
The Graphics Pipeline and OpenGL I:
Transformations!

Gordon Wetzstein!
Stanford University!

!

EE 267 Virtual Reality!
Lecture 2!

stanford.edu/class/ee267/!
!

Albrecht Dürer, “Underweysung der Messung mit dem Zirckel und Richtscheyt”, 1525!

Lecture Overview!

•  what is computer graphics?!
•  the graphics pipeline!
•  primitives: vertices, edges, triangles!!
•  model transforms: translations, rotations, scaling!

•  view transform !
•  perspective transform!
•  window transform!

blender.org!

Modeling 3D Geometry!

Courtesy of H.G. Animations!
https://www.youtube.com/watch?v=fewbFvA5oGk!

blender.org!

What is Computer Graphics?!

•  at the most basic level: conversion from 3D scene description to 2D image!

•  what do you need to describe a static scene?!
•  3D geometry and transformations!

•  lights!
•  material properties!

•  most common geometry primitives in graphics:!
•  vertices (3D points) and normals (unit-length vector associated with vertex)!
•  triangles (set of 3 vertices, high-resolution 3D models have M or B of triangles)!

The Graphics Pipeline!

•  geometry + transformations!
•  cameras and viewing!
•  lighting and shading!
•  rasterization!

•  texturing!
!

blender.org!

•  Stanford startup in 1981!
•  computer graphics goes hardware!
•  based on Jim Clark’s geometry engine!

Some History!

Some History!

The Graphics Pipeline!

•  monolithic graphics workstations of the 80s have been replaced by modular
GPUs (graphics processing units); major companies: NVIDIA, AMD, Intel!

•  early versions of these GPUs implemented fixed-function rendering pipeline in

hardware !

•  GPUs have become programmable starting in the late 90s !
•  e.g. in 2001 Nvidia GeForce 3 = first programmable shaders!

•  now: GPUs = programmable (e.g. OpenGL, CUDA, OpenCL) processors !

The Graphics Pipeline!

GPU = massively!
parallel processor!

The Graphics Pipeline!•  OpenGL is our
interface to the
GPU!!

•  right: “old-school”
OpenGL state
machine!

•  today’s lecture:
vertex transforms!

I had this poster hanging on my dorm wall during undergrad!

WebGL!

•  JavaScript application programmer interface (API) for 2D and 3D graphics!

•  OpenGL ES 2.0 running in the browser, implemented by all modern browsers!

•  overview, tutorials, documentation: see lab 1!
!

three.js!

•  cross-browser JavaScript library/API !

•  higher-level library that provides a lot of useful helper functions, tools, and
abstractions around WebGL – easy and convenient to use!

•  https://threejs.org/!
•  simple examples: https://threejs.org/examples/!

•  great introduction (in WebGL):!
http://davidscottlyons.com/threejs/presentations/frontporch14/!

The Graphics Pipeline!

https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html!

The Graphics Pipeline!

https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html!

1.  Vertex Processing: Process and transform individual vertices & normals.!
2.  Rasterization: Convert each primitive (connected vertices) into a set of fragments. A fragment can

be interpreted as a pixel with attributes such as position, color, normal and texture.!
3.  Fragment Processing: Process individual fragments.!
4.  Output Merging: Combine the fragments of all primitives (in 3D space) into 2D color-pixel for the

display.!

The Graphics Pipeline!

https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html!

1.  Vertex Processing: Process and transform individual vertices & normals.!
2.  Rasterization: Convert each primitive (connected vertices) into a set of fragments. A fragment can

be interpreted as a pixel with attributes such as position, color, normal and texture.!
3.  Fragment Processing: Process individual fragments.!
4.  Output Merging: Combine the fragments of all primitives (in 3D space) into 2D color-pixel for the

display.!

The Graphics Pipeline!

https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html!

vertex shader! fragment shader!

•  transforms & (per-
vertex) lighting!

•  texturing !
•  (per-fragment) lighting!

Coordinate Systems!

•  right hand coordinate system!

•  a few different coordinate systems:!
•  object coordinates!

