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Abstract
This thesis covers the utilization of N buffers in order to reduce resource contention on an abstract 
WebGL machine, and subsequently freeing up machine processing time. The buffers touched are 
frame buffers and vertex buffers.

The paper also briefly covers the purpose and function of N buffering in relation to graphics and 
the function of a WebGL machine, the research and production of benchmark prototypes, some 
relevant benchmark results, and analysis and conclusions.

The conclusion is made that the use of N>1 buffering is a potentially viable strategy for increasing 
WebGL performance, and some theories are outlined and suggestions given for further research to 
be made for the resolving of how this performance gain may be improved.

The thesis was produced in cooperation with Citerus AB.
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Sammanfattning
Denna uppsats granskar nyttjandet av N buffrar för att minska uppkomsten av resurskonflikter på 
en abstrakt WebGL maskin, och således frigöra processtid på maskinen i fråga. De typer av buffrar 
som vidrörs är så kallade frame buffers och vertex buffers.

Uppsatsen går också igenom syftet och funktionen hos N buffrar i relation till grafik och funktionen
hos en WebGL maskin, förstudien kring och produktionen av prestandatest-prototyper, en del 
relevanta mätresultat, samt analys och slutsatser.

Slutsatsen nås att nyttjandet av N>1 buffrar är en potentiellt gångbar strategi för ökandet av 
prestanda hos WebGL, och en del teorier presenteras och förslag ges kring ytterligare studier för att
öka prestanda ytterligare.

Examensarbetet producerades i samarbete med Citerus AB.

Nyckelord

WebGL, grafik, OpenGL ES, prestanda, optimering, buffert, trippel buffert.
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1. Introduction
This section outlines the purpose and ambitions of the project, the contents of the thesis, and other
relevant information in relation to those subjects.

1.1 Background
The intent of this degree project in computer engineering is to investigate the advantages and 
disadvantages which N-buffering may yield for applications build around WebGL, for the sake of 
increasing the utilization of rendering capacity of some, imaginary or real, graphics machine.

Euclidian geometry applied in rendering computer graphics potentially requires significant amount
of computation capacity. Describing complex shapes such as trees, rocks, roads, cars, etc. may 
require amounts of data beyond the limits of contemporary graphics machines. For this reason, 
applications rendering geometry commonly rely on dedicated hardware circuits. WebGL [1] is an 
open standard offering a standardized interface to this kind of hardware, through JavaScript in a 
web browser, which facilitates application distribution through Internet browsers.

Of paramount significance is the efficient utility of WebGL machines in relation to applications 
where geometry is complex, since the degree of efficiency vastly impacts the usefulness of 
applications. Improving WebGL efficiency also serves to improve device energy consumption, or 
reduce requirements on hardware complexity where battery time, budget, or other factors may be 
critical.

1.2 Goals
The aim and scope of this thesis is to investigate one particular strategy, namely N-buffering, with 
the purpose of evaluating its potential in increasing the performance utilization of an abstract 
WebGL machine.

The below list reflects the questions answered by the thesis, and the concrete tasks performed in 
order to answer those questions and thus achieve the thesis goal.

• Theory and Research

• What is N-buffering and how does it affect performance?

• Which are the more significant functions of WebGL machines?

• When will the usage of N buffers help increase the utility of WebGL?

• Which use cases will best reflect normative usage of a WebGL machine?

• Which measurements most adequately reflect the performance of a WebGL 
machine?

• Experimentation

• Decided on and implemented prototype reflecting normative use cases for WebGL.

• Collected data from produced prototype.

• Analysis

• Related any relevant statistics from the gathered data.

• Stated the formal conclusion about the potential gains of N-buffering in WebGL.

1



1.3 Delimitations
The most notable delimitation is the narrowing down the scope of improving performance to only 
N-buffering. Graphics machines are commonly complex, and there would be much room for 
optimization by considering other aspects of such. However, as time, and experience within the 
domain, are scarce, the scope was thus restricted.

The time available and the lack of experience within the field, likely and notably lead to the search 
for potential synchronization issues in the abstract WebGL machine not being exhaustive, and the 
choice of prototypes to be implemented not taking into account issues and complexities 
undiscovered by the author.

1.4 Employed Methods
Firstly, research was made in relation to how an abstract WebGL machine works, and how it is 
utilized. As sufficient knowledge in this area was acquired, then research moved on to determining 
potential synchronization issues solvable through N-buffering. 

Secondly, attention was directed toward finding viable strategies for implementing N-buffer 
systems in WebGL.

Thirdly, some common usage scenarios for WebGL were decided upon, chosen in relation to how 
they would be thought to burden the abstract WebGL machine. Those scenarios were materialized 
into a HTML/WebGL benchmarking prototype, used for simulating different categories of WebGL 
application.

The Mozilla Firefox [2] browser was used for debugging and testing the prototype. Firefox was used
since it provides platform independence and also had JavaScript analyzation tooling. Google 
Chrome was also employed as a complement.

For better organizing the JavaScript code written, the require.js framework [3] was used.
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1.5 Chapter Overview
For the sake of clarity and to simplify the use of the thesis, a list of the chapters is here presented.

1. Introduction (page 1)

Relates the background and scope of the thesis.

2. Current Situation (page 5)

States the current situation of the industry revolving around the rendering of 
real-time 3D graphics.

3. N-Buffering (page 7)

Explains the concepts of using one, two, or three or more screen buffers between a 
computer application and a monitor.

4. The Abstract WebGL Machine (page 11)

Outlines the stack of languages and technologies required in order to produce 
WebGL applications, briefly explains the WebGL rendering pipeline, and also relates
the purpose and organization of the WebGL API.

5. Research on Synchronization (page 15)

Relates the research made on the topic of synchronization in relation to the WebGL 
machine, depicts an imaginary graphics machine and points out where 
synchronization issues may occur. Also, relevant N-buffer strategies for overcoming 
these issues are presented.

6. Performance Analysis of WebGL Machines (page 19)

Briefly explains how normative usage of the WebGL machine looks in relation to the 
research on synchronization, and lists metrics which will be used to analyze the 
WebGL machine.

7. Prototype Implementation (page 21)

Describes the produced prototype from an implementation standpoint, and 
accounts for the collection of data from the prototype.

8. Data Results and Analysis (page 25)

Presents significant statistics produced through the use of the prototypes.

9. Discussion (page 31)

Contains a brief discussion, and some observations, on the topics of improving 
general WebGL performance further, and the implications of improving WebGL 
performance.

10.  Conclusion (page 33) 

Accounts for the conclusions made, by the author of the thesis, in relation to the 
usefulness and implications of using N buffers in relation to WebGL.
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2. Current Situation
A brief overview of the current situation surrounding WebGL and such technologies, in relation 
to the thesis.

Computational devices become increasingly smaller, more available, and more heterogeneous. 
Smart phones, tablets, smart watches, and a plethora of other such devices are being introduced 
and accepted by the consumer market at an accelerating pace. Computing has no value in and of 
itself, rather it relies on useful applications. When computing devices become more heterogeneous,
then there is a problem in producing an incentive for software developers to produce new and port 
existing applications to them.

