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This chapter presents an introduction to graph colouring algorithms.1 The
focus is on vertex-colouring algorithms that work for general classes of
graphs with worst-case performance guarantees in a sequential model of
computation. The presentation aims to demonstrate the breadth of available
techniques and is organized by algorithmic paradigm.

1. Introduction

A straightforward algorithm for finding a vertex-colouring of a graph is to search
systematically among all mappings from the set of vertices to the set of colours, a
technique often called exhaustive or brute force:

Algorithm X (Exhaustive search) Given an integer q ≥ 1 and a graph G with vertex
set V , this algorithm finds a vertex-colouring using q colours if one exists.

X1 [Main loop] For each mapping f : V → {1,2, . . . ,q}, do Step X2.
X2 [Check f ] If every edge vw satisfies f (v) , f (w), terminate with f as the

result.

This algorithm has few redeeming qualities, other than its being correct. We
consider it here because it serves as an opportunity to make explicit the framework
in which we present more interesting algorithms.

1Appears as Thore Husfeldt, Graph colouring algorithms, Chapter XIII of Topics in Chromatic
Graph Theory, L. W. Beineke and Robin J. Wilson (eds.), Encyclopedia of Mathematics and its
Applications, Cambridge University Press, ISBN 978-1-107-03350-4, 2015, pp. 277–303.
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Model of computation

If G has n vertices and m edges, then the number of operations used by Algorithm
X can be asymptotically bounded by O(qn (n + m)), which we call the running time
of the algorithm.

To make such a claim, we tacitly assume a computational model that includes
primitive operations, such as iterating over all mappings from one finite set A to
another finite set B in time O(|B | |A |) (Step X1), or iterating over all edges in time
O(n + m) (Step X2). For instance, we assume that the input graph is represented by
an array of sequences indexed by vertices; the sequence stored at vertex v contains
the neighouring vertices N (v), see Fig. 1. This representation allows us to iterate

a

z
b

i

cg

d
l

m

p

e

u

r

v

st

a

m

b

c

m

c

e

s

b

d

t

i

l

z

e

c

i

s

g

z

i

s

e

d

l

d

m

a

b

r

t

z

v

p

v

r

s

t

m

s

c

e

i

r

t

m

r

d

u v

m

p

z

m

d

g

Fig. 1. A graph and its representation as an array of sequences

over the neighbours of a vertex in time O(deg v). (An alternative representation,
such as an incidence or adjacency matrix, would not allow this.) Note that detecting
whether two graphs are isomorphic is not a primitive operation. The convention of
expressing computational resources using asymptotic notation is consistent with
our somewhat cavalier attitude towards the details of our computational model. Our
assumptions are consistent with the behaviour of a modern computer in a high-level
programming language. Nevertheless, we will explain our algorithms in plain
English.

Worst-case asymptotic analysis

Note that we could have fixed the colouring of a specific vertex v as f (v) = 0,
reducing Algorithm X’s running time to O(qn−1(n + m)). A moment’s thought
shows that this reasoning can then be extended to cliques of size r ≥ 1: search
through all

(
n
r

)
induced subgraphs until a clique of size r is found, arbitrarily map

these vertices to {1,2, . . . ,r } and then let Algorithm X colour the remaining vertices.
This reduces the running time to O(qn−ω (G)nω (G) (n + m)), where ω(G) is the
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clique size. This may be quite useful for some graphs. Another observation is that
in the best case, the running time is O(n + m). However, we will normally not
pursue this kind of argument. Instead, we are maximally pessimistic about the input
and the algorithm’s underspecified choices. In other words, we understand running
times as worst-case performance guarantees, rather than ‘typical’ running times or
average running times over some distribution.

Sometimes we may even say that Algorithm X requires time qn poly(n), where
we leave the polynomial factor unspecified in order to signal the perfunctory atten-
tion we extend to these issues.

Overview and notation

Straightforward variants of Algorithm X can be used to solve some other graph
colouring problems. For instance, to find a list-colouring, we restrict the range of
values for each f (v) to a given list; to find an edge-colouring, we iterate over all
mappings f : E → {1,2, . . . ,q}.

Another modification is to count the number of colourings instead of finding just
one. These extensions provide baseline algorithms for list-colouring, edge-colouring,
the chromatic polynomial, the chromatic index, and so forth. However, for purposes
of exposition, we present algorithms in their least general form, emphasizing the
algorithmic idea rather than its (sometimes quite pedestrian) generalizations. The
algorithms are organized by algorithmic technique rather than problem type, graph
class, optimality criterion, or computational complexity. These sections are largely
independent and can be read in any order, except perhaps for Algorithm G in
Section 2. The final section takes a step back and relates the various colouring
problems to each other.

2. Greedy colouring

The following algorithm, sometimes called the greedy or sequential algorithm,
considers the vertices one by one and uses the first available colour.

Algorithm G (Greedy vertex-colouring) Given a graph G with maximum degree ∆
and an ordering v1,v2, . . . ,vn of its vertices, this algorithm finds a vertex-colouring
with maxi |{ j < i : v jvi ∈ E }| + 1 ≤ ∆ + 1 colours.

G1 [Initialize] Set i = 0.
G2 [Next vertex] Increment i. If i = n + 1, terminate with f as the result.
G3 [Find the colours N (vi )] Compute the set C =

⋃
j<i f (v j ) of colours already

assigned to the neighbours of vi .
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G4 [Assign the smallest available colour to vi] For increasing c = 1,2, . . . , check
whether c ∈ C. If not, set f (vi ) = c and return to Step G2.

For the number of colours, it is clear that in Step G4, the value of c is at most
|C |, which is bounded by the number of neighbours of vi among v1,v2, . . . ,vi−1. In
particular, Algorithm G establishes that χ(G) ≤ ∆(G) + 1.

For the running time, note that both Steps G3 and G4 take at most O(1 +

deg vi ) operations. Summing over all i, the total time spent in Steps G3 and G4 is
asymptotically bounded by n + (deg v1 + deg v2 + · · · + deg vn ) = n + 2m. Thus,
Algorithm G takes time O(n + m).

Optimal ordering The size of the colouring computed by Algorithm G depends
heavily on the vertex ordering. Its worst-case behaviour is poor. For instance, it
spends 1

2 n colours on the 2-colourable crown graph shown in Fig. 2.

v2

v1

v4

v3

v6

v5

· · ·

· · ·

vn

vn−1

Fig. 2. The crown graph

On the other hand, for every graph there exists an ordering for which Algorithm
G uses an optimal number of colours; indeed, any ordering that satisfies f (vi ) ≤
f (vi+1) for an optimal colouring f has this property. Since there are n! different
orderings, this observation is algorithmically quite useless. An ordering is perfect for
a graph if, for every induced subgraph, Algorithm G results in an optimal colouring;
triangulated graphs and comparability graphs always admit such an ordering, as
shown by Chvátal [11].

Randomness

Algorithm G performs quite well on random graphs, whatever the vertex ordering.
For almost all n-vertex graphs, it uses n/(log n − 3 log log n) colours, which is
roughly twice the optimum value (see [15]).