•  world coordinates!
•  viewing coordinates!
•  also clip, normalized device, and

window coordinates!

wikipedia!

Primitives!

•  vertex = 3D point v(x,y,z)!

•  triangle = 3 vertices!

•  normal = 3D vector per vertex describing
surface orientation n=(nx,ny,nz)!

v1

v3
v2

n2

n3

n1

Pixels v Fragments!

•  fragments have rasterized 2D coordinates on screen but a lot of other attributes
too (texture coordinates, depth value, alpha value, …)!

•  pixels appear on screen!
•  won’t discuss in more detail today!

https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html!

Vertex Transforms!

https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html!

Vertex Transforms!

https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html!

vertex/normal!
transforms!

Vertex Transforms!

https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html!

1.  Arrange the objects (or models, or avatar) in
the world (Model Transform).!

Vertex Transforms!

https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html!

1.  Arrange the objects (or models, or avatar) in
the world (Model Transform).!

Vertex Transforms!

https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html!

1.  Arrange the objects (or models, or avatar) in
the world (Model Transform).!

Vertex Transforms!

https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html!

1.  Arrange the objects (or models, or avatar) in
the world (Model Transform).!

Vertex Transforms!

https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html!

1.  Arrange the objects (or models, or avatar) in
the world (Model Transform).!

Vertex Transforms!

https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html!

1.  Arrange the objects (or models, or avatar) in
the world (Model Transform).!

2.  Position and orientation the camera (View
transform).!

Vertex Transforms!

https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html!

1.  Arrange the objects (or models, or avatar) in
the world (Model Transform).!

2.  Position and orientation the camera (View
transform).!

Vertex Transforms!

https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html!

1.  Arrange the objects (or models, or avatar) in
the world (Model Transform).!

2.  Position and orientation the camera (View
transform).!

Vertex Transforms!

https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html!

1.  Arrange the objects (or models, or avatar) in
the world (Model Transform).!

2.  Position and orientation the camera (View
transform).!

3.  Select a camera lens (wide angle, normal or
telescopic), adjust the focus length and zoom
factor to set the camera's field of view
(Projection transform).!

Vertex Transforms!

https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html!

1.  Arrange the objects (or models, or avatar) in
the world (Model Transform).!

2.  Position and orientation the camera (View
transform).!

3.  Select a camera lens (wide angle, normal or
telescopic), adjust the focus length and zoom
factor to set the camera's field of view
(Projection transform).!

Vertex Transforms!

https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html!

1.  Arrange the objects (or models, or avatar) in
the world (Model Transform).!

2.  Position and orientation the camera (View
transform).!

3.  Select a camera lens (wide angle, normal or
telescopic), adjust the focus length and zoom
factor to set the camera's field of view
(Projection transform).!

Vertex Transforms!

https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html!

1.  Arrange the objects (or models, or avatar) in
the world (Model Transform).!

2.  Position and orientation the camera (View
transform).!

3.  Select a camera lens (wide angle, normal or
telescopic), adjust the focus length and zoom
factor to set the camera's field of view
(Projection transform).!

Model Transform!

•  transform each vertex from object coordinates to world coordinates!

https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html!

v =
x
y
z

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

Model Transform - Scaling!

•  transform each vertex from object coordinates to world coordinates!v =
x
y
z

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

1.  scaling as 3x3 matrix!

S(sx , sy , sz) =
sx 0 0
0 sy 0

0 0 sz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Sv =

sx 0 0
0 sy 0

0 0 sz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

x
y
z

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
=

sxx
syy

szz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

scaled vertex = matrix-vector product:!

Model Transform - Rotation!

•  transform each vertex from object coordinates to world coordinates!v =
x
y
z

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

2.  rotation as 3x3 matrix!

Rz (θ) =
cosθ −sinθ 0
sinθ cosθ 0
0 0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

Rzv =
cosθ −sinθ 0
sinθ cosθ 0
0 0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

x
y
z

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
=

xcosθ − ysinθ
xsinθ + ycosθ

z

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

rotated vertex = matrix-vector product, e.g. !