One of the main strategies employed in overcoming the problems introduced with machine 
diversity, is the specification of abstract, or conceptual, computing machines. The physical 
machines produced may then be designed to conform to one or more of these abstract machine 
specifications. This enables software developers to target these conceptual machines when 
developing applications, making them widely deployable on heterogeneous physical devices.

One such abstract machine is the WebGL [1] machine. WebGL is a promise specifying certain 
things a complying machine has to be able to do, at the issuing of specified instructions. WebGL 
was produced in order for developers to be able to use the Internet and web browsers as the 
primary means of distributing real-time graphical applications.

As of the day of the writing of this thesis, the WebGL 1.0 specification is conformed to, fully or in 
part, by many of the commonly used web browsers. The amount of applications relying on the 
standard is still, however, relatively small. The standard is expected to mature over time, and 
receive an increase of users and utility.

There is a great need to make the WebGL implementations more stable, and knowledge about how 
to effectively utilize them, more available; which is the primary incentive for the pursuing of this 
degree project.
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3. N-Buffering
This section contains a brief theory on the need and utility of various configurations of data 
buffers in generals, and screen buffers in particular. In case the topics are familiar to the reader, 
the reader is invited to skip to the next chapter.

3.1 Buffering
Buffering is the act of queuing data between two processes. A producer process adds new data to 
the buffer memory region as data is completed, while a consumer process removes data from the 
memory region as it finishes processing previously removed data. Buffering is a decoupling strategy
which make two processes, actual or conceptual, time-independent as long as the buffer memory 
region does not run out of space. The use of buffers is beneficial in avoiding processes having to 
wait for each other to enter a certain state in order to continue their operation, also usually referred
to as synchronization.

Despite the primary purpose of buffers being to avoid synchronization, one of the main concerns 
while implementation them is avoiding the impact of the synchronization that is still required. The 
processes acting on the buffer must always be seeing the buffer in complete states, which means the
buffer essentially is reserved to the one process currently using it. If both processes access the 
buffer frequently, then they will both have to wait to access it for significant amounts of time. This 
can be overcome by using several buffers, reserved in order by both processes.

As observed by M. Trapp in OpenGL-Perfomance and Bottlenecks, 2004 [4], the sending of data 
between two processes is the principal bottleneck structure of any processing pipeline. When some 
activity by either of two communicating processes requires significant time with exclusive buffer 
access, then there is significant chance that such activity will cause the other process to idle for a 
non-trivial amount of time.

Even though this chapter specifically investigates the buffer between a graphics machine and a 
monitor, the principles conveyed are widely applicable in many other processing pipeline contexts.

3.2 Screen Buffering
A modern computing machine and its attached screen, or monitor, are two conceptual processes 
acting on a single buffer, namely the frame buffer [5]. This frame buffer represents the link to the 
monitor attached to the computing device from the perspective of the computing device. By 
altering the contents of this buffer, the visible contents on the attached monitor are changed the 
next time the monitor is updated.
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3.2.1 Single Buffer
If a computer application, as illustrated in Illustration 1, would perform its drawing operations 
directly to the frame buffer, with no regard to when the monitor is updated (i.e. without 
synchronization), there would be a significant risk that the monitor would update while some 
drawing operation was being carried out. The monitor would show partial draw operations. The 
computing machine would be, however, completely unhindered in its rendering.

To avoid showing partial drawing operations to the device user, one strategy is to synchronize 
access to the frame buffer. This, however, leads to the computing application having to wait for 
significant amounts of time before being allowed to performed issued operations. Also, the 
computing application looses control over how many drawing operations are performed before the 
monitor is updated, which also may be regarded as the application showing partial results.

3.2.2 Double Buffers
To overcome the problems with single buffering, another buffer may be introduced, as depicted in
Illustration 2. This second buffer is commonly referred to as a back buffer [5]. Rather than having 
the application draw directly to the frame buffer, it performs all of its operations to a back buffer, 
which has no direct relation to the monitor. When the application is done drawing to the back 
buffer, its contents are copied unto the frame buffer at a point in time when there is no risk of 
displaying incomplete results. The issue of exposing incomplete drawing operations is thus 
avoided.
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3.2.3 Triple Buffers
Both using single or double buffers may, however, have some implications on performance. In both
cases, access to the frame buffer may be synchronized.

By introducing a second back buffer [6], as illustrated in Illustration 3, a computer application can 
draw to that buffer immediately after completing operations on the first one, and thus avoid having
to wait for the first one to become available again. The two buffers are used by the application in 
turn, and allows for the copying between a back buffer and the front buffer to happen to take some 
time.

3.2.4 More Buffers
More buffers may be introduced to avoid rendering time jitter, which is fluctuations in rendering 
time. This, however, may lead to complications if rendering is to be done in immediate response to 
input, as the time between input being registered and its results are made visible is increased.

9
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4. The Abstract WebGL Machine
This section briefly describes the environment and internals of the WebGL machine. In case the 
topics below are familiar they may be safely skipped, as the section contains no information 
regarding the aim of the project or its results.

The abstract WebGL machine was specified for the rendering of vector graphics using a dedicated 
hardware circuit, from an application residing within a web browser. The machine receives defined 
instructions in order to alter its behavior. In order to relate the standard in a brief manner, (1) the 
domains and languages of WebGL, (2) the machine internals, and (3) the machine application 
interface are hereafter described.

4.1 Application Stack
A WebGL application is, by nature, a distributed application. The application code and resources 
reside on a web server, and these are served as requested by eligible clients. This relies on code and 
resources being handled through a client application, a web browser, capable of correctly 
translating them into expected behavior. The WebGL specification [7] lists a set of technologies 
which a web browser has to conform to in order to properly run WebGL applications.

The WebGL application stack consists of, as Illustrated in Illustration 4, the domain languages 
HTML, JavaScript and GLSL ES for WebGL. They define the logical context in which a WebGL 
application is run, and determine its behavior.

4.1.1 HTML
HTML [8], which is a language for specifying the logical layout and contents of a web page, 
provides the context in which a WebGL application resides. The HTML context has to contain an 
identified <canvas> element, from which a WebGL context may be acquired. The <canvas> 
element defines the size and position of the visible WebGL rendering context, and behaves as a 
regular HTML element.

4.1.2 JavaScript
JavaScript [9], which has been standardized under the name ECMA Script,  is a simple 
prototype-oriented scripting language which may be used to manipulate the HTML Document 
Object Model (DOM) of a web page. The language is supported by most web browsers and is the 
only language currently available for use with the WebGL API, through which WebGL is utilized. 

4.1.3 GLSL ES
GLSL ES [10], the OpenGL Shading Language for Embedded Systems, is the specification of two 
very similar languages. Code written in those languages is sent to, compiled by, and run by, the 
abstract WebGL machine. The languages define how the WebGL machine is to reply to issued 
instructions, and defines algorithms for calculating vertex transformations and color values. 
WebGL supports a subset of the OpenGL ES 2.0 Shading Language.
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4.2 Rendering Pipeline
The rendering pipeline presented in this section explains the parts of the graphics machine which 
are imperative in understanding for the use of WebGL, and how these relates to incoming 
instructions and rendered content.

