame. 

EXAMPLE 

param(myframe, "lambda") <- 1.5 
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partition.tree(tree, label, add = F) 

ARGUMENTS 

tree: fitted model object of class tree. This is assumed to be the result of some 
function that produces an object with the same named components as 
that returned by the tree() function. 

label: a column name of tree$frame that defines how each partition will be la
beled. 

add: logical; if TRUE, the partition or step function is added to the current plot. 

VALUE 
this function is used for its graphical side effect, a plot of the relationship y 
= f(x) (one-variable tree) or y = J(xl, x2) (two-variable tree). The function 
stops if tree consists of more than two predictors or if the predictors 
are factors. For a single predictor, y=f(x) is a step function. For two 
predictors, the prediction space is carved into partitions, displaying the 
fitted values in each. 

Parametrized frames ("pframe" objects) inherit from data frames. Their 
essential difference is that they contain special parameters , which are 
just a list of arbitrary named objects, kept separate from the variables in 
the data frame specifically so they will not be subject to the constraints 
that all variables apply to the same set of observations. When a pframe is 
attached to the search list, the constraint is dropped and the parameters 
become accessible by name, just as the variables are. 

ATTRIBUTES 
In addition to the attributes of data frames: 

parameters: the parameter objects as a list. The list must be named, and the 
names must be unique. 

SEE ALSO 
data. frame .object, data. frame. 
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I plot Plot an Object plot l 
plot(x, ... ) 
plot(x, y, ... ) 

ARGUMENTS 

x: an S object. The plot will either display the data defined by x alone, or 
will plot data supplied in x (usually on the horizontal axis) versus data 
supplied by a second argument, y {usually on the vertical axis). 

Graphical parameters (see par()) may also be supplied as arguments to 
this function. In addition, the high-level graphics control arguments de-. 
scribed under plot.defaultO and the arguments to title() may be sup
plied to this function. 

This is a generic function. Functions with names beginning in "plot. " 
will be methods for this function. 

plot.data.frame(object, labels= dimnames(data)[[2)], ... ) 

ARGUMENTS 

object: data frame to be plotted. 

labels: character vector of labels for the variables. If the elements have names, 
they are matched to the names of the variables of the data frame; if not, 
the elements are assumed to be in the same order as the columns of the 
data frame. 

This function makes plots of the sample distributions of the variables of 
a data frame. The observations of numeric predictors are graphed by a 
quantile plot; that is, if xis a numeric variable, sort(x) is graphed against 
ppoints (x). For a factor, counts of occurrences of levels are graphed. 

Graphical parameters (see par()) may also be supplied as arguments to 
this function. 

This function is a method for the generic function plot() for objects of 
class "data. frame". It can be invoked by calling plot(x) for an object x of 
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the appropriate class, or directly by calling plot.data.frame(), regardless 
of the class of the object. 

For an example of the output ofplot.data.frame(), see Figure 3.6 on page 
76. 

EXAMPLE 

plot(ethanol) # ethanol is a data frame 
x <- data.frame(weight = rawdata[, 1], sex= rawdata[, 2]) 
plot(x, labels= c("Weights of Mongooses", "Sex of Mongooses")) 

·-: .. ' . -.. ~.-. 
plot.design . Plot a Ftinctionof:&ch Lev~lof:F~i-s or Tenn$' 

plot.design(x, y, fun= mean, ... ) 

ARGUMENTS 

x: either a data frame containing the design factors and, optionally, the re
sponse, or a formula. 

y: the response, if not given in x. 

This function is a method for the generic function plotO for class "design". 
It can be invoked by calling plot(x) for an object x of the appropriate 
class, or directly by calling plot.designO, regardless of the class of the 
object. There are two basic styles for calling this method. If xis a design 
or data frame, then y can select a response variable from the design or, if 
y is a formula, it can define both terms and response, relative to the given 
design. Conversely, if x is not a design, it is assumed to be a formula or 
terms object, or something else from which a model frame can be com
puted. Then the design factors and response are determined from that 
model frame. 

fun: a function or the name of a function. It should be a summary function 
returning one number on each call. The plot shows this function of the 
response for each level of each factor. 

The supplied function will be called once for each level of each factor in the 
design. A plot will show these summary values. The levels for a particular 
factor are shown along a vertical line, and the overall value of fun() for 
the response is drawn as a horizontal line. 

Graphical parameters (see par()) may also be supplied as arguments to 
this function. 
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This function is a method for the generic function plot() for class "design". 

It can be invoked by calling plot (x) for an object x of the appropriate class, 
or directly by calling plot. design(), regardless of the class of the object. 

For an example of the output of plot.designO, see Figure 5.2 on page 
164. 

EXAMPLE 

# drav trimmed means 
plot.design(catalyst, fun= function(x) mean(x, trim= .05), 

col = 2) 
#choose vhich factors to include in the plot 
plot. design(Yield "' Cone + Cat, data = catalyst} 

I plot.factor · .. • . 

plot.factor(x, y, style="box", rotate, boxmeans, character) 

ARGUMENTS 

x, y: the first argument gives either factor(s) or a formula. In the former case 
x can be a single factor or a design, and y is expected to be the response. 
In the latter case, both the response and the factors are determined by x; 
if y is given, it is a data frame in which to evaluate the formula. 

style: character string indicating style of plot. Possible values are "box" (de
fault), "fraction nonO", "shaded bar", and "character". The names can 
be abbreviated (one character is enough). The four styles produce: box
plots; bar-plots of the fraction of observations not equal to 0; shaded bars 
with each shaded area representing the number of observations having 
a particular value; characters plotted at the values of y, the characters 
given by argument character=. Supplying argument character= implies 
the style. 

rotate: if TRUE, :zraxis labels will be rotated. 

boxmeans: TRUE if you want the mean of the boxplots to be indicated. Applicable 
for style="box" only. 

character: name of factor whose levels will be used as plotting characters. 

Produces a set of plots, one for each factor. Levels of the factor are 
arranged along the :zraxis. Depending on the value of style, a box, bar, 
shaded bar, or characters will be plotted at each level. 
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Graphical parameters (see par()) may also be supplied as arguments to 
this function. 

This function is a method for the generic function plot() for class "factor". 
It can be invoked by calling plot (x) for an object x of the appropriate class, 
or directly by calling plot.factorO, regardless of the class of the object. 

For an example of the output of plot.factorO, see Figure 5.3 on page 
166. 

EXAMPLE 

# do box plots of all factors. 
> plot.factor(Yield ~ . , catalyst, character = catalyst$Temp, 

main = "Yield, points identified by levels of Temp") 
# do character plot of interaction 
> attach("solder.balance") 
> Boards <- interaction(Solder, Mask, Opening) 
> plot.factor(Boards, skips, character= Panel, rotate = T) 
> detach() 

I plot.gal11 

plot.gam(x, residuals, rug, se, scale, ask = F) 

ARGUMENTS 

x: a gam object, or a preplot .gam object. The first thing plot. gam() does is 
check if x has a component called preplot; if not, it computes one using 
preplot.gam(). Either way, it is this preplot.gam object that is required 
for plotting a gam object. 

residuals: if TRUE, partial deviance residuals are plotted along with the fitted 
terms-default is FALSE. If residuals is a vector with the same length 
as each fitted term in x, then these are taken to be the overall residuals 
to be used for constructing the partial residuals. 

rug: if TRUE (the default), a univariate histogram or rugplot is displayed along 
the base of each plot, showing the occurrence of each z.value; ties are 
broken by jittering. 

se: if TRUE, upper and lower pointwise twice-standard-error curves are included 
for each plot. The default is FALSE. 
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scale: a lower limit for the number of units covered by the limits on the y-axis for 
each plot. The default is acale=O, in which case each plot uses the range of 
the functions being plotted to create their ylim. By setting scale to be the 
maximum value of diff Cylim) for all the plots, then all subsequent plots 
will produced in the same vertical units. This is essential for comparing 
the importance of fitted terms in additive models. 

ask: if TRUE, plot. gam() operates in interactive mode. 

VALUE 
a plot is produced for each of the terms in the object x. The function 
currently knows how to plot all main-effect functions of one or two pre
dictors. So in particular, interactions are not plotted. An appropriate 
x-y plot is produced to display each of the terms, adorned with residuals, 
standard-error curves, and a rugplot, depending on the choice of options. 
The form of the plot is different, depending on whether the z-value for 
each plot is numeric, a factor, or a matrix. 

When ask=T, rather than produce each plot sequentially, plot.gam() dis
plays a menu listing all the terms that can be plotted, as well as switches 
for all the options. An additional switch called browser allows users to 
temporarily regain control, and is useful for setting par() options, or for 
adding additional information to the current plot. 

A preplot. gam object is a list of precomputed terms. Each such term 
{also a preplot.gam object) is a list with components x, y and others-the 
basic ingredients needed for each term plot. These are in turn handed to 
the specialized plotting function gplot 0, which has methods for different 
classes of the leading x argument. In particular, a different plot is produced 
if x is numeric, a category or factor, a matrix, or a list. Experienced users 
can extend this range by creating more gplot 0 methods for other classes. 

Graphical parameters (see par()) may also be supplied as arguments to 
this function. 

This function is a method for the generic function plot() for class "gam". It 
can be invoked by calling plot(x) for an object x of the appropriate class, 
or directly by calling plot.gamO, regardless of the class of the object. 

For an example of the output of plot.gamO, see Figure 7.7 on page 263. 

SEE ALSO 
preplot, predict.gam, gplot 
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EXAMPLE 

plot(gamob, ask=T) # interactive version 
plot(gamob, residuals=T, se=T, rug=F) 
gamob$preplot <- preplot(gamob) 
plot(gamob) 

APPENDIX B 

plot.loess(object, given = 6, evaluation = 50, confidence = 0, 
coverage = 0.99, ranges = NULL, vhich.plots = NULL, xlab, 
ylab, rovs, columns, shov.given =TRUE, ... ) 

plot.preplot.loess(object, xlab = object$xlab, ylab = object$ylab, 
vhich.plots = object$vhich.plots, rovs, columns, 
shov.given =TRUE, ... ) 

ARGUMENTS 

object: a loess object or a preplot .loess object. The latter is created by the 
function preplot .loess 0 when the user wishes to save the evaluations of 
the surface that are carried out to ma.ke the coplot. 

given: number of conditioning values for a numeric given variable. 

evaluation: number of points at which the curve on each dependence panel is 
computed. 

confidence: number of points at which the confidence intervals on each dependence 
panel are displayed. 

coverage: the level of the confidence intervals expressed as a fraction. 

ranges: the ranges of evaluations of numeric variables. If there are k numeric 
predictors, ranges should either be a list of minimum and maximum pairs 
of length k, or a 2 by k matrix. Matching is done the same way as for xlab. 
If missing, the range for a numeric predictor is the range of the predictor 
observations. 

vhich. plots: a character vector of names of predictors that determines the coplots 
that are made. If missing, all coplots are made. 

xlab: character vector of labels for predictors. If the elements have names, they 
are matched to the names in formula; if not, the elements are assigned, in 
order, according to the order in which the predictors appear in formula. 
If missing, names are taken from terms. 
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ylab: a label for the response. If missing, the name is taken from terms. 

rows: for the case of one given predictor, the number of rows of the matrix of 
dependence panels. If missing, the following is the default: let k be the 
number of given values; if columns is missing, then 

rows <- ceiling(sqrt(k)) 

else 

rovs <- ceiling(k/columns) 

This argument is not used if there are two given predictors. 

columns: for the case of one given predictor, the number of columns of the matrix 
of dependence panels. If missing, the following is the default: let k be the 
number of given values; if rows is missing, 

columns <- ceiling(k/ceiling(sqrt(k))) 

else 

columns <- ceiling(k/rows) 

This argument is not used if there are two given predictors. 

show.given: if FALSE, given panels are not included. 

Graphical parameters (see parO) may also be supplied as arguments to 
this function. 

These functions graph the fitted surface of a local regression model for 
one, two or three predictors. For one predictor, a curve is graphed against 
the predictor. For two or three predictors, a cop lot is made against each 
predictor, conditional on the others. Each dependence panel of a coplot 
shows a curve that is a slice through the surface and is based on an evalu
ation for evaluaton equally spaced values of the predictor ranging between 
values specified by ranges; in addition, confidence intervals at confidence 
equally spaced values over the same range are shown. Normally, the user 
will want to make all coplots, but coplots against just certain predictors 
can be made by using the argument vhich.plots. 

Graphical parameters (see par()) may also be supplied as arguments to 
this function. 

This function is a method for the generic function plot 0 for class "loess". 
It can be invoked by calling plot (x) for an object x of the appropriate class, 
or directly by calling plot .loess 0, regardless of the class of the object. 

For an example of the output of plot.loessO, see Figure 8.18 on page 
345. 
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SEE ALSO 
loess,predict.loess,pointvise,anova.loess,specs.loess,preplot.loess, 
loess. control. 

EXAMPLE 
ethanol.model <- loess(NOI ~ C • E, data • ethanol, span = 1/2, 

drop.square = "C", parametric= "C") 
plot(ethanol.model, confidence = 7, which.plots = "C", 

coverage = .95) 

plot.tree(I, type = '"', ..• ) 

ARGUMENTS 

x: fitted model object of class tree. This is assumed to be the result of some 
function that produces an object with the same named components as 
that returned by the tree() function. 

type: if "u", uniform spacing of nodes is used; default is nonuniform spacing 
based on change of deviance of parent and children nodes. The mkh graph
ical parameter is changed so that functions that require node coordinates, 
such as text() and identify(), can query it. 

VALUE 
this function is used for its graphical side effect, an unlabeled dendrogram 
of the tree object I. If assigned, the coordinates of the nodes in I are 
returned as a list with components I and y. 

Graphical parameters (see par()) may also be supplied as arguments to 
this function. 

This function is a method for the generic function plot 0 for class "tree". 
It can be invoked by calling plot(x) for an object I of the appropriate 
class, or directly by calling plot. tree 0, regardless of the class of the 
object. 

For an example of the output of plot. tree 0, see Figure 9.13 on page 400. 