Rx (θ) =
1 0 0
0 cosθ −sinθ
0 sinθ cosθ

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

Ry(θ) =
cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

Model Transform - Translation!

•  transform each vertex from object coordinates to world coordinates!v =
x
y
z

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

3.  translation cannot be represented as 3x3 matrix!!

x
y
z

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
+

dx
dy
dz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

x + dx
y + dy
z + dz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

that’s unfortunate L !

Model Transform - Translation!

•  solution: use homogeneous coordinates, vertex is! v =

x
y
z
1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

3.  translation is 4x4 matrix!

T (d) =

1 0 0 dx
0 1 0 dy
0 0 1 dz
0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

better J !

Tv =

1 0 0 dx
0 1 0 dy
0 0 1 dz
0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

x
y
z
1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

x + dx
y + dy
z + dz
1

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

Summary of Homogeneous Matrix Transforms!

•  translation!

!
•  scale!

!

•  rotation!

!

Rx =

1 0 0 0
0 cosθ −sinθ 0
0 sinθ cosθ 0
0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Ry =

cosθ 0 sinθ 0
0 1 0 0

−sinθ 0 cosθ 0
0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Read more: https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html!

T (d) =

1 0 0 dx
0 1 0 dy
0 0 1 dz
0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

S(s) =

sx 0 0 0
0 sy 0 0

0 0 sz 0
0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

Rz (θ) =

cosθ −sinθ 0 0
sinθ cosθ 0 0
0 0 1 0
0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Summary of Homogeneous Matrix Transforms!

•  translation inverse translation!

!
•  scale inverse scale!

!

•  rotation inverse rotation!

!

T (d) =

1 0 0 dx
0 1 0 dy
0 0 1 dz
0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

S(s) =

sx 0 0 0
0 sy 0 0

0 0 sz 0
0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

Rz (θ) =

cosθ −sinθ 0 0
sinθ cosθ 0 0
0 0 1 0
0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Read more: https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html!

T −1(d) = T (−d) =

1 0 0 −dx
0 1 0 −dy
0 0 1 −dz
0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

S−1(s) = S 1
s

⎛
⎝⎜

⎞
⎠⎟ =

1/ sx 0 0 0
0 1/ sy 0 0

0 0 1/ sz 0
0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

Rz
−1(θ) = Rz −θ() =

cos−θ −sin−θ 0 0
sin−θ cos−θ 0 0
0 0 1 0
0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Summary of Homogeneous Matrix Transforms!

•  successive transforms:!
!
•  inverse successive transforms:!

!

v ' = T ⋅S ⋅Rz ⋅Rx ⋅T ⋅v

Read more: https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html!

v = T ⋅S ⋅Rz ⋅Rx ⋅T()−1 ⋅v '
= T −1 ⋅Rx

−1 ⋅Rz
−1 ⋅S−1 ⋅T −1 ⋅v '

Vector and Normal Transforms!

•  homogeneous representation of a vector t, i.e.
pointing from v1 to v2 : !

•  successive transforms:!

!
•  this works!!

t ' = M ⋅ t = M ⋅ v2 − v1() = M ⋅v2 −M ⋅v1

t =

(v2 − v1)x
(v2 − v1)y
(v2 − v1)z
(1−1)

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

tx
ty
tz
0

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

M
t

v2

v1

t '

v '2

v '1

Vector and Normal Transforms!

•  homogeneous representation of a normal
(unit length, perpendicular to surface)!

•  successive transforms ???!

!
•  this does NOT work! (non-uniform scaling

is a problem)!

n ' = M ⋅n

n =

nx
ny
nz
0

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

M
t

v2

v1

t '

v '2

v '1

n

n '

Vector and Normal Transforms!

•  homogeneous representation of a normal
(unit length, perpendicular to surface)!

•  need to use normal matrix = transpose of

inverse for transformation! !
!

n ' = M −1()T ⋅n

n =

nx
ny
nz
0

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

M
t

v2

v1

t '

v '2

v '1

n
n '

Vector and Normal Transforms!