The abstract WebGL machine operates primarily on two kinds of data, which both share the same 
internal format. The first kind is geometry, or vertex data. A vertex is a relative point in space, 
which in WebGL has between two and four dimensions.  The second kind of data, color, or 
fragment data, is described as sets of color values.

The rendering pipeline is the sequence of steps, transforming given geometry into pixel data, that 
are performed by the WebGL machine when it is issued a draw command. The sequence is depicted
in Illustration 5.

Before a WebGL machine can operate on any vertex or color data, it has to have a shader program 
in place. The shader program consist of a vertex program and a fragment program, which are 
responsible for handling any data handed to the WebGL context. The above illustration depicts the 
relation between the shader programs, the frame buffer and the JavaScript context.

4.2.1 Setting Up State
Between each draw call, the state of the WebGL machine may be altered through the issuing of 
various calls through the JavaScript WebGL API. Apart from being able to upload texture data, 
manage buffers, and so on, room is given to pass values from the JavaScript context to the shader 
programs. These values are called attributes and uniforms. They differ through the former type 
being provided one value at a time, each value resulting in its own vertex shader call, and the latter 
type being provided to every single shader call, but not invoking calls on its own.

4.2.2 The Vertex Shader
All geometry provided, either directly or using buffers, travel one vertex at a time through the 
vertex shader. The primary purpose of the vertex shader is to determine which vertex value to pass 
on to the fragment shader. Vertices usually need to be adjusted in relation to the direction and 
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perspective of the camera, and the state (position, rotation, etc.) of the model which the vertex 
belongs to.

The vertex shader also has the ability to pass on varying values directly to the fragment shader. 
These contain data such as colors, vector normals, or any other data which needs to be 
interpolated.

4.2.3 The Fragment Shader
The purpose of the fragment shader is to translate given geometry into fragment, or pixel data. In 
order to facilitate this, all data passed from the vertex shader to the fragment shader is 
interpolated. Interpolation is the process whereby all relevant intermediary values between two or 
more related values are calculated.

If, for example, the WebGL machine is instructed to draw a triangle, consisting of three vertices, 
these three vertices would result in three calls to the vertex shader. Subsequently, the fragment 
shader would have to be called the same amount of times as there are pixels between the vertices. 
The vertex passed on to each call of the fragment shader is an interpolated vertex from somewhere 
in-between the geometry vertices which make up the triangle.

When a suitable color is decided upon, in relation to, perhaps, light sources, materials, etc, it is 
passed on to the frame buffer.

4.2.4 The Frame Buffer
The frame buffer is the piece of memory which represent the WebGLRenderingContext in the 
hosting browser. When a pixel reaches the frame buffer, it is made visible at the next frame update.

4.3 WebGL Application Interface (API)
The purpose of the JavaScript WebGL API [7] is to (1) initialize the WebGL context, (2) provide the 
context with data, and (3) to issue state calls to the context. The context is terminated 
automatically when no longer used.

4.3.1 Initialization
At the center of the WebGL API is the HTMLCanvasElement [11]. This element has to exist in the 
HTML file which include the JavaScript containing the WebGL business logic.

By calling the getContext method of the <canvas>  element, the WebGL context is initialized, and 
an object containing the API methods is acquired.

The above code example, Illustration 6, shows how to acquire a reference to a 
HTMLCanvas-Element object identified by “webglCanvas”, and then initialize a 
WebGLRenderingContext, which interfaces the WebGL API. For the sake of providing some visual 
feedback, the example also contains code for setting the color of the WebGL context to red.

4.3.2 Context Data
There are three main categories of data which may be communicated to the WebGL machine, (1) 
shader programs, (2) arbitrary number data, or primitive data, and (3) texture data.

Shader programs. In order for a WebGL machine to do anything more than change the color of a
context, it must utilize a shader program. The GLSL ES code constituting the shader program is 
uploaded, compiled, and linked into a program residing inside the WebGL machine by a series of 
calls.

13
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Primitive data. The WebGL machine will, in most common scenarios, require some data to work 
on in producing visual output. The WebGL API provides methods for uploading floating point 
numbers, integers, arrays, vectors, and matrices. Arrays of vectors are traditionally used for 
sending complex geometry to the WebGL machine, and matrices are often used for manipulating 
geometry models, the camera view and the camera projection. The WebGL standard allows, 
however, for any data to be used in any way. Data may be uploaded for use during one draw 
operation, or into buffers, allowing the data to be used without being sent until the buffer is 
destroyed.

Texture data. Textures are images mapped unto the space between vectors. Sending texture data 
to the WebGL machine relies on using HTMLImageElement objects. They are uploaded into 
buffers, and used by binding them before issuing draw calls.

4.3.3 Other State Calls
In one way or another, all methods of the WebGL API issue some command to the WebGL 
machine, even the ones used for initialization and context data uploading. The rest of them are 
used to set the abstract machine in different states. For example, calling drawArrays() will make 
the machine start rendering until previously issued operations are completed, calling 
bindTexture() makes the selected texture buffer available during the next rendering, and so on.

There is one implicit state call, which is worthy of mention. When the JavaScript code returns 
processing time to the browser, the browser will cause the <canvas> element hosting the WebGL 
context to be updated [12]. This means that swapping the frame and back buffers, or some other 
equivalent operation causing changes to be made visible, is performed implicitly by the HTML 
renderer and not explicitly from the JavaScript context. 
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5. Research on Synchronization
This chapter describes the research made on the subject of finding potential issues which may be 
countered using N-buffering. It depicts a naïve concrete rendering machine, and accounts for its 
complexities within the scope of the thesis. It also presents viable strategies in countering those 
complexities.

In case there are no points of synchronization in the abstract WebGL machine causing it to wait for 
significant amounts of instruction cycles, then there are no viable advantages in using triple buffers
in relation to rendering performance, as explained in chapter 3. For this reason it is imperative to 
understand when and how synchronization occurs.

The primary source of information on this particular subject is the formal WebGL 1.02 
specification. Secondarily, information published by OpenGL ES compliant graphics hardare 
vendors, such as Apple Inc, Blackberry Inc, NVIDIA, etc. may be used to gain understanding on the
subject of how they view their own implementations as concrete machines, and which 
recommendations they give regarding programming such.

5.1 The Formal WebGL Machine
The abstract WebGL machine, as described in version 1.0.2 of the WebGL specification [13], is not 
defined independently, but rather as a subset of OpenGL ES 2.0.25 [14]. WebGL builds on the 
definitions in OpenGL ES, and then explicitly states the differences.

Searching all chapters and sections in both the WebGL 1.0.2 [13] and the OpenGL ES 2.0.25 [14] 
specifications for keywords such as “synchronize”, “flush”, “queue”, etc. the conclusion ought to be 
reached that the formal definition of a WebGL machine does not state how to construct a 
compliant machine. Rather, the formal specification is primarily concerned with what such a 
machine ought to be able to do. No specific details are outlined about command queues, pipelines, 
or any other concrete construct.