EXAMPLE 

zauto <- tree(Mileage ~ Weight + Displacement) 
plot(zauto) 
teit(zauto) # put some labels on the plot 
identify(zauto) # find out what car is where 
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I ...... ·.··· .. ·.· .. .,dif .... · ··· .. · .. · ~ate a Basis for Polynomial ~on ' 

poly(x, 3) 
poly(x, y, 2) 
poly(. .• ) 

ARGUMENTS 

VALUE 

the arguments to poly can be a comma-separated list of numeric vectors 
or matrices. If the final argument is atomic, positive, and integer-valued, 
it is taken to be the degree of the polynomiaL 

a matrix of orthonormal polynomials is returned. 

For a single vector argument and a trailing degree argument (first case 
above), a matrix of orthonormal polynomials of given degree is returned 
(the constant column is excluded). The orthogonality is with respect to 
the data. 

For several arguments (vector, matrix, or both), each of the column vec
tors is used to generate orthogonal polynomials of the required degree. 
The columns will be a subset of the tensor product of the the orthogo
nal polynomials of given degree of each of the individual variables. The 
matrix has an attribute degree that is a vector giving the degree of each 
column. · 

SEE ALSO 
bs, ns, formula 

EXAMPLE 

glm(Kyphosis ~ poly(Age, 3) + Start, family z binomial) 
lm(NOx ~ poly(C, E, 4) 
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. ·. . " 

\O'':~m~ 
post.tree(tree, pretty~ 0, file, ... ) 

ARGUMENTS 

tree: fitted model object of class tree. This is assumed to be the result of some 
function that produces an object with the same named components as 
that returned by the tree() function. 

pretty: an integer denoting the extent to which factor levels in split labels will be 
abbreviated. The default (0) signifies no abbreviation. A NULL signifies 
using elements of letters to represent the different factor levels. 

file: ASCII file {tree.ps by default) to contain the output. 

VALUE 

additional graphical arguments to control title and pointsize. 

this function is used for its graphical side effect, a plot of tree in the 
PostScript page description language. The plot is different from the den
drogram produced by plot 0 and is intended for presentation. The edges 
connecting uniformly spaced nodes are labeled by left and right splits. 
Nodes are represented by ellipses (interior nodes) and rectangles (leaves) 
and labeled by yval. Under each node, either the within-node deviance is 
printed (regression trees) or the misclassification error rate (classification 
trees). The function is independent of the current graphics device. It 
creates a file which can be sent directly to a PostScript printer. 
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predict(object, nevdata, type, se.fit = F) 

ARGUMENTS 

object: a fitted model object, such as those produced by lmO, glmO, loess(), etc. 

nevdata: a data frame containing the values at which predictions are required. This 
argument can be missing, in which case predictions are made at the same 
values used to compute the object. Only those predictors, referred to in 
the right side of the formula in object, need be present by name in nevdata. 
Some methods allow additional flexibility in the nevdata argument; all 
allow a list rather than a data frame, and some, such as predict.lm(), 
allow an appropriate model.matrix. 

type: type of predictions. The defaults differ for different methods, and for some 
only one type is sensible: predictions of the response. For objects with 
distinct terms, such as lm, glm, and gam objects, type = "terms" produces 
a matrix of predictions with a column for eacb. term. For "glm" and "gam" 
models, the d~fault is type = "link", in whid. case predictions are on the 
scale of the linear or additive predictor, respectively. 

se. fit: if TRUE, pointwise standard errors are computed along with the predictions. 

VALUE 
a vector or array of predictions, or a list consisting of the predictions 
and their standard errors if se.fit = T. A standard use of predict() is 
to simply extract the fitted values from a fit object, or in the case of 
generalized models, to extract the linear or additive predictor. 

When standard errors are requested, the output of predict 0 is a list 
that includes components "fit", "se.fit", "residual.scale", and "df". 
The "se.fit" component consists of pointwise standard errors, and con
sequently has the same shape as the "fit" component. Although the com
putations of these standard errors differ for the different classes of models, 
they all have a similar flavor. The fitted values are linear either in the 
response or in some derived pseudo-response; the row standard errors 
are the norm of these linear weights. The "residual. scale" component is 
the scale estimate used by predict() to scale the raw standard errors in 
computing the "se.fit" component; "df" is the degrees of freedom of this 
scale estimate. This allows rescaling of the "se.fit" component by other 
scale factors. 
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This is a generic function. Functions with names beginning in "predict." 
will be methods for this function. 

WARNING 
predict() can produce incorrect predictions when the nevdata argument 
is used if the formula in object involves data-dependent transforma
tions, such as poly(Age, 3) or sqrt (Age - min(Age)). The predict. gam() 
method overcomes this for the gam, glm, and lm classes. In other cases, this 
can be overcome by explicitly supplying the derived matrix for predictions, 
rather than a data frame. 

SEE ALSO 
fitted, expand.grid 

EXAMPLE 

#extract the fitted linear predictor from a glm object 
predict(glmob) 
predict(gamob, nevdata, type="terms") 

predict.gam(object, nevdata, type, se.fit = F, terms) 

ARGUMENTS 

object: a fitted gam object, or one of its inheritants, such as a glm or lm object. 

nevdata: a data frame containing the values at which predictions are required. This 
argument can be missing, in which case predictions are made at the same 
values used to compute the object. Only those predictors, referred to in 
the right side of the formula in object need be present by name in nevdata. 

type: type of predictions, with choices "link" (the default), "response", or 
"terms". The default produces predictions on the scale of the additive 

· predictors, and with nevdata missing, predict 0 is simply an extractor 
function for this component of a gam object. If "response" is selected, 
the predictions are on the scale of the response, and are monotone trans
formations of the additive predictors, using the inverse link function. If 
type .. "terms" is selected, a matrix of predictions is produced, one column 
for each term in the model. 

se. fit: if TRUE, pointwise standard errors are computed along with the predictions. 
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terms: if type="terms", the terms= argument can be used to Hlll•dfy which terms 
should be included; the default is labels(object). 

VALUE 
a vector or matrix of predictions, or a list consisting 11! t.he predictions 
and their standard errors if se. fit = T. If type="terms", 11 matrix of fitted 
terms is produced, with one column for each term in tht• lnodel (or subset 
of these if the terms= argument is used). There is no ~~olumn for the 
intercept, if present in the model, and each of the teruaH is centered so 
that their average over the original data is zero. Tlw matrix of fitted 
terms has a "constant" attribute which, when added to t.lu: sum of these 
centered terms, gives the additive predictor. See the doc~umentation of 
predict() for more details on the components returned. 

This is a safe method of prediction for the classes gam, glm, and lm. Naive 
use of the generic predict() can produce incorrect predictions when the 
newdata argument is used, if the formula in object involves data-dependent 
transformations, such as poly(Age, 3) or sqrt(Age - min(Age)). These 
problems are overcome by predict.gam() by taking the following steps. A 
combined data frame is constructed containing the predictors in object, 
using both the data used in fitting object, as well as newdata. From this, 
a combined model frame and model matrix is constructed, and object is 
refitted using the top portion of both of these (belonging to the fitting 
set). The GAM iterations are not repeated; rather one final IRLS step is 
performed, using the working weights and reSponse from the final iteration 
in the creation of the original object. In this way, it is guaranteed that 
any coefficients that are estimated can be applied to both the fitting or 
prediction portions of the model matrix. 

This function is a method for the generic function predict 0 for class 
"gam". It can be invoked by calling predict(x) for an object x of the 
appropriate class, or directly by calling predict.gamO, regardless of the 
class of the object. 

SEE ALSO 
fitted, expand.grid 

EXAMPLE 

predict(gamob) # extract the additive predictors 
predict(gamob, nevdata, type•"terms") 
predict.gam(lmobjet, newdata) # safe prediction for lm object 
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predict.loess(object, newdata, se.fit = FALSE) 

ARGUMENTS 

object: a loess object. 

nevdata: a data frame specifying the values of the predictors at which the evaluation 
is to be carried out. The default is to predict at the data used to fit object. 

se. fit: if TRUE, estimates of the standard errors of the surface values and other 
statistical information are returned along with the surface values. 

VALUE 
if se.fit=FALSE, a vector or array of surface values evaluated at newdata. 
The evaluation is on the scale of the expression given on the left side 
of formula; for example, if the expression is log( temperature), then the 
evaluation is on the log scale. If se. fi tsTRUE, then a list is returned, with 
the following compQnents. 

fit: the evaluated loess surface at nevdata. 

se. fit: estimates of the standard. errors of the surface values. 

residual. scale: estimate of the scale of the residuals. 

df: the degrees of freedom of the t-distribution used to compute pointwise 
confidence intervals for the evaluated surface. The function pointviseO 
can be used to compute such intervals. 

For one predictor, newdata can be a vector rather than a data frame. For 
two or more predictors, the names of newdata must include the names of 
predictors used in formula as they appear on the database from which 
they come. For example, if the right side of formula is log(E)•C, then 
there must be names C and E in newdata. Note that the specification of E 
in this example is not on the transformed but rather on the original scale. 

For two or more predictors, there are two data structures that can be given 
to nevdata. The first is a plain old data frame; the result is a vector whose 
length is equal to the number of rows of nevdata, and the element of the 
vector in position i is the evaluation of the surface at row i of newdata. 
A second data structure can be used when the evaluation points form a 
grid. In this case, nevdata is the result of the function expand. grid(). 
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If se. fi t=FALSE, the result of predict .loess() is a numeric array whose 
dimension is equal to the number of predictors; if se.fit=TRUE, then the 
components fit and se.fit are both such arrays. 

The computations of predict .loess 0 that produce the component se. fit 
are much more costly than those that produce fit, so the number of 
points at which standard errors are computed should be modest com
pared to those at which we do evaluations. Often this means calling 
predict.loess() twice, once at a large number of points with se.fit equal 
to FALSE to get a thorough description of the surface, and once at a small 
number of points to get standard-error information. 

Suppose the computation method for loess surfaces is interpolate, the 
default for the argument surface. Then the evaluation values of a numeric 

. predictor must lie within the range of the values of the predictor used in 
the fit. The evaluation values for a predictor that is a factor must be 
one of the levels of the factor. For any evaluation point for which these 
conditions are not m'et, an NA is returned. 

This function is a method for the generic function predict() for class 
"loess". It can be invoked by calling predict(x) for an object x of the 
appropriate class, or directly by calling predict .loess 0, regardless of the 
class of the object. 

SEE ALSO 
loess, plot.loess, pointvise, anova.loess, specs.loess, preplot.loess, 
loess. control. 

EXAMPLE 

# Example 1 - evaluation at the 5 values of C and E in nevdata 
> ethanol.cp$call 
loess(formula = NOx ~ C • E, span = 1/2, degree = 2, 

parametric= "C", drop.square = "C") 
> predict(ethanol.cp, nevdata) 
(1] 0.2815825 2.5971411 3.0667178 3.2555778 1.0637788 
# Example 2 - evaluation at 9 grid points 
> C.marginal <- seq(min(C), max(C), length= 3) 
> E.marginal <- seq(min(E), max(E), length~ 3) 
> CE.grid <- expand.grid(list(C = C.marginal, E = E.marginal)) 
> predict(ethanol.cp, CE.grid) 

E=0.5350 E=0.8835 E=1.2320 
C= 7.50 -0.1039991 3.399360 0.6823181 
C=12.75 0.2057837 3.850801 0.6481270 
C•1S.oo o.5155665 4.302243 0.6139359 
# Example 3 - evaluate and compute estimates of standard errors 
> gas.m$call 
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loess(formula = NOx ~ E, span • 2/3, degree = 2) 
> predict(gas.m, nevdata • seq(min(E), max(E),length • 5), 
+ se.fit = T)$se.fit 
[1] 0.2694392 0.1536510 0.1489403 0.1665470 0.3237732 

predict. tree I 
predict.tree(object, nevdata, type= c("vector", "tree")) 

ARGUMENTS 

object: fitted model object of class tree. This is assumed to be the result of some 
function that produces an object with the same named components as 
that returned by the tree() function. 

nevdata: data frame containing the values at which predictions are required. The 
predictors referred to in the right side of formula(object) must be present 
by name in nevdata. If missing, fitted values are returned. 

type: character string denoting whether the predictions are returned as a vector 
(default) or as a tree object. If "tree", a tree object is returned with new 
values for frame$n and frame$yval/yprob. 

VALUE 
vector of predicted responses obtained by dropping nevdata down tree. 
For factor predictors,-if an observation contains a level not used to grow 
the tree, it is left at the deepest possible node and frame$yval at that 
node is the prediction. 

This function is a method for the generic function predict() for class 
"tree". It can be invoked by calling predict(x) for an object x of the 
appropriate class, or directly by calling predict.treeO, regardless of the 
class of the object. 



S FUNCTIONS AND CLASSES preplot 561 

. ' .. 

. ·, ._. -. <--- .. · PrtmmpUte·aJ,lQtting .. Object 

preplot(object, newdata) 

ARGUMENTS 

object: a fitted model object, such as those produced by gam() and loess(). 

newdata: a data frame containing the values at which evaluations are required. This 
is often missing, in which case evaluations are made at the same values 
used to compute the object. Only those predictors referred to in the right 
side of the formula in object need be present by name in newdata. 

VALUE 
an object set up for plotting to describe the fit, optionally at the location 
specified in newdata. The purpose of calling preplot () is to precompute 
information to be used in the plot, without necessarily doing the plot at 
the same time. The object returned differs depending on the kind of fit 
(that is, on which method is being used), but in all cases can be given 
directly to the plot() function. This implies that a suitable plot method 
has been written for whatever class of object preplotO returns. 

This is a generic function. Functions with names beginning in "preplot." 
will be methods for this function. 