This suggests the following randomized algorithm. For a graph G, choose a
vertex ordering at random and then execute Algorithm G. For many problems, it is
a sound algorithmic design strategy to trade good average-case behaviour for good
(expected) worst-case behaviour in this way. However, for Algorithm G the result is
quite poor: for every ε > 0 there exist graphs with chromatic number nε for which
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the randomized algorithm uses Ω(n/ log n) colours with high probability, as shown
by Kučera [26].

Other orderings

In the largest-first vertex-degree ordering introduced by Welsh and Powell [38], the
vertices are ordered such that deg v1 ≥ deg v2 ≥ · · · ≥ deg vn . This establishes the
bound χ(G) ≤ 1 + maxi min{deg vi , i − 1}, which is sometimes better than 1 + ∆,
such as in Fig. 3.

v1

v2

v3

v4 v5

v6

Fig. 3.

Closely related in spirit is Matula’s smallest-last ordering [32], given as follows:
choose as the last vertex vn a vertex of minimum degree in G, and proceed recur-
sively with G − vn , see Fig. 4. With this ordering, the size of the resulting colouring
is be bounded by the Szekeres–Wilf bound [36],

χ(G) ≤ dgn(G) + 1 ,

where the degeneracy dgn(G) is the maximum over all subgraphs H of G of the
minimum degree δ(H). This ordering optimally colours crown graphs and many
other classes of graphs, and uses six colours on any planar graph.

largest-first:
v6 v1 v4 v3 v2 v5

smallest-last:
v6 v4 v2 v1 v3 v5

Fig. 4.

Other orderings are dynamic in the sense that the ordering is determined during
the execution of the algorithm, rather than in advance. For example, Brélaz [6]
suggests choosing the next vertex from among those adjacent to the largest number
of different colours. Many other orderings have been investigated (see the surveys
of Kosowski and Manuszewski [25] and Maffray [31]). Many of them perform quite
well on instances that one may encounter ‘in practice’, but attempts at formalizing
what this means are quixotic.
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2-colourable graphs

Of particular interest are those vertex orderings in which every vertex vi is adjacent
to some vertex v j with j < i. Such orderings can be computed in time O(m + n)
using basic graph-traversal algorithms. This algorithm is sufficiently important to
be made explicit.

Algorithm B (Bipartition) Given a connected graph G, this algorithm finds a
2-colouring if one exists. Otherwise, it outputs an odd cycle.

B1 [Initialize] Let f (v1) = 1 and let Q (the ‘queue’) be an empty sequence. For
each neighbour w of v1, set p(w) = v1 (the ‘parent’ of w) and add w to Q.

B2 [Next vertex] If Q is empty, go to Step B3. Otherwise, remove the first vertex
v from Q and set f (v) to the colour not already assigned to p(v). For each
neighbour w of v, if w is not yet coloured and does not belong to Q, then set
p(w) = v and add w to the end of Q. Repeat Step B2.

B3 [Verify 2-colouring] Iterate over all edges to verify that f (v) , f (w) for every
edge vw. If so, terminate with f as the result.

B4 [Construct odd cycle] Let vw be an edge with f (v) = f (w) and let u be the
nearest common ancestor of v and w in the tree defined by p. Output the path
w,p(w),p(p(w)), . . . ,u, followed by the reversal of the path v,p(v),p(p(v)),
. . . ,u, followed by the edge vw.

Fig. 5 shows an execution of Algorithm B finding a 2-colouring.

Fig. 5. Execution of Algorithm B

Algorithm B is an example of a ‘certifying’ algorithm: an algorithm that pro-
duces a witness to certify its correctness, in this case an odd cycle if the graph
is not 2-colourable. To see that the cycle constructed in Step B4 has odd length,
note that on the two paths w,p(w),p(p(w)), . . . ,u and v,p(v),p(p(v)), . . . ,u, each
vertex has a different colour from its predecessor. Since the respective endpoints
of both paths have the same colour, they must contain the same number of edges
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modulo 2. In particular, their total length is even. With the additional edge vw, the
length of the resulting cycle is odd.

The order in which the vertices are considered by Algorithm B depends on
the first-in first-out behaviour of the queue Q. The resulting ordering is called
breadth-first. An important variant uses a last-in first-out ‘stack’ instead of a queue;
the resulting ordering is called depth-first. Fig. 6 shows the resulting behaviour on
the graph from Fig. 5.

Fig. 6. Execution of Algorithm B using depth-first search

Algorithm B works also for the list-colouring problem, provided that for each
vertex v, the available list of colours L(v) has size at most 2. This observation leads
to a simple, randomized, exponential-time algorithm for 3-colouring due to Beigel
and Eppstein [1].

Algorithm P (Palette restriction) Given a graph, this algorithm finds a 3-colouring
if one exists.

P1 [Forbid one colour at each vertex] For each vertex v, select a list L(v) of colours
available at v uniformly and independently at random from the three lists {1,2},
{2,3}, and {1,3}.

P2 [Attempt 2-colouring] Try to solve the list-colouring instance given by L using
Algorithm B, setting f (v1) = min L(v1) in Step B1. If successful, terminate
with the resulting colouring. Otherwise, return to Step P1.

To analyse the running time, consider a 3-colouring f . For each vertex v, colour
f (v) belongs to L(v) with probablity 2

3 . Thus, with probability at least ( 2
3 )n , the list

colouring instance constructed in step P1 has a solution. It follows that the expected
number of repetitions is ( 3

2 )n , each of which takes polynomial time.

Wigderson’s algorithm

Algorithms B and G appear together in Wigderson’s algorithm [40]:
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Algorithm W (Wigderson’s algorithm) Given a 3-chromatic graph G, this algo-
rithm finds a vertex-colouring with O(

√
n) colours.

W1 [Initialize] Let c = 1.
W2 [∆(G) ≥ d

√
ne] Consider a vertex v in G with deg v ≥ d

√
ne; if no such

vertex exists, go to Step W3. Use Algorithm B to 2-colour the neighbourhood
G[N (v)] with colours c and c + 1. Remove N (v) from G and increase c by
χ(G[N (v)]). Repeat Step W2.

W3 [∆(G) < d
√

ne] Use Algorithm G to colour the remaining vertices with the
colours c,c + 1, . . . ,c + d

√
ne.

Fig. 7 shows an execution of Algorithm W finding a 5-colouring of the 16-vertex
instance from Fig. 1.
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Fig. 7. Execution of Algorithm W

The running time is clearly bounded by O(n + m). To analyse the number of
colours, we first need to verify Step W2. Since G is 3-colourable, so is the subgraph
induced by N (v) ∪ {v}. Now, if G[N (v)] requires 3 colours, then G[N (v) ∪ {v}]
requires 4, so G[N (v)] is 2-colourable and therefore Step W2 is correct. Note that
Step W2 can be run at most O(

√
n) times, each using at most two colours. Step W3

expends another d
√

ne colours according to Algorithm G.
Algorithm W naturally extends to graphs with χ(G) > 3. In this case, Step W2

calls Algorithm W recursively to colour ( χ(G) − 1)-colourable neighbourhoods.
The resulting algorithm uses O(n1−1/(1−χ(G))) colours.