The WebGL specification does, however, define the functions flush and finish. The former forces 
the application to wait until all issued commands have been successfully communicated to the 
WebGL machine, and the latter forces waiting until the WebGL machine has completed any 
pending command. This implies that most WebGL implementations are expected to use a 
command queue, and that the graphics machine is expected to operate asynchronously in relation 
to the utilizing application.

5.2 Machine Vendor Recommendations
As WebGL is a standard complied to by a web browser, and not directly by a graphics card, some 
assumptions had to be made in relation to which graphics cards are relevant to research. Since 
WebGL is derived from OpenGL ES 2, the the scope of the study was limited to the category of 
graphics cards which comply with this standard. In reality, however, WebGL may be implemented 
on top of Direct X, OpenGL, or any other standard, with or without any relation to a dedicated 
hardware circuit.

5.2.1 OpenGL ES on Apple iOS
Apple Inc. has published guidelines for people developing applications utilizing OpenGL ES on 
their iOS devices [15]. The guidelines describe the graphics card as a server receiving commands 
from the application, taking the role of a client. Both parts are described as operating 
independently and communicating through client requests.

The guidelines also contained details regarding shared resource contention. In case information is 
altered by the client or read by the server at the same time, locking occurs. This is accordingly true 
for textures, vertex buffer objects (buffered primitive data), or any other buffered data. Also, 
N-buffering of data on the graphics card is suggested as an approach in avoiding synchronization.

5.2.2 OpenGL ES on BlackBerry 10
The technical guidelines for developing BlackBerry 10 OpenGL ES applications [16] are similar to 
those of Apple Inc. The guidelines concur on the image of the OpenGL ES machine as 
asynchronous and having command queues. The guidelines recommend striving for few draw 
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operations per frame rendered, using double or more vertex buffer objects to avoid resource 
contention, and performing minimal amounts of synchronizing operations, such as flush or finish.

5.2.3 OpenGL ES on NVIDIA Tegra
Similar guidelines as those previously mentioned are available from the graphics chip 
manufacturer and designer NVIDIA Corporation. In the guidelines for their Tegra chips [17], the 
idea of a command queue is reaffirmed. The advice to “[t]ry to deliver as much geometry as 
possible with each submitted draw call” in the mentioned guidelines implies that there is a 
performance cost attached to performing such a draw operation.

5.3 A Notional Concrete Rendering Pipeline
As there is no reference implementation of WebGL, and a compliant machine may behave in any 
way necessary to fulfill the requirements of the specification, there is no definitive way of 
describing when synchronization will occur in the abstract, or imaginary, WebGL machine. As this 
is the case, a notional concrete rendering pipeline was produced from the observations and 
recommendations available in from the sources mentioned in sections 5.1 and 5.2. While it might 
be regarded as speculative, it is substantial enough to draw some theoretical conclusions about 
avoiding synchronization.

The notional machine, as illustrated in Illustration 7, has some significant characteristics in 
relation to synchronization, as outlined in the below subsections.

5.3.1 The Command Queue
Whenever the WebGL client application issues any command to the WebGL server, that command 
is put on the Command Queue. This queue exists in order for the client and server to be able to 
operate in parallel.

One way commands. Most commands available for putting on the command queue are one-way 
commands, and do not require the server to send any reply to the client.

Blocking commands. Some commands, such as readPixels, getError, getParameter, etc. are 
specified as immediately returning some data to the commanding client. Such commands will most
likely cause the client application to idle while waiting for the server to finish all commands up 
until the one waited for. While waiting, the client application may not issue any more commands. 
This causes the server to be entirely out of work when the blocking command has been carried out.

Queue overflow. The command queue may be assumed to be finite in length. If an issued client 
command does not fit in the WebGL server, then the command has to be stored somewhere else 
while waiting for room in the command queue. The WebGL specification does not define any 
behavior in relation to queues, which means the WebGL implementation must guarantee that all 
issued commands are executed at some point. Synchronizing a client-side queue with the command
queue may be costly and would be expected to have some impact on performance.

Changing state may be expensive. Each processed command implies a server state change. 
State changes may require tear-downs and initializations, reducing the effective time calculations 
may be performed.
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5.3.2 Internal Buffers
The WebGL server houses its own buffers containing data uploaded by the client. The relevant 
kinds of buffers are VBOs (Vertex Buffer Objects), texture buffers, and FBOs (Frame Buffer 
Objects).

As a general rule, when the WebGL server and the WebGL client attempt to read from and write to 
the same buffer at the same time, synchronization occurs. The client will be forced to wait until the 
server is done reading. This particular kind of problem is called resource contention.

Resource contention is most probable in vertex buffer objects. Textures are more commonly 
uploaded during initialization, and freed during termination, and are only read by the graphics 
machine during runtime. Vertex buffers objects, however, contain geometry and other primitives, 
and will likely need to be altered very frequently in order to produce animation.

Frame buffer objects are, in essence, back buffers, as explained in chapter 3. The WebGL machine 
may be directed to draw unto such a buffer rather than drawing to the frame buffer. These buffers 
may be used for frame post-processing, or for generating textures mapped unto geometry. FBOs 
are unlikely to be subject to contention since they are both generated and consumed by the server.

5.4 Avoiding Synchronization Issues
With the ideas presented in section 5.3 in mind, which are the strategies most suitably deployed in 
order to compensate for the issues which may arise from synchronization?

5.4.1 Using N Frame Buffer Objects
Frame buffer objects may be utilized to render one or more frames before they are to be presented 
through the default frame buffer. This way the WebGL application is given time to compensate for 
fluctuations in waiting time, as explained in section 3.2.3.

One drawback of this approach is that it would impose additional delay before the application may 
visually represent feedback to a potential application user, feeding the application with instructions
through means such as mouse, keyboard, gamepad, or similar. It would also lead to using up more 
memory on the WebGL server, which may be non-trivial in serving serving data to monitors with 
arbitrarily high pixel count, or in WebGL servers where the amount of memory available is limited.

5.4.2 Using N Vertex Buffer Objects
Since there is a significant risk of resource contention in frequently altered vertex buffer objects, a 
viable strategy in avoiding that would be to use N, but most probably two, vertex buffer objects. 
Since writing to a buffer is assumed to be more costly than reading from a buffer, there seems to 
little to gain in keeping more than two such buffers. The buffers would be used in turn by both 
client and server.

The only apparent drawbacks would be the increase in application complexity and the increase of 
memory usage.

5.4.3 Minimizing Communication
Through making sure that the server acquires the fewest possible amount of instructions for it to be
able to perform its designated tasks, the risk of buffer overflow is reduced, and the amount of state 
changes is decreased. This could, for example, be achieved through implementing more complex 
shader programs, by using sprite maps, or merging geometry always rendered together.

There technical drawbacks would involve a potential increase in application complexity.
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6. Performance Analysis of WebGL Machines
This chapter relates how test cases were decided upon which, within the scope of the thesis, 
represent different areas of usage of a WebGL machine. It also describes the metrics which were 
chosen to measure WebGL machine utilization.

6.1 Normative Test Cases
This section outlines the different prototypes to be produced for testing the impact of introducing 
N buffers. The prototypes represent test cases which burden the WebGL application in different 
ways, which should provide different insights.

