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Abstract. In this paper we construct a new class of algebraic surfaces in three-
dimensional Euclidean space that are generated by roses. We derive their para-
metric and implicit equations, investigate their singularities and visualize them
with the program Mathematica.
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1. Introduction

In [2], by using an (n + 2)-degree inversion defined in [1], we elaborated the pedal surfaces
of special first order line congruences. The directing lines of these congruences are roses
given by the polar equation r = cos nϕ, where n is an odd positive integer. The cases with
special positions of the pole appeared to be very interesting and led us to explore a new
construction of surfaces where the generating curve was a rose with a finite number of petals.
The resulting surfaces had various attractive shapes, a small number of high singularities and
were convenient for algebraic treatment and visualization in the program Mathematica. Some
special examples of these surfaces are given in [9] and another attempt to generalize roses is
given in [10].

2. Roses

Roses or rhodonea curves R(n, d), treated here, can be expressed by the following polar equa-
tion:

r = cos
n

d
ϕ, (1)

where n
d

is a positive rational number in reduced form, i.e. GCD(n, d) = 1.
According to [13] and [7], these curves are particular trochoids: epitrochoids for n > d

and hypotrochoids for n < d. They are also a special type of cyclic-harmonic curves (foliate
cyclic-harmonic curves), [8], [5].
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If n · d is odd, the curves close at polar angles d · π and have n petals. They are algebraic
curves of the order n + d, with an n-fold singularity in the origin and with 1

2
n(d − 1) double

points. If n · d is even, the curves close at polar angles 2d · π and have 2n petals. They
are algebraic curves of the order 2(n + d), with a 2n-fold singularity in the origin and with
2n(d − 1) double points [6, pp. 358–369], [11], [12] (see Table 1).

Table 1: Properties of R(n, d)

n · d order multiplicity of
the point O

number of
double points

period number of
petals

odd n + d n 1
2
n(d − 1) d · π n

even 2(n + d) 2n 2n(d − 1) 2d · π 2n

According to [6] we can derive the following implicit equation of R(n, d):

(

⌊d/2⌋
∑

k=0

k
∑

j=0

(−1)k+j
(

d

2k

)(

k

j

)

(x2 + y2)
n+d

2
−k+j

)s

−
(

⌊n/2⌋
∑

i=0

(−1)i
(

n

2i

)

xn−2iy2i
)s

= 0, (2)

where s = 1 if n · d is odd and s = 2 if n · d is even. According to [4, p. 251]1, the tangent
lines at the origin are given by the following equations:

– if n · d is odd
⌊n/2⌋
∑

k=0

(−1)k
(

n

2k

)

xn−2ky2k = 0, (3)

– if n is even
(

⌊n/2⌋
∑

k=0

(−1)k
(

n

2k

)

xn−2ky2k
)2

= 0, (4)

– if d is even (⌊d
2
⌋ = d

2
)

(x2 + y2)n −
(

⌊n/2⌋
∑

k=0

(−1)k
(

n

2k

)

xn−2ky2k
)2

= 0. (5)

3. Rose Surfaces

Definition 1 Let P (0, 0, p) be any point on the axis z and let R(n, d) be a rose given by
Eq. (1) in the plane z = 0. A rose surface R(n, d, p) is the system of circles ci which lie in
the planes ζ through the axis z and have diameters PRi, where Ri 6= O are the intersection
points of the rose R(n, d) and the plane ζ (see Fig. 4).

1See the quotation that follows in the proof of Theorem 1.
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Figure 1: If n is odd, the rose R(n, 1) is an n-petalled curve with n tangent lines at the
origin (Figs. a and b). If n is even, the rose R(n, 1) is an 2n-petalled curve with n

double tangent lines at the origin (Figs. c and d).
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Figure 2: If d is odd, the rose R(1, d) has only one petal (Figs. a and b).
If d is even, the rose R(1, d) has two petals (Figs. c and d).
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Figure 3: Four roses with petals in different colors.

3.1. Parametric equations of R(n, d, p)

Let ϕ be the angle between the planes ζ(ϕ) and y = 0. The parametric equations of the circle
c with the diameter PR in the plane ζ(ϕ) are the following:

r =
1

2

(

cos
n

d
ϕ +

√

p2 + cos2 n

d
ϕ sin θ

)

,

z =
1

2

(

p +
√

p2 + cos2 n

d
ϕ cos θ

)

,
θ ∈ [0, 2π), (6)

where ϕ ∈ [0, d · π) if n · d is odd, and ϕ ∈ [0, 2d · π) if n · d is even.
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Figure 4: If n · d is odd or even, the number of points Ri ∈ ζ is d or 2d, respectively.