3. Recursion

Recursion is a fundamental algorithmic design technique. The idea is to reduce a
problem to one or more simpler instances of the same problem.
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Contraction

The oldest recursive construction for graph colouring expresses the chromatic
polynomial P(G,q) and the chromatic number χ(G) in terms of edge-contractions:
For non-adjacent vertices v, w and integer q = 0,1, . . . ,n,

P(G,q) = P(G + vw,q) + P(G/vw,q) ,

χ(G) = min{ χ(G + vw), χ(G/vw)} ,

see Chapter 3, Section 2.1. These ‘addition–contraction’ recurrences immediately
imply a recursive algorithm. For instance,

P( ,q) = P( ,q) + P( ,q)

= P(K4,q) + P(K3,q) = q(q − 1)(q − 2)
(
(q − 3)(q − 4) + 1

)
.

Note that the graphs at the end of the recursion are complete.
For sparse graphs, it is more useful to express the same idea as a ‘deletion–

contraction’ recurrence, which deletes and contracts edges until the graph is empty:

P(G,q) = P(G/e,q) − P(G − e,q) (e ∈ E) .

Many other graph problems beside colouring can be expressed by a deletion–
contraction recurrence. The most general graph invariant that can be defined in this
fashion is the Tutte polynomial (see [5] and [18] for its algorithmic aspects).

The algorithm implied by these recursions is sometimes called Zykov’s algorithm
[42]. Here is the deletion–contraction version.

Algorithm C (Contraction) Given a graph G, this algorithm returns the sequence
of coefficients (a0,a1, . . . ,an ) of the chromatic polynomial P(G,q) =

∑n
i=0 aiqi .

C1 [Base] If G has no edges then return the coefficients (0,0, . . . ,0,1), correspond-
ing to the polynomial P(G,q) = qn .

C2 [Recursion] Pick an edge e and construct the graphs G′ = G/e and G′′ = G − e.
Call Algorithm C recursively to compute P(G′,q) and P(G′′,q) as sequences
of coefficients (a′0,a

′
1, . . . ,a

′
n ) and (a′′0 ,a

′′
1 , . . . ,a

′′
n ). Return (a′0 − a′′0 ,a

′
1 −

a′′1 , . . . ,a
′
n −a′′n ), corresponding to the polynomial P(G/e,q)−P(G− e,q).

To analyse the running time, let T (r) be the number of executions of Step C1 for
graphs with n vertices and m edges, where r = n + m. The two graphs constructed
in Step C2 have size n − 1 + m − 1 = r − 2 and n + m − 1 = r − 1, respectively,
so T satisfies T (r) = T (r − 1) + T (r − 2). This is a well-known recurrence with
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solution T (r) = O(ϕr ), where ϕ = 1
2 (1 +

√
5) is the golden ratio. Thus, Algorithm

C requires ϕn+m poly(n) = O(1.619n+m ) time. A similar analysis for the algorithm
implied by the deletion–addition recursion gives ϕn+m poly(n), where m =

(
n
2

)
−m

is the number of edges in the complement of G.
These worst-case bounds are often very pessimistic. They do not take into

account that recurrences can be stopped as soon as the graph is a tree (or some other
easily recognized graph whose chromatic polynomial is known as a closed formula),
or that P factorizes over connected components. Moreover, we can use graph
isomorphism heuristics and tabulation to avoid some unnecessary recomputation of
isomorphic subproblems (see [18]). Thus, Algorithm C is a more useful algorithm
than its exponential running time may indicate.

Vertex partitions and dynamic programming

We turn to a different recurrence, which expresses χ(G) in terms of induced
subgraphs of G. By taking S to be a colour class of an optimal colouring of
G, we observe that every graph has an independent set of vertices S for which
χ(G) = 1 + χ(G − S). Thus, we have

χ(G) = 1 + min χ(G − S) , (1)

where the minimum is taken over all non-empty independent sets S in G.
The recursive algorithm implied by (1) is too slow to be of interest. We expedite

it using the fundamental algorithmic idea of dynamic programming. The central
observation is that the subproblems χ(G− S) for various vertex-subsets S appearing
in (1) are computed over and over again. It thus makes sense to store these 2n values
in a table when they are first computed. Subsequent evaluations can then be handled
by consulting the table.

We express the resulting algorithm in a bottom-up fashion:

Algorithm D (Dynamic programming) Given a graph G, this algorithm computes
a table T with T (W ) = χ(G[W ]), for each W ⊆ V.

D1 [Initialize] Construct a table with (initially undefined) entries T (W ) for each
W ⊆ V . Set T (∅) = 0.

D2 [Main loop] List all vertex-subsets W1,W2, . . . ,W2n ⊆ V in non-decreasing
order of their size. Do Step D3 for W = W2,W3, . . . ,W2n , then terminate.

D3 [Determine T (W )] Set T (W ) = 1 + min T (W \ S), where the minimum is taken
over all non-empty independent sets S in G[W ].
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The ordering of subsets in the main loop D2 ensures that each set is handled
before any of its supersets. In particular, all values T (W \ S) needed in Step D3 will
have been previously computed, so the algorithm is well defined. The minimization
in Step D3 is implemented by iterating over all 2 |W | subsets of W . Thus, the total
running time of Algorithm D is within a polynomial factor of∑

W ⊆V

2 |W | =
n∑

k=0

(
n
k

)
2k = 3n . (2)

This rather straightforward application of dynamic programming already pro-
vides the non-trivial insight that the chromatic number can be computed in time
exponential in the number of vertices, rather than depending exponentially on m,
χ(G), or a superlinear function of n.

Maximal independent sets

To pursue this idea a little further we notice that S in (1) can be assumed to be a
maximal independent set – that is, not a proper subset of another independent set.
To see this, let f be an optimal colouring and consider the colour class S = f −1(1).
If S is not maximal, then repeatedly pick a vertex v that is not adjacent to S, and set
f (v) = 1.

By considering the disjoint union of 1
3 k triangles, we see that there exist k-

vertex graphs with 3k/3 maximal independent sets. It is known that this is also an
upper bound, and that the maximal independent sets can be enumerated within a
polynomial factor of that bound (see [7], [34] and [37]). We therefore have the
following result:

Theorem 3.1 The maximal independent sets of a graph on k vertices can be listed
in time O(3k/3) and polynomial space.

We can apply this idea to Algorithm D. The minimization in Step D3 now takes
the following form:

D3′ [Determine T (W )] Set T (W ) = 1 + min T (W\S), where the minimum is taken
over all maximal independent sets S in G[W ].

Using Theorem 3.1 with k = |W | for the minimization in Step D3′, the total
running time of Algorithm D comes within a polynomial factor of

n∑
k=0

(
n
k

)
3k/3 = (1 + 31/3)n = O(2.443n ) .

For many years, this was the fastest known algorithm for the chromatic number.
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3-colouring

Of particular interest is the 3-colouring case. Here, it makes more sense to let
the outer loop iterate over all maximal independent sets and check whether the
complement is bipartite.

Algorithm L (Lawler’s algorithm) Given a graph G, this algorithm finds a 3-
colouring if one exists.

