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Abstract 

 A new algorithm to obtain the chromatic number of a finite, connected graph is proposed in this paper. The 

algorithm is based on contraction of non adjacent vertices. 

 

1. Introduction 

                                                                                                                  

It is well known that finding the chromatic number problem is NP-complete for a general graph. There are many 

techniques to solve the chromatic number problem. Grotschel proposed a polynomial time algorithm to find the 

chromatic number of a perfect graph based on ellipsoid method([1,2,3,4]).  Hermann and Hertz in [5], found the 

chromatic number by means of critical graphs. In [6] the chromatic number is found in   (       ) using maximal 

independent sets. 

Also the decision version of graph coloring problem is to determine whether the given graph can be colored with k 

colors. This problem is NP hard. It is known that if one can find whether a given graph can be colored optimally 

with k colors in polynomial time, a polynomial time algorithm can be found for coloring this graph. In this way also 

graph coloring optimization problem becomes important. There are polynomial time algorithms to color some 

smaller classes of graphs. [8, 9, 10]. 

In this paper we propose an algorithm which uses contraction of nonadjacent edges which satisfy a neighborhood 

condition so as reach the chromatic number decision. 

The remaining part of the paper is divided into 3 sections. The second section gives the basic definitions of 

chromatic polynomial, contraction of vertices and related operations performed using them. The third section states 

and proves results which are used in the justification of the algorithm and presents the algorithm. The fourth section 

tells about probable prospects and other related open problems 

 

 

 

 



2. Basic definitions 

All graphs considered here are simple, finite and connected. The vertex set of    is denoted by  ( ). The chromatic 

number of a graph is denoted as  ( ). For      ( ),   ( ) denotes the neighborhood of vertex     in graph  . 

The value of the chromatic polynomial   ( ) of a graph with     vertices gives the number of ways of properly 

coloring the graph, using     or fewer colors. In a graph G, if there exists a pair of non-adjacent vertices then an edge 

is added between them.  

In a graph G, if there exists a pair of non-adjacent vertices    and   , they are contracted to form a new vertex  

 (  ) , such that if vertex is adjacent to     or     in G, then  it is adjacent to  (  ) and all the parallel edges are 

replaced by a single edge.  

Given a graph  , we perform contraction to obtain a new graph     . Now contraction can be performed to    to 

obtain a new graph      and thus this process is repeated. Now instead of choosing an arbitrary pair of non-adjacent 

vertices, a pair which satisfies the following condition is chosen for contraction. 

Let            ( ), be a  pair of non-adjacent vertices such that 

|  (  )      (  )|    |  ( )      ( )|              ( ) 

where (    ) being a pair of non-adjacent vertices.  

This process of repeatedly fusing the pair of non-adjacent vertices which satisfies the above condition is called 

operation 1. 

 

 

3. Results 

In this section we prove two theorems which characterize the graphs obtained as a result of repeated application of 

operations mentioned in the previous section on an input graph. These results are helpful in justifying the proposed 

new algorithm for finding the chromatic number of the input graph.  

3.1 Theorem 1 

G is k-colorable if K-clique can be obtained through a sequence of non-edge contractions. 

 

Proof: Since G is k-colorable, there exists k-independent sets which partitions V(G).  Now, contract each partition 

into a single vertex, the resulting graph is a k-clique.   

 

The next two results will tell us how to obtain the smallest K-clique. 

 

 

 

 



3.2 Theorem 2 

Let G be any simple graph (connected or disconnected), and let             , be a pair of non-adjacent vertices 

such that  

|  (  )      (  )|    |  ( )      ( )|              

where (   ) being a pair of non-adjacent vertices.   

Let          {      }. Let    be the chromatic number of   and                  where    is the chromatic 

partitioning of   .  

Then the following condition holds:  

      (  )                 

       (  )         (  )

            (  )         (  )

 

The above condition is called as ‘Condition 1’.  

Proof: We prove this by induction on the number of vertices. 

Let   ( )be a statement such that  

  ( )                                                    

Clearly,   ( ) holds. Assume   ( )  holds.  

If  |  ( )      ( )|                 , (u,v) being a pair of non-adjacent vertices, then   is a complete graph or a 

disjoint union of complete graphs. Let |  ( )      ( )|      for some          .Let           {     },  where 

|  (  )      (  )|    |  ( )    ( )|. 

