Journal for Geometry and Graphics Volume 13 (2010), No. 1, 1–9.

Rose Surfaces and their Visualizations

Sonja Gorjanc

Faculty of Civil Engineering, University of Zagreb Kačićeva 26, 10000 Zagreb, Croatia email: sgorjanc@grad.hr

Abstract. In this paper we construct a new class of algebraic surfaces in threedimensional Euclidean space that are generated by roses. We derive their parametric and implicit equations, investigate their singularities and visualize them with the program *Mathematica*.

Key Words: Rose curve, Rose surface, Singular point *MSC 2000:* 51N20, 51M15, 14J25, 14J17

1. Introduction

In [2], by using an (n + 2)-degree inversion defined in [1], we elaborated the pedal surfaces of special first order line congruences. The directing lines of these congruences are roses given by the polar equation $r = \cos n\varphi$, where n is an odd positive integer. The cases with special positions of the pole appeared to be very interesting and led us to explore a new construction of surfaces where the generating curve was a rose with a finite number of petals. The resulting surfaces had various attractive shapes, a small number of high singularities and were convenient for algebraic treatment and visualization in the program *Mathematica*. Some special examples of these surfaces are given in [9] and another attempt to generalize roses is given in [10].

2. Roses

Roses or rhodonea curves R(n, d), treated here, can be expressed by the following polar equation:

$$r = \cos\frac{n}{d}\,\varphi,\tag{1}$$

where $\frac{n}{d}$ is a positive rational number in reduced form, i.e. GCD(n, d) = 1.

According to [13] and [7], these curves are particular trochoids: epitrochoids for n > dand hypotrochoids for n < d. They are also a special type of cyclic-harmonic curves (foliate cyclic-harmonic curves), [8], [5].

ISSN 1433-8157/\$ 2.50 © 2010 Heldermann Verlag

S. Gorjanc: Rose Surfaces and their Visualizations

If $n \cdot d$ is *odd*, the curves close at polar angles $d \cdot \pi$ and have *n* petals. They are algebraic curves of the order n + d, with an *n*-fold singularity in the origin and with $\frac{1}{2}n(d-1)$ double points. If $n \cdot d$ is *even*, the curves close at polar angles $2d \cdot \pi$ and have 2n petals. They are algebraic curves of the order 2(n + d), with a 2*n*-fold singularity in the origin and with 2n(d-1) double points [6, pp. 358–369], [11], [12] (see Table 1).

$n \cdot d$	order	multiplicity of the point O	number of double points	period	number of petals
odd	n+d	n	$\frac{1}{2}n(d-1)$	$d\cdot\pi$	n
even	2(n+d)	2n	2n(d-1)	$2d\cdot\pi$	2n

Table 1: Properties of R(n, d)

According to [6] we can derive the following implicit equation of R(n, d):

$$\left(\sum_{k=0}^{\lfloor d/2 \rfloor} \sum_{j=0}^{k} (-1)^{k+j} \binom{d}{2k} \binom{k}{j} (x^2 + y^2)^{\frac{n+d}{2} - k + j}\right)^s - \left(\sum_{i=0}^{\lfloor n/2 \rfloor} (-1)^i \binom{n}{2i} x^{n-2i} y^{2i}\right)^s = 0, \quad (2)$$

where s = 1 if $n \cdot d$ is odd and s = 2 if $n \cdot d$ is even. According to [4, p. 251]¹, the tangent lines at the origin are given by the following equations:

- if $n \cdot d$ is odd

$$\sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k \binom{n}{2k} x^{n-2k} y^{2k} = 0,$$
(3)

- if n is even

$$\left(\sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k \binom{n}{2k} x^{n-2k} y^{2k}\right)^2 = 0, \tag{4}$$

- if d is even $\left(\lfloor \frac{d}{2} \rfloor = \frac{d}{2}\right)$

$$(x^{2} + y^{2})^{n} - \left(\sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^{k} {n \choose 2k} x^{n-2k} y^{2k} \right)^{2} = 0.$$
(5)

3. Rose Surfaces

Definition 1 Let P(0,0,p) be any point on the axis z and let R(n,d) be a rose given by Eq. (1) in the plane z = 0. A rose surface $\mathcal{R}(n,d,p)$ is the system of circles c_i which lie in the planes ζ through the axis z and have diameters $\overline{PR_i}$, where $R_i \neq O$ are the intersection points of the rose R(n,d) and the plane ζ (see Fig. 4).

¹See the quotation that follows in the proof of Theorem 1.

S. Gorjanc: Rose Surfaces and their Visualizations

Figure 1: If n is odd, the rose R(n, 1) is an n-petalled curve with n tangent lines at the origin (Figs. a and b). If n is even, the rose R(n, 1) is an 2n-petalled curve with n double tangent lines at the origin (Figs. c and d).