L1 [Main loop] For each maximal independent set S of G, do Step L2.
L2 [Try f (S) = 3] Use Algorithm B to find a colouring f : V \ S → {1,2} of G − S

if one exists. In that case, extend f to all of V by setting f (v) = 3 for each
v ∈ S, and terminate with f as the result.

The running time of Algorithm L is dominated by the number of executions
of L2, which, according to Theorem 3.1, is 3n/3. Thus, Algorithm L decides
3-colourability in time 3n/3 poly(n) = O(1.442n ) and polynomial space.

The use of maximal independent sets goes back to Christofides [10], while
Algorithms D and L are due to Lawler [28]. A series of improvements to these ideas
have further reduced these running times. At the time of writing, the best-known
time bound for 3-colouring is O(1.329n ) by Beigel and Eppstein [1].

4. Subgraph expansion

The Whitney expansion [39] of the chromatic polynomial is

P(G,q) =
∑
A⊆E

(−1) |A |qk (A) ;

see Chapter 3, Section 2 for a proof. It expresses the chromatic polynomial as
an alternating sum of terms, each of which depends on the number of connected
components k (A) of the edge-subset A ⊆ E. Determining k (A) is a well-studied
algorithmic graph problem, which can be solved in time O(n + m) (for example,
by depth-first search). Thus, the Whitney expansion can be evaluated in time
O(2m (n + m)).

A more recent expression (see [2]) provides an expansion over induced sub-
graphs:
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Theorem 4.1 For W ⊆ V, let g(W ) be the number of non-empty independent sets
in G[W ]. Then G can be q-coloured if and only if∑

W ⊆V

(−1) |V \W |
(
g(W )

)q > 0 . (3)

Proof. For each W ⊆ V , the term
(
g(W )

)q counts the number of ways of selecting
q non-empty independent sets S1,S2, . . . ,Sq , where Si ⊆ W . For U ⊆ V , let h(U)
be the number of ways of selecting q non-empty independent sets whose union is U .
Then (g(W ))q =

∑
U⊆W h(U), so∑

W ⊆V

(−1) |V \W |
(
g(W )

)q
=

∑
W ⊆V

(−1) |V \W |
∑
U⊆W

h(U)

=
∑
U⊆V

h(U)
∑
W ⊇U

(−1) |V \W | = h(V ) .

For the last step, note that the inner sum (over W , with U ⊆ W ⊆ V ) vanishes except
when U = V , because there are as many odd-sized as even-sized sets sandwiched
between different sets, by the principle of inclusion–exclusion.

If h(V ) is non-zero, then there exist independent sets S1,S2, . . . ,Sq whose union
is V . These sets correspond to a colouring: associate a colour with the vertices in
each set, breaking ties arbitrarily.

For each W ⊆ V , we can compute the value g(W ) in time O(2 |W |m) by
constructing each non-empty subset of W and testing it for independence. Thus,
the total running time for evaluating (3) is within a polynomial factor of 3n , just
as in the analysis (2) for Algorithm D; however, the space requirement here is
only polynomial. We can further reduce the running time to O(2.247n ) by using
dedicated algorithms for evaluating g(W ) from the literature (see [3]).

If exponential space is available, we can do even better. To that end, we first
introduce a recurrence for g.

Theorem 4.2 Let W ⊆ V. We have g(∅) = 0, and, for every v ∈ W,

g(W ) = g(W \ {v}) + g(W \ N[v]) + 1 . (4)

Proof. Fix v ∈ W . The non-empty independent sets S ⊆ W can be partitioned into
two classes with v < S and v ∈ S. In the first case, S is a non-empty independent
set with S ⊆ W \ {v} and thus accounted for by the first term of (4). Consider the
second case. Since S contains v and is independent, it contains no vertex from N (v).
Thus, S is a non-empty independent set with {v} ⊆ S ⊆ W \ N (v). The number of
such sets is the same as the number of (not necessarily non-empty) independent sets
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S′ with S′ ⊆ W \ N[v], because of the bijective mapping S 7→ S′ where S′ = S \ {v}.
By induction, the number of such sets is g(W \ N[v]) + 1, where the ‘+1’ term
accounts for the empty set.

This leads to the following algorithm, due to Björklund et al. [3]:

Algorithm I (Inclusion–exclusion) Given a graph G and an integer q ≥ 1, this
algorithm determines whether G can be q-coloured.
I1 [Tabulate g] Set g(∅) = 0. For each non-empty subset W ⊆ V in inclusion order,

pick v ∈ W and set g(W ) = g(W \ {v}) + g(W \ N[v]) + 1.
I2 [Evaluate (3)] If

∑
W ⊆V (−1) |V \W |

(
g(W )

)q > 0 output ‘yes’, otherwise ‘no’.

Both Steps I1 and I2 take time 2n poly(n), and the algorithm requires a table
with 2n entries. Fig. 8 shows the computations of Algorithm I on a small graph
for q = 2 and q = 3, with aq (W ) = (−1) |V \W |

(
g(W )

)q . The sum of the entries in
column a2 is 0, so there is no 2-colouring. The sum of the entries in column a3 is
18, so a 3-colouring exists.

uv

w

x

W g a2 a3

∅ 0 0 0
{u} 1 −1 −1
{v} 1 −1 −1
{w} 1 −1 −1
{x} 1 −1 −1
{u,v} 2 4 8
{u,w} 2 4 8
{u, x} 2 4 8

W g a2 a3

{v,w} 2 4 8
{v, x} 3 9 27
{w, x} 3 9 27
{u,v,w} 3 −9 −27
{u,v, x} 4 −16 −64
{u,w, x} 4 −16 −64
{v,w, x} 5 −25 −125

V 6 36 216

Fig. 8. Execution of Algorithm I

With slight modifications, Algorithm I can be made to work for other colouring
problems such as the chromatic polynomial and list-colouring, also in time and
space 2n poly(n) (see [3]); currently, this is the fastest known algorithm for these
problems. For the chromatic polynomial, the space requirement can be reduced to
O(1.292n ), while maintaining the 2n poly(n) running time (see [4]).

5. Local augmentation

Sometimes, a non-optimal colouring can be improved by a local change that re-
colours some vertices. This general idea is the basis of many local search heuristics
and also several central theorems.
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Kempe changes

An important example, for edge-colouring, establishes Vizing’s theorem, ∆(G) ≤
χ′(G) ≤ ∆(G) + 1. Chapter 5 gives a modern and more general presentation of
the underlying idea, and our focus in the present chapter is to make the algorithm
explicit.

A colour is free at v if it does not appear on an edge at v. (We consider an
edge-colouring with ∆(G) + 1 colours, so every vertex has at least one free colour.)
A (Vizing) fan around v is a maximal set of edges vw0,vw1, . . . ,vwr , where vw0
is not yet coloured and the other edges are coloured as follows. For j = 0,1, . . . ,r ,
no colour is free at both v and w j . For j = 1,2, . . . ,r, the jth fan edge vw j has
colour j and the colours appearing around w j include 1,2, . . . , j but not j + 1 (see
Fig. 9(a)). Such a fan allows a recolouring by moving colours as follows: remove
the colour from vw j and set f (vw0) = 1, f (vw1) = 2, . . . , f (vw j−1) = j. This is
called downshifting from j (see Fig. 9(b)).