Therefore, the parametric equations of the rose surface R(n, d, p) are the following:

x =
1

2
cos ϕ(cos

n

d
ϕ +

√

p2 + cos2 n

d
ϕ sin θ)

y =
1

2
sin ϕ(cos

n

d
ϕ +

√

p2 + cos2 n

d
ϕ sin θ)

z =
1

2
(p +

√

p2 + cos2 n

d
ϕ cos θ),

(7)

where (ϕ, θ) ∈ [0, d · π)× [0, 2π) if n · d is odd, and (ϕ, θ)) ∈ [0, 2d · π)× [0, 2π) if n · d is even.
For Mathematica the equations (7) allow visualizations of the surfaces R(n, d, p), see [3].

3.2. Implicit equations of R(n, d, p)

From the identity cos dn
d
ϕ = cos nϕ and the multiple angle formula

cos nϕ =
∑⌊n/2⌋

i=0 (−1)i
(

n

2i

)

(sin ϕ)2i(cos ϕ)n−2i we obtain

⌊d/2⌋
∑

k=0

(−1)k
(

d

2k

)
(

sin
n

d
ϕ
)2k (

cos
n

d
ϕ
)d−2k

=

⌊n/2⌋
∑

i=0

(−1)i
(

n

2i

)

(sin ϕ)2i(cos ϕ)n−2i. (8)

Since the implicite equation of the circle c in the plane ζ(ϕ) is

(

r −
cos n

d
ϕ

2

)2

+
(

z −
p

2

)2

=
1

4
(cos2 n

d
ϕ + p2), (9)

by substituting r =
√

x2 + y2 in (9), we obtain the following conditions for the points of
R(n, d, p):

cos
n

d
ϕ =

x2 + y2 + z2 − p · z
√

x2 + y2
, sin

n

d
ϕ =

√

1 −
(x2 + y2 + z2 − p · z)2

x2 + y2
. (10)
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By substituting (10), cosϕ =
x

√

x2 + y2
, and sin ϕ =

y
√

x2 + y2
into (8), we obtain the following

algebraic equations of R(n, d, p):

(x2 + y2)
s(n−d)

2

(

⌊ d
2
⌋

∑

k=0

k
∑

j=0

(−1)k+j
(

d

2k

)(

k

j

)

(x2 + y2 + z2 − p · z)d−2(k−j)(x2 + y2)k−j
)s

=
(

⌊n
2
⌋

∑

i=0

(−1)i
(

n

2i

)

xn−2iy2i
)s

. . . for n > d ,

(11)

(

⌊ d
2
⌋

∑

k=0

k
∑

j=0

(−1)k+j
(

d

2k

)(

k

j

)

(x2 + y2 + z2 − p · z)d−2(k−j)(x2 + y2)k−j
)s

= (x2 + y2)
s(d−n)

2

(

⌊n
2
⌋

∑

i=0

(−1)i
(

n

2i

)

xn−2iy2i
)s

. . . for n < d ,

(12)

where s = 1 if n · d is odd, and s = 2 if n · d is even.

3.3. Properties of R(n, d, p)

Theorem 1 For rose surfaces R(n, d, p), the following table is valid:

Table 2: Properties of R(n, d, p).

n · d order
multiplicity of

points O and P
multiplicity of

the axis z
number of double

circles in the planes ζ

odd n > d n + d n (n − d) 1
2
n(d − 1)

even n > d 2(n + d) 2n 2(n − d) n(2d − 1)

odd n < d 2d d 0 1
2
n(d − 1)

even n < d 4d 2d 0 n(2d − 1)

A B C D

Proof: Ad A: The order of an algebraic surface is equal to the degree of its algebraic
equation. In Eqs. (11) and (12) the terms with the highest exponents (for k = j) are

(

2d−1(x2 + y2)
n−d

2 (x2 + y2 + z2)d
)s

and

(

2d−1(x2 + y2 + z2)d
)s

− (x2 + y2)
s(d−n)

2

(

⌊n
2
⌋

∑

i=0

(−1)i
(

n

2i

)

xn−2iy2i
)s

,

respectively.