SEE ALSO 
predict 

EXAMPLE 

preob <- preplot(gam.object, newdata) 
plot(preob, resid=T, se=T) 
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proj(object, onedf=T) 

ARGUMENTS 

object: any object of class 1m or any object that inherits from class lm. It will run 
faster if the object contains either a qr component or a proj component. 

onedf: logical flag. When TRUE (the default for objects of class lm), the function 
returns a matrix of single-degree-of-freedom projections of the response 
variable onto the columns of the predictor matrix. The default method 
does not use this argument. When FALSE, an option available in proj .1m 
and the default for objects of class aov, the function collapses the single 
degree of freedom projections into multi-degree-of-freedom projections. 
Each column of the collapsed result represents one term of the analysis of 
variance table. The sum of squares of each column is the sum of squares 
for the corresponding term in the model formula, with degrees of freedom 
given by the df attribute of the result. The formula itself is returned in 
the formula attribute. 

'VALUE 
matrix of orthogonal columns, one column for each column in an orthog
onalized model matrix. In the default method, each column in the result 
is the projection of the response variable onto a column in the Q matrix 
from the QR decomposition of the model matrix. The sum across the 
columns gives the column of predicted values. The sum of the squared 
values in each column is the single-degree-of-freedom sum of squares for 
the corresponding column of the model matrix. The onedf attribute re
turns the value of the onedf argument. The method for lm objects appends 
a column of residuals. The method for aovlist objects returns a list of 
projection matrices, one for each stratum in the design. 

This is a generic function. Functions with names beginning in "proj." 
will be methods for this function. 

EXAMPLE 

> lm.object <- lm(cost ~ age +type + car.age, claims) 
> tmp <- proj(lm.object) 
> gunaov.qr <- aov(Rounds ~ Method + Physique/Team, gun, qr a T) 
> gunaov.proj <- proj(gunaov.qr) 
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prune.tree(tree, k, newdata) 

ARGUMENTS 

tree: fitted model object of class tree. This is assumed to be the result of some 
function that produces an object with the same named components as 
that returned by the tree() function. 

k: cost-complexity parameter defining either a specific subtree of tree (k a 
scalar) or the sequence of subtrees minimizing the cost-complexity mea
sure (k a vector). If missing, k is determined algorithmically. 

newdata: a data frame containing the values at which predictions are required. 

VALUE 

The sequence of cost-complexity subtrees is evaluated on these data. If 
missing, the data used to grow the tree are used. The response as well as 
the predictors referred to in the right side of the formula in tree must be 
present by name in newdata. These data are dropped down each tree in 
the cost-complexity sequence and deviances calculated by comparing the 
supplied response to the prediction. 

if k is supplied and is a scalar, a tree object is returned that minimizes 
the cost-complexity measure for that k. Otherwise, an object of class 
tree. sequence is returned. A plot 0 method exists for objects of this 
class. It displays the value of the deviance for each subtree in the cost
complexity sequence. An additional axis displays the values of the cost
complexity parameter at each subtree. The object contains the following 
components: 

size: number of terminal nodes in each tree in the cost-complexity pruning 
sequence. 

deviance: total deviance of each tree in the cost-complexity pruning sequence. 

k: the value of the cost-complexity pruning parameter of each tree in the 
sequence. 

nodes: vector indicating the pruning order of the nodes that define the subtrees 
in the sequence. The first element of nodes is 0, indicating the full tree; 
the next element is the number of the node that is the root of the next 
subtree to be pruned, etc. 
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qqline(x) 

ARGUMENTS 

x: typically a residual vector 

This function fits and plots a line through the first and third quartile of the 
data, and the corresponding quantiles of the standard normal distribution. 

EXAMPLE 

# to check Gaussian distribution of the errors 
qqnorm(galaxy.m$residuals) 
qqline(galaxy.m$residuals) 

qqnorm(x, fullaF, label, omit=NULL, .•. ) 

ARGUMENTS 

x: the result of fitting an analysis .of variance model, including the cases of 
multivariate response and multiple-error strata. 

full: TRUE for a full normal probability plot of the effects, FALSE for a half-normal 
plot of the absolute values of the effects. 

label: should some of the points be labeled? Can be set to TRUE, in which case 
the user will be prompted to identify the points to label, or to a single 
number, n, in which case the n largest effects (in absolute value) will be 
labeled. 

omit: those effects that should be omitted from the plot. By default, the first 
effect (assumed to be the intercept) is omitted. Either numeric or char
acter data can be given. Character data are matched against the effect 
labels. The intercept is always omitted: if you really want to see it, set 
its name explicitly to anything other than "(Intercept) "--e.g., 

names(x$effects)[1] <- "•H" 

Graphical parameters (see par()) may also be supplied as arguments to 
this function. 
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VALUE 

the points plotted, suitable to use as an argwnent to identify() to label 
interesting points after the fact. In the case of multiple responses or error 
strata, the points from the last plot are returned. 

A quantile-quantile plot is produced, either of the effects component from 
the fit or of its absolute value, plotted against the appropriate quantiles 
of the normal distribution. In the case of multiple response or multiple 
strata, one plot will be produced for each separate set of effects. Subtitle 
labels will be composed in this case identifying the response and/or the 
stratum. 

This function is a method for the generic function qqnormO for class "aov". 
It can be invoked by calling qqnorm{x) for an object x of the appropriate 
class, or directly by calling qqnorm.aovO, regardless of the class of the 
object. 

For an example of the output of qqnorm.aovO, see Figure 5.6 on page 170. 

randomize{design, restrict) 

ARGUMENTS 

design: a design; that is, a data frame representing factors for an experimental 
design. 

restrict: an optional vector specifying some factors (either numerically or by 
name) in the design matrix. If restrict is supplied, randomization will 
occur only within levels of the combination of the restricted factors. The 
runs (rows) of the design will be ordered by the restricted factors, and 
then randomly within this order. 

VALUE 
a permutation of the. rows of the design, randomized in the sense above. 
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EXAMPLE 

# a 3A2 factorial, randomized within levels of the first factor 
> mydesign <- fac.design(rep(3,2)) 
>perm<- randomize(mydesign,"A") 
>perm 

[1] 7 4 1 2 8 5 9 6 3 

raovl 
raov(formula, data, ... ) 

ARGUMENTS 

formula: formula and optional data frame for analysis of variance model, or a previ
ously computed analysis of variance fit. These arguments are interpreted 
in the standard form for analysis of variance. The usual optional argu
ments for aovO and lm() can be supplied to raov() also. 

VALUE 
a fitted anova model, similar to that returned by aovO, and containing 
in addition two components used for computing the estimated random
effects. The difference from standard anova models appears when the 
summary method is called: this method will compute and print the esti
mated variances for the random-effects model. Specifically, the ordinary 
mean-squares and the component ems. coef from the fitted anova model 
are used to estimate the variances for the usual random effects model for 
each relevant main factor or interaction in the modeL 

The analysis produced by raov() is valid only for the fully random model 
on a balanced design, with one error stratum. The function will check for 
balance, by calling replications(). 

EXAMPLE 

# in the design pigment, Batch and Sample have 
# attribute "random" set to TRUE 
> ptaov <- raov(Moisture ~ Batch/Sample, pigment) 
> summary(praov) 

Df Sum of Sq Mean Sq 
Batch 14 1210.9 86.495 

Sample 'l.in'l. Batch 15 
Residuals 30 

869.8 57.983 
27.5 0.917 

Random Effects -- estimated variances: 
Batch Sample Y.inY. Batch Residuals 
7.128 28.533 0.917 
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read.table(file, header=F, sep, row.names, col.names) 

ARGUMENTS 

file: the name of the text file for the data. The file should contain one line per 
row of the table, with fields separated by the character in sep. 

header: should the first line of the file be used as a header, specifying the names 
of the variables in the data frame? 

sep: the field separator. If missing, any amount of white space can separate 
items. 

row. names: optional specification of the row names for the data frame. If provided, 
it can give the actual row names, as a vector of length equal to the number 
of rows, or it can be a single number or character string. In the latter 
case, the argument indicates which variable in the data frame to use as row 
names (the variable will then be dropped from the frame). If row.names is 
missing, the function will use the first nonnumeric field with no duplicates 
as the row names. If no such field exists, the row names are t:nrow(x). 

Row names, wherever they come from, must be Wlique. 

col. names: optional names for the variables. If missing, the header information, 
if any, is used; if all else fails, "V" and the field number are be pasted 
together. Variable names, wherever they come from, must be unique. 
Variable names will be converted to syntactic names before assignment, 
but not if they came from an explicit col. names argument. 

as.is: control over conversions to factor objects. By default, non-numeric fields 
are turned into factors, except if they are used as row names. If some or all 
fields should be left as is (typically producing character variables), set the 
corresponding element of as. is to TRUE. The argument will be replicated 
as needed to be of length equal to the number of fields; thus, as. issTRUE 
leaves all fields unconverted. 

VALUE 
a data frame with as many rows as the file has lines (or one less if 
header .. mT) and as many variables as the file has fields (or one less if one 
variable was used for row names). Fields are initially read in as character 
data. If all the items in a field are numeric, the corresponding variable is 
numeric. Otherwise, it is a factor (unordered), except as controlled by the 
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as. is argument. All lines must have the same number of fields (except 
the header, which can have one less if the first field is to be used for row 
names). 

This function should be compared to scan(); read.table() tries much 
harder to interpret the input data automatically, figuring out the number 
of variables and whether fields are numeric. It also produces a more 
structured object as output. The price for this, aside from read. table() 

being somewhat slower, is that the input data must themselves be more 
regular and that read. table() decides what to do with each field, except 
for the use of the as.is argument. With scan(), input lines do not need to 
correspond to one complete set of fields, and the user decides what mode 
each field should have. Overall, read. table 0 will usually be the easy way 
to construct data frames from tables. If it doesn't do what you want, 
consider the functions scan(), make.fields(), or count.fields(), as well 
as text-editing tools and languages outside S. 

replications(formula, data) 

ARGUMENTS 

formula: a formula, terms object, or design. If a design, then data need not be 
given, and the formula ""' . " is implied. 

data: a design or data frame. 

VALUE 
if the design is balanced-that is, for each term in the formula all levels 
are replicated the same number of times-then replications returns a 
vector of length equal to the number of terms, containing the number 
of replications for each term. Otherwise, the object returned is a list, 
with one element for each term. If the individual term is balanced, the 
corresponding element of the list will be a single number, the number of 
replications. Otherwise, the element will give the pattern of replications 
for the levels of the corresponding term. If the term is a main effect, the 
element will be a vector of length equal to the number of levels. If the term 
is a two-way interaction, the element will be a two-way array, and so on. 
The names or dimnames of the elements will identify the corresponding 
levels of the factor(s) in the term. See the example below. The value of 
replications() provides an easy test for overall balance or for balance of 
individual terms: 



S FUNCTIONS AND CLASSES 

is.numeric(replications(formula, data) 
sapply(replications(formula, data), 

function(x)length(x)~~1 ) 

residuals 569 

respectively test for complete or term-by-term balance. Tlw second test 
is sensible only if the first one fails. 

EXAMPLE 

>reps<- replications(Yield ~ .A2, catalyst[-1, ]) 
> reps$"Conc:Cat" 

A B 
20 1 2 
40 2 2 

robust(family = gaussian, scale=O, k=1.345, maxit=10) 

ARGUMENTS 

family: a family object, as produced by gaussian(), binomial(), poiss~nO, etc. 

scale: a scale parameter can be supplied. If omitted, a robust scale is estimated 
based on a scale of 1 and the fit of the first glmO or gam() iteration. 

k: a threshold used in the computation of the robustness weights. 

maxit: the maximum number of iterations. 

VALUE 
a new family object, with its component functions suitably modified to 
perform a robust version of the glmO or gam() fit. 

SEE ALSO 
glm, gam, family, quasi, family.object. 

EXAMPLE 

# Fit a linear model robustly 
glm(formula, family=robust) 
# Fit a generalized additive model robustly 
gam(formula, family=robust(binomial)) 
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s(x, df=4, spar=O) 

ARGUMENTS 

x: the univariate predictor, or expression, that evaluates to a numeric vector. 

df: the target equivalent degrees of freedom, used as a smoothing parameter. 
The real smoothing parameter (spar below) is found such that df=tr(S)-1, 
where s is the implicit smoother matrix. Values for df should be greater 
than 1, with 1 implying a linear fit. 

spar: can be used as smoothing parameter, with values larger than 0. 

VALUE 
the vector x is returned, endowed with a number of attributes. The vector 
itself is used in the construction of the model matrix, while the attributes 
are needed for the backfitting algorithms all.wam() or s.wam() (weighted 
additive model). Since smoothing splines reproduces linear fits, the linear 
part will be efficiently computed with the other parametric linear parts of 
the model. 

Note that sO itself does no smoothing; it simply sets things up for gam(). 

SEI•; ALSO 
lo, smooth. spline, bs, ns, poly 

EXAMPLE 

#fit Start using a smoothing spline with 4 df. 
y ~ Age + s(Start, 4) 
#fit log(Start) using a smoothing spline with 5 df. 
y ~Age+ s(log(Start), df=5) 
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scatter.smooth(x, y. span= 2/3, degree 1, family= c("symmetric", 
"gaussian"), evaluation= 50, ... ) 

ARGUMENTS 

x: abscissas of points on scatterplot. 

y: ordinates of points on scatterplot. 

span: smoothing parameter. 

degree: overall degree of locally-fitted polynomial. 1 is locally-linear fitting and 2 
is locally-quadratic fitting. 

family: the values are "gaussian" or "symmetric". In the first case, local-fitting 
methods are used. · In the second case, the default, local fitting is used 
together with a robustness feature that guards against distortion by out
liers. 

evaluation: number of values at which the loess curve is evaluated. 

This function makes a scatterplot and adds a smooth curve using the loess 
fitting method. The fit is evaluated at evaluation equally spaced points 
from min(x) to max(x) and then graphed by connecting the successive 
plotting locations by line segments. This function replaces the use of the 
function lowessO for scatterplot smoothing. 

Graphical parameters (see par()) may also be supplied as arguments to 
this function. 

For an example of the output of scatter. smooth(), see Figure 8.5 on page 
326. 