(a)

v
w0

w1

w2
w3

w4

w5

1
2 3

4
5

1 1 2

12
3

1
2

3
4

(b)

v
w0

w1

w2 w3
w4

w51
2

3
4
5

(c)

v
w0

w1

w2 w j

wr

wr+1

1
2 j

0
j

0

0 j 0

r

r + 1

Fig. 9. (a) A fan (b) Downshifting from 3 (c) Step V7: colour j is free at wr+1

Algorithm V (Vizing’s algorithm) Given a graph G, this algorithm finds an edge
colouring with at most ∆(G) + 1 colours in time O(nm).

V1 [Initialize] Order the edges arbitrarily e1,e2, . . . ,em . Let i = 0.
V2 [Extend colouring to next edge] Increment i. If i = m + 1 then terminate.

Otherwise, let vw = ei .
V3 [Easy case] If a colour c is free at both v and w, then set f (vw) = c and return

to Step V2.
V4 [Find w0 and w1] Let w0 = w. Pick a free colour at w0 and call it 1. Let vw1 be

the edge incident with v coloured 1. (Such an edge exists because 1 is not also
free at v.)
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V5 [Find w2] Pick a free colour at w1 and call it 2. If 2 is also free at v, then set
f (vw0) = 1, f (vw1) = 2, and return to Step V2. Otherwise, let vw2 be the
edge incident with v coloured 2. Set r = 2.

V6 [Extend fan to wr+1] Pick a free colour at wr and call it r + 1. If r + 1 is also
free at v then downshift from r , recolour f (vwr ) = cr+1 and return to Step V2.
Otherwise, let vwr+1 be the edge incident with v coloured r + 1. If each colour
1,2, . . . ,r appears around wr+1, then increment r and repeat Step V6.

V7 [Build a {0, j}-path from w j or from wr+1] Let j ∈ {1,2, . . . ,r } be a free colour
at wr+1 and let 0 be a colour free at v and different from j. Construct two
maximal {0, j}-coloured paths Pj and Pr+1 from w j and wr+1, respectively, by
following edges of alternating colours 0, j,0, j, . . . (see Fig. 9(c)). (The paths
cannot both end in v.) Let k = j or r + 1 so that Pk does not end in v.

V8 [Flip colours on Pk ] Recolour the edges on Pk by exchanging 0 and j. Down-
shift from k, recolour f (vwk ) = 0, and return to Step V2.

To see that this algorithm is correct, one needs to check that the recolourings in
Steps V6 and V8 are legal. A careful analysis is given by Misra and Gries [33].

For the running time, first note that Step V6 is repeated at most deg v times,
so the algorithm eventually has to leave that step. The most time-consuming step
is Step V7; a {0, j}-path can be constructed in time O(n) if for each vertext we
maintain a table of incident edges indexed by colour. Thus the total running time of
Algorithm V is O(mn).

Another example from this class of algorithms appears in the proof of Brooks’s
theorem (see Chapter 2 and [8]), which relies on an algorithm that follows Algorithm
G but attempts to re-colour the vertices of bichromatic components whenever a
fresh colour is about to be introduced.

Random changes

There are many other graph colouring algorithms that fall under the umbrella of
local transformations. Of particular interest are local search algorithms that recolour
individual vertices at random. This idea defines a random process on the set of
colourings called the Glauber or Metropolis dynamics, or the natural Markov chain
Monte Carlo method. The aim here is not merely to find a colouring (since q > 4∆,
this would be easily done by Algorithm G), but to find a colouring that is uniformly
distributed among all q-colourings.

Algorithm M (Metropolis) Given a graph G with maximum degree ∆ and a q-
colouring f0 for q > 4∆, this algorithm finds a uniform random q-colouring fT in
polynomial time.
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M1 [Outer loop] Set T = dqn ln 2n/(q− 4∆)e. Do Step M2 for t = 1,2, . . . ,T , then
terminate.

M2 [Recolour a random vertex] Pick a vertex v ∈ V and a colour c ∈ {1,2, . . . ,q}
uniformly at random. Set f t = f t−1. If c does not appear among v’s neighbours,
then set f t (v) = c.

An initial colouring f0 can be provided in polynomial time because q > ∆ + 1 –
for example, by Algorithm G. To see that the choice of initial colouring f0 has no
influence on the result fT , we consider two different initial colourings f0 and f ′0
and execute Algorithm M on both, using the same random choices for v and c in
each step.

Let dt = |{ v : f t (v) , f ′t (v) }| be the number of disagreeing vertices after t
executions of Step M2. Each step can change only a single vertex, so |dt −dt−1 | = 1,
0, or −1. We have dt = dt−1 + 1 only if f t−1(v) = f ′

t−1(v) but f t (v) , f ′t (v), so
exactly one of the two processes rejects the colour change. In particular, v must have
a (disagreeing) neighbour w with c = f t−1(w) , f ′

t−1(w) or f t−1(w) , f ′
t−1(w) = c.

There are dt−1 choices for w and therefore 2∆dt−1 choices for c and v. Similarly,
we have dt = dt−1 − 1 only if f t−1(v) , f t−1(v) and c does not appear in v’s
neighbourhood in either f t−1 or f ′

t−1. There are at least (q − 2∆)dt−1 such choices
for c and v.

Thus, the expected value of dt can be bounded as follows:

E[dt ] ≤ E[dt−1] +
(q − 2∆)E[dt−1]

qn
−

2∆E[dt−1]
qn

= E[dt−1]
(
1 −

q − 4∆
qn

)
.

Iterating this argument and using d0 ≤ n, we have

E[dT ] ≤ n
(
1 −

q − 4∆
qn

)T
≤ n exp

(
−

T (q − 4∆)
qn

)
≤ n exp(− ln 2n) = 1

2 .

By Markov’s inequality, and because dT is a non-negative integer, we conclude that

Pr( fT = f ′T ) = Pr(dT = 0) ≥ 1 − Pr(dT ≥ 1) ≥ 1 − E[dT ] ≥ 1
2 .

We content ourselves with this argument, which shows that the process is
‘sufficiently random’ in the sense of being memoryless. Informally, we can convince
ourselves that fT is uniformly distributed because we can assume that f ′0 in the
above argument was sampled according to such a distribution. This intuition can be
formalized using standard coupling arguments for Markov chains; our calculations
above show that the ‘mixing time’ of Algorithm M is O(n log n).

Algorithm M and its variants have been well studied, and the analysis can be
much improved (see the survey of Frieze and Vigoda [13]). Randomized local search
has wide appeal across disciplines, including simulations in statistical physics and
heuristic methods in combinatorial optimization.
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6. Vector colouring

We now turn to a variant of vertex-colouring that is particularly interesting from an
algorithmic point of view.

Vector chromatic number

Let Sd−1 = { x ∈ Rd : ‖x‖ = 1 }. A vector q-colouring in d ≤ n dimensions is a
mapping x : V → Sd−1 from the vertex-set to the set of d-dimensional unit vectors
for which neighbouring vectors are ‘far apart’, in the sense that their scalar product
satisfies

〈x(v), x(w)〉 ≤ −
1

q − 1
, for vw ∈ E.

