| (%i1) | load(draw)$ |
1 Tangenta i normala na graf funkcije
Definiramo dvije funkcije koje će nam u zadanoj točki na grafu funkcije pronaći tangentu i normalu.
Degenerirani slučajevi (tangenta i normala su paralelne s koordinatnim osima) nisu posebno razmatrani
kako ne bismo previše komplicirali kod.
| (%i2) | tangenta(fun,x,x0):=block([der: subst(x0,x,diff(fun,x)),y0:subst(x0,x,fun)], y=der*x+y0-x0*der)$ |
| (%i3) | normala(fun,x,x0):=block([der: subst(x0,x,-1/diff(fun,x)),y0:subst(x0,x,fun)], y=der*x+y0-x0*der)$ |
1. zadatak
| (%i4) | f(x):=%e^(sin(x)^2); |

vrijednost funkcije u pi/6
| (%i5) | f(%pi/6); |

tangenta
| (%i6) | tangenta(f(x),x,%pi/6); |

normala
| (%i7) | normala(f(x),x,%pi/6); |

| (%i8) |
wxdraw2d(user_preamble="set size ratio 1", grid=true,xaxis=true,xaxis_width=1,xaxis_type=solid,xlabel="x", yaxis=true,yaxis_width=1,yaxis_type=solid,ylabel="y",line_width=3,color=blue, xtics=[-3,1,3],ytics=[-2,0.5,20],explicit(f(x),x,-3,3),line_width=2,color=red, explicit(rhs(tangenta(f(x),x,%pi/6)),x,-1.5,2.5),color="orange", explicit(rhs(normala(f(x),x,%pi/6)),x,-1.5,2.5), color="blue", point_type=filled_circle,point_size=1.5, points([[%pi/6,f(%pi/6)]]), line_type=dots,line_width=1, parametric(%pi/6,t,t,0,%e^(1/4)), parametric(t,%e^(1/4),t,0,0.6), yrange=[-2,4], label(["pi/6",%pi/6,-0.1]),label(["e^1/4",-0.2,%e^(1/4)])),wxplot_size=[850,750]; |



| (%i9) |
draw2d(terminal=wxt,user_preamble="set size ratio 1", grid=true,xaxis=true,xaxis_width=1,xaxis_type=solid,xlabel="x", yaxis=true,yaxis_width=1,yaxis_type=solid,ylabel="y",line_width=3,color=blue, xtics=[-3,1,3],ytics=[-2,0.5,20],explicit(f(x),x,-3,3),line_width=2,color=red, explicit(rhs(tangenta(f(x),x,%pi/6)),x,-1.5,2.5),color="orange", explicit(rhs(normala(f(x),x,%pi/6)),x,-1.5,2.5), color="blue", point_type=filled_circle,point_size=1.5, points([[%pi/6,f(%pi/6)]]), line_type=dots, parametric(%pi/6,t,t,0,%e^(1/4)), parametric(t,%e^(1/4),t,0,%pi/6), yrange=[-2,4], label(["pi/6",%pi/6,-0.1]),label(["e^(1/4)",-0.2,%e^(1/4)])); |
![(%o9) [gr2d(explicit,explicit,explicit,points,parametric,parametric,label,label)]](primjena_derivacija_htmlimg/primjena_derivacija_7.png)
duljina odsječka tangente između koordinatnih osi
| (%i10) | yos:subst(0,x,rhs(tangenta(f(x),x,%pi/6))); |

| (%i11) | xos:rhs(solve(rhs(tangenta(f(x),x,%pi/6))=0,x)[1]); |

| (%i12) | float(sqrt(xos^2+yos^2)); |

2. zadatak - tangenta na graf funkcije paralelna sa zadanim pravcem
| (%i13) | f(x):=(x-1)/(x+1); |