Figure 2: If d is odd, the rose R(1, d) has only one petal (Figs. a and b). If d is even, the rose R(1, d) has two petals (Figs. c and d).

Figure 3: Four roses with petals in different colors.

3.1. Parametric equations of $\mathcal{R}(n, d, p)$

Let φ be the angle between the planes $\zeta(\varphi)$ and y = 0. The parametric equations of the circle c with the diameter \overline{PR} in the plane $\zeta(\varphi)$ are the following:

$$r = \frac{1}{2} \left(\cos \frac{n}{d} \varphi + \sqrt{p^2 + \cos^2 \frac{n}{d} \varphi} \sin \theta \right),$$

$$z = \frac{1}{2} \left(p + \sqrt{p^2 + \cos^2 \frac{n}{d} \varphi} \cos \theta \right),$$

$$\theta \in [0, 2\pi),$$
(6)

where $\varphi \in [0, d \cdot \pi)$ if $n \cdot d$ is odd, and $\varphi \in [0, 2d \cdot \pi)$ if $n \cdot d$ is even.

Figure 4: If $n \cdot d$ is odd or even, the number of points $R_i \in \zeta$ is d or 2d, respectively.

Therefore, the parametric equations of the rose surface $\mathcal{R}(n, d, p)$ are the following:

$$x = \frac{1}{2}\cos\varphi(\cos\frac{n}{d}\varphi + \sqrt{p^2 + \cos^2\frac{n}{d}\varphi}\sin\theta)$$

$$y = \frac{1}{2}\sin\varphi(\cos\frac{n}{d}\varphi + \sqrt{p^2 + \cos^2\frac{n}{d}\varphi}\sin\theta)$$

$$z = \frac{1}{2}(p + \sqrt{p^2 + \cos^2\frac{n}{d}\varphi}\cos\theta),$$
(7)

where $(\varphi, \theta) \in [0, d \cdot \pi) \times [0, 2\pi)$ if $n \cdot d$ is odd, and $(\varphi, \theta)) \in [0, 2d \cdot \pi) \times [0, 2\pi)$ if $n \cdot d$ is even. For *Mathematica* the equations (7) allow visualizations of the surfaces $\mathcal{R}(n, d, p)$, see [3].

3.2. Implicit equations of $\mathcal{R}(n, d, p)$

From the identity $\cos d\frac{n}{d}\varphi = \cos n\varphi$ and the multiple angle formula $\cos n\varphi = \sum_{i=0}^{\lfloor n/2 \rfloor} (-1)^i {n \choose 2i} (\sin \varphi)^{2i} (\cos \varphi)^{n-2i}$ we obtain

$$\sum_{k=0}^{\lfloor d/2 \rfloor} (-1)^k \binom{d}{2k} \left(\sin \frac{n}{d} \varphi \right)^{2k} \left(\cos \frac{n}{d} \varphi \right)^{d-2k} = \sum_{i=0}^{\lfloor n/2 \rfloor} (-1)^i \binom{n}{2i} (\sin \varphi)^{2i} (\cos \varphi)^{n-2i}.$$
(8)

Since the implicite equation of the circle c in the plane $\zeta(\varphi)$ is

$$\left(r - \frac{\cos\frac{n}{d}\varphi}{2}\right)^2 + \left(z - \frac{p}{2}\right)^2 = \frac{1}{4}\left(\cos^2\frac{n}{d}\varphi + p^2\right),\tag{9}$$

by substituting $r = \sqrt{x^2 + y^2}$ in (9), we obtain the following conditions for the points of $\mathcal{R}(n, d, p)$:

$$\cos\frac{n}{d}\varphi = \frac{x^2 + y^2 + z^2 - p \cdot z}{\sqrt{x^2 + y^2}}, \quad \sin\frac{n}{d}\varphi = \sqrt{1 - \frac{(x^2 + y^2 + z^2 - p \cdot z)^2}{x^2 + y^2}}.$$
 (10)