The smallest such number q is called the vector chromatic number ~χ(G), which
need not be an integer. For instance, the vertices of the 3-chromatic cycle graph C5
can be laid out on the unit circle in the form of a pentagram . Then the angle
between vectors corresponding to neighbouring vertices is 4

5π, corresponding to the
scalar product −1/(

√
5 − 1), so ~χ(C5) ≤

√
5 < 3.

Theorem 6.1 If G has clique number ω(G), then ω(G) ≤ ~χ(G) ≤ χ(G).

Proof. For the first inequality, let W be a clique in G of size r = ω(G) and consider
a vector q-colouring x of G. Let y =

∑
v∈W x(v). Then

0 ≤ 〈y,y〉 ≤ r · 1 + r (r − 1) ·
(
−

1
q − 1

)
,

which implies that r ≤ q.
For the second inequality, place the vertices belonging to each colour class at the

corners of a (q − 1)-dimensional simplex. To be specific, let f : V → {1,2, . . . ,q}
be an optimal q-colouring and define x(v) = (x1, x2, . . . , xn ) by

xi =




(
(q − 1)/q

)1/2 , if i = f (v) ;
−
(
q(q − 1)

)−1/2 , if i , f (v) and i ≤ q ;
0 , if i > q .

Then we have
〈x(v), x(v)〉 =

q − 1
q

+
q − 1

q(q − 1)
= 1 ,

and for v and w with f (v) , f (w) we have

〈x(v), x(w)〉 = 2
(q − 1

q

)1/2 (
−

( q
q − 1

)1/2)
+

q − 2
q(q − 1)

= −
1

q − 1
.
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Thus, x is a vector q-colouring, so ~χ(G) is at most q.

What makes vector colourings interesting from the algorithmic point of view is
that they can be found in polynomial time, at least approximately, using algorithms
based on semidefinite programming. The details behind those constructions lie far
outside the scope of this chapter (see Gärtner and Matoušek [14]).

Theorem 6.2 Given a graph G with ~χ(G) = q, a vector (q + ε)-colouring of G
can be found in time polynomial in n and log(1/ε).

For a graph with ω(G) = χ(G), Theorem 6.1 shows that the vector chromatic
number equals the chromatic number. In particular, it is an integer, and can be
determined in polynomial time using Theorem 6.2 with ε < 1

2 . This shows that
the chromatic numbers of perfect graphs can be determined in polynomial time.
The theory behind this result counts as one of the highlights of combinatorial
optimization (see Grötschel, Lovász and Schrijver [16]).

How does the vector chromatic number behave for general graphs? For q = 2,
the vectors have to point in exactly opposite directions. In particular, there can be
only two vectors for each connected component, so vector 2-colouring is equivalent
to 2-colouring.

But already for q = 3, the situation becomes more interesting, since there exist
vector 3-colourable graphs that are not 3-colourable. For instance, the Grötzsch
graph, the smallest triangle-free graph with chromatic number 4, admits the vector
3-colouring shown in Fig. 10 as an embedding on the unit sphere. More complicated

v1

v7

v8

v9 v10

v11
v6

v3

v5 v2

v4

v1

v7

v10
v9

v8

v2

v11

v2 v4

v5v6

v3

Fig. 10. Left: the Grötzsch graph Middle and right: a vector 3-colouring

constructions (that we cannot visualize) show that there exist vector 3-colourable
graphs with chromatic number at least n0.157 (see [12] and [22]).
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Randomized rounding

Even though the gap between ~χ and χ can be large for graphs in general, vector
colouring turns out to be a useful starting point for (standard) colouring. The next
algorithm, due to Karger, Motwani and Sudan [22], translates a vector colouring
into a (standard) vertex-colouring using random hyperplanes.

Algorithm R (Randomized rounding of vector colouring) Given a 3-chromatic
graph G with maximum degree ∆, this algorithm finds a q-colouring in polynomial
time, where the expected size of q is E[q] = O(∆0.681 log n).
R1 [Vector colour] Set ε = 2 · 10−5 and compute a vector (3 + ε)-colouring x of G

using semidefinite programming. Let α ≥ arccos(−1/(2 + ε)) be the minimum
angle in radians between neighbouring vertices.

R2 [Round] Set
r = dlogπ/(π−α) (2∆)e

and construct r random hyperplanes H1,H2, . . . ,Hr in Rn . For each vertex v,
let f (v) be the binary number brbr−1 · · · b1, where bi = 1 if and only if x(v)
is on the positive side of the ith hyperplane Hi .

R3 [Handle monochromatic edges recursively] Iterate over all edges to find the
set of monochromatic edges M = { vw ∈ E : f (v) = f (w) }. Recolour these
vertices by running Algorithm R recursively on G[M], with fresh colours.

Figure 11 illustrates the behaviour of Algorithm R on the vector 3-colouring of
the Grötzsch graph from Fig. 10. Two hyperplanes separate the vertices into four
parts. The resulting vertex-colouring with colours from {0,1}2 is shown to the right.
In this example, the set M of monochromatic edges determined in Step M3 contains
only the single edge v10v11, drawn bold in the figure.

00

01

00

01 00

00
11

10

11 11

11

00

00

Fig. 11. Left and middle: two hyperplanes Right: the corresponding colouring

Algorithm R algorithm runs in polynomial time, because Theorem 6.2 ensures
that Step R1 can be performed in polynomial time.
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We proceed to analyze the size of the final colouring. Step R2 uses the colours
{0,1, . . . ,2r−1}, so the number of colours used in each Step R2 is

2r ≤ (2∆)−1/ log(π/(π−α)) < (2∆)0.631 , (5)

what is more difficult is to bound the total number of recursive invocations. To this
end, we need to understand how fast the instance size, determined by the size of M
in Step R3, shrinks.

Let e be an edge whose endpoints received the vector colours x and y. Elemen-
tary geometrical considerations establish the following result.

Theorem 6.3 Let x,y ∈ Rd with angle ϕ (in radians). A random hyperplane in Rd

fails to separate x and y with probability 1 − ϕ/π.

The angle between the vectors x and y is at most α. (To gain some intuition of
this, if we ignore the error term ε, Theorem 6.3 shows that x and y end up on the
same side of a random hyperplane with probability 1−α/π ≤ 1−arccos(−1

2 )/π = 1−
2π/3π = 1

3 .) The edge e is monochromatic if all r independent random hyperplanes
fail to separate x and y in Step R2. Thus,

Pr(e ∈ M) ≤ (1 − α/π)r ≤ (π/(π − α))−r ≤ 1/2∆ .

By linearity of expectation, the expected size of M is

E[|M |] =
∑
e∈E

Pr(e ∈ M) ≤ m/2∆ ≤ 1
4 n .

Since each edge has two vertices, the expected number of vertices in the recursive
instance G[M] is at most 1

2 n, and in general, for i > 2, the expected number of
vertices ni in the ith instance satisfies ni ≤ 1

2 ni−1. In particular, nt ≤ 1 after
t = O(log n) rounds, at which point the algorithm terminates. With the bound (5) on
the number of colours used per round, we conclude that the total number of colours
used is O(∆0.631 log n) in expectation.