| (%i14) | diff(f(x),x); |

| (%i15) | izraz:ratsimp(diff(f(x),x)); |

| (%i16) | solve(izraz=2,x); |
![(%o16) [x=-2,x=0]](primjena_derivacija_htmlimg/primjena_derivacija_14.png)
točke na grafu
| (%i17) | [[-2,f(-2)],[0,f(0)]]; |
![(%o17) [[-2,3],[0,-1]]](primjena_derivacija_htmlimg/primjena_derivacija_15.png)
tražene tangente su
| (%i18) | tangenta(f(x),x,0); |

| (%i19) | tangenta(f(x),x,-2); |

slika
| (%i20) |
wxdraw2d(user_preamble="set size ratio 1",nticks=100, grid=true,xaxis=true,xaxis_width=1,xaxis_type=solid,xlabel="x", yaxis=true,yaxis_width=1,yaxis_type=solid,ylabel="y",line_width=3,color=blue, xtics=[-3,1,3],ytics=[-5,0.5,8],explicit(f(x),x,-4,3),line_width=2,color=red, explicit(rhs(tangenta(f(x),x,0)),x,-1.7,2.5),color="orange", explicit(rhs(tangenta(f(x),x,-2)),x,-3.9,0.5), color="green", explicit(2*x+1,x,-2.8,2.5), color="blue", point_type=filled_circle,point_size=1.5, points([[-2,f(-2)],[0,f(0)]]), color="black", yrange=[-5,8],label(["y=2x+1",-1.3,-0.8]), label(["y=2x+7",-0.6,5.2]),label(["y=2x-1",1.4,1.2])),wxplot_size=[750,750]; |



| (%i21) |
draw2d(terminal=wxt,user_preamble="set size ratio 1", grid=true,xaxis=true,xaxis_width=1,xaxis_type=solid,xlabel="x", yaxis=true,yaxis_width=1,yaxis_type=solid,ylabel="y",line_width=3,color=blue, xtics=[-3,1,3],ytics=[-5,0.5,8],explicit(f(x),x,-4,3),line_width=2,color=red, explicit(rhs(tangenta(f(x),x,0)),x,-1.7,2.5),color="orange", explicit(rhs(tangenta(f(x),x,-2)),x,-3.9,0.5), color="green", explicit(2*x+1,x,-2.8,2.5), color="blue", point_type=filled_circle,point_size=1.5, points([[-2,f(-2)],[0,f(0)]]), color="black", yrange=[-5,8],label(["y=2x+1",-1.3,-0.8]), label(["y=2x+7",-0.6,5.2]),label(["y=2x-1",1.4,1.2])); |
![(%o21) [gr2d(explicit,explicit,explicit,explicit,points,label,label,label)]](primjena_derivacija_htmlimg/primjena_derivacija_21.png)
3. zadatak - tangenta i normala paralelne s koordinatnim osima
| (%i22) | f(x):=2*(x^2-1)^(1/3); |

| (%i23) | f(0); |

| (%i24) | diff(f(x),x); |

kod normale dobivamo error jer se dijeli s nulom zbog f'(0)=0, a taj slučaj u definiciji funkcije
"normala" nismo posebno razmatrali. No, mi znamo da je u tom slučaju normala okomita na x-os pa je
njezina jednadžba jednaka x=x0, tj. u našem slučaju x=0.
| (%i25) | tangenta(f(x),x,0); |

| (%i26) | normala(f(x),x,0); |

| (%i27) |
wxdraw2d(user_preamble="set size ratio 1",nticks=100, grid=true,xaxis=true,xaxis_width=1,xaxis_type=solid,xlabel="x", yaxis=true,yaxis_width=1,yaxis_type=solid,ylabel="y",line_width=3,color=blue, xtics=[-5,1,5],ytics=[-4,1,6],explicit(f(x),x,-5,5),line_width=2,color=red, explicit(rhs(tangenta(f(x),x,0)),x,-4.5,4.5),color="#23ab0f", line_width=5, parametric(0,t,t,-4,5), color="blue", point_type=filled_circle,point_size=1.5, points([[0,f(0)]]), color="black", yrange=[-5,6],label(["y=-2",4,-1.8]), label(["x=0",0.25,4.5])),wxplot_size=[700,700]; |