The test cases were chosen in relation to the strategies listed in section 5.4. They are to reflect 
normative usage of a WebGL machine in some relevant way. The strategy named Minimizing 
Communication is, however, not measured since it is not directly related to using buffer 
configurations.

6.1.1 Cheap Square Cloud
Particle effects such as clouds, sparks, or rain, can be achieved in diverse ways. This test will, 
however, require the WebGL client to provide the coordinates and colors of every single particle 
rendered. The client application will be responsible for re-positioning each particle every frame, 
causing high amount of communication between the client and server. This very unlikely reflects 
many actual implementation of particle effects, since much of the calculation burden could be 
moved unto the graphics machine, which is likely to be much more effective at performing such 
calculations.

This is expected to reduce the impact of using N frame buffer objects, but increase the impact of 
using N vertex buffer objects. This because of significant traffic between server and client, but the 
rendering time of each particle instruction being insignificant.

6.1.2 Expensive Sphere Cloud
Calculating light is a task which puts significant burden on the graphics card, but requires little 
information provided from the WebGL client. 

A prototype is to be produced where light is radiated from the middle of the screen to N spheres, 
with each sphere moving in a circle around the screen. The client will provide coordinates and 
colors for the spheres.

This ought to reduce the impact of using N vertex buffer objects, but have an increase in 
performance when using N frame buffer objects. This is expected because the traffic between the 
server and client ought to be far from the maximum capacity, while the time required to render a 
single particle ought to be significant.

6.2 Relevant Metrics
In order to measure the difference which the introduction of N buffers make, data will be collected, 
as outlined in this section, running tests with all relevant configurations of buffers.

The time it takes for a WebGL application to render and present a frame consumed by the frame 
buffer ought to be an adequate indication regarding the general performance of the WebGL 
application.

There are, however, some implications surrounding this metric. The method advocated by W3C for 
issuing continuous rendering instructions to a JavaScript context, using the function 
requestAnimationFrame, is limited to an animation rate which corresponds to the vertical 
synchronization of the monitor in which the WebGL context is displayed [18]. For most computers 
this means that the rendering time for one frame is limited to a minimum of about 1/60 seconds, or
about 16.7 ms, assuming most computer monitors has a refresh rate of 60 times per seconds.

There are other functions which may be used for the purpose of frame animation [19], but these 
give little to no guarantees about being accurate. The purpose for the existence of 
requestAnimationFrame is for the web browser to be able to prioritize those calls above other 
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events which have less of an impact on the user experience. For this reason, 
requestAnimationFrame is used by the prototypes produced as part of the thesis.

In order to compensate for the limit in minimum rendering time, prototypes will be designed to 
first determine some relevant rendering burden, which then will be same both for rendering with 
and without buffers. This way the relative difference may be used to measure the impact of 
buffering.

The rendering time aimed for when determining the performance burden will be 1/20 seconds, or
50 ms.

It is, however, worthy of mention that as the relative difference in performance between buffer 
configurations will be of most interest, it does in reality not matter much whether or not the 
original burden placed the no-buffer configuration will result in an average frame rendering time 
near 50 ms.

Average Frame Rendering Time will be calculated by sampling the frame rendering time each 
rendered frame, summing them, and then dividing the sum with the amount of frames collected.

T = Ftime sum / Famount

T = Average time, F = Frame.

The frame rendering time average will be presented together with information about sample 
count, standard deviation, and confidence interval.
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7. Prototype Implementation
This section details how the prototype was designed in relation to buffer configurations and data 
collection.

7.1 Object Orientation in JavaScript
JavaScript was chosen the implementation language for the produced prototypes. JavaScript 
diverts from many more traditional object oriented languages in too many ways to account for as 
part of this thesis. Despite this, however, the code produces for the prototypes will be referred to as 
classes, objects, and using other traditional object oriented terms. For a more throughout 
description of the JavaScript language, please turn to the Mozilla Foundation [9], or some other 
authority on the subject.

7.2 Implementing N Buffers
As explained in sections 5.4.1 Using N Frame Buffer Objects and 5.4.2 Using N Vertex Buffer 
Objects, the primary goal of the prototypes produced was to measure the impact of using one or 
two vertex buffers, and using one or two frame buffers. For this reason, two classes of interest were 
produced, namely FBOBuffer and VBOBuffer.

Upon instantiation, both FBOBuffer and VBOBuffer allocate all the potentially necessary buffers 
they encapsulate. The actually utilized buffers may consequently be changed during the lifetimes of
the objects through calling their setN() methods.

FBOBuffer. The FBOBuffer class, as seen in Illustration 8, relies on capturing draw calls. By 
putting draw operations between calls to the startCapture() and stopCapture() methods, the draw 
operations are performed to an off-screen texture, rather than to the default frame buffer. When a 
captured texture is needed for rendering, it may be acquired through the getNextBuffer() method. 
When only using one texture buffer, getNextBuffer() will return the last captured texture. When 
increasing the texture buffer amount, getNextBuffer() will return the buffer which was captured 
first of the currently unreturned buffers.

VBOBuffer. Vertex buffers, which are encapsulated by the VBOBuffer class illustrated in
Illustration 9, are used for storing data needed by a draw operation. For this reason the class in 
question contains the method upload(), which uploads given data into the vertex buffer used for 
the longest time ago. If only using one buffer, then that one is always used. Uploaded vertex data 
needs to be enabled before a draw call, and disabled after it. The methods enable() and disable() 
are used for activating and deactivating a relevant vertex buffer before and after a relevant draw 
operation.
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7.3 Collecting Data
Two categories of data was collected as part of the prototype benchmarks, average rendering times 
and relative performance indices. The data collected is motived in section 6.2 Relevant Metrics.

7.3.1 Average Rendering Times
Collecting the frame rendering times relied on the two classes in Illustration 10, Analyzer and 
AnalyzerReport. The first of those accepted rendering times through its push() method. After a 
benchmark was successfully completed, the generateReport() method was invoked in order to 
produce an instance of AnalyzerReport, which included all time samples, their sum, average and 
standard deviation.

All rendering times were collected in the main loop function, which was scheduled by the 
requestAnimationFrame() function, as described in section 6.2 Relevant Metrics. 

7.3.2 Relative Performance Indices
A relative performance index is a burden, as a particle amount, placed upon the benchmark 
application in order to adjust the average frame rendering time of the normative benchmark run to 
some relevant interval. The performance index is of no direct value to the conclusion of the thesis, 
but is required to increase the quality of the frame rendering times sampled. 

The motivation behind collecting relative performance indices if further discussed in section 6.2
Relevant Metrics. 
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7.4 Cloud Prototype
The source code of the Cloud Prototype may be reviewed using the information in Appendix 2.

At the heart of the Cloud Prototype is the Benchmark class, as shown in Illustration 11. The 
Benchmark class may configured with different amount of frame and vertex buffers through its 
methods setFBOTextureN() and setVBON(). A benchmark may be run in calibrating mode, which 
is used to determine a suitable particle burden for the static mode, which in turn is used to collect 
frame rendering times. Data collection is further explained in section 7.3 Collecting Data.