SEE ALSO 
loess, panel.smooth 

EXAMPLE 

scatter.smooth(x, y, span= 1, degree = 1, xlab = "predictor") 
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select.tree(tree, nodes, drop = T) 

ARGUMENTS 

tree: fitted model object of class tree. This is assumed to be the result of some 
function that produces an object with the same named components as 
that returned by the tree() function. 

nodes: an integer vector containing indices (node numbers) of all subtrees to be 
selected. If missing, user selects nodes as described below. 

drop: if TRUE, and only one subtree was specified or selected, returns a tree 
object, not a list. 

VALUE 
returns a list (sometimes called a stand) of subtrees rooted at nodes. 
For noninteractive use, select. tree (obj, nodes) is longhand for the left
square-bracket method for trees obj [nodes]. 

GRAPHICAL INTERACTION 
A dendrogram of tree is expected to be visible on the graphics device, and 
a graphics input device (e.g., a mouse) is required. Clicking (the selection 
button) on a node selects the subtree rooted at that node. This process 
may be repeated any number of times. Warnings result from selecting the 
root or leaf nodes. Clicking the exit button will stop the selection process 
and return the resulting stand of tree objects. 

See the documentation for the specific graphics device for details on graph
ical input techniques. 

For an example of the output of select.tree(), see Figure 9.12 on page 
398. 
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shrink.tree(tree, k, nevdata) 

ARGUMENTS 

tree: fitted model object of class tree. This is assumed to be the result of some 
function that produces an object with the same named components as 
that returned by the tree() function. 

k: shrinkage parameter ( O<k< 1) defining either a specific shrunken version of 
tree or, if length(k) >i, the sequence of shrunken trees obtained by optimal 
shrinking for each value of k. By default the sequence (1:10)/(20:11) 

(roughly .05 to .91) is used. 

nevdata: a data frame containing the values at which predictions are required. The 
sequence of optimally shrunken trees is evaluated on nevdata. If missing, 
the data used to grow the tree are used. If supplied, the sequence is 
evaluated on newdata, The response as well as the predictors referred to in 
the right side of the formula in tree must be present by name in nevdata. 
These data are dropped down each shrunken tree in the sequence and 
deviances calculated by comparing the supplied response to the prediction. 

VALUE 
ifk is supplied and is a scalar, a tree object is returned that has the same 
topology as the supplied tree but new values for the yval/yprob, dev, and 
n. components of tree$frame. Otherwise, an object of class tree. sequence 
is returned. A plot() method exists for objects of this class. It displays 
the value of the deviance for each shrunken tree in the sequence. An 
additional axis displays the values of the shrinkage parameter for each 
tree. The object contains the following components: 

size: number of (effective) terminal nodes in each tree in the optimal shrinkage 
sequence. 

deviance : total deviance of each tree in the optimal shrinkage sequence. 

k: the value of the shrinkage parameter of each tree in the sequence. 

For an example of the output of shrink. tree(), see Figure 9.12 on page 
398. 
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smooth.spline(x, y, w, df, spar, cv, all.knots, df.offset, penalty) 

ARGUMENTS 

x: values of the predictor variable. There should be at least ten distinct x 
values. 

y: response variable, of the same length as x. 

x and y can be supplied in a variety of different forms, along the lines of 
the function plot(); e.g., a list with components x andy, a two-column 
matrix, or simply a single vector, taken to be a time series. 

w: optional vector of weights for weighted smoothing, of the same length as 
x and y. If measurements at different values of x have different variances, 
v should be inversely proportional to the variances. 

d£: one can supply the degrees of freedom = trace{S) rather than a smoothing 
parameter. HereS is the implicit smoother matrix. If both df and spar 
are supplied, spar is used unless it is 0, in which case df is used. 

spar: the usual smoothing parameter for smoothing splines, which is the coeffi
cient of the integrated second squared derivative penalty function. If spar 
is 0 or missing and df is missing, cross-validation is used to automatically 
select spar. If a value of spar greater than zero is supplied, it is used as 
the smoothing parameter. 

cv: the ordinary or generalized cross validation score (cv or Gcv) is computed 
according to whether cv is TRUE or FALSE. Default is FALSE. 

all. knots: if FALSE, a suitable fine grid of knots is chosen, usually less in number 
than the number of unique values of x. If TRUE, the unique values of x are 
used as knots. 

df . off set : allows an offset to be added to the df term used in the calculation of 
the GCV criterion: df=tr(S) + df .offset. Default is 0. 

penalty: allows the df quantity used in GCV to be charged a cost = penalty per 
degree of freedom. 

The last two arguments are experimental and typically will not be used. 
If used, the GCV criterion is RSS/(n - (penalty*(trace(S)-1) + df .offset 
+1)). 
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VALUE 
an object of class smooth. spline is returned, consisting of the fitted smooth
ing spline evaluated at the supplied data, some fitting criteria and con
stants, and a structure that contains the essential information for com
puting the spline and its derivatives for any values of x. 

x: ordered distinct x values 

y: smoothing spline fits corresponding to x 

w: weights used in the fit. This has the same length as x, and in the case of 
ties, will consist of the accumulated weights at each unique value of x. 

yin: y-values used at the unique x values (weighted averages of input y) 

lev: leverage values, which are the diagonal elements of the smoother matrix 
s. 

cv.crit: cross validation score (either GCV or cv) 

pen. cri t : penalized criterion 

df: degrees of freedom of the fit estimated by the sum of lev. If df was 
supplied as the smoothing parameter, then the prescribed and resultant 
values of df should match within 0.1 percent of the supplied df 

spar: smoothing parameter used in the fit (useful if df was used to specify the 
amount of smoothing) 

fit: list containing details of the fits (knot locations, coefficients, etc.) to be 
used by predict . smooth. spline 0. 

call: the call that produced the fit 

SEE ALSO 
predict.smooth.spline, print.smooth.spline 

COMMENTS 
A cubic B-spline is fit with care taken to insure that the algorithm runs 
linear in the number of data points. For small data vectors (n<50), a 
knot is placed at every distinct data point, and the regression is fit by 
penalized least squares. For larger data sets the number of knots is cho
sen judiciously in order to keep the computation time manageable (if 
all.knots=F). The penalty spar can be chosen automatically by cross
validation (if spar~o), can be supplied explicitly, or supplied implicitly via 
the more intuitive df number. 
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The FORTRAN code supporting smooth. spline() was supplied by Finbarr 
O'Sullivan, whose original function bartO is known to some S users. 
Subsequent modifications allowing for user supplied df and other small 
changes were made by Thevor Hastie. 

EXAMPLE 

# smoothing spline fit and approximate 951. 
fit <- smooth.spline(x, y) 
res <- (y - fit$y)/(1-fit$lev) 
sigma <- sqrt(var(res)) 

upper <- fit$y + 2.0•sigma•sqrt(fit$lev) 
lower <- fit$y - 2.0•sigma•sqrt(fit$lev) 
matplot(fit$x, cbind(upper, fit$y, lower), 

snip.tree(tree, nodes) 

"confidence" intervals 
# smooth.spline fit 
# jackknife residuals 
# estimated sd 

#upper 951. conf. band 
# lower 951. conf. band 
type="plp", pch=".") 

ARGUMENTS 

tree: fitted model object of class tree. This is assumed to be the result of some 
function that produces an object with the same named components as 
that returned by the tree() function. 

nodes: an integer vector containing indices (node numbers) of all subtrees to be 
snipped off. If missing, user selects branches to snip off as described below. 

VALUE 
a tree object containing the nodes that remain after specified or selected 
subtrees have been snipped off. For noninteractive use, snip. tree (obj, 
nodes) is longhand for the left-square-bracket method for trees obj [
nodes]. 

GRAPHICAL INTERACTION 
A dendrogram of tree is expected to be visible on the graphics device, and 
a graphics input device (e.g., a mouse) is required. Clicking (the selection 
button) on a node displays the total tree deviance and what the total 
tree deviance would be if the subtree rooted at the node were removed. 
Clicking a second time on the same node snips that subtree off and visually 
erases the subtree. This process may be repeated any number of times. 
Warnings result from selecting the -root or leaf nodes. Clicking the exit 
button will st:op the snipping process and return the resulting tree object. 
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See the documentation for the specific graphics device for details on graph
ical input techniques. 

For an example of the output of snip. tree(), see Figure 9.11 on page 397. 

spllt.screen Split the Graphics Display into Multiple Screens split.screen 

split.screen(figs, screen, erase T) 
screen(n, new = T ) 
erase.screen(n, eject = F) 

close.screen(n, all = F) 

prompt.screen(delta = 1/8, draw = T) 

ARGUMENTS 

figs: a multiple-figure vector like mfrow or mfcol~.g, c(n,m)-or an N by 4 
matrix where N is the number of screens and each row specifies the position 
of a screen on the display. The first two columns specify the left and right 
coordinates (in the 0, 1, 0, 1 plane) for the screens, and the third and 
fourth columns the bottom and top coordinates. Use prompt.screen() to 
create this matrix interactively. 

screen: screen to split up. By default it carves up the current screen, which 
initially is the entire display (denoted as screen 0). 

erase: should the screen being split be cleared? Default is TRUE. 

n: screen to activate for screen(), screen to erase for erase.screen(), or the 
vector of screens to close for close. screen() (the active screen cannot 
be closed). For screen() and erase.screen() the default is the currently 
active screen. 

ne11: should screen be cleared? Default is TRUE. 

eject: should current page be ejected? On noninteractive devices like PostScript 
printers, this will advance to a new page. On exit, the first valid screen is 
left active. 

all: should all screens be closed? Set all = TRUE to exit the split-screen mode. 

delta: spacing, in inches, used to snap or line up adjacent screens; if corners of a 
newly created screen are less than delta inches from a neighboring screen, 
screen borders are made to coincide. 

draw: should display be cleared and screen borders be drawn? Default is TRUE. 
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VALUE 
these functions provide a means of dividing up the graphics display into 
multiple screens or figures of various sizes. The split-screen mode is an 
alternative to the usual multiple-figure mode obtained by par(mfrow), and 
it is useful for interacting with individual figures and for producing non~ 
matrix arrangements; however, the two modes are not compatible-i.e., 
you cannot mix calls to split. screen() and par(mfrow). 

Graphics input and output is directed to and from screens by calling 
screen(). As part of the initialization, split. screen(figs) activates the 
first screen in figs. 

SIDE EFFECTS 
If any screen in figs is smaller than half of the horizontal or vertical 
dimensions of the graphics display, the character expansion parameter 
cex is set to 0.5 in all screens in figs. Outer margins are not defined in 
split-screen mode, thus the graphical parameters oma and omi should not 
be used. 

For an example of the output of split.screenO, see Figure 9.14 on page 
403. 

EXAMPLE 

split.screen(c(2,1)) # split display into to screens 
(1] 1 2 
split.screen(c(1,3), screen= 2) #now split the bottom half into 3 
[1] 3 4 5 
screen(3) # prepare screen 3 for output 
plot(x, y) 
close.screen(all = T) # exit split-screen mode 
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I step Build a. 1-{od,el in a Stepwise Fashion step\ 

step(object, scope, scale, direction, trace = T, keep, steps) 

ARGUMENTS 

object: a glm or gam object, or an object that inherits from either of these. This 
is used as the initial model in the stepwise search. 

scope: defines the range of models examined in the stepwise search. This argu
ment has a different form for step.gamO and step.glmO; see their detailed 
documentation. 

scale: an optional argument used in the definition of the AIC statistic for se
l~cting the models. By default, the scaled chi-squared statistic for the 
initial model is used, but if forward selection is to be performed, this is 
not necessarily a sound choice. 

direction: the mode of stepwise search, can be one of "both", "backward", or 
"forvard", with a default of "both". If the scope= argument is missing, 
the default for direction is "backward". 

trace: if TRUE, information is printed during the running of step(). This is a 
good choice in general, since step() can take some time for large models. 

keep: a filter function whose input is a fitted glm or gam object and the associated 
AIC statistic, and whose output is arbitrary. Typically keep() will select 
a subset of the components of the object and return them. The default is 
not to keep anything. 

steps: the maximum number of steps to be considered. The default is 1000 
(essentially as many as required). It is typically used to stop the process 
early. 

VALUE 
the stepwise-selected model- is returned, with up to two additional compo
nents. There is an "anova" component corresponding to the steps taken 
in the search, as well as a "keep" component if the keep= argument was 
supplied in the call. 

A series of models is generated sequentially, where each model differs 
from its neighbors by a single term. The step() methods differ in the way 
they construct this sequence: both in the way the set of candidates are 
generated for each step, and in the way the candidates are evaluated for 
selection. 
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SEE ALSO 
step.glm, step.gam,glm, gam, drop!, add1 

EXAMPLE 

step(glm.object) 
step(glm.object, list(upper = ~.A2, lower=~ Age) 
step(gam.object, scope=list( 

"Age" = ~ 1 + Age + log(Age), 
"BP" = ~ 1 + BP + poly(BP, 2) + s(BP), 
"Chol" = ~ s(Chol, df = 4) + s(Chol, df 7) 

lsu~ .Summarize an Objeet .. summary I 
summary(object, ... ) 

ARGUMENTS 

object: any object, including a fitted model object of various kinds, a data frame, 
or a factor. 

VALUE 
a summary object is returned-usually a list-like object whose elements 
describe the contents of the argument to summary(). For example, the 
method for 1m objects produces an object of class "summary .1m" with com
ponents "residuals", "correlation", "cov.unscaled", "r.squared", and 
more. There is a print() method corresponding to each "summary." class, 
so typing summary(object) will not save the summary, but rather produce 
a nicely formatted table of a selection of the components in the summary 
object. Simpler summary methods may get away without a special class; 
e.g., the summary for factors is the value of a call to table(). 

This is a generic function. Functions with names beginning in "summary." 
will be methods for this function. 