| (%i28) |
draw2d(terminal=wxt,user_preamble="set size ratio 1", grid=true,xaxis=true,xaxis_width=1,xaxis_type=solid,xlabel="x", yaxis=true,yaxis_width=1,yaxis_type=solid,ylabel="y",line_width=3,color=blue, xtics=[-5,1,5],ytics=[-4,1,6],explicit(f(x),x,-5,5),line_width=2,color=red, explicit(rhs(tangenta(f(x),x,0)),x,-4.5,4.5),color="#23ab0f", line_width=5, parametric(0,t,t,-4,5), color="blue", point_type=filled_circle,point_size=1.5, points([[0,f(0)]]), color="black", yrange=[-5,6],label(["y=-2",4,-1.8]), label(["x=0",0.25,4.5])); |
![(%o28) [gr2d(explicit,explicit,parametric,points,label,label)]](primjena_derivacija_htmlimg/primjena_derivacija_30.png)
4. zadatak - kut između krivulja
definiramo funkciju koja će nam olakšati računanje kuta između krivulja
| (%i29) |
kut_krivulja(fun1,fun2,x,x0):=block([k1:subst(x0,x,diff(fun1,x)),k2:subst(x0,x,diff(fun2,x))], atan(abs(k1-k2)/(1+k1*k2)))$ |
| (%i31) |
f1(x):=x^2+5; f2(x):=2*x^2+1; |


| (%i32) | solve(f1(x)=f2(x),x); |
![(%o32) [x=-2,x=2]](primjena_derivacija_htmlimg/primjena_derivacija_33.png)
kut između krivulja u točki presjeka u prvom kvadrantu
| (%i33) | kut_krivulja(f1(x),f2(x),x,2); |

kut između krivulja u točki presjeka u drugom kvadrantu
| (%i34) | kut_krivulja(f1(x),f2(x),x,-2); |

| (%i35) |
wxdraw2d(user_preamble="set size ratio 1", grid=true,xaxis=true,xaxis_width=1,xaxis_type=solid,xlabel="x", yaxis=true,yaxis_width=1,yaxis_type=solid,ylabel="y",line_width=3,color=blue, xtics=[-5,1,5],ytics=[-1,1,15], explicit(f1(x),x,-5,5), color="#23ab0f", explicit(f2(x),x,-5,5), line_width=2,color=red, explicit(rhs(tangenta(f2(x),x,2)),x,0.9,4.5), explicit(rhs(tangenta(f1(x),x,2)),x,-0.2,4.5), point_type=filled_circle,point_size=1.5, points([[2,f1(2)],[-2,f1(-2)]]), color="black", yrange=[-0.5,15],label(["y=-2",4,-1.8])),wxplot_size=[700,700]; |



| (%i36) |
draw2d(terminal=wxt,user_preamble="set size ratio 1", grid=true,xaxis=true,xaxis_width=1,xaxis_type=solid,xlabel="x", yaxis=true,yaxis_width=1,yaxis_type=solid,ylabel="y",line_width=3,color=blue, xtics=[-5,1,5],ytics=[-1,1,15], explicit(f1(x),x,-5,5), color="#23ab0f", explicit(f2(x),x,-5,5), line_width=2,color=red, explicit(rhs(tangenta(f2(x),x,2)),x,0.9,4.5), explicit(rhs(tangenta(f1(x),x,2)),x,-0.2,4.5), point_type=filled_circle,point_size=1.5, points([[2,f1(2)],[-2,f1(-2)]]), color="black", yrange=[-0.5,15],label(["y=-2",4,-1.8])); |
![(%o36) [gr2d(explicit,explicit,explicit,explicit,points,label)]](primjena_derivacija_htmlimg/primjena_derivacija_39.png)
2 Ekstremi
1. zadatak
| (%i37) | f(x):=x*%e^(-x); |