•  homogeneous representation of a normal
(unit length, perpendicular to surface)!

•  need to use normal matrix = transpose of

inverse for transformation!!
n ' = M −1()T ⋅n

n =

nx
ny
nz
0

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

•  fine print: only use upper left 3x3 part of modelview matrix for inverse transpose
(no homogeneous normal representation) OR drop w component from n’ after
multiplying 4x4 inverse transpose (i.e. don’t use w for normalization of n’!)!

Attention!!

•  rotations and translations (or transforms in general) are not commutative!!
•  make sure you get the correct order!!
!

View Transform!

•  so far we discussed model transforms, e.g. going from object or model space to
world space !

https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html!

View Transform!

•  so far we discussed model transforms, e.g. going from object or model space to
world space !

•  one simple 4x4 transform matrix is sufficient to go from world space to camera
or view space!!

https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html!

View Transform!

specify camera by!
!
•  eye position!
!

•  reference position!
!
!
•  up vector!

eye =

eyex
eyey
eyez

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

up =

upx
upy
upz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

center =

centerx
centery
centerz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

View Transform!

specify camera by!
!
•  eye position!
!

•  reference position!
!
!
•  up vector! up =

upx
upy
upz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

center =

centerx
centery
centerz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

compute 3 vectors:!

eye =

eyex
eyey
eyez

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

xc = up × zc

up × zc

yc = zc × xc

zc = eye− center
eye− center

View Transform!

view transform is translation into eye position, !
followed by rotation!
!
!

xc = up × zc

up × zc

yc = zc × xc

compute 3 vectors:!M

zc = eye− center
eye− center

View Transform!

view transform is translation into eye position, !
followed by rotation!
!
!

xc = up × zc

up × zc

yc = zc × xc

compute 3 vectors:!M

zc = eye− center
eye− center

M = R ⋅T (−e) =

xx
c xy

c xz
c 0

yx
c yy

c yz
c 0

zx
c zy

c zz
c 0

0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

1 0 0 −eyex
0 1 0 −eyey
0 0 1 −eyez
0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

View Transform!

view transform is translation into eye position, !
followed by rotation!
!
!

M

M = R ⋅T (−e) =

xx
c xy

c xz
c − xx

ceyex + xy
ceyey + xz

ceyez()
yx
c yy

c yz
c − yx

ceyex + yy
ceyey + yz

ceyez()
zx
c zy

c zz
c − zx

ceyex + zy
ceyey + zz

ceyez()
0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

View Transform – Attention!!

•  many graphics APIs have a function called lookat that automatically computes
the view matrix for you!

•  Three.js also has such a function, but that only computes the rotation, not the

translation, of the view matrix. So best implement the view matrix yourself!!
!
!

View Transform!

•  in camera/view space, the camera is at the origin, looking into negative z!
•  modelview matrix is combined model (rotations, translations, scaling) and view

matrix!!

https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html!

View Transform!

•  in camera/view space, the camera is at the origin, looking into negative z!

vodacek.zvb.cz!

x

x
z

z

up

e

Projection Transform!

•  similar to choosing lens and sensor of camera – specify field of view and aspect!

https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html!

Projection Transform - Perspective Projection!
•  have symmetric view frustum!
•  fovy: vertical angle in degrees!
•  aspect: ratio of width/height!
•  zNear: near clipping plane (relative from cam)!

•  zFar: far clipping plane (relative from cam)!

Mproj =

f
aspect

0 0 0

0 f 0 0

0 0 − zFar + zNear
zFar − zNear

− 2 ⋅ zFar ⋅ zNear
zFar − zNear

0 0 −1 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

f = cot(fovy / 2)

projection matrix!
(symmetric frustum)!

Projection Transform - Perspective Projection!

more general: a perspective “frustum” (truncated, possibly
sheared pyramid)!
•  left (l), right (r), bottom (b), top (t): corner coordinates

on near clipping plane (at zNear)!

