1 Računanje faktorijela
| (%i1) | 5!; |

| (%i2) | 10!; |

| (%i3) | 100!; |

| (%i4) | set_display('ascii)$ |
| (%i5) | 100!; |

| (%i6) | set_display('xml)$ |
2 Binomni koeficijenti
| (%i7) | binomial(6,4); |

| (%i8) | binomial(n,0); |

| (%i9) | binomial(n,1); |

| (%i10) | binomial(n,n); |

| (%i11) | binomial(100,98); |

| (%i12) | binomial(234,126); |

3 Binomni poučak
| (%i13) | expand((a+b)^11); |

| (%i14) | expand((a+b)^100); |

1. primjer
| (%i15) | expand((x^(1/3)+x^2)^4); |

2. primjer
| (%i16) | expand((x^(1/3)−x^2)^4); |

3. primjer
| (%i17) | expand((x^(3/2)·y+y^(−1))^5); |

4 Matematička indukcija (računanje suma)
4.1 prva suma
Maxima bez problema računa sume s konkretnom donjom i gornjom granicom brojača
| (%i18) | sum(2·i·(3·i−1),i,1,23); |

| (%i19) | sum(2·i·(3·i−1),i,1,321); |

| (%i20) | sum(2·i·(3·i−1),i,150,321); |

Maxima ne izračuna automatski simboličke sume
| (%i21) | sum(2·i·(3·i−1),i,1,n); |

Uz dodatne naredbe ju možemo natjerati da izračuna neke simboličke sume
| (%i22) | sum(2·i·(3·i−1),i,1,n),simpsum; |

| (%i23) | factor(%); |

4.2 Numeričko računanje sume
| (%i24) | sum(sin(i),i,1,20); |

U ovakvim situacijama uvijek je pametnije numerički odrediti sumu kako bismo spriječili eventualno rušenje grafičkog sučelja zbog prevelikog broja simboličkih članova u sumi. Na primjer, da je suma išla od i=1 do i=10000, maxima ne bi ništa napravila osim ispisala ogromni izraz koji bi mogao srušiti grafičko sučelje. Kod numeričkog računa to se neće dogoditi.
| (%i25) | sum(sin(i),i,1,20),numer; |

| (%i26) | sum(sin(i),i,1,10000),numer; |

4.3 druga suma
| (%i27) | suma2:sum((−1)^i·(2·i−1),i,1,n); |

| (%i28) | sum((−1)^i·(2·i−1),i,1,37); |

| (%i29) | sum((−1)^i·(2·i−1),i,1,120); |

Ovaj put Maxima ne može izračunati simboličku sumu
| (%i30) | suma2,simpsum; |

Međutim, možemo nepotpunom indukcijom zaključiti da je ta suma jednaka
| (%i31) | (−1)^n·n; |

| (%i32) | makelist(sum((−1)^i·(2·i−1),i,1,n),n,1,200); |
![(%o32) [-1,2,-3,4,-5,6,-7,8,-9,10,-11,12,-13,14,-15,16,-17,18,-19,20,-21,22,-23,24,-25,26,-27,28,-29,30,-31,32,-33,34,-35,36,-37,38,-39,40,-41,42,-43,44,-45,46,-47,48,-49,50,-51,52,-53,54,-55,56,-57,58,-59,60,-61,62,-63,64,-65,66,-67,68,-69,70,-71,72,-73,74,-75,76,-77,78,-79,80,-81,82,-83,84,-85,86,-87,88,-89,90,-91,92,-93,94,-95,96,-97,98,-99,100,-101,102,-103,104,-105,106,-107,108,-109,110,-111,112,-113,114,-115,116,-117,118,-119,120,-121,122,-123,124,-125,126,-127,128,-129,130,-131,132,-133,134,-135,136,-137,138,-139,140,-141,142,-143,144,-145,146,-147,148,-149,150,-151,152,-153,154,-155,156,-157,158,-159,160,-161,162,-163,164,-165,166,-167,168,-169,170,-171,172,-173,174,-175,176,-177,178,-179,180,-181,182,-183,184,-185,186,-187,188,-189,190,-191,192,-193,194,-195,196,-197,198,-199,200]](indukcija_htmlimg/indukcija_29.png)
Ili pak možemo učitati dodatni paket koji omogućuje računanje kompliciranijih suma
| (%i33) | load (zeilberger)$ |
| (%i34) | GosperSum((−1)^i·(2·i−1),i,1,n); |

| (%i35) | ratsimp(%); |

4.4 treća suma
| (%i36) | suma3:sum(2·i^2/((2·i−1)·(2·i+1)),i,1,n); |

| (%i37) | sum(2·i^2/((2·i−1)·(2·i+1)),i,1,98); |

| (%i38) | sum(2·i^2/((2·i−1)·(2·i+1)),i,5,98); |

| (%i39) | sum(2·i^2/((2·i−1)·(2·i+1)),i,1,n),simpsum; |

GosperSum će ponovo uspjeti izračunati ovu sumu
| (%i40) | GosperSum(2·i^2/((2·i−1)·(2·i+1)),i,1,n); |

| (%i41) | ratsimp(%); |

| (%i42) | factor(%); |