In terms of ∆, Algorithm R is much better than the bound of ∆ + 1 guaranteed
by Algorithm G. For an expression in terms of n, we are tempted to bound ∆ by
O(n), but that just shows that the number of colours is O(n0.631 log n), which is
worse than the O(

√
n) colours from Algorithm W.

Instead, we employ a hybrid approach. Run Steps W1 and W2 as long as the
maximum degree of the graph G is larger than some threshold d, and then colour the
remaining graph using Algorithm R. The number of colours used by the combined
algorithm is of the order of (2n/d) + (2d)0.631 log n, which is minimized around
d = n1/1.631 with value O(n0.387).



CHAPTER 13. GRAPH COLOURING ALGORITHMS 22

Variants of Algorithm R for general q-colouring and with intricate rounding
schemes have been investigated further (see Langberg’s survey [27]). The current
best polynomial-time algorithm for colouring a 3-chromatic graph based on vector
colouring uses O(n0.208) colours, due to Chlamtac [9].

7. Reductions

The algorithms in this chapter are summarized in Table 1.

Algorithm Time Problem

B Bipartition O(n + m) 2-colouring
C Contraction O(1.619n+m ) P(G,q)
D Dynamic programming 3n poly(n) χ(G)
G Greedy O(n + m) (∆(G) + 1)-colouring
I Inclusion–exclusion 2n poly(n) χ(G)
L Lawler’s algorithm O(1.443n ) 3-colouring
M Metropolis dynamics poly(n) random q-colouring (q > 4∆)
P Palette restriction 1.5n poly(n) 3-colouring
R Rounded vector colouring poly(n) O(∆0.681 log n)-colouring for χ(G) = 3
V Vizing’s algorithm O(mn) edge (∆(G) + 1)-colouring
W Wigderson’s algorithm O(n + m) O(

√
n)-colouring for χ(G) = 3

X Exhaustive search qn poly(n) P(G,q)

Table 1. Algorithms discussed in this survey

Not only do these algorithms achieve different running times and quality guar-
antees, they also differ in which specific problem they consider. Let us now be more
precise about the variants of the graph colouring problem:

Decision Given a graph G and an integer q, decide whether q can be q-coloured.

Chromatic number Given a graph G, compute the chromatic number χ(G).

Construction Given a graph G and an integer q, construct a q-colouring of G.

Counting Given a graph G and an integer q, compute the number P(G,q) of q-
colourings of G.

Sampling Given a graph G and an integer q, construct a random q-colouring of G.

Chromatic polynomial Given a graph G, compute the chromatic polynomial – that
is, the coefficients of the integer polynomial q 7→ P(G,q).
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Some of these problems are related by using fairly straightforward reductions.
For example, the decision problem is easily solved using the chromatic number
by comparing q with χ(G); conversely, χ(G) can be determined by solving the
decision problem for q = 1,2, . . . ,n. It is also clear that if we can construct a q-
colouring, then we can decide that one exists. What is perhaps less clear is the other
direction. This is seen by a self-reduction that follows the contraction algorithm,
Algorithm C.

Reduction C (Constructing a colouring using a decision algorithm). Suppose that
we have an algorithm that decides whether a given graph G can be q-coloured. If
G = Kn and n ≤ q, give each vertex its own colour and terminate. Otherwise, select
two non-adjacent vertices v and w in G. If G + vw cannot be q-coloured, then every
q-colouring f of G must have f (v) = f (w). Thus we can identify v and w and
recursively find a q-colouring for G/vw. Otherwise, there exists a q-colouring of G
with f (v) , f (w), so we recursively find a colouring for G + vw.

Some of our algorithms work only for a specific fixed q, such as Algorithm B for
2-colourability or Algorithm L for 3-colourability. Clearly, they both reduce to the
decision problem where q is part of the input. But what about the other direction?
The answer turns out to depend strongly on q: the decision problem reduces to
3-colorability, but not to 2-colorability.

Reduction L (q-colouring using 3-colouring). Given a graph G = (V,E) and an
integer q, this reduction constructs a graph H that is 3-colourable with colours
{0,1,2} if and only if G is q-colourable with colours {1,2, . . . ,q}.

First, to fix some colour names, the graph H contains a triangle with the vertices
0,1,2. We assume that vertex i has colour i, for i = 0,1,2.

For each vertex v ∈ V , the graph H contains 2q vertices v1,v2, . . . ,vq and
v′1,v

′
2, . . . ,v

′
q . Our intuition is that the vis act as indicators for a colour in G in the

following sense: if vi has colour 1 in H then v has colour i in G. The vertices are
arranged as in Fig. 12(a); the right-most vertex is 1 or 2, depending on the parity of
q. The vertices v1,v2, . . . ,vq are all adjacent to 2, and so must be coloured 0 or 1.

v′1

v1

v′2

v2

· · ·

· · ·

v′q

vq

2 2 − q (mod 2)

(a)

wi

1

vi

(b)
Fig. 12.
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Moreover, at least one of them must be coloured 1, since otherwise, the colours for
v′1,v

′
2, . . . ,v

′
q are forced to alternate as 1,2,1, . . ., conflicting with the colour of the

right-most vertex.
Now consider an edge vw in G. Let v1,v2, . . . ,vq and w1,w2, . . . ,wq be the

corresponding ‘indicator’ vertices in H . For each colour i = 1,2, . . . ,q, the vertices
vi and wi are connected by a ‘fresh’ triangle as shown in Fig. 12(b). This ensures
that vi and wi cannot both be 1. In other words, v and w cannot have received the
same colour.

The above reduction, essentially due to Lovász [30], can easily be extended
to a larger, fixed q > 3, because G is q-colourable if and only if G with an added
‘apex’ vertex adjacent to all other vertices is (q + 1)-colourable. For instance,
4-colourability is not easier than 3-colourability for general graphs.

Thus, all q-colouring problems for q ≥ 3 are (in some sense) equally difficult.
This is consistent with the fact that the case q = 2 admits a very fast algorithm
(Algorithm B), whereas none of the others does.

Many constructions have been published that show the computational difficulty
of colouring for restricted classes of graphs. We will sketch an interesting example
due to Stockmeyer [35]: the restriction of the case q = 3 to planar graphs. Consider
the subgraph in Fig. 13(a), called a planarity gadget. One can check that this

N

W

S

E

(a) (b)

v w

↓

v w

Fig. 13. A planarity gadget

subgraph has the property that every 3-colouring f satisfies f (E) = f (W) and
f (N) = f (S). Moreover, every partial assignment f to {N,S,E,W} that satisfies
f (E) = f (W) and f (N) = f (S) can be extended to a 3-colouring of the entire
subgraph.

The gadget is used to transform a given (non-planar) graph G as follows. Draw
G in the plane and for each edge vw replace each edge intersection by the planarity
gadget. The outer vertices of neighbouring gadgets are identified, and v is identified
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with W in its neighbouring gadget (see Fig. 13(b)). The resulting graph is planar,
and it can be checked that it is 3-chromatic if and only if G is 3-chromatic. Thus, the
restriction to planar instances does not make 3-colourability computationally easier.
Unlike the case for non-planar graphs, this construction cannot be generalized to
larger q > 3, since the decision problem for planar graphs and every q ≥ 4 has
answer ‘yes’ because of the four-colour theorem.