Case (i): 

   is a complete graph, This means that each                    is a singleton set. As 

 |  (  )      (  )|    |  ( )      ( )| , |  (  )      (  )|    (   )      or   

 |  (  )      (  )|    (   )    , as             ( )    (   )      

 If |  (  )      (  )|    (   )    , then  (  )     (  )    (   )    and 

                  (  )      (  ) and hence condition 1 is satisfied. 

 If  |  (  )      (  )|    (   )    , then without loss of generality,  (  )     (  )    (   )    . But this 

means that             if        (  )             (  )   Hence Condition 1 is satisfied 

Case (ii): 

   is not complete. We prove the theorem by the method of contradiction. Assume there exists a graph    with 

       vertices such that   (   )does not hold.  



There exists a vertex      such that         – { }    (  )     (  ) where  ( ) is the chromatic number of G. 

If                          is the chromatic partitioning of    and then               
               is the chromatic 

partitioning of    , where               
    is the chromatic number of   and       

Let           { }   where  (  )     ( ). Clearly,     |  (  )      (  )|    | (  )(  )     (  )(  )|      . 

If  |  (  )      (  )|    | (  )(  )     (  )(  )|, and that result 1 does not hold for    ,then it does not hold for 

    . But this contradicts   ( )   as     has only n vertices. If  |  (  )      (  )|    | (  )(  )     (  )(  )|      , 

we assume | (  )( )     (  )( )| is maximum at some pair (        ). The following modifications are done to      

If (         ) have different colours, add an edge between them. 

 

 If they don't, then  

         (  )(   )     (  )(   )

           (  )(  )     (  )(  )
 

Either the edge (       ) or (       ) is removed but not both. By doing the above, a modified graph     is obtained 

such that | (  )(  )     (  )(  )| is maximum which implies that result 1 does not hold for     which is a 

contradiction. Hence the proof is complete.                                                                                                                                           

 

3.3 Theorem 3 

A complete graph is obtained by performing operation 1 on a finite, connected graph G. It is unique and has 

chromatic number same as that of G. 

Proof: Let     have     vertices. Let     be formed from    by fusing vertices        which satisfy the condition 

 |  (  )      (  )|    |  ( )      ( )| where      are non-adjacent vertices. 

Claim:   ( )     (  ) 

Let      have chromatic number   . By the way    was constructed,    can be properly colored with    colors. We are 

done if we show that    can not be properly colored with        colors. 

Assume    can be properly colored with        colors.         are fused to give a vertex   (  )  where  

 (  )     (  ). Let            {      }. Clearly           { (  )} and thus      is a sub graph of both    and 

    . Let   (   )     and                         be the chromatic partitioning of    . We note   is formed by  

adding vertices       to    and     is formed by adding vertex  (  )to      .  

 

This implies   (   )     ( )    (  )      (Adding a vertex can increase the chromatic  number of a graph by at 

most 1). For the above condition to happen, the negation of condition 1 of result 1 occurs. This means that 

|  (  )    (  )| is not maximum which is a contradiction. 

 Hence our claim is proved.   

By the way operation 1 is performed, it is found that  (  )     ( )   This implies       ( )   Hence we have 

proved the result. 



3.4 Algorithm 

With the help of the theorems proved above , an algorithm is designed to find the chromatic number of a finite, 

connected graph. 

Step1: Take a Graph     

Step2: If    is complete stop, 

          else find a pair of non-adjacent vertices         which satisfy the condition 

                  |  (  )    (  )|    |  ( )    ( )| where        are non-adjacent vertices. 

Step3:Fuse       to result in a graph      

Step4: Repeat Step 2 to      

Step5:The number of vertices in the complete graph is the chromatic number of the  

             graph    

 

 

Prospects and open problem 

The application of the algorithm presented increases the motivation for its development and leads to an interesting 

research. It shows that to find the chromatic number, one need not find the color assignment of the vertices. We can 

develop the idea to find which all subclasses of graphs gives the chromatic number on performing the presented 

algorithm on it, except that property of the non-adjacent vertex pair is different than the one presented. For example, 

if property of the pair is that every induced path between them has even number of edges, we get the subclass to be 

the set of perfect graphs as mentioned in Haddadene's and Issaidi’spaper [7]. The complexity of the above algorithm 

is not given. 
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