EXAMPLE 

> summary(stackfit) 
Call: lm(formula = stack.loss 
Residuals: 

stack.x) 

Min 1Q Median 3Q Ma:x 
-7.237713 -1.763111 -0.455093 2.430138 5.697774 

Coefficients: 
Value Std. Error t value 



S FUNCTIONS AND CLASSES 

(Int.) -39.9197 
Air Flov 0.7156 

Water Temp 1.2953 
Acid Cone. -0.1521 

11.8960 -3.3bl"o'/ 
0.1349 5.30tln 
0. 3680 3. 519tl 
0.1563 -0.9733 

terms.object ::i8l 

Residual standard error: 3.243364 on 1'1 degrees of freedom 
Multiple R-Squared: 0.8346228 
Correlation of Coefficients: 

(Int.) Air Flov Water Temp 
Air Flov 0.1793 

Water Temp -0.1489 -0.7356 
Acid Cone. -0.9016 -0.3389 0.0002 

Class of Objects for Terms in a Model terms.object 

An object representing the information about a structural model, as spec:
ified by a formula. This object drives all the model-fitting and is returnc!cl 
as a component of the fitted object by the fitting functions lmO, etc. Tlu! 
object itself is of mode "expression", with one element for each of tlw 
terms, after expansion and possible simplification, and not including the 
intercept. The object also has a number of attributes: 

formula: the formula, with abbreviations expanded. 

variables: a vector of mode "expression", whose elements include those in the 
terms.object itself, as well as the response variable. 

factors: a matrix of variables by terms, showing which variables occur in which 
terms. The entries are 0 if the variable does not occur, 1 if it appears and 
should be coded by contrasts, and 2 if it appears and should be coded by 
dummy variables for all levels. 

order: the order of the terms (1 for main effects, 2 for two-way interactions, etc.) 

term.labels: a character version of the terms expression, just to save converting 
later on. 

intercept: 1 if there is an intercept, 0 otherwise. 

response: the variable number corresponding to the response (the expression on 
the left side of the formula). 

specials: if any of the specials actually appeared in the formula, this is a list 
with one component for each of the specials found. The value of this 
component says which of the terms was one of the specials. (See the 
"Error" component in the example below.) 
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EXAMPLE 

> terms(Y""T*Co+Error(blocks), specials="Error") 
expression(T, Co, Error(blocks), T:Co) 
attr(, "formula"): 
Y "" T * Co + Error(blocks) 
attr(, "factors"): 

T Co Error(blocks) T:Co 
y 0 0 0 0 
T 1 0 0 1 

Co 0 
Error(blocks) 0 0 
attr(, "order"): 
[1] 1 1 1 2 
attr(, "variables"): 

0 
1 

expression(Y, T, Co, Error(blocks)) 
attr(, "term. labels"): 

1 

0 

APPENDIX B 

[1] "T" "Co" "Error(blocks)" "T:Co" 
attr(, "intercept"): 
[1] 1 
attr(, "response"): 
[1) 1 

attr(, "specials"): 
attr(, "specials")$Error: 
[1] 3 

attr(, "class"): 
[1] "terms" 

trace(what, tracer=, exit=, at=) 
untrace(what) 

ARGUMENTS 

what: either the name of a function, or a character vector giving the names of sev
eral functions: trace(what) adds tracing to the functions and untrace(what) 
removes it. Called with no arguments, untraceO removes tracing from all 
functions. 

tracer: a function, the name of a function, or a logical value. tracer will be called 
on entry to the function what. If TRUE, a standard tracing function is 
used, which prints the call to the traced function. Omitting all arguments 
except what is equivalent to tracer~TRUE. 
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exit: trace the function on exit, either instead of or in addition to trace on 
entry. If supplied, this can either be TRUE, in which case a standard tracer 
is used, or it can be a function to use for tracing. 

at: a number or character string describing a location inside the body of the 
traced function at which the tracing is to be inserted. The function body 
must consist of a braced expression; the call to the tracing function is 
inserted just before the expression identified by at. 

Tracing is accomplished by putting a revised version of the functions into 
the session database; untrace removes those versions. There is no per
manent effect on the functions themselves. Each call to trace for a given 
function replaces any previous tracing for that function. 

WARNING 
Because tracing inserts a modified version of the traced function in the 
session database, it is dangerous to attempt to edit the traced function 
while tracing is in effect. Use untrace before attempting to modify a 
traced function. 

SEE ALSO 
trace.on, sys.trace, std. trace, std.xtrace, browser 

SIDE EFFECTS 
Two session datasets are created or updated: . Trace list is a character 
vector giving the names of the functions currently being traced. . Traceon 
is a logical value telling whether tracing is on or off. 

EXAMPLE 

trace(stem, exit=T) I display when stem exits 
trace(eval) I display all explicit calls to eval 
trace(lm, exit=browser) linsert interactive browser on exit 
trace(c("sin","cos"),browser) 
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I tree Fit a Tree-Based Model 

tree(formula, data, weights, subset, na.action, 
control, model = F, x = F, y = F, ... ) 

ARGUMENTS 

formula: a formula expression as for other regression models, of the form response 
"' predictors. See lm and formula for details. 

data: an optional data.frame in which to interpret the variables named in the 
formula, subset, and weights arguments. 

weights: optional prior observation weights; can have zeros, although the subset 
argument is preferred for deleting observations. 

subset: an expression to be used to subset the rows of the model. frame prior to 
fitting. 

na.action: a missing data filter function, which gets applied to the model.frame. 

control: a list of iteration and algorithmic constants. See tree. control for their 
names and default values. These can also be set as arguments to tree() 
itself. 

model: if TRUE, the model. frame is returned. If this argument is itself a model. frame, 
then the formula and data arguments are ignored, and model is used to 
define the model. 

x: if TRUE, the model. matrix is returned. 

y: if TRUE, the response variable is returned. 

VALUE 

additional arguments for the fitting routines such as tree.control(); typ
ically not used. 

an object of class tree is returned. The model is fit using binary re
cursive partitioning, whereby the data are successively split along coordi
nate axes of the predictor variables so that at any node, the split which 
maximally distinguishes the response variable in the left and the right 
branches is selected. Splitting continues until nodes are pure or data 
are too sparse; terminal nodes are called leaves, while the initial node 
is called the mot. If the response variable is a factor, the tree is called 



S FUNCTIONS AND CLASSES tree.object 585 

a classification tree; otherwise, it is called a regression tree. Can be ex
amined by print 0, summary 0, and plot(). Contents can be extracted 
using predict(}, residuals(), deviance(), and formula(). Can be modi
fied using update 0. Other generic functions that have methods for tree 
objects are text(), identify(), inspect(), and [.tree(). Usc tree.object 
for further details. 

EXAMPLE 

# fit regression tree to all variables 
z.solder <- tree(Count "' . , data = solder) 
# fit classification tree to data in kyphosis data frame 
z.kyphosis <- tree(kyphosis) 

I tree.object Tree-Based Mod~l Object tree.object I 

This class of objects is returned from the tree() function to represent a 
classification or regression tree. Objects of this class have methods for 
the summary functions print(), summary(), and plot(); for the extractor 
functions predict(), residuals 0, and deviance(); and for miscellaneous 
diagnostic functions [. 0, inspect(), identify(), text(), and labels(). 

COMPONENTS 
The following components must be included in a legitimate tree object. 
Of these, only the vhere component has the same length as the data used 
to fit the tree object. 

frame: data frame with one row for each node in the tree. The rov. names of frame 
contain the (unique) node numbers that follow a binary ordering indexed 
by node depth. Elements of frame include var, the variable used in the 
split at each node (leaf nodes are denoted by the string <leaf>); n, the 
size of each node; dev, the deviance of each node; yval, the fitted value of 
the response at eo.ch node; splits, a two-column matrix of left and right 
split labels for each node. Classification trees have an additional element 
yprob, the matrix containing the class probabilities for each node. 

vhere: vector, the same length as the number of observations in the root node, 
containing the row number of frame corresponding to the leaf node that 
each observation falls into. 

terms: an object of mode expression and class term summarizing the formula. 
Used by various methods, but typically not of direct relevance to users. 



586 update APPENDIX B 

call: an image of the call that produced the object, but with the arguments all 
named and with the actual formula included as the formula argument. To 
reevaluate the call, say update(tree). 

!update···· 

update(object, formula, ... , evaluate=T, class) 

ARGUMENTS 

object: any object·with a component named call, which is the expression used to 
create itself. 

formula: a modeling formula, such as y ~ a + b. A single dot "." on either side 
of the ~ gets replaced by the left or right side of the formula in object. 
The dot on the left can be omitted. By default, it refits object using the 
same formula as in object. 

any other arguments that are appropriate for the particular call. These 
must all be named, and may be abbreviated, in the same manner they 
could be as arguments to the fitting function itself. Arguments in the 
previous fit; that is, in object$call, can be removed by putting nothing 
on the right side of the =. For example, the argument X", in a call to 
update() causes the x argument, if present in object$call, to be removed. 

evaluate: if TRUE (the default), the new call is evaluated; otherwise, the call is 
returned as an unevaluated expression. 

class: the fitting class to be used for the new object; that is, the basic fitting 
function, such as lmO, aovO, glmO, etc. This argument allows the model 
to be switched from one kind to another, assuming the formula and other 
arguments make sense for the new model. Although suggestive, class is a 
slight misnomer since the object may already inherit from this new class. 

VALUE 
either a new updated object, or else an unevaluated expression for creating 
such an object. 

This is a generic function. Functions with names beginning in "update." 
will be methods for this function. 
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EXAMPLE 

t refit, unchanged 
update(glmob) 
t refit, adding term 
update (glmob, "' . + Age) 
t transform response to log scale; drop intercept 
update(lmob, log(.) "' . -1) 
t use all the 2nd order interactions of previous fit 
update(lmob,- . "2) 
tremove the model argument, supply a subset 
update(gamob, mod=, subset = Age>25) 

update 587 





589 

References 

Aitkin, M.A., Anderson, D.A., Francis, B.J., and Hinde, J.P. (1989) Statistical Mod
eling in GLIM. Oxford University Press, Oxford. 

Akaike, H. (1973) Information Theory and an Extension of the Maximum Likelihood 
Principle, in Second International Symposium on Information Theory (eds. 
B.N. Petrov and F. Csaki). Akademia Kiad6, Budapest, 267-281. 

Baker, R.J. and Neider, J.A. (1978) The GLIM System, Rdease 3, Generalized Linear 
Interactive Modeling. Numerical Algorithms Group, Oxford. 

Bates, D.M. and Lindstrom, M.J. (1986) Nonlinear Least-squares with Condition
ally Linear Parameters. Proceedings, Statistical Computing Section, American 
Statistical Association. 

Bates, D.M. and Watts, D.G. (1988) Nonlinear Regression Analysis and its Applica
tions. J. Wiley & Sons, New York. 

Baxter, L.A., Coutts, S.M., and Ross, G.A.F. (1980) Applications of Linear Models in 
Motor Insurance. Proceedings of the 21st International Congress of Actuaries, 
Zurich, 11-29. 

Becker, R.A., Chambers, J.M., and Wilks, A.R. (1988) The NewS Language. Wads
worth, Pacific Grove, California. 

Belsley, D.A., Kuh, E., and Welsch, R.E. (1980) Regression Diagnostics. J. Wiley & 
Sons, New York. 

Bentley, J.L. (1975) Multidimensional Binary Search Trees Used for Associative 
Searching. Comm. Assoc. Comp. Mach. 18, 509-517. 

Box, G.E., Hunter, W.G., and Hunter, S. (1978) Statistics for Experimenters. J. 
Wiley & Sons, New York. 

Breiman, L. and Friedman, J.H. (1985) Estimating Optimal Transformations for 
Multiple Regression and Correlation (with discussion). J. Am. Statist. Assoc. 
80, 580-619. 

Breiman, L., Friedman, J.H., Olshen, R., and Stone, C.J. (1984) Classification and 
Regression Trees. Wadsworth International Group, Belmont, California. 

Brinkman, N.D. (1981) Ethanol Fuel-A Single-cylinder Engine Study of Efficiency 
and Exhaust Emissions. SAE Transactions 90, No. 810345, 141Q-1424. 

Buja, A., Hastie, T., and Tibshirani, R. (1989) Linear Smoothers and Additive Mod
els (with discussion). Annals of Statist. 17, 453-555. 



REFERENCES 

!3uta, R. (1987} The Structure and Dynamics of Ringed Galaxies, III: Surface Pho
tometry and Kinematics of the Ringed Nonbarred Spiral NGC7531. The As
trophysical J. Supplement Ser. 64, 1-37. 

Carroll, R.J. and Ruppert, D. (1988} Transformations and Weighting in Regression. 
J. Wiley & Sons, New York. 

Cavendish, J.C. (1975} Local Mesh Refinement Using Rectangular Blended Finite 
Elements. J. Camp. Physics 19, 211-228. 

Chambers, J.M. (1977} Computational Methods for Data Analysis. J. Wiley & Sons, 
New York. 

Chambers, J.M., Cleveland. W.S., Kleiner, B., and Tukey, P.A. (1983} Graphical 
Methods for Data Analysis. Wadsworth, Pacific Grove, California. 

Chou, P.A. (1988} Applications of Information Theory to Pattern Recognition and 
the Design of Decision Trees and Trellises. Ph.D. Thesis, Computer Scie1;1ce 
Department, Stanford University. 

Chou, P.A., Lookabough, T., and Gray, R.M. (1989} Optimal Pruning with Appli
cations to Tree-structured Source Coding and Modeling. IEEE Trans. Inf. 
Theory 35, 299-315. 

Ciampi, A., Chang, C-H., Hogg, S., and McKinney, S. (1987} Recursive Partition
ing: a Versatile Method for Exploratory Data Analysis in Biostatistics, in 
Biostatistics (eds. I.B. MacNeil and G.J. Umphrey). D. Reidel Publishing, 
New York. 

Cleveland, W.S. (1979} Robust Locally-weighted Regression and Smoothing Scatter
plots. J. Am. Statist. Assoc. 74, 829-836. 

Cleveland, W.S. The Elements of Graphing Data, 2d edition (forthcoming). Wads
worth, Pacific Grove, California. 

Cleveland, W.S. and Devlin, S.J. (1988} Locally-weighted Regression: An Approach 
to Regression Analysis by Local Fitting. J. Am. Statist. Assoc. 83, 596-610. 

Cleveland, W.S. and Gro:>~·P., E. (1991) Computational Methods for Local Regression. 
Statistics and Computing, I. 