By substituting (10), $\cos \varphi = \frac{x}{\sqrt{x^2 + y^2}}$, and $\sin \varphi = \frac{y}{\sqrt{x^2 + y^2}}$ into (8), we obtain the following algebraic equations of $\mathcal{R}(n, d, p)$:

$$(x^{2} + y^{2})^{\frac{s(n-d)}{2}} \left(\sum_{k=0}^{\lfloor \frac{d}{2} \rfloor} \sum_{j=0}^{k} (-1)^{k+j} {d \choose 2k} {k \choose j} (x^{2} + y^{2} + z^{2} - p \cdot z)^{d-2(k-j)} (x^{2} + y^{2})^{k-j} \right)^{s}$$
(11)

$$= \left(\sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^{i} {n \choose 2i} x^{n-2i} y^{2i} \right)^{s} \dots \text{ for } n > d,$$

$$\left(\sum_{k=0}^{\lfloor \frac{d}{2} \rfloor} \sum_{j=0}^{k} (-1)^{k+j} {d \choose 2k} {k \choose j} (x^{2} + y^{2} + z^{2} - p \cdot z)^{d-2(k-j)} (x^{2} + y^{2})^{k-j} \right)^{s}$$
(12)

$$= (x^{2} + y^{2})^{\frac{s(d-n)}{2}} \left(\sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^{i} {n \choose 2i} x^{n-2i} y^{2i} \right)^{s} \dots \text{ for } n < d,$$

where s = 1 if $n \cdot d$ is odd, and s = 2 if $n \cdot d$ is even.

3.3. Properties of $\mathcal{R}(n, d, p)$

Theorem 1 For rose surfaces $\mathcal{R}(n, d, p)$, the following table is valid:

$n \cdot d$		order	multiplicity of points O and P	multiplicity of the axis z	number of double circles in the planes ζ
odd	n > d	n+d	n	(n-d)	$\frac{1}{2}n(d-1)$
even	n > d	2(n+d)	2n	2(n-d)	n(2d - 1)
odd	n < d	2d	d	0	$\frac{1}{2}n(d-1)$
even	n < d	4d	2d	0	n(2d-1)
		Α	В	С	D

Table 2: Properties of $\mathcal{R}(n, d, p)$.

Proof: Ad A: The order of an algebraic surface is equal to the degree of its algebraic equation. In Eqs. (11) and (12) the terms with the highest exponents (for k = j) are

$$\left(2^{d-1}(x^2+y^2)^{\frac{n-d}{2}}(x^2+y^2+z^2)^d\right)^s \text{ and}$$
$$\left(2^{d-1}(x^2+y^2+z^2)^d\right)^s - (x^2+y^2)^{\frac{s(d-n)}{2}} \left(\sum_{i=0}^{\lfloor\frac{n}{2}\rfloor} (-1)^i \binom{n}{2i} x^{n-2i} y^{2i}\right)^s,$$

respectively.

Ad B: According to [4, p. 251]: If an *n*-th order surface in \mathbb{E}^3 which passes through the origin is given by the equation

$$F(x, z, y) = f_m(x, y, z) + f_{m+1}(x, y, z) + \dots + f_n(x, y, z) = 0,$$

where $f_k(x, y, z)$ $(1 \le k \le n)$ are homogeneous polynomials of degree k, then the tangent cone at the origin is given by the equation $f_m(x, y, z) = 0$.

Therefore, the tangent cones of $\mathcal{R}(n, d, p)$ given by Eqs. (11) and (12) at the points O and P are given by the following equations:

$$\left(\sum_{k=0}^{\lfloor \frac{d}{2} \rfloor} \sum_{j=0}^{k} (-1)^{k+j} {d \choose 2k} {k \choose j} (\mp p \cdot z)^{d-2(k-j)} (x^2 + y^2)^{\frac{n-d+2(k-j)}{2}} \right)^s$$

$$-\left(\sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^i {n \choose 2i} x^{n-2i} y^{2i} \right)^s = 0,$$

$$\left(\sum_{k=0}^{\lfloor \frac{d}{2} \rfloor} \sum_{j=0}^{k} (-1)^{k+j} {d \choose 2k} {k \choose j} (\mp p \cdot z)^{d-2(k-j)} (x^2 + y^2)^{k-j} \right)^s$$

$$-\left(\sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^i {n \choose 2i} x^{n-2i} y^{2i} (x^2 + y^2)^{\frac{d-n}{2}} \right)^s = 0,$$

$$(13)$$

respectively.

In these equations, $-p \cdot d$ corresponds with the point O, and $+p \cdot d$ with the point P as the origin.

Ad C: If $\mathcal{R}(n, d, p)$ is given by Eq. (11), any point $Z_0(0, 0, z_0)$ lies on the surface and the tangent cone at Z_0 , with the origin translated into Z_0 , is given by the following equation:

$$(x^2 + y^2)^{\frac{s(n-d)}{2}} = 0.$$
(15)

This equation represents the $\frac{s(n-d)}{2}$ -fold pair of isotropic planes through the axis z.

If $\mathcal{R}(n, d, p)$ is given by Eq. (12), it is clear that a point $Z_0(0, 0, z_0)$ on the axis z lies on $\mathcal{R}(n, d, p)$ iff $z_0^2 - p \cdot z_0 = 0$, i.e., $Z_0 = O$ or $Z_0 = P$.