nultočke
| (%i38) | solve(x*%e^(-x)=0,x); |
![(%o38) [x=0]](primjena_derivacija_htmlimg/primjena_derivacija_41.png)
lokalni ekstremi
| (%i39) | diff(f(x),x); |

| (%i40) | solve(%=0,x); |
![(%o40) [x=1]](primjena_derivacija_htmlimg/primjena_derivacija_43.png)
| (%i41) | f(1); |

radi se o lokalnom maksimumu jer je f''(1)<0
| (%i42) | subst(1,x,diff(f(x),x,2)); |

točke infleksije
| (%i43) | solve(diff(f(x),x,2)=0,x); |
![(%o43) [x=2]](primjena_derivacija_htmlimg/primjena_derivacija_46.png)
y=0 je desna horizontalna asimptota (stoga funkcija nema desnu kosu asimptotu)
| (%i44) | limit(f(x),x,inf); |

funkcija nema lijevu horizontalnu asimptotu, niti lijevu kosu asimptotu
| (%i45) | limit(f(x),x,minf); |

| (%i46) | limit(f(x)/x,x,minf); |

graf funkcije
| (%i47) |
wxdraw2d(user_preamble="set size ratio 1", grid=true,xaxis=true,xaxis_width=1,xaxis_type=solid,xlabel="x", yaxis=true,yaxis_width=1,yaxis_type=solid,ylabel="y",line_width=3,color=blue, xtics=[-5,1,5],ytics=[-10,1,2], explicit(x*%e^(-x),x,-2,5), yrange=[-7,2]),wxplot_size=[700,700]; |



| (%i48) |
draw2d(terminal=wxt,user_preamble="set size ratio 1", grid=true,xaxis=true,xaxis_width=1,xaxis_type=solid,xlabel="x", yaxis=true,yaxis_width=1,yaxis_type=solid,ylabel="y",line_width=3,color=blue, xtics=[-5,1,5],ytics=[-10,1,2], explicit(x*%e^(-x),x,-2,5), yrange=[-7,2]); |
![(%o48) [gr2d(explicit)]](primjena_derivacija_htmlimg/primjena_derivacija_53.png)
animacija tangente po grafu funkcije - uočite položaj tangente na graf funkcije
u konveksnom i konkavnom području, uočite točku infleksije;
kliknite na donju sliku i kotačićem na mišu možete mijenjati tangentu ili pak
pomoću tipki u toolbaru ("trokut", "kvadrat", "slider")
| (%i49) |
with_slider_draw( x0, makelist(-0.5+0.25*dx,dx,0,18), proportional_axes = xy, line_width = 2, color = blue, explicit(x*%e^(-x), x, -2, 5), color = red, point_type=filled_circle, point_size=1.5, points([[x0,x0*%e^(-x0)]]), points_joined = true, point_size=0, points([[x0,x0*%e^(-x0)]-1.5/sqrt(1+(1-x0)^2*%e^(-2*x0))*[1,(1-x0)*%e^(-x0)], [x0,x0*%e^(-x0)]+1.5/sqrt(1+(1-x0)^2*%e^(-2*x0))*[1,(1-x0)*%e^(-x0)]]), dimensions=[900,500], yrange = [-2, 2], xrange = [-2, 5.5], xaxis = true, yaxis = true )$ |

2. zadatak
| (%i50) | g(x):=x*%e^(-x^2); |

nultočke
| (%i51) | solve(g(x)=0,x); |
![(%o51) [x=0]](primjena_derivacija_htmlimg/primjena_derivacija_57.png)
kandidati za lokalne ekstreme - stacionarne točke
| (%i52) | diff(g(x),x); |

| (%i53) | factor(%); |

| (%i54) | solve(%=0,x); |
![(%o54) [x=-1/sqrt(2),x=1/sqrt(2)]](primjena_derivacija_htmlimg/primjena_derivacija_60.png)
ispitivanje stacionarnih točaka
| (%i55) | diff(g(x),x,2); |