Cleveland, W.S. and Grosse, E. (forthcoming) Fitting Curves and Surfaces to Data. 
Wadsworth, Pacific Grove, California. 

Collomb, G. {1981} Estimation Non-parametrique de Ia Regression: Revue Bibli
ographique. International Statistical Review 49, 75-93. 



REFERENCES 591 

Comizzoli, R. B., Landwehr, J. M., and Sinclair, J. D. (1990) Robust Materials and 
Processes: Key to Reliability. AT&T Technical Journal69 (No. 6), 113-128. 

Cook, R.D. and Weisberg, S. (1982) Residuals and Influence in Regression. Chapman 
and Hall, New York. 

Cox, D.R. and Hinkley, D.V. (1974) Theoretical Statistics. Chapman and Hall, Lon
don. 

Dennis, J.E., Jr. and Schnabel, R.B. (1983) Numerical Methods for Unconstrained 
Optimization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs, New 
Jersey. 

Dongarra, J.J., Bunch, J.R., Moler, C.B., and Stewart, G.W. (1979) LINPACK User's 
Guide SIAM, Philadelphia. 

Draper, N.D. and Smith, H. (1981) Applied Regression Analysis, 2d edition. J. Wiley 
& Sons, New York. 

Federer, W.T. (1955) Experimental Design Theory and Applications. The Macmillan 
Company, New York. 

Fisher, W.D. (1958) On Grouping for Maximum Homogeneity. J. Am. Statist. 
Assoc. 53, 789-98. 

Friedman, J.H. and Stuetzle, W. (1981) Projection Pursuit Regression. J. Am. 
Statist. Assoc. 76, 817-823. 

Gay, D.M. (1983) Algorithm 611: Subroutines for Unconstrained Minimization Using 
a Model/Trust-Region Approach. ACM 17-ans. Math. Software 9, 503-524. 

Gelernter, D. and Jagannathan, S. (1990) Programming Linguistics. The MIT Press, 
Cambridge, Massachusetts. 

Golub, G.H. and Pereyra, V. (1973) The Differentiation of Pseudo-inverses and Non
linear Least-squares Problems Whose Variables Separate. Journal of SIAM 
10, 413-432. 

Golub, G.H. and van Loan, C.F. (1989) Matrix Computations, 2d edition. Johns 
Hopkins University Press, Baltimore. 

Hastie, T. and Pregibon, D. (1990) Shrinking Trees. AT&T Bell Laboratories Tech. 
Report. 

Hastie, T. and Tibshirani, R. (1990) Generalized Additive Models. Chapman and 
Hall, London. 



592 REFERENCES 

Healy, M.J.R. (19S8) GLIM: An Introduction. Clarendon Press, Oxford. 

Heiberger, R.M. (1989) Computation for the Analysis of Designed Experiments. J. 
Wiley & Sons, New York. 

Hicks, C.R. (1973) FUndamental Concepts in the Design of Experiments. Holt, Rine
hart and Wilson, New York. 

Kalbfleisch, J.G. {1979) Probability and Statistical Inference: Vol. 2: Statistical 
Inference. Springer-Verlag, New York. 

Kass, G.V. {1980), An Exploratory Technique for Investigating Large Quantities of 
Categorical Data. Applied Statistics 29, 119-127. 

Keene, S.E. (1989) Object-Oriented Programming in COMMON LISP: A Program
mer's Guide to CLOS. Addison-Wesley, Reading, Massachusetts. 

Lambert, D. (1991) Zero Inflated Poisson Regression, with an Application to Defects 
in Manufacturing. Technometrics (forthcoming). 

Lawson, C.L. and Hansen, R.J. (1974) Solving Least-Squares Problems. Prentice
Hall, Englewood Cliffs, New Jersey. 

Lehmann, E. L. {1986) Testing Statistical Hypotheses. J. Wiley & Sons, New York. 

Macauley, F.R. {1931) T~e Smoothing of Time Series. New York: National Bureau 
of Economic Research. 

Mallows, C.L. (1973) Some Comments on Cp. Technometrics 15, 661-667. 

McCullagh, P. and Neider, J.A. (1989) Generalized Linear Models, 2d edition. Chap
man and Hall, London. 

McLain, D.H. {1974) Drawing Contours from Arbitrary Data Points. Computer J. 
17, 318-324. 

Morgan, J.N. and Messenger, R.C. {1973) THAID-A Sequential Analysis Program 
for the Analysis of Nominal Scale Dependent Variables. Survey Research 
Center, Institute for Social Research, University of Michigan. 

Phadke, M.S., Kackar, R.N., Speeney, D.V., and Grieco, M.J. (1983) Off-line Quality 
Control in Integrated Circuit Fabrication Using Experimental Design. Bell 
System Technical Joumal62, 1273-309. 

Pregibon, D. (1982) Resistant Fits for Some Commonly Used Logistic Models with 
Medical Applications. Biometrics 38, 485-498. 



REFERENCES 593 

Reade, C. (1989) Elements of Functional Programminv. Addison Wesley, Woking
ham, England. 

Searle, S.R. (1971) Linear Models. J. Wiley & Sons, New York. 

Seber, G. A. F. and C. J. Wild (1989) Nonlinear Regression. John Wiley & Sons, 
New York. 

Sonquist, J.N. and Morgan, J.N. (1964) The Detection of Interaction Effects. Mono
graph 35, Survey Research Center, Institute for Social Research, University 
of Michigan. 

Stone, C.J. (1977) Consistent Nonparametric Regression. Ann. of Stat. 5, 595-620. 

Stroustrup, B. (1986) The C++ Programming Language. Addison-Wesley, Reading, 
Massachusetts. 

Tierney, L. (1990) LISP-STAT: An Object-Oriented Environment for Statistical Com
puting and Dynamic Graphics. J. Wiley & Sons, New York. 

Wahba, G. (1990) Spline Functions for Observational Data. CBMS-NSF Regional 
Conference series. SIAM, Philadelphia. 

Watson, G.S. (1964) Smooth Regression Analysis. Sankhya A 26, 359-372. 

Weisberg, S. (1980) Applied Linear Regression. J. Wiley & Sons, New York. 

Whittaker, E. (1923) On a New Method of Graduation. Proceedings of the Edinburgh 
Mathematics Society 41, 63-75. 

Wilkinson, G.N. and Rogers, C.E. (1973) Symbolic Description of Factorial Models 
for Analysis of Variance. Applied Statistics 22, 392-399. 



Index 

The index is arranged acc;ording to topics as well as distinctive words and phrases. 
Most chapters have at least two topic headings; e.g., Linear models and Linear 
model functions. The former lists some key topics in the linear models chapter 
and augments the table-of-contents information; the latter lists all those functions 
commonly used in fitting and examining that class of models. 

A complete list of individual functions referenced in the book can be found 
under the index heading FUnctions. Page numbers in bold font refer to the detailed 
documentation in Appendix B. Documentation for all functions can be obtained 
online using ?; see the Documentation entry below. 

Added variable plot, 127 
Additive, 

logistic model, 259 
model, 146, 249 
predictor, 250, 258, 288 
surface, 274-276, 291 

Air-pollution data, see Data objects 
Aitkin, M.A., 247, 586 
Akaike, H., 589 
Aliasing, see Analysis of variance models 
Analysis-of-deviance table, 210...213 
Analysis-of-variance model functions, 

alias(), 179, 181, 484 
anova(), 210, 485, see also summary() 

below 
aov(), 150, 486 
aov.genyates(), 192, 487 
CO, see Coding factors 
contrasts(), see Coding factors 
contr. helm~.rt 0, see Coding factors 
contr. poly(), see Coding factors 
contr.sum(), see Coding factors 
contr, treatment(), see Coding factors 
effects(), 169,203 
Error(), 157-159 
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fitted(), 203, 513 
interaction(), 165, 522 
interaction. plot(), see Design func-

tions 
plot(), 169, 545 
plot. design(), see Design functions 
plot.factor(), see Design functions 
print(), 150 
proj(), 182,561 
qqnorm.aov(), 168-169,564 
raov(), 160, 566 
residuals(),203,569 
summary(), 151, 580 

Analysis-of-variance models, 145-193, 
aliasing in, 155, 163, 178 
anova table, 151-154, 210 
background, 146, 193 
classes, 154-160, 488, 532 
computational theory, 185-193 
contrasts, 32-36, 176, 185 
design, 150...152, 169-175 
effects, 15o-160, 169 
error model, 157-159, 188-191 
examples, 1, 7, 146, 149 
factors in, 20, 32, 147 
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fitting, aov(), 4, 150, 486 
formulas in, 24, 150-154 
interactions in, 22, 151 
multiple error strata, see eiTor model 
multiple responses, 154 
nesting in, 151 
object, 150, 
plotting, 163-169 
projections, 181 
random effects, 159 

Anderson, D.A., 247, 589 
Anova table, see Analysis-of-variance models 
Approximate F-test, 213, 215-216, 254, 273, 

321, 331, 369-371 
Approximate degrees of freedom, see Degrees 

of freedom 
Arguments, common, 

control•,222,367 
data~, 100, 201 
family=,201, 206-209 
formula=, 18, 100 
method•, 135 
na.action•, 113,286-287,415-416 
subset•, 116, 221 
weights=, Ill, 221 

Assessing model adequacy, 5, 104-106, 219, 
232, 292, 324 

Asymptotic, 
approximations, 245, 433 
covariance matrix, 205-206, 213-215, 

245 
Attached data frames, see Data frames 
Automobile data, see Data objects 

8-spline basis functions, see Smoothing 
Backfitting algorithm, 252, 300 

convergence, 30o-302 
specialized, 302 

Baker, R.J., 247, 589 
Balanced designs, see Factorial designs, 
Bates, D.M., ix, 421, 440-441, 445, 453, 589 
Baxter, L.A., Ill, 589 
Becker, M.H., x 
Becker, R.A., viii, x, 589 
Belsley, D.A., 127, 131, 129, 589 
Bentley, J.L., 372, 589 
Binary response, 195-196, 226, 240, 242-243 
Binary tree, see Tree-based models 
Binomial, 

family, 10, 201 
family object, 206-207 
model, 207 

response, 202, 226 
variance, 201, 225, 258 
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Bisquare weight function, 316, see also Local 
regression models 

Bivariate smooth term, 276 
Blending functions, 366, 423 
Bootstrap sampling, 121 
Boundary knots, 27o-273, see oLio Smooth-

ing 
Box, G.E., 146, 160, 193, 451, 589 
Breiman, L., 307, 418-419, 589 
Brinkman, N.D., 72, 321, 589 
Buja, A., 307, 589 
Bunch, J.R., 144, 591 
Buta, R., 349, 589 

c routines, 137, 246, 417 
Category, see Factor 
Cavendish, J.C., 373, 590 
Chambers, J.M., viii, 1, 13, 45, 95, 127, 145, 

421, 454, 589-590 
Chang, C-H., 419, 590 
Cherry, L.R., x 
Chi-squared statistic, 210-216, see also Pear

son 
Choleski decomposition, 133, 135-136, 140, 

143 
Chou, P.A., 418--419, 590 
Ciampi, A., 419, 590 
Clark, L.A., 377 
Class/method mechanism, 456-461 
Classification tree, see Tree-based models 
Cleveland, W.S., 75, 127, 307, 309, 376, 590 
Coded variables, see Factors 
Coding factors, 32-39 

C(), 32, 176, 224, 494 
contr.helmert(), 32-33, 223-225 
contr.poly(), 32-33, 177, 223 
contr.sum(), 32-33, 224-225 
contr.treatment(),34, 224 
contrasts(),35-36, 176,496 
default, 36, 176-178, 224 

Comizzoli, R.B., 2, 48, 590 
Comparing models, see Model selection 
Computational, 

accuracy, 191 
complexity, 255, 298 
efficiency, 125, 117-118, 191, 240 
methods, 135, 185, 245, 298, 373, 412, 

452--453 
Conditional dependence, 341, see also Local 

regression models 
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Conditionally parametric models, 341 
Conditioning plot, coplot (), 78-85, 333, 496 
Conditioning values, see Conditioning plot 
Consumer Reports data, see Data objects 
Continuous, see Numeric predictor 
Contour plot, 291, 309, 355, 423 
Contrast, 

attribute, 34, 176-177 
definitions, 33 
matrix, 32-37 
see also Coding factors 

Cook, R.D., 127, 129, 131, 230-231, 233, 590 
Coutts, S.M., 111, 589 
Cox, D.R., 246, 451, 453, 591 
Cross-validation, 393-394 
Crossed, 

models, 27 
terms, 151 
see also Nested 

Cubic, 
polynomial, poly(), 21, 553 
(smoothing) spline, see Smoothing 

Data entry, 54-59, 
count.fields(), 58 
fixed format, 57 
read.table(),54-57, 567 
scan(), 58 

Data frame functions, 54-59 
attach(), 67-68 
coplot(), 75, 79-85, 495 
data. frame(), 59-62, 498 
data.matrix(), as.matrix(),65, 500 
dim(), dimnames(), 64-65,86 
expand.grid(), 62-63 
formula(), 29, 202, 513 
names(), 57 
pairs(), 69, 72-73, 541 
plot(), 71, 75, 545 
print(), 61 
row.names(),67, 173 
summary 0, 70, 580 

Data frames, 45-94, 
adding variables, 67 
adding observations, 85-87 
as.matrixO, 65 
attaching, 67-68 
combining, 66-67 
constructing, data. frame(), 54-59,498 
data.matrix(),65, 500 
default formulas, 29, 202 
detaching, 68 

editing, 67-68 
factors in, 52-53 
grids to define, 62 
matrices in, 52, 60-62 
matrices, relation to 64-67, 90 
methods for, 85, 476 
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missing data in, 91-92, 113, 286-288 
model frame, 9Q-93 
na.actions, 91-92 
numeric vectors in, 52 
parametrized, pframe, 93-94, 429 
plotting, 71-85 
preliminary cleaning, 51 
printing, 49 
reading data, format, 54 
row names, 60 
subsetting, 61, 64, 109-110 