Mproj =

2 ⋅ zNear
r − l

0 r + l
r − l

0

0 2 ⋅ zNear
t − b

t + b
t − b

0

0 0 − zFar + zNear
zFar − zNear

− 2 ⋅ zFar ⋅ zNear
zFar − zNear

0 0 −1 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

projection matrix!
(asymmetric frustum)!

perspective frustum!

Projection Transform - Orthographic Projection!

Mproj =

2
r − l

0 0 − r + l
r − l

0 2
t − b

0 − t + b
t − b

0 0 −2
f − n

− f + n
f − n

0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

projection matrix!
(orthographic)!

more general: a “box frustum” (no perspective, objects
don’t get smaller when farther away)!
•  left (l), right (r), bottom (b), top (t): corner coordinates

on near clipping plane!

O
rth

og
ra

ph
ic
!

Pe
rs

pe
ct

iv
e!

[Song Ho Ahn]!

Projection Transform!

•  possible source of confusion for zNear and zFar:!
!
•  Marschner & Shirley define it as absolute z coordinates, thus zNear>zFar and

both values are always negative !

•  OpenGL and we define it as positive values, i.e. the distances of the near and
far clipping plane from the camera (zFar > zNear)!

Modelview Projection Matrix!

•  put it all together with 4x4 matrix multiplications!!

projection matrix! modelview matrix!vertex in clip space!

vclip = Mproj ⋅Mview ⋅Mmodel ⋅v = Mproj ⋅Mmv ⋅v

Clip Space!

https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html!

Normalized Device Coordinates (NDC)!

•  not shown in previous illustration!
•  get to NDC by perspective division!

from: OpenGL Programming Guide!

vclip =

xclip
yclip
zclip
wclip

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

vNDC =

xclip /wclip

yclip /wclip

zclip /wclip

1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

vertex in clip space! vertex in NDC!

∈ −1,1()
∈ −1,1()
∈ −1,1()

Viewport Transform!
define (sub)window as viewport(x,y,width,height),!
!

•  x,y lower left corner of viewport rectangle
(default is (0,0))!

•  width, height size of viewport rectangle in
pixels !

from: OpenGL Programming Guide!

vNDC =

xclip /wclip

yclip /wclip

zclip /wclip

1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

vertex in NDC!

vwindow =

xwindow

ywindow

zwindow

1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

∈ 0,width()
∈ 0,height()

∈ 0,1()

vertex in window coords!

xwindow = width
2

xNDC +1() + x

ywindow = height
2

yNDC +1() + y

zwindow = 1
2
zNDC +

1
2

The Graphics Pipeline – Another Illustration!

The Graphics Pipeline!

https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html!

all vertex
transforms
from today!!

The Graphics Pipeline!

https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html!

!

•  assign fixed color (e.g. red) to each vertex in window coordinates (fragment)!
•  interpolate (i.e. rasterize) lines between vertices (as defined by user)!

Nintendo Virtual Boy Game “Red Alarm”!

… and we can almost do this …!

Summary!

•  graphics pipeline is a series of operations that takes 3D vertices/normals/
triangles as input and generates fragments and pixels !

•  today, we only discussed a part of it: vertex and normal transforms!

•  transforms include: rotation, scale, translation, perspective projection,
perspective division, and viewport transform!

•  most transforms are represented as 4x4 matrices in homogeneous coordinates
à know your matrices & be able to create, manipulate, invert them!!

Next Lecture: Lighting and Shading, Fragment Processing!

https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html!

vertex shader! fragment shader!

•  transforms & (per-
vertex) lighting!

•  texturing !
•  (per-fragment) lighting!

Further Reading!
•  course notes on transforms (see course website)!

•  good overview of OpenGL (deprecated version) and graphics pipeline (missing
a few things) :!

 https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html!
!

•  textbook: Shirley and Marschner “Fundamentals of Computer Graphics”, AK

Peters, 2009!

•  definite reference: “OpenGL Programming Guide” aka “OpenGL Red Book”!
!
•  WebGL / three.js tutorials: https://threejs.org/!