| (%i56) | g2:factor(%); |

lokalni minimum
| (%i57) | subst(-1/sqrt(2),x,g2); |

| (%i58) | g(-1/sqrt(2)); |

| (%i59) | g(-1/sqrt(2)),numer; |

lokalni maksimum
| (%i60) | subst(1/sqrt(2),x,g2); |

| (%i61) | g(1/sqrt(2)); |

| (%i62) | g(1/sqrt(2)),numer; |

točke infleksije
| (%i63) | solve(g2=0,x); |
![(%o63) [x=-sqrt(3)/sqrt(2),x=sqrt(3)/sqrt(2),x=0]](primjena_derivacija_htmlimg/primjena_derivacija_69.png)
y=0 je lijeva i desna horizontalna asimptota (dakle, nema kosih asimptoti)
| (%i64) | limit(g(x),x,inf); |

| (%i65) | limit(g(x),x,minf); |

graf funkcije
| (%i66) | wxplot2d(x*%e^(-x^2), [x,-3,3],[y,-1,1])$ |


ili malo bolja i detaljnija slika
| (%i67) |
wxdraw2d(grid=true,xaxis=true,xaxis_width=1,xaxis_type=solid,xlabel="x", yaxis=true,yaxis_width=1,yaxis_type=solid,ylabel="y",line_width=3,color=blue, xtics=[-3,1,3],ytics=[-1,0.25,1], explicit(x*%e^(-x^2),x,-3,3), point_size=2,color=red,point_type=filled_circle, key="ekstrem", points([[-1/sqrt(2),g(-1/sqrt(2))],[1/sqrt(2),g(1/sqrt(2))]]), color="#23ab0f",key="infleksija", points([[0,0],[sqrt(3/2),g(sqrt(3/2))],[-sqrt(3/2),g(-sqrt(3/2))]]), xrange=[-3,3], yrange=[-1,1]),wxplot_size=[800,600]; |



| (%i68) |
draw2d(terminal=wxt, grid=true,xaxis=true,xaxis_width=1,xaxis_type=solid,xlabel="x", yaxis=true,yaxis_width=1,yaxis_type=solid,ylabel="y",line_width=3,color=blue, xtics=[-3,1,3],ytics=[-1,0.25,1], explicit(x*%e^(-x^2),x,-3,3), point_size=2,color=red,point_type=filled_circle, key="ekstrem", points([[-1/sqrt(2),g(-1/sqrt(2))],[1/sqrt(2),g(1/sqrt(2))]]), color="#23ab0f",key="infleksija", points([[0,0],[sqrt(3/2),g(sqrt(3/2))],[-sqrt(3/2),g(-sqrt(3/2))]]), xrange=[-3,3], yrange=[-1,1]); |
![(%o68) [gr2d(explicit,points,points)]](primjena_derivacija_htmlimg/primjena_derivacija_77.png)
animacija kretanja tangente po grafu funkcije
| (%i69) |
with_slider_draw( x0, makelist(-2.5+0.25*dx,dx,0,18), proportional_axes = xy, line_width = 2, color = blue, explicit(x*%e^(-x^2), x, -3, 3), color = red, point_type=filled_circle, point_size=1.5, points([[x0,x0*%e^(-x0^2)]]), points_joined = true, point_size=0, points([[x0,x0*%e^(-x0^2)]-1.5/sqrt(1+(1-2*x0^2)^2*%e^(-2*x0^2))*[1,(1-2*x0^2)*%e^(-x0^2)], [x0,x0*%e^(-x0^2)]+1.5/sqrt(1+(1-2*x0^2)^2*%e^(-2*x0^2))*[1,(1-2*x0^2)*%e^(-x0^2)]]), dimensions=[900,500], yrange = [-1.5, 1.5], xrange = [-3.5, 3.5], xaxis = true, yaxis = true )$ |