Ad **D**: For z = 0, Eq. (11) takes the form (2), while Eq. (12) also gives Eq. (2) but multiplied by $(x^2 + y^2)^{\frac{s(d-n)}{2}}$. It means that the intersection of $\mathcal{R}(n, d, p)$ and the plane z = 0 is R(n, d)for n > d, while it splits on R(n, d) and $\frac{s(d-n)}{2}$ -fold isotropic lines through the origin for n < d. The circle c in the plane ζ is the double curve of $\mathcal{R}(n, d, p)$ iff the intersection point of ζ and R(n, d) is a double point of R(n, d). Thus, the number of double circles on $\mathcal{R}(n, d, p)$ is equal to the number of double points of R(n, d) if $n \cdot d$ is odd. But, if $n \cdot d$ is even, other n double circles in the planes ζ exist on $\mathcal{R}(n, d, p)$. These circles lie in the planes through the double tangent lines of R(n, d) at O and their diameters are \overline{OP} . If O = P, these circles degenerate into the pairs of isotropic lines.

Corollary 1 If p = 0, the tangent cone of $\mathcal{R}(n, d, p)$ at O = P splits into n or d planes. *Proof:* If p = 0, Eqs. (13) and (14) take the following forms:

$$\left(\sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^i \binom{n}{2i} x^{n-2i} y^{2i}\right)^s = 0,$$
(16)

$$\left(\sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^i \binom{n}{2i} x^{n-2i} y^{2i} (x^2 + y^2)^{\frac{d-n}{2}}\right)^s = 0,$$
(17)

S. Gorjanc: Rose Surfaces and their Visualizations

respectively.

Since the polynomials in these equations are *n*-th (Eq. (16) or *d*-th (Eq. (17) degree homogeneous in x and y, therefore they can be reduced to linear and quadratic factors. These factors equal to 0 represent n or d planes (real or imaginary) through the axis z. \Box

3.4. Visualizations of $\mathcal{R}(n, d, p)$

The following figures are computed and plotted by the software Mathematica.

Figure 5: If d = 1 and $p \neq 0$, the tangent cones at the points O and P are proper cones. If n is odd, there are no double circles on $\mathcal{R}(n, 1, p)$; for even $n \ 2n$ double circles exist on $\mathcal{R}(n, 1, p)$.

Figure 6: If d = 1 and p = 0, the tangent cones at O split into n planes. If n is even, these planes are the double tangent planes of $\mathcal{R}(n, 1, 0)$.

S. Gorjanc: Rose Surfaces and their Visualizations

Figure 8: Seven rose surfaces.

References

- [1] V. BENIĆ, S. GORJANC: Inversion of degree n + 2. Acta Mathematica Hungarica **122** (3), 237–253 (2009).
- [2] S. GORJANC: Special nth Order Surfaces with (n-2)-ple Line. Proc. of 13th ICGG, Dresden 2008.
- [3] A. GRAY: Modern Differential Geometry of Curves and Surfaces with Mathematica. CRC Press, Boca Raton 1998.
- [4] J. HARRIS: Algebraic Geometry. Springer, New York 1995.
- [5] H. HILTON: On Cyclic-Harmonic Curves. The Annales of Mathematics, Second Series, 24, no. 3, 209–212 (1923). Available online: http://www.jstor.org/stable/1967850.
- [6] G. LORIA: Spezielle algebraische und transzendente ebene Kurven. B.G. Teubner, Leipzig-Berlin 1910.

- [7] A.A. SAVELOV: *Ravninske krivulje*. Croation translation from Russian, Skolska knjiga, Zagreb 1979.
- [8] R.E. MORITZ: On the construction of certain curves given in polar coordinates. Amer. Math. Monthly 24, No. 5, 213–220 (1917).
- [9] "Special Rose Surfaces" from The Wolfram Demonstrations Project http://demonstrations.wolfram.com/SpecialRoseSurfaces/ Contributed by: Sonja GORJANC.
- [10] "Twisting Rose Surfaces" from The Wolfram Demonstrations Project http://demonstrations.wolfram.com/TwistingRoseSurfaces/ Contributed by: George BACK
- [11] E.W. WEISSTEIN: *Rose*. From *MathWorld* A Wolfram Web Resource. http://mathworld.wolfram.com/Rose.html.
- [12] http://en.wikipedia.org/wiki/Rose_(mathematics)
- [13] W. WUNDERLICH: Ebene Kinematik. B.I., HTB 447, Mannheim 1970.

Received November 18, 2009; final form April 9, 2010