A Benchmark keeps track of two separate programs, a cloud program and a post program. The first
program is used to render the particles in the cloud, while the second is used to manage the frame 
buffer. The cloud program keeps track of a VBOBuffer, which is used to upload particle 
information, while the post program keeps one FBOBuffer for keeping track of frame buffer 
textures, and one VBOBuffer, for keeping track of the four corners of the frame buffer textures.

The Cloud class manages a list of pre-initialized Particle objects. All particles store their data in a 
single Float32Array, which they all refer to internally. When calling the getData() method of the 
Cloud class, a view into the array containing all particle data is returned. This method is used by 
the Programs.Cloud class in order to present Particle data to the graphics machine. The positions 
of all Particle objects are updated by calling the update() method, which iterates through all active 
particles.

The Benchmark class may be initialized into two different modes, cheap and expensive mode. The 
only difference between these modes, is the complexity of the cloud shader program used. By using 
one program where the complexity of a particle is low, and one where the complexity of a particle is
very high, the goals set out in section 6.1 were satisfied without the need to write two separate 
prototypes.

7.4.1 Cheap Mode
Running the Cloud Prototype in cheap mode, all particles are drawn as small transparent squares. 
An example of this is shown in Illustration 12.
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7.4.2 Expensive Mode
When run in expensive mode, the particles of the Cloud Prototype are drawn as spheres drawn with
a point light light source in the middle of the screen. Also, in order to further increase the stress on 
the graphics machine, a Mandelbrot pattern is drawn on top of each sphere. As exemplified in
Illustration 13, most devices were unable to properly display the Mandelbrot pattern. The device 
used to capture Illustration 13 rather rendered the Mandelbrot pattern as complex noise.
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Illustration 12: The Cloud Prototype Run in Cheap Mode on a MacBook Pro with OS X 10.9.

Illustration 13: The Cloud Prototype Run in Expensive Mode on a MacBook Pro with OS X 10.9.



8. Data Results and Analysis
The circumstances in which data was gathered through the prototypes is related, some data of 
interest,  as well as a brief analysis.

8.1 Environment
Web browsers. The two web browsers Mozilla Firefox and Google Chrome/Chromium were used 
for all tests. This primarily because both browsers were supported on all platforms the prototypes 
were performed on.

Devices. The prototypes were run on six different machines, whereof two were desktop 
computers, two were laptop computers, and two were portable smart devices. One laptop and one 
desktop computer ran the Ubuntu [20] operating system, versions 13.04 and 13.10, while the other 
two ran the Mac OS X [21] operating system, version 10.9. The two portable smart devices used, a 
tablet and a smart phone, were both running the Android [22] operating system, versions 4.3 and 
4.4.

8.2 Notations
Buffers. The two different buffers described in section 5.4 Avoiding Synchronization Issues,  are 
denoted, in the data presented below, with V and F, as in Vertex buffer and Frame buffer 
respectively. Each letter is followed by the amount of buffers used. V1F2 would, for example, 
denote one vertex buffer and two frame buffers.

Time. All times are written in seconds. Average frame rendering times are shortened either to 
Average Time or AVG.

Confidence intervals. All charts have confidence intervals marked as T-shapes extending from 
the average values they consider. The degree of confidence for the intervals is 99.9%.

25



8.3 Cloud Prototype Results
The cloud prototype results of four different machine and browser combinations out of the total of 
twelve such are presented below. The remaining eight may be reviewed in Appendix 1.

Do note that the cheap and expensive prototypes results are separated and compared. As described 
in section 7.4 Cloud Prototype, the two prototypes burden the WebGL machine differently.

8.3.1 OSX10.9, MacBook Pro 2012

As clearly seen in Table 1 and Chart 1, there is a significant performance gain on this particular 
machine in using any of the double buffer configurations, but only for the cheap prototype. Having 
both buffers doubled yields the best performance in this case, but only marginally better than 
having any of the buffers in a double configuration.
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Chart 1:  OSX 10.9, MacBook Pro 2012 - Cloud Prototype Results

Table 1: OSX 10.9, MacBook Pro 2012 - Cloud Prototype Results

Firefox 27.0 (Cheap)
Buffer Setup Samples Average Time Std. Deviation
V1 F1 1104 0.0543 s 0.0162 s
V1 F2 1561 0.0384 s 0.0010 s
V2 F1 1528 0.0393 s 0.0016 s
V2 F2 1591 0.0377 s 0.0007 s

Firefox 27.0 (Expensive)
Buffer Setup Samples Average Time Std. Deviation
V1 F1 1131 0.0530 s 0.0062 s
V1 F2 1131 0.0530 s 0.0065 s
V2 F1 1130 0.0531 s 0.0064 s
V2 F2 1130 0.0531 s 0.0078 s

Conf. Interval (99.9%)
0.0543 ± 0.0016 s
0.0384 ± 0.0001 s
0.0393 ± 0.0001 s
0.0377 ± 0.0001 s

Conf. Interval (99.9%)
0.0530 ± 0.0006 s
0.0530 ± 0.0006 s
0.0531 ± 0.0006 s
0.0531 ± 0.0008 s



8.3.2 Ubuntu 13.04, Samsung X120

This machine yielded improvements similar to the MacBook Pro 2012 machine, with the difference 
that no substantial performance improvements could be made with only the vertex buffer being 
double. Having both buffers double yielded, however, better performance than just having the 
frame buffer double.
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Table 2: Ubuntu 13.04, Samsung X120 – Cloud Prototype Results

Chromium 31.0 (Cheap)
Buffer Setup Samples Average Time Std. Deviation
V1 F1 1207 0.0497 s 0.0065 s 0.0497 ± 0.0006 s
V1 F2 1547 0.0388 s 0.0136 s 0.0388 ± 0.0011 s
V2 F1 1217 0.0493 s 0.0061 s 0.0493 ± 0.0006 s
V2 F2 1666 0.0360 s 0.0138 s 0.0360 ± 0.0011 s

Chromium 31.0 (Expensive)
Buffer Setup Samples Average Time Std. Deviation
V1 F1 1240 0.0484 s 0.0102 s
V1 F2 1240 0.0484 s 0.0100 s
V2 F1 1241 0.0483 s 0.0100 s
V2 F2 1241 0.0483 s 0.0101 s

Conf. Interval (99.9%)

Conf. Interval (99.9%)
0.0484 ± 0.001 s

0.0484 ± 0.0009 s
0.0483 ± 0.0009 s
0.0483 ± 0.0009 s

Chart 2: Ubuntu 13.04, Samsung X120 – Cloud Prototype Results



8.3.3 Ubuntu 13.10, Intel Core i5-4670T

In contrast to the other results, this machine did not yield better performance when using double 
buffers in the case of the cheap prototype results. No buffer configuration had any major significant
impact. Another difference between this and the earlier results is that the expensive prototype 
yielded better performance, for two buffer configurations. This especially in the case of having both
buffers double, but also when having just double vertex buffers.