Computational complexity

The field of computational complexity relates algorithmic problems from various
domains to one another in order to establish a notion of computational difficulty.
The chromatic number problem was one of the first to be analysed in this fashion.
The following reduction, essentially from the seminal paper of Karp [23], shows that
computing the chromatic number is ‘hard for the complexity class NP’ by reducing
from the NP-hard satisfiability problem for Boolean formulas on conjunctive normal
form (CNF). This implies that all other problem in the class NP reduce to the
chromatic number.

The input to CNF-Satisfiability is a Boolean formula consisting of s clauses
C1,C2, . . . ,Cs . Each clause Cj consists of a disjunction Cj = (l j1 ∨ l j2 ∨ · · · ∨ l jk )
of literals. Every literal is a variable x1, x2, . . . , xr or its negation x1, x2, . . . , xr .
The problem is to find an assignment of the variables to ‘true’ and ‘false’ that makes
all clauses true.

Reduction K (Satisfiability using chromatic number). Given an instance C1,C2, . . . ,

Cs of CNF-Satisfiability over the variables x1, x2, . . . , xr , this reduction constructs
a graph G on 3r + s + 1 vertices such that G can be coloured with r + 1 colours if
and only the instance is satisfiable.

The graph G contains a complete subgraph on r + 1 vertices {0,1, . . . ,r }. In
any colouring, these vertices receive different colours, say f (i) = i. The intuition
is that the colour 0 represents ‘false’, while the other colours represent ‘true’. For
each variable xi (1 ≤ i ≤ r) the graph contains two adjacent ‘literal’ vertices vi
and vi , both adjacent to all ‘true colour’ vertices {1,2, . . . ,r } except i. Thus, one of
the two vertices vi ,vi must be assigned the ‘true’ colour i, and the other must be
coloured 0. The construction is completed with ‘clause’ vertices w j , one for each
clause Cj (1 ≤ j ≤ s). Let xi1 , xi2 , . . . , xik be the variables appearing (positively or
negatively) in Cj . Then w j is adjacent to {0,1, . . . ,r } \ {i1, i2, . . . , ik }. This ensures
that only the ‘true’ colours {i1, i2, . . . , ik } are available at w j . Furthermore, if xi
appears positive in Cj , then w j is adjacent to vi ; if xi appears negated in Cj , then
w j is adjacent to vi . Figure 14 shows the reduction for a small instance consisting
of just the clause C1 = (x1 ∨ x2 ∨ x3) and a valid colouring corresponding to the
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assignment x1 = x3 = true, x2 = false; the edges of the clique on {0,1,2,3} are not
shown. Thus, the only colours available to w j are those chosen by its literals.

0
0

11

22

33

1 v1

0 v1

0 v2

2 v2

3 v3

0 v3

2
w1

Fig. 14. A 4-colouring instance corresponding to C1 = (x1 ∨ x2 ∨ x3)

Edge-colouring

A mapping f : E → {1,2, . . . ,q} is an edge-colouring of G if and only if it is a
vertex-colouring of the line graph L(G) of G. In particular, every vertex-colouring
algorithm can be used as an edge-colouring algorithm by running it on L(G). For
instance, Algorithm I computes the chromatic index in time 2m poly(n), which
is the fastest currently known algorithm. Similarly, Algorithm G finds an edge-
colouring with (2∆ − 1) colours, but this is worse than Algorithm V. In fact, since
∆ ≤ χ′(G) ≤ ∆+1, Algorithm V determines the chromatic index within an additive
error of 1. However, deciding which of the two candidate values for χ′(G) is correct
is an NP-hard problem, as shown by Holyer [19] for χ′(G) = 3 and Leven and
Galil [29] for χ′(G) > 3.

Approximating the chromatic number

Algorithm V shows that the chromatic index can be very well approximated. In
contrast, approximating the chromatic number is much harder. In particular, it is
NP-hard to 4-colour a 3-chromatic graph (see [17]). This rules out an approximate
vertex-colouring algorithm with a performance guarantee as good as Algorithm V,
but is far from explaining why the considerable machinery behind, say, Algorithm
R results only in a colouring of size nc for 3-chromatic graphs. The best currently
known exponent is c = 0.204 (see [24]).

For sufficiently large fixed q, it is NP-hard to find an exp(Ω(q1/3))-colouring
for a q-colourable graph. If q is not fixed, even stronger hardness results are
known. We saw in Section 6 that the polynomial-time computable function ~χ(G)
is a lower bound on χ(G), even though the gap can sometimes be large, say
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χ(G) ≥ n0.157 ~χ(G) for some graphs. Can we guarantee a corresponding upper
bound for ~χ? If not, maybe there is some other polynomial-time computable
function g so that we can guarantee, for example, g(G) ≤ χ(G) ≤ n0.999g(G)?
The answer turns out to be ‘no’ under standard complexity-theoretic assumptions:
For every ε > 0, it is NP-hard to approximate χ(G) within a factor n1−ε , as shown
by Zuckerman [41].

Counting

The problem of counting the q-colourings is solved by evaluating P(G,q). Con-
versely, because the chromatic polynomial has degree n, it can be interpolated using
Lagrangian interpolation from the values of the counting problem at q = 0,1, . . . ,n.
Moreover, note that χ(G) ≥ q if and only if P(G,q) > 0, so it is NP-hard to count
the number of q-colourings simply because the decision problem is known to be
hard. In fact, the counting problem is hard for Valiant’s counting class #P.

On the other hand, an important result in counting complexity [21] relates the
estimation of the size of a finite set to the problem of uniformly sampling from it.
In particular, a uniform sampler such as Algorithm M serves as a ‘fully polynomial
randomized approximation scheme’ (FPRAS) for the number of colours. Thus,
provided that q > 4∆, Algorithm M can be used to compute a value g(G) for which
(1−ε)g(G) ≤ P(G,q) ≤ (1+ε)g(G) with high probability in time polynomial in n
and 1/ε for any ε > 0. Much better bounds on q are known (see the survey of Frieze
and Vigoda [13]). Without some bound on q, such an FPRAS is unlikely to exist
because, with ε = 1

2 , it would constitute a randomized algorithm for the decision
problem and would therefore imply that all of NP can be solved in randomized
polynomial time.

Conclusion

Together, the algorithms and reductions presented in this survey give a picture of
the computational aspects of graph colouring. For instance, 2-colouring admits
a polynomial time algorithm, while 3-colouring does not. In the planar case, 4-
colouring is trivial, but 3-colouring is not. An almost optimal edge-colouring can be
found in polynomial time, but vertex-colouring is very difficult to approximate. If q
is sufficiently large compared to ∆(G) then the set of colourings can be sampled and
approximately counted, but not counted exactly. Finally, even the computationally
hard colouring problems admit techniques that are much better than our initial
Algorithm X.

None of these insights is obvious from the definition of graph colouring, so the
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algorithmic perspective on chromatic graph theory has proved to be a fertile source
of questions with interesting answers.
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