Data objects, 
air, New York ozone concentration, 81, 

300, 348 
car. all, Consumers Union, 67 
car. test. frame, Consumers Union, 67, 

109 
catalyst, 147, 150-152 
claims, 111-112 
cu.dimensions, Consumers Union, 67 
cu. specs, Consumers Union, 67 
cu. summary, Consumers Union, 46-47, 

67,399 
ethanol, fuel experiment, 75, 272-280, 

331 
fuel. frame, automobile data, 70, 100 
galaxy, 352 
gas, 222 
guayule, 157 
gun, 152 
kyphosis, spinal disease in children, 200, 

380 
market. survey, AT&T tele-marketing, 

382 
pigment, 160 
pingpo~g,423 
Puromycin, 425 
solder. balance, AT&T solder experi-

ment, 1 
solder2, AT&T solder experiment, 7 
solder, AT&T solder experiment, 47 
wafer, AT&T wafer experiment, 147 

Default, 
coding, contrasts, 36 
link, 197 
method, 461 
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na.action, 113 
permanent, 36 
smoothing parameter, 254 
variance, 197 

Defining contrast, 157, 173-174 
Defining new classes, 461-463 
Degrees of freedom, 

approximate, effective, nonintegral, 303, 
369 

equivalent number of parameters, 317, 
369 

for generalized additive models, 251, 
303 

for linear models, 100 
for loess models, 317, 369 
for tree models, 390 

Dennis, J.E., 454, 591 
Dependent variable, see Response 
Design functions, 

design(), 174, 503 
design. table(), 184, 504 
fac.design(), 169, 507 
fractionate(),514 
interaction(), 165, 522 
interaction.plot(), 167, 523 
oa.designO, 171, 539 
plot.design(), 164, 546 
plot.factor(), 165, 547 
randomize(), 175, 565 
replications(), 161,568 

Design, 48--49, 172, 
class, 504 
creating, design(), 169-175,503,507, 

539 
default formula, 153 
fractionating, 156, 173, 514 
object, 504 
plotting, 163-169, 546-547, 523 
randomization, 175 
replicating, 161, 173 

Designed experiment, 1, 47-49, 114, 145-149 
Deviance residuals, see Residuals 
Devlin, S.J., 307, 376, 590 
Diagnostic, 

checking, 69, 310, 324 
displays, 163-168, 230, 337-339 
procedures, 230 
tests, 324-327 

Direct computation, see Local regression 
models 

Dispersion parameter, 204, 206, 213, 215, 
229, 234, 236, 242, 245 
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Documentation, 
online, ? , viii, 482 

S functions, 481-582, also ~. 367-
661 

Dongarra, J.J., 144, 591 
Draper, N.D., 144, 591 
Drechsler, R.L., x 
Dropping squares, see loess 0 
Dropping terms, see Model selection 
Dummy variable, 20, 26-27, 33, 37-40, 42, 

101, 185, 224 

Editing data frames, 64-69 
Effective degrees of freedom, see Degrees of 

freedom 
Equivalent coding, 32, see also Coding 

factors 
Equivalent degrees of freedom, see Degrees 

of freedom 
Equivalent number of parameters, see De

grees of freedom 
Error model, 158, see also Analysis-of- Variance 

models 
Error strata, 157, see also Analysis-of- Variance 

models 
Estimating equations, 244, 300 
Evaluated surface, 320 
Expanded formula, see Model formulas 
Expected Fishe~ information matrix, 213 
Experimental design, see Design 
Explanatory variables, see Predictors 
Exploratory plots, 331, 335 
Exponential family, 242, see also General

ized 
Extractor functions, 100, 203, 495 

coef(), 100, 495 
class(), 270, 459 
deviance(), 505 
effects(), 203, 169 
family(), 203, 510 
fitted.values(), 100,495 
formula(), 40, 103, 116, 513 
model.frame(),90, 532 
predict(), 203-204, 555 
residuals(), 205, 495 

Factor, 20 
category, 21, 53 
class, 461-467 
extracting numeric, codes(), 53 
creating, factor(), 463, 508 
labels of, 411 
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levels of, 462 
methods for, 461-475 
object, 563 
ordered, ordered.factor(), 53, 540 
plotting, 165-168, 523, 547 
printing, 462 

Factorial designs, 169, ~ee also Balanced 
design8 

Family, 197, 206-209, 225-229, 510 
binomial(),206,510 
construction, 227-229 
Gamma(), 208, 510 
gaussian(), 208, 510 
generator, 206 
inverse.gaussian(),208, 510 
object, 207, 512 
poisson(), 10, 214, 510 
private, 227-229, 246 
quasi(), quasi-likelihood, 97, 108, 227, 

510 
robust(), robustified, 229, 569 

Federer, W.T., 157, 591 
Final iteration, 205, 213, 229 
Final iterative weights, 267 
Final robust estimate, see Local regression 

models 
Fisher, R.A., 145, 453 
Fisher, W.O., 419, 591 
Fisher-scoring algorithm, 243, 252 
Fitted, 

additive predictor, 288 
coefficients, 100 
curve, functions, 100, 221, 239, 324 
effects, 150 
model, e.g., 100, 526 
probabilities, 238-240 
surface, 291, 347 
terms, 151, 239 
tree, 382-384 
vaJues,5-7, 96-99,100,203 

Fitting methods, 
aov(), anova models, 150, 486 
gam 0, generalized additive models, 253, 

515 
glm(), generalized linear models, 199, 

518 
lm(), linear models, 100, 524 
loess(), local regresBion models, 316, 

529 
ms (), general minimization models, 428, 

534 
nls (), nonlinear least squares, 428, 536 
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tree 0, tree based models, 382, 584 
Formula language, see Model formulas and 

Model operotors 
FORTRAN routines, 137, 246, 304-306, 375-

376 
Fractional factorial designs, see Designs 
Francis, B.J., 247, 589 
Freeny, A.E., x, 145 
Friedman, J.H., 307, 418-419, 589, 591 
Functional programming, 457, 480 
Functions, 481-582, 

add. scope 0, 235 
add10 (generic), 125, 211, 483 
alias() (generic), 179-181, 156, 484 
all.wam(),294, 305 
anova() (generic), 151, 21o-211, 264, 

321, 485 
aov(), 150, 486 
aov.genyates(), 192,487 
as.data.frame(),63-64,488 
as.matrixO, 65 
attach.data.frame() (method),67-68 
basis.tree(), 410 
binomial(),201,206-207, 510 
browser() (generic), viii, 399, 489 
bs(), 27o-273,491 
burl.tree(),402, 492 
co, 32, 176, 494 
class(), 270, 459 
co.intervals(),333 
codes(), 53 

. coef(), coefficients() (generic, 
extractor), 100, 151, 495 

column.prods(),38 
contr.helmert(),32-33 
contr.poly(), 32-33 
contr.sum(), 32-33 
contr.treatment(), 34 
contrasts(),35-36, 496 
coplot(), 79-85,333,496 
count.fields(),58 
cv.tree(),39o-391,410 
D(), 436 
data. class(), 56 
data.frame(),54-59,498 
data.matrix(),65, 500 
·database.attrO, 88 
database.object(), 88 
database.type(),88 
derivO, 436, 501 
design(), 174, 503 
design.tab1e(), 184, 504 
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Functions (continued), 
deviance() (generic, extractor), 505 
drop. scope(), 235 
drop10 (generic), 125, 505 
effects() (generic), 169, 203 
Error() , 158 
ezpand.grid(),62-63, 290,319 
fac.design(), 169-175, 507 
factor(), 463, 508 
factor.names(), 171-174,509 
family() (generic, extractor), 203, 510 
fitted(), fitted. values() (generic, 

extractor), 100, 203, 288, 495 
formula() (generic, extractor), 103, 116, 

513 
fractionate(),514 
frame.attrO, 89 
gam(), 254, 515 
gam.control(),305 
gam.lo(), 306 
gam.nlchisq(),306 
gam.random(),294-295 
gam. s (), 293, 306 
gam. scope(), 283 
Gamma(), 208, 510 
gaussian(), 208, 510 
glm(), 199, 518 
glm.control(),223 
glm.fit(), 246 
gplot () (generic), 296 
hist. tree(), 404 
I(), 30, 101 
identify. tree() (method), 401 
inherits(),462, 521 
interaction(), 165, 522 
interaction.plot(), 167,523 
inverse.gaussian(),208, 510 
jitter(), 353 
kappa(), 115 
labels() (generic), 41, 408 
lmO, 100, 524 
lm.fitO, 118 
lm.fit.chol(), 135 
lm.fit.qrO, 135 
1m. influence(), 130, 233 
lm.sensitivity(), 141 
lm.vfitO, 120 
lo(), 254, 528 
lo. wam(), 294 
loess(), 317, 529 
loess.control(), 367 
loess.matrix(),66 

make.family(), 227 
make.fields(),57 
make.grid(), 63 
make.names(), 60 
meanvar.tree(),409 
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model. frame() (generic, extractor), 90, 
532 

model.matriz(),43, 92,224 
move.frame(), 89 
msO, 428, 534 
ms.control(),444 
na.gam.replace(),286-288 
na.omitO, 113 
na.pattern(),416 
na.tree.replace(), 416 
new.frame(), 89 
NextMethod(), 461 
nls (), 428, 536 
nls.control(), 444 
ns(), 270-273, 538 
oa.design(), 171, 539 
offset(), 222 
Ops.factor(), 465 
ordered(), 53, 540 
pairs(), 72, 541 
panel.smooth(), 335, 542 
param(), 431, 543 
parameters(),429,543 
partition.tree(),410-412,544 
path. tree(), 401 
pattern(), 180 
plot 0 (generic), 71, 163, 217, 256, 328, 

386, 545 
pointwise(), 320 
poisson(),208, 510 
poly(), 31, 108, 219-220, 553 
post.tree(), 410,554 
power 0, 228 
predict() (generic, extractor), 107,203, 

238-241, 288-292, 320, 393, 555 
preplot () (generic), 295, 368, 561 
print 0 (generic), 100 
profile(), 440 
pro j (), 182, 562 
prune.tree(),389, 563 
qqline(), 326, 564 
qqnorm() (generic), 168-169, 564 
quasi(), 197,208,510 
random(), 294-295 
randomize(), 175, 565 
raovO, 160, 566 
read. table 0, 55, 567 
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Functions (continued), 
replications(), 161, 568 
resid(), residuals() (generic, extrac-

tor), 203-205, 495 
robust(),229, 569 
row.names(), 67, 173 
rug() (generic), 405 
s(), 254,570 
smooth.spline(),254, 299,574 
s.wam(), 294 
scatter.smooth(),324, 571 
select.tree(), 398, 572 
shrink.tree(), 390, 573 
snip. tree(), 396,576 
specs(), 318 
split.screen(), 396, 577 
stat.anovaO (method), 213 
step() (generic), 234-237, 281, 579 
summary() (generic, extractor), 70, 105, 

204,262,322,388,432,580 
terms(), 460 
text.tree() (method), 386 
tile. tree(), 405 
trace() (generic), 405, 445, 470-471, 

582 
tree(), 382, 584 
tree.control(),415. 
tree.screens(), 396 
unclass(), 85, 228 
update() (generic), 102, 116-117, 209-

210, 317, 586 
UseHethod(), 460 
zoom. tree() (method), 412 
. Internal 0, 461 
"[" 0 (generic), 86, 385, 465 

Galaxy velocity, see Data objects 
GAM, see Generalized additive models 
Gamma models, see Family, 
Gas data, see Data objects 
Gauss-Seidel iterative method, see Backfit· 

ting 
Gaussian error model, 196-198, 254, 312, 

426 
Gay, D.M., 452, 591 
Gelernter, D., 480, 591 
General likelihood models, see Nonlinear models 
General minimization models, see Nonlinear 

models 
Generalized additive model functions, 

all.wam(), 294, 305 
anova(), 264, 485 

deviance(), 505 
gam(), 254,259,515 
gam. control(), 305 
gam. scope(), 283 
lo(), 254, 273-276, 428, 528 
lo.wam(), 294 

601 

plot(), 256-259, 295-298, 545, 548 
predict(),288-292, 555 
preplot(), 295-296, 561 
print(), 256 
residuals 0, 205, 495 
sO, 254, 570 
s.wamO, 294 
step(),28Q-285, 579 
summary(),262, 580 
update(), 262, 586 

Generalized additive models, 249-307, 
algorithms for, 252, 300-303 
backfitting algorithm, 30Q-302 
background,25Q-251 ' 
class of, 270, 51-7: 
comparing, 279-280 
degrees of freedom for, 259, 303 
displaying, 259 
estimation of, 300-303 
examples, 257, 259-264, 273-280 
fitting, gam(), 254, 515 
formulas in, 251, 259, 270 
missing data, 286-288 
model selection for, 276-285 
parametric versions, 27Q-272 
prediction, 288-292 
scatterplot smoothers, 254-255, 298-

300 
standard errors for, 263, 303-304 

Generalized linear model functions, 
add1(),211,234-238,483 
anovaO, 211, 485 
binomial(),206, 510 
deviance(), 505 
dropl(), 211, 234-238, 505 
family(), 203, 510 
fitted(),203, 495 
Gamma(), 208, 510 
gaussian(),208, 510 
glm(), 199-202, 518 
glm.control(), 223 
inverse.gaussian(), 208, 510 
plot(),216-218,22Q-221, 545 
poisson(),208, 510 
power(), 228 
predict(),238-241,288-292,555-556 
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print(), :!01 
quasi(). 208, 227, 510 
residuals(), resid(), 205, 495 
robust(), 229, 569 
step(), 233-238,28Q-285, 579 
summary(), 204, 580 
update(), 209-210, 586 