3. zadatak
| (%i70) | h(x):=(x-4)/(3*x-x^2); |

nultočke
| (%i71) | solve(h(x)=0,x); |
![(%o71) [x=4]](primjena_derivacija_htmlimg/primjena_derivacija_81.png)
kandidati za lokalne ekstreme - stacionarne točke
| (%i72) | diff(h(x),x); |

| (%i73) | ratsimp(%); |

| (%i74) | solve(%=0,x); |
![(%o74) [x=6,x=2]](primjena_derivacija_htmlimg/primjena_derivacija_84.png)
ispitivanje stacionarnih točaka
| (%i75) | h2:ratsimp(diff(h(x),x,2)); |

lokalni minimum
| (%i76) | subst(6,x,h2); |

| (%i77) | h(6); |

lokalni maksimum
| (%i78) | subst(2,x,h2); |

| (%i79) | h(2); |

točke infleksije - samo je jedna (prva dva rješenja su kompleksni brojevi)
| (%i80) | solve(h2=0,x); |
![(%o80) [x=2^(2/3)*((sqrt(3)*%i)/2-1/2)+2^(4/3)*(-1/2-(sqrt(3)*%i)/2)+4,x=2^(4/3)*((sqrt(3)*%i)/2-1/2)+2^(2/3)*(-1/2-(sqrt(3)*%i)/2)+4,x=2^(4/3)+2^(2/3)+4]](primjena_derivacija_htmlimg/primjena_derivacija_90.png)
| (%i81) | 2^(4/3)+2^(2/3)+4,numer; |

x=0 i x=3 su (lijeve i desne) vertikalne asimptote
| (%i82) | limit(h(x),x,0,plus); |

| (%i83) | limit(h(x),x,0,minus); |

| (%i84) | limit(h(x),x,3,plus); |

| (%i85) | limit(h(x),x,3,minus); |

y=0 je (lijeva i desna) horizontalna asimptota. Dakle, nema kosih asimptoti.
| (%i86) | limit(h(x),x,inf); |

| (%i87) | limit(h(x),x,minf); |

graf funkcije
| (%i88) |
wxplot2d([(x-4)/(3*x-x^2)], [x,-5,5],[y,-20,20], [gnuplot_preamble,"set xtics (-4,-3,-2,-1,0,1,2,3,4)"])$ |



malo detaljnija slika
| (%i89) |
wxdraw2d(grid=true,xaxis=true,xaxis_width=1,xaxis_type=solid,xlabel="x", yaxis=true,yaxis_width=1,yaxis_type=solid,ylabel="y",line_width=3,color=blue, xtics=[-5,1,15],ytics=[-5,1,5], explicit((x-4)/(3*x-x^2),x,-5,15), point_size=2,color=red,point_type=filled_circle, key="ekstrem", points([[6,-1/9],[2,-1]]), color="#23ab0f",key="infleksija", points([[2^(4/3)+2^(2/3)+4,h(2^(4/3)+2^(2/3)+4)]]), line_width=3,color=red,key="x=3",line_type=dots, parametric(3,t,t,-5,5), xrange=[-5,15], yrange=[-5,5]),wxplot_size=[800,600]; |



| (%i90) |
draw2d(terminal=wxt, grid=true,xaxis=true,xaxis_width=1,xaxis_type=solid,xlabel="x", yaxis=true,yaxis_width=1,yaxis_type=solid,ylabel="y",line_width=3,color=blue, xtics=[-5,1,15],ytics=[-5,1,5], explicit((x-4)/(3*x-x^2),x,-5,15), point_size=2,color=red,point_type=filled_circle, key="ekstrem", points([[6,-1/9],[2,-1]]), color="#23ab0f",key="infleksija", points([[2^(4/3)+2^(2/3)+4,h(2^(4/3)+2^(2/3)+4)]]), line_width=3,color=red,key="x=3",line_type=dots, parametric(3,t,t,-5,5), xrange=[-5,15], yrange=[-5,5]); |
![(%o90) [gr2d(explicit,points,points,parametric)]](primjena_derivacija_htmlimg/primjena_derivacija_104.png)
SLIKA NAS PONEKAD MOŽE PREVARITI. Zato je na donjoj slici nacrtan graf promatrane funkcije
samo na dijelu domene x>3 kako bi se jasnije vidio lokalni minimum u točki x=6 i kako bi se
jasnije vidjela točka infleksije.
| (%i91) |
wxdraw2d(grid=true,xaxis=true,xaxis_width=1,xaxis_type=solid,xlabel="x", yaxis=true,yaxis_width=1,yaxis_type=solid,ylabel="y",line_width=3,color=blue, xtics=[-4,2,30],ytics=[-1.5,0.25,1.5], explicit((x-4)/(3*x-x^2),x,3.1,30), point_size=2,color=red,point_type=filled_circle, key="ekstrem", points([[6,-1/9]]), color="#23ab0f",key="infleksija", points([[2^(4/3)+2^(2/3)+4,h(2^(4/3)+2^(2/3)+4)]]), line_width=3,color=red,key="x=3",line_type=dots, parametric(3,t,t,-5,5), xrange=[-5,30], yrange=[-1,1]),wxplot_size=[800,600]; |