Ad B: According to [4, p. 251]: If an n-th order surface in E
3 which passes through the origin

is given by the equation

F (x, z, y) = fm(x, y, z) + fm+1(x, y, z) + · · ·+ fn(x, y, z) = 0,
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where fk(x, y, z) (1 ≤ k ≤ n) are homogeneous polynomials of degree k, then the tangent
cone at the origin is given by the equation fm(x, y, z) = 0.

Therefore, the tangent cones of R(n, d, p) given by Eqs. (11) and (12) at the points O and
P are given by the following equations:

(

⌊ d
2
⌋

∑

k=0

k
∑

j=0

(−1)k+j
(

d

2k

)(

k

j

)

(∓p · z)d−2(k−j)(x2 + y2)
n−d+2(k−j)

2

)s

−
(

⌊n
2
⌋

∑

i=0

(−1)i
(

n

2i

)

xn−2iy2i
)s

= 0 ,

(13)

(

⌊ d
2
⌋

∑

k=0

k
∑

j=0

(−1)k+j
(

d

2k

)(

k

j

)

(∓p · z)d−2(k−j)(x2 + y2)k−j
)s

−
(

⌊n
2
⌋

∑

i=0

(−1)i
(

n

2i

)

xn−2iy2i(x2 + y2)
d−n

2

)s

= 0 ,

(14)

respectively.
In these equations, −p · d corresponds with the point O, and +p · d with the point P as

the origin.

Ad C: If R(n, d, p) is given by Eq. (11), any point Z0(0, 0, z0) lies on the surface and the
tangent cone at Z0, with the origin translated into Z0, is given by the following equation:

(x2 + y2)
s(n−d)

2 = 0. (15)

This equation represents the s(n−d)
2

-fold pair of isotropic planes through the axis z.
If R(n, d, p) is given by Eq. (12), it is clear that a point Z0(0, 0, z0) on the axis z lies on

R(n, d, p) iff z2
0 − p · z0 = 0, i.e., Z0 = O or Z0 = P .

Ad D: For z = 0, Eq. (11) takes the form (2), while Eq. (12) also gives Eq. (2) but multiplied

by (x2 + y2)
s(d−n)

2 . It means that the intersection of R(n, d, p) and the plane z = 0 is R(n, d)

for n > d, while it splits on R(n, d) and s(d−n)
2

-fold isotropic lines through the origin for n < d.
The circle c in the plane ζ is the double curve of R(n, d, p) iff the intersection point of ζ and
R(n, d) is a double point of R(n, d). Thus, the number of double circles on R(n, d, p) is equal
to the number of double points of R(n, d) if n · d is odd. But, if n · d is even, other n double
circles in the planes ζ exist on R(n, d, p). These circles lie in the planes through the double
tangent lines of R(n, d) at O and their diameters are OP . If O = P , these circles degenerate
into the pairs of isotropic lines.

Corollary 1 If p = 0, the tangent cone of R(n, d, p) at O = P splits into n or d planes.

Proof: If p = 0, Eqs. (13) and (14) take the following forms:




⌊n

2
⌋

∑

i=0

(−1)i

(

n

2i

)

xn−2iy2i





s

= 0, (16)





⌊n

2
⌋

∑

i=0

(−1)i

(

n

2i

)

xn−2iy2i(x2 + y2)
d−n

2





s

= 0, (17)
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respectively.

Since the polynomials in these equations are n-th (Eq. (16) or d-th (Eq. (17) degree
homogeneous in x and y, therefore they can be reduced to linear and quadratic factors.
These factors equal to 0 represent n or d planes (real or imaginary) through the axis z.

3.4. Visualizations of R(n, d, p)

The following figures are computed and plotted by the software Mathematica.

Figure 5: If d = 1 and p 6= 0, the tangent cones at the points O and P are proper cones.
If n is odd, there are no double circles on R(n, 1, p);

for even n 2n double circles exist on R(n, 1, p).

Figure 6: If d = 1 and p = 0, the tangent cones at O split into n planes.
If n is even, these planes are the double tangent planes of R(n, 1, 0).
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Figure 7: Four rose surfaces.

Figure 8: Seven rose surfaces.
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