Generalized linear models, 195-247, 
anova tables, 211, 233-238 
background, 195-199 
class of, 203, 520 
coding factors for, 223-225 
deviance, 242-243 
diagnostics for, 23Q-233 
examples, 10, 200, 214 
families, 197, 206--209, 225, 510 
fitting, glm(), 199, 242-243, 510 
formulas in, 202 
initialization, 222, 225-226, 246-247 
likelihood inference, 242-243 
link functions, 197 
methods for, 203 
model selection, 233-238 
prediction, 238-241 
prediction (safe), 288-292 
quadratic approximation, 244-245 
quasi-likelihood, 197 
residuals for, 205 
variance functions, 197 
weighted least squares, 213-216, 245 
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add1(), 125, 211, 483 
alias(), 179-181, 156, 484 
anova(), 151, 21o-211, 264, 321, 485 
browser(), viii, 399, 489 · 
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151, 495 
deviance() (extractor), 505 
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family() (extractor), 203, 510 
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100, 288, 495 
formula() (extractor), 103, 116, 513 
llobels(), 41, 408 
••ndel.frame() (extractor), 90, 532 
lolotO, 71, 163, 217, 256, 328, 386, 
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322,388,432,580 
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GLIM, 24, 44, 247 
GLM, see Generalized linear models 
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Goodness-of-split, 402, 414 
Gradient matrix, 434, 443 
Graphical, 

diagnostics, 170, 231, 316, 321 
interaction, 268, 398-406 
summaries, 5o-51, 69-85 
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Group method, 459, 471-475, 478 
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Identifying nonlinearities, 249 
Identity function, I(), 30, 101 
Ill-determined models, 138-144 
Independence model, 198-199, 215 
Inestimable contrast, 178-181 
Information matrix, 223, 245, 303, 427 
Inherited, 

class, 462, 471 
method, 459, 461 
frame, 467 

Initial estimate, values, 222, 225-229, 246-
247, 316, 429-430 
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Interactions, 
creating, 22-28 
term, 25 
two-factor, 22 
higher-order, 22, 28-30 
plots, 167-168 

Intercept term, see Model formulas 
Interior knots, 27Q-273, see also Smoothing 
Inverse link function, 288, 291, 240 
Inverse logit transformation, 204 
Iterative algorithms, fitting, 243-244, 30Q-

303,316,452-453 
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Kernel smoothing, 293 
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Landwehr, J.M., 2, 48, 590 
Lawson, C.L., 144, 592 
Leaf nodes, see 1\-ee-based models, 
Least-squares fitting, see Linear models 
Legitimate coding, 34 
Lehmann, E.L., 453, 592 
Leverage, 130 
Likelihood estimation, see Mozimum-likelihood 

estimation 
Likelihood function, 242, 423 
Likelihood-ratio statistic, see Deviance 
Lindstrom, M.J., 453, 589 
Linear model functions, 

addl(), 124-129,245,483 
anova(), 126, 485 
coefficients(), coef(), 100, 495 
dropl(), 124-129,245,483 
fitted(), 100, 495 
kappa(), 115 
lmO, 100, 524 
lm.fitO, 118 
lm.fit.chol(), 135 
lm.fit.qrO, 135 
lm.influence(), 130,233,245 
lm.sensitivity(), 141 
lm.wfit(), 120 
plot(), 104, 545 

predict(), 106-109, 555-556 
residuals(),resid(), 100,495 
summary(), 105, 580 
update(), 116-117,586 

Linear models, 95-144 
background, 95-99 
class of, 526 
diagnostics for, 129-131 
examples, 100, 103 
fitting, lm(), 100, 524 
formulas in, 18-31, 100 
methods for, 100, 203 
model selection, 124-129 
numerical methods for, 135-138 
options for, 109-117 
predictions, 106-109, 238-241 
predictions (safe), 288-292 
updating, 116-117 

Linear predictor, 195--197, 203, 205 
Linear smoothers, 299 
Link functions, 197 

complementary log-log, 208 
identity, jl, 256 
log, log(l-'), 10, 214 
logit, log(l-'/(1 - 11)), 207 
power, 11"', 209, 228 
probit, ~- 1 (1-'), 207 

LINPACK subroutine library, 144 
Local approximation, 312-314, see auo 

Local regression models 
Local regression model functions, 

anova(), 321, 485 
coplot(),333,496 
co.intervals(),333 
fitted(),324, 495 
loess(), 317, 529 
loess.control{),367 
pane1.smooth(),333, 542 
plot(), 328, 550 
pointwise(), 320 
predict(), 320, 555 
preplot(),368, 561 
print(), 317 
residuals(),324, 495 
scatter.smooth(),324, 571 
specs(), 318 
summary 0, see print() 

Local regression models, 309-376 
algorithm, 312-315 
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choices in fitting, 313-316 



604 

class of, 531 
conditionally parametric, 341 
confidence intervals, 347, 358 
diagnostic checking, 324, 362, 364 
direct computation, 366--367 
displaying, 333, 341 
equivalent numbers of parameters, 317, 

37Q-37l 
error models, 314-315 
examples, 321, 331, 348, 352, 359 
fitting, 1oasa(), 317, 529 
inference, 327-331, 37Q-371 
local linear fit, 312-313, 341 
local quadratic fit, 312-313 
robust estimation, 315-316, 355 
scale normalization, 315, 318 
tricube weight function, 314 

Local scoring algorithm, 252 
Loess, see Local regression models 
Log likelihood, 242 
Log link, see Link functions 
Log-linear model, 195, 197-198 
Logical variable, 10, 21, 27 
Logit link, see Link functions 
Long-tailed distribution, 315 
Lookabough, T., 590 
Lowess, see Local regression models 
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Macauley, F.R., 376, 592 
Main-effects model, 5-7, 29, 153, 198 
Mallows, C.L., 423, 592 
Marginal grid values, 319-320 
Matrix of predictors, see Mode! matrix 
Matrix variable, 46, 52, 65 
Maximum likelihood, 

estimation, 242-245, 302-303, 423-425 
inference, 241-245, 438-440 
models, 250, 422-427 
score equations, 433.-438 
see also Nonlinear models 

McCullagh, P., 197, 247, 453, 592 
McKinney, S., 419, 590 
McLain, D.H., 376, 592 
Mean/variance relationship, 196-197 
Messenger, R.C., 418, 592 
Methods, 

arguments to, 467 
assignment, 477 
group, 471 
invoking, 46Q-461 
NextMathod(),464-466,469,471 

objects to identify, 470 
private vs public, 461 
replacement, 475 
writing, 461 
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see also Object-oriented progmmming 
Minimal cost complexity, 387-391 
Minimum-deviance estimation, see Ma:eimum

likelihood estimation 
Missing data, 8, 56, 91, 112-113 

missing response, 286-288 
na.action, 8, 91, 112-113 
na.fail() (default), 112 
na.gam.rap1aca(),286-288 
na.omit(),91-92, 113,282 
na.traa.rap1aca(), 416 
strategies, 112-113, 286-288, 416 

Model building, see Model selection 
Model formulas, 13-44 
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-1, intercept out, 19, 37-40, 113 
bs(), 27Q-273, 491 
co, 32, 494 
complicated, 28-31 
creating, 18 
dot, ".", 29 
Error(), 158 
expanded, 28 
expressions, 3Q-31 
I(), 30, 101 
implicit, 29, 202 
interactions, 25 
language, 37-40 
lo(), 254, 528 

• 
logical variables in, 21, 258 
matrices, 21 
methods for, 40, 103, 116-117 
nesting, 25-28 
ns(), 27Q-273, 538 
numeric variables, 2Q-21 
offset(), 222 
operators, see Mode! operators 
poly(). 31, 108, 219-220, 553 
response, 18-21, 24, 29 
s(), 254,570 
terms, 40, 41 
updating, 210, 116-117 
see also Model opemtors 

Model frame, 
as data, 9Q-93 
constructing, model.frama(), 901, 532 
data.matrixO, 65, 500 · 
modal.matrix(),90 
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terms of, 42 
Model matrix, 21, 23-24, 

assign list, 43-44, 7Q-92 
attributes of, 43 
coding in, 32-36 
creating, modal. matrix 0, 43 
factors in, 32 
interactions in, 43 
logical vectors in, 21 
matrices in, 21 
numeric vectors in, 21 
subsetting, 121 
see also Model fonnullU 

Model operators and notation, 29 
:' 28, 101 
0, 30 
/, 26, 30 
", 30 
- ' 19, 37-40, 113 
+ '18, 29 

"'' 22 
~. 19 
1, 19 
-1, 19 

Model selection, 
adding/dropping terms, 124-129, 234-

238 
AIC, 234-235, 282 
Cp, 235 
criteria, 234, 282 
step-wise, 233-238, 28Q-285 

Moler, C.B., 144, 591 
Morgan, J.N., 418, 592-593 
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Multiple-error strata, see Analysis of vari-

ance models 
Multiple-response model, 154, 169 

Natural cubic spline, see Smoothing 
Natural link, 242-243 
Natural parameter, 242 
Neighborhood weights, 314 
Neider, J.A., 197, 247, 453, 589, 592 
Nested, 

models, 27 
terms, 151 
see also Crossed 

Nesting operator, 25-27, 30 
Newton-Rapbson algorithm, 243 
Nonlinear least-squares, see Nonlinear models 
Nonlinear model functions, 

dariv(), 436, 501 

ms (), 428, 534 
ms.control(),444 
nls(), 428, 536 
nls.control(),444 
param(), 431, 543 
parameters(), 429, 543 
print(), 432 
summary(), 432, 580 

Nonlinear models, 421-454 
algorithms, 452-453 
background, 421-427, 453 
examples, 430--433, 440--444 
fitting, ms(), 428, 431, 534 
fitting, nls(), 428, 430, 536 
formulas in, 428-429 
gradient, 434-438 
initial values, 430 
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maximum likelihood, 423, 434-438 
nonlinear least-squares, 425, 428, 430, 

438, 450 
object, 535, 538 
parametrized data frames, 429-431 
partially-linear models, 440--444 
profiling, 438 
starting values, 430, 536, 538 
summaries, 432-433 
tracing, 445, 536 
zero-inflated Poisson, 424-425 

Nonlinear transformations, 219 
Non parametric, 

components, 289, 303-306 
estimates, 252-254, 298-299 
functions, 255, 290, 325 
models, 250, 312-314 
terms, 262, 270 
transformations, 306 

Normal equations, 133, 136-137, 243, 300 
Normal probability plot, 106, 124, 358, 366 
Normal quantile-quantile plot, 168 
Null deviance, 204 
Numeric variable, 21 
Numerical accuracy, 137, 141, 434, 452 
Numerical methods, 131-144, 184-193, 241-

247, 298-306, 373-376, 412-419, 
452-453 

Numerical rank, 114 

Object-oriented programming, 455-480 
classes, 460--463, 466 
creating classes, 461-463 
examples, 461-463, 468 
generic functions, 478 
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languages,456-459 
methods, 467, 471 
methods, assignment, 477 
methods, group 471 
methods, replacement, 475 
see also Methods 

Offset, see M~del formullls 
Olshen, R., 418-419, 589 
Online documentation, see Documentation 
Operator matrix, 299, 303, 368-375 
Ordered factor, see Factor 
Orthogonal, 

array design, see oa.design() 
basis, model matrices, see poly() 
contrasts, see Coding factors 
decomposition, see QR decomposition 

Over-determined models, see aliasing 

Panel function, 335, see also coplot () 
Parameter attributes, 429 
Parameter estimates, 100-101, 201, 203. see 

also coefficients() 
Parameterized data frame, 429 
Parametric, 

additive models, 270-273 
component, 287, 301-306 
r.ransformatim.s, 304 

Partial confounding, see Analysis-of-variance 
models 

Partial residual plots, 218-219, 249 
Partial residuals, see Residuals 
Partially linear models, see Nonlinear models 
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residuals, 205, 216 
chi-squared statistic, 205-206 
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Perspective plot, 276-277, 289-290 
Phadke, M.S., 147, 592 
Piece-wise polynomials, 270-273, 279 
Plot methods, see modeling entries 
Pointwise standard errors, 108, 220. 239-

241, 263-268, 297, 341 
Poisson data, 10, 214-217 
Poisson family, see Family 
Poisson models, see Generalized lmear /additive 

models 

Polynomial, 
contrasts, see Coding factors 
functions, regression, see poly() 
smoothing splines, see Smoothing 
spline, 27D-273 

Predict methods, see modeling entries 
Predicted response, 106, 203, 238 
Predictor-variables types, 21, 
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logical, 31 
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Print methods, see modeling entries 
Printed summary, 70, 206, 580 
Prior weights, 221, 242, 245 
Private default, see Defaults 
·Private method, see Methods 
Probit link function, see Link functions 
Pruning sequence, see Tree-based models 
Pseudo-values, 371-372 
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QR decomposition, 132-137, 245, 306 
Quadratic approximation, 196,206, 244-245, 
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Quantitative, see Numeric predictor 
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Recursive partitioning, see '1"-e-based models 
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Repeated fitting, 118-124 
Replacement method, 475-476 
Residual, 

degrees of freedom, 105, 202. 259 
deviance, 201-202, 205, 242-243 
plots, 104,128,216-208,326-328 
standard error, variance, 100 

Residuals, types, 205 
Resistant fitting, see Robust fitting 
Response, 18,216,428 
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residuals, 205 
variable, 18, 41, 226 

Ridge regression, 294 
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Score equations, see M czimum likelihood 
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Smooth curve, 14, 72, 219, 25o-254, 317. 
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parameter, 251;,254, 293, 298-300, 314, 

317 . 
regression splines, 27o-273 
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smoothing splines, smooth. spline(), 299, 
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Snipping nodes, see Tree-based models 
Solder experiment, see Doto objects 
Sonquist, J.N., 418, 593 
Speeney, D.V., 147, 592 
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Splitting rules, see Tree-based models 
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Step function, 21, 220, 265, 279 
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Subset selection, see Model selection 
Subsets ( [operator), 385, 465 
Summarizing objects, see sUIIIIIIary 0 
Surrogate splits, see Tree-based models 
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plot(), 386 
post.tree(),410, 554 
predict(), 393, 560 
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prune.tree(),389,563 
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select.tree(),398, 572 
shrink. tree(), 390, 573 
snip.tree(),396, 576 
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text.tree(), 386 
tile.tree(), 405 
tree(),382,386, 584 
tree.control(),415 
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algorithms, 412-417 
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class of, 585 
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displaying, 383, 387, 389, 397, 400 
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missing data, 415-,1116 
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subsetting, 385 
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X matrix, see Model matrix 
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