| (%i92) |
draw2d(terminal=wxt, grid=true,xaxis=true,xaxis_width=1,xaxis_type=solid,xlabel="x", yaxis=true,yaxis_width=1,yaxis_type=solid,ylabel="y",line_width=3,color=blue, xtics=[-5,1,30],ytics=[-1.5,0.25,1.5], explicit((x-4)/(3*x-x^2),x,3.1,30), point_size=2,color=red,point_type=filled_circle, key="ekstrem", points([[6,-1/9]]), color="#23ab0f",key="infleksija", points([[2^(4/3)+2^(2/3)+4,h(2^(4/3)+2^(2/3)+4)]]), line_width=3,color=red,key="x=3",line_type=dots, parametric(3,t,t,-5,5), xrange=[-5,30], yrange=[-1,1]); |
![(%o92) [gr2d(explicit,points,points,parametric)]](primjena_derivacija_htmlimg/primjena_derivacija_108.png)
4. zadatak
| (%i93) | k(x):=(2*x^2-8)/(5*x); |

nultočke
| (%i94) | solve(k(x)=0,x); |
![(%o94) [x=-2,x=2]](primjena_derivacija_htmlimg/primjena_derivacija_110.png)
nema lokalnih ekstrema (nema realnih rješenja)
| (%i95) | diff(k(x),x); |

| (%i96) | ratsimp(%); |

| (%i97) | solve(%=0,x); |
![(%o97) [x=-2*%i,x=2*%i]](primjena_derivacija_htmlimg/primjena_derivacija_113.png)
nema točaka infleksije (to ne mora značiti da je funkcija na svojoj prirodnoj domeni
uvijek konveksna ili konkavna)
| (%i98) | diff(k(x),x,2); |

| (%i99) | ratsimp(%); |

x=0 je (lijeva i desna) vertikalna asimptota
| (%i100) | limit(k(x),x,0,plus); |

| (%i101) | limit(k(x),x,0,minus); |

nema horizontalnih asimptota
| (%i102) | limit(k(x),x,inf); |

| (%i103) | limit(k(x),x,minf); |

pravac y=2/5*x je (lijeva i desna) kosa asimptota
| (%i104) | limit(k(x)/x,x,inf); |

| (%i105) | limit(k(x)-2/5*x,x,inf); |

| (%i106) | limit(k(x)/x,x,minf); |

| (%i107) | limit(k(x)-2/5*x,x,minf); |

graf funkcije
| (%i108) |
wxplot2d([(2*x^2-8)/(5*x),2/5*x],[x,-10,10],[y,-20,20], [gnuplot_preamble, "set grid;"],[style,[lines,2,1],[points,0.5,2,6]]),wxplot_size=[800,600]$ |



| (%i109) |
plot2d([(2*x^2-8)/(5*x),2/5*x],[x,-10,10],[y,-20,20],[gnuplot_term,wxt], [gnuplot_preamble, "set grid;"],[style,[lines,2,1],[points,1,2,8]])$ |