28

Table 3: Ubuntu 13.10, Intel Core i5-4670T - Cloud Prototype Results

Firefox 27.0 (Cheap)
Buffer Setup Samples Average Time Std. Deviation
V1 F1 1133 0.0529 s 0.0043 s
V1 F2 1114 0.0538 s 0.0049 s
V2 F1 1128 0.0532 s 0.0055 s
V2 F2 1145 0.0524 s 0.0053 s

Firefox 27.0 (Expensive)
Buffer Setup Samples Average Time Std. Deviation
V1 F1 1394 0.0430 s 0.0034 s
V1 F2 1396 0.0430 s 0.0070 s
V2 F1 1448 0.0414 s 0.0022 s
V2 F2 1520 0.0395 s 0.0033 s

Conf. Interval (99.9%)
0.0529 ± 0.0004 s
0.0538 ± 0.0005 s
0.0532 ± 0.0005 s
0.0542 ± 0.0005 s

Conf. Interval (99.9%)
0.0430 ± 0.0003 s
0.0430 ± 0.0006 s
0.0414 ± 0.0002 s
0.0395 ± 0.0003 s

Chart 3: Ubuntu 13.10, Intel Core i5-4670T - Cloud Prototype Results



8.3.4 Android 4.4, Nexus 4 (2012)

The Nexus 4 (2012) smart device yielded results similar to the MacBook Pro 2012 machine. Worthy
of special mention is that the device was barely able to run the expensive prototype, which is the 
reason for those the average rendering times having quite the wide confidence interval, and also 
being significantly higher than the target 0.05 s average aimed at for the first configuration.
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Table 4: Android 4.4, Nexus 4 (2012) - Cloud Benchmark Results

Chrome 33.0 (Cheap)
Buffer Setup Samples Average Time Std. Deviation
V1 F1 1214 0.0494 s 0.0237 s
V1 F2 1420 0.0423 s 0.0200 s
V2 F1 1405 0.0427 s 0.0199 s
V2 F2 1434 0.0419 s 0.0193 s

Chrome 33.0 (Expensive)
Buffer Setup Samples Average Time Std. Deviation
V1 F1 372 0.1611 s 0.0734 s
V1 F2 371 0.1615 s 0.0654 s
V2 F1 371 0.1615 s 0.0701 s
V2 F2 370 0.1620 s 0.0750 s

Conf. Interval (99.9%)
0.0494 ± 0.0022 s
0.0423 ± 0.0017 s
0.0427 ± 0.0017 s
0.0419 ± 0.0017 s

Conf. Interval (99.9%)
0.1611 ± 0.0125 s
0.1615 ± 0.0112 s
0.1615 ± 0.0112 s
0.1620 ± 0.0128 s

Chart 4: Android 4.4, Nexus 4 (2012) - Cloud Benchmark Results



8.4 Analysis
8.4.1 Stability Issues
Externalities. It was noted while running the different prototypes on the different devices that 
screen savers, notifications, and other externalities could impact the results while the benchmarks 
were being performed. Even though precautions were taken against such, there may have been 
significant disturbance from such unknown to the author.

GLSL ES compliance. Also, it was only one device which was able to render the expensive cloud 
prototype without significant artifacts, making the Mandelbrot pattern visible on the rendered 
spheres, namely the Nexus 4 device, running the Android 4.4 operating system, using the Chrome 
browser. Despite this being the case, all graphics cards ought to have executed the issued 
instructions, producing an equivalent burden in all cases. This cannot, however, be assured by 
comparing the visuals displayed while running the prototype.

8.4.2 Machine Diversity and Performance Gains
It was noted that even though several of the tested machines yielded results reminiscent of each 
other, there were some exceptions. The observation that WebGL graphics machine 
implementations differ in which optimizations from which they benefit was important in relation 
to the conclusion of the thesis.

30



9. Discussion
9.1 Implications of Increasing WebGL Performance
Increasing the performance of WebGL machines implies that machines of such application may 
render graphics either (1)  at an increased frame rate, (2)  with increased geometric detail, or (3) 
using less processing time. This may lead to less potent hardware performing more sophisticated 
rendering, and hardware consuming less power. These characteristics of improved performance 
lead to improved utility and reduced costs, as battery times are prolonged and cheaper circuits may
be utilized. These are important economic and environmental incentives for performing such 
optimization.

9.2  Further Increasing WebGL Performance
As of the date of the writing this thesis, there is a significant performance and stability gap between
the WebGL standard and the more traditional OpenGL and OpenGL ES standards. Investigating 
viable optimization strategies is one part in minimizing this gap, but the other would be to try to 
replace inefficient parts of the WebGL application stack.

As suspected by the author of the thesis, the JavaScript implementation would be the most 
significant inefficiency of the WebGL stack, and would either have to be made more efficient, or 
replaced.

Pursuing this particular ambition, the Mozilla Foundation and Google, producing the web browsers
Firefox [2] and Chrome/Chromium [23], have invested significant effort in making their JavaScript
interpreters more efficient.

Additionally, Google has launched the projects NaCl (Native Client) [24], which allows running 
C/C++ through a sandboxed environment in their browser, and Dart [25], which is essentially is a 
byte-code format intended as an alternative to JavaScript. Both projects may potentially replace 
JavaScript and allow access to an API for communicating directly with graphics hardware. Both 
projects are, however, early in their development and are not supported by other web browsers.

Mozilla Foundation has been investing effort in their ASM.js project [26], which is a JavaScript 
superset which allows JavaScript to be used as a byte-code format. ASM.js allows developers to 
write C/C++ code, or some other supported language, and compile it into ASM.js.

Independent of the successes of the mentioned projects, it is likely that JavaScript either will be 
replaced or made more efficient in order to increase the performance of the standard WebGL 
application stack during the years to come.

9.3 Recommendations for Further Research
If indeed, as stated in Section 9.2, JavaScript being slow is the reason for the buffer configurations 
not working as intended, then speeding up JavaScript considerably ought to increase N buffer 
impact. This could be done by producing prototypes similar to the ones produced as part of this 
thesis and compiling them to ASM.js [26] from C/C++ code. Also, Google NaCl [24] or Dart [25] 
could also be relevant to subject to similar research.

Also, to acquire a better understanding of the optimizations already made by the web browsers 
internally, contact ought to be made through the open source communities/corporations producing
them. Such contact could also yield information advantageous in ways unknown to the author of 
this thesis.
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10. Conclusion
The conclusions made, by the author of the thesis, in relation to the usefulness and implications of
using N buffers in relation to WebGL.

10.1  Optimizing WebGL Performance
The goal and purpose of the thesis was to answer whether or not N buffers could be used in 
increasing rendering performance of an abstract WebGL machine. The buffer configurations 
investigated were using double vertex buffer objects, and using double frame buffer objects.

The answer to this question would be that the strategies employed do improve performance, but 
not consistently across heterogeneous devices.

As it was observed that due to machine implementation differences, and the difference in burden 
placed on a particular machine by different applications, the gains of optimizations using N buffers 
varies quite a lot. It rarely seemed the case, however, that N buffer configurations yielded worse 
performance.

In contrast to the theory of the author, the cases where the traffic through the client-server pipeline
were higher, benefited more from any of the two buffer configurations being double. The cases 
were the major part of the burden were on the WebGL machine itself seemed to gain very little 
from having N>1 buffers, if at all.
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Appendix
1. Benchmark Results

2. Cloud Prototype Source Code Repository

The code may be browsed at the following internet URL, and may also be acquired using GIT with 
the same address: https://github.com/emanuelpalm/cloudproto.
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Frame Time Benchmarks – Cloud Prototype

CONFIDENCE ALPHA 0.0010

# Profile Browser/Program Notes Particles V1 F1 AMT V1 F2 AMT V2 F1 AMT V2 F2 AMT
1 Ubuntu 13.10, Intel Core i5-4670T Firefox 27.0 (Cheap) 3568 1133 11140 1128 1145
2 Ubuntu 13.10, Intel Core i5-4670T Firefox 27.0 (Expensive) Artifacts. 603 1394 1396 1448 1520
3 Ubuntu 13.10, Intel Core i5-4670T Chromium 32.0 (Cheap) 168343 1217 1353 1213 1439
4 Ubuntu 13.10, Intel Core i5-4670T Chromium 32.0 (Expensive) Artifacts. 16982 1158 1171 1155 1162
5 OSX10.9, MacBook Pro 2012 Firefox 27.0 (Cheap) 471072 1104 1561 1528 1591
6 OSX10.9, MacBook Pro 2012 Firefox 27.0 (Expensive) Artifacts. 1814 1131 1131 1130 1130
7 OSX10.9, MacBook Pro 2012 Chrome 33.0 (Cheap) 333981 1278 1526 1521 1526
8 OSX10.9, MacBook Pro 2012 Chrome 33.0 (Expensive) Artifacts. 1724 1171 1170 1171 1167
9 OSX10.8, MacMini 2011 Firefox 27.0 (Cheap) 378216 954 975 965 985
10 OSX10.8, MacMini 2011 Firefox 27.0 (Expensive) Artifacts. 744 515 515 515 515
11 OSX10.8, MacMini 2011 Chrome 33.0 (Cheap) 182014 1258 1551 1549 1541
12 OSX10.8, MacMini 2011 Chrome 33.0 (Expensive) Artifacts. 1045 1201 1223 1201 1796
13 Ubuntu 13.04, Samsung X120 Firefox 26.0 (Cheap) 12504 1194 1170 1185 1181
14 Ubuntu 13.04, Samsung X120 Firefox 26.0 (Expensive) Black. 486 1020 1008 1012 1005
15 Ubuntu 13.04, Samsung X120 Chromium 31.0 (Cheap) 45784 1207 1547 1217 1666
16 Ubuntu 13.04, Samsung X120 Chromium 31.0 (Expensive) Black. 891 1240 1240 1241 1241
17 Android 4.3, Nexus 7 (2012) Firefox 25.0 (Cheap) 28705 1239 1284 1281 1267
18 Android 4.3, Nexus 7 (2012) Firefox 25.0 (Expensive) Failed. 0 0 0 0 0
19 Android 4.3, Nexus 7 (2012) Chrome 30.0 (Cheap) 7969 1229 1229 1236 1227
20 Android 4.3, Nexus 7 (2012) Chrome 30.0 (Expensive) Failed. 0 0 0 0 0
21 Android 4.4, Nexus 4 (2012) Firefox 27.0 (Cheap) 33412 1370 1387 1373 1403
22 Android 4.4, Nexus 4 (2012) Firefox 27.0 (Expensive) Failed. 0 0 0 0 0
23 Android 4.4, Nexus 4 (2012) Chrome 33.0 (Cheap) 23300 1214 1420 1405 1434
24 Android 4.4, Nexus 4 (2012) Chrome 33.0 (Expensive) Artifacts. 936 372 371 371 370

# V1 F1 AVG V1 F2 AVG V2 F1 AVG V2 F2 AVG V1 F1 STDEV V1 F2 STDEV V2 F1 STDEV V2 F2 STDEV V1 F1 CONF V1 F2 CONF V2 F1 CONF V2 F2 CONF
1 0.0529 0.0538 0.0532 0.0524 0.0043 0.0049 0.0055 0.0053 0.0004 0.0002 0.0005 0.0005
2 0.0430 0.0430 0.0414 0.0395 0.0034 0.0070 0.0022 0.0033 0.0003 0.0006 0.0002 0.0003
3 0.0493 0.0443 0.0495 0.0417 0.0017 0.0040 0.0017 0.0014 0.0002 0.0004 0.0002 0.0001
4 0.0518 0.0512 0.0519 0.0516 0.0147 0.0149 0.0149 0.0150 0.0014 0.0014 0.0014 0.0014
5 0.0543 0.0384 0.0393 0.0377 0.0162 0.0010 0.0016 0.0007 0.0016 0.0001 0.0001 0.0001
6 0.0530 0.0530 0.0531 0.0531 0.0062 0.0065 0.0064 0.0078 0.0006 0.0006 0.0006 0.0008
7 0.0470 0.0393 0.0395 0.0393 0.0049 0.0042 0.0039 0.0039 0.0004 0.0004 0.0003 0.0003
8 0.0512 0.0512 0.0512 0.0514 0.0025 0.0055 0.0024 0.0024 0.0002 0.0005 0.0002 0.0002
9 0.0630 0.0616 0.0622 0.0609 0.0156 0.0161 0.0158 0.0159 0.0017 0.0017 0.0017 0.0017
10 0.1163 0.1164 0.1164 0.1164 0.0093 0.0102 0.0137 0.0102 0.0013 0.0015 0.0020 0.0015
11 0.0477 0.0387 0.0387 0.0390 0.0045 0.0041 0.0041 0.0042 0.0004 0.0003 0.0003 0.0003
12 0.0499 0.0490 0.0499 0.0334 0.0029 0.0048 0.0026 0.0053 0.0003 0.0005 0.0002 0.0004
13 0.0502 0.0513 0.0506 0.0508 0.0013 0.0061 0.0026 0.0014 0.0001 0.0006 0.0002 0.0001
14 0.0588 0.0595 0.0593 0.0597 0.0027 0.0030 0.0026 0.0031 0.0003 0.0003 0.0003 0.0003
15 0.0497 0.0388 0.0493 0.0360 0.0065 0.0136 0.0061 0.0138 0.0006 0.0011 0.0006 0.0011
16 0.0484 0.0484 0.0483 0.0483 0.0102 0.0100 0.0100 0.0101 0.0010 0.0009 0.0009 0.0009
17 0.0484 0.0467 0.0468 0.0474 0.0088 0.0030 0.0016 0.0051 0.0008 0.0003 0.0001 0.0005
18 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
19 0.0489 0.0488 0.0486 0.0489 0.0401 0.0402 0.0399 0.0402 0.0038 0.0038 0.0037 0.0038
20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
21 0.0438 0.0433 0.0437 0.0428 0.0068 0.0059 0.0065 0.0048 0.0006 0.0005 0.0006 0.0004
22 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
23 0.0494 0.0423 0.0427 0.0419 0.0237 0.0200 0.0199 0.0193 0.0022 0.0017 0.0017 0.0017
24 0.1611 0.1615 0.1615 0.1620 0.0734 0.0654 0.0701 0.0750 0.0125 0.0112 0.0120 0.0128

Vn = Vertex buffer amount. Fn = Frame buffer